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A Bayesian updating procedure is proposed for filtering the process

: 1 parameters in the two-stage Markovian constant variance model for time varying
normal data in the situation where the signal to noise ratio is unknown. A
! forecasting procedure is described which yields the entire predictive
{ distribution of future observations; a numerical study involves an on-line
| analysis for chemical process concentration readings. A similar method is

developed for Poisson data and applied to the analysis of an industrial

3 control chart.
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SIGNIFICANCE AND EXPLANATION

Simple two-stage Bayesian models are considered for time-varying normal
and Poisson data, in the linear prediction situation. The normal model is
equivalent to an ARIMA process and posterior estimates for the process levels
and signal to noise ratio are compared with the Box-Jenkins likelihood
procedure. The posterior distribution of the variance ratio may be updated
on-line and the unconditional posterior densities and predictive
distributions, of the process levels and future observations, may be
calculated at each time stage, providing useful inference procedures for
filtering and forecasting. The methodology is applied in some detail to the
Box~-Jenkins chemical process data. In the Poisson situations similar
procedures are developed using a Gamma approximation to one of the updating
distributions in the model. This method is illustrated by an analysis of an

industrial control chart.
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A BAYESIAN APPROACH TO MARKOVIAN MODELS
FOR NORMAL AND POISSON DATA

Tom Leonard
1. Introduction
Following Kalman (5], Blight {1], and Harrison and Stevens [4], we
consider the two-stage Markovian (constant variance) model
y, =8, +§; (1.1)
0. =0 + €,

. (1.2)

(i =1,2,00e,m)
where the ei represent the process parameters and the Gi and ei are
mutually independent and normally distributed error terms with zero means.
The Gi and ei are taken to possess respective common variances T2 and
02, with the exception of €, which for convenience is taken to possess
variance °3 = Ytz where Y 1is known. The initial mean 91 then possesses
a.normal prior distribution with mean 00 and variance 03.
For i = 2,¢e.,m the model in (1.7) ‘and (1.2) is mathematically

equivalent to an ARIMA process, of the type discussed by Box and Jenkins ([2],
p. 8) where

Yy “ ¥ 49 §q, _, (1.3)
with the q; representing independent and normally distributed random
variables with zero means and common variance £-1t2, and with £ denoting
the smaller root of the equation

2+a=§ +§& , (1.4)

with
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The equivalence may be demonstrated by differencing out the Oi from
(1.1) and (1.2). 1In Chapter 7, Box and Jenkins recommend a procedure for the
approximate maximum likelihood estimation of &. We will later compare this

with our inferences based upon the posterior distribution for a.

From [4], we have that, when 12 and 02 are known, the posterior

distribution after time m of the parameter Gm is normal with mean a, and
variance Voo The latter may be obtained from the updating relations

a, = a

i-1 i-1

(i = 1,.-0,“)
and

Di = (Di-1 + a)/(Di_1.+ a4+ 1) (1.6)

(i = zltoo'm)

.

with v, = 120 s @ = oz/tz, a =6

A 0 o’ and D, = Y/(14Y).
Note that a, provides a smoothed value after time m for the process
parameter Gn, it is also the j-step ahead forecast for 9m+j for any j =

12,000 & 3

We propose to extend these results to the situation where Tz and 02
are unknown by supposing that any prior information about the variances may be
adequately represented by taking V1K1/12 and “2‘2/02 to possess

independent xz-diotrtbutions with Vv and v degrees of freedom

1 2
respectively. The values K;1 and K;1 could be specified as the respective
prior msans of the precisions t'z and 0-23 V' and V2 are then prior

‘sample sizes' measuring the strength of the prior information. For example,

+ ® the first-stage variance tz becowes known and equal to Kk_,

as Vv
1

1
Ignorance priors will be discussed in Section 4; the presence of prior

information is not requisite for the practical applicability of our method.

-2-
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2. Bayesian Theory,

Under the prior assumptions described in the previous section the joint

prior density of 12 and @ = 02/12 is given by

n(tz,a)c

= (v_4v_+2) =14 (v_+2)
2 2
(1:2) V2, 2 exp{- 1/2 v, n<1/12 - 1/2 vznz/atz} (2.1)

(0 < 12 <® 0cag= ,

We seek the posterior distribution of the variance ratio a after m

observations y(m)

= (y,...,ym). It is firstly necessary to find the
(m)

distribution of vy given 12 and a,

For i = 2,...,m, we have under the notation introduced in (1.5) and

(1.6), that the conditional distribution of y(l) (1-1), rz, and

given y

@, 1is normal with mean a,

j-1 and variance 12(1 + a + D,
1—

1). Since y,,

given TZ and ¢ is normal with mean 60 and variance 12(1+Y), the

required distribution of y(m) is

m s
pty™]7%,0) = ply, [*%,@) T p(yily(l-1),12.0)
i=2 (2.2)
1 -
«(})7 72" u (a) expl- Yo 7770, (a)}
with
1, m 1
U@ = (4”2 1 (1 sa+p,_ )2 (2.3)
. i1
i=2
and

-1 m -
Uz(a) = (1+Y) 2 (x1 - 60)2 + 2 (1 +a+0D, ) 1(yi - a )2 (2.4)
i=2

i-1 i-1
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where t.2 a; and D; may be obtained from the updating relations in (1.5)
and (106)0
By Bayes' theorem, the joint posterior distribution of Tz and a is

given by

(m)

N(Tz,a|y ) = u(rz,a)p(y(m)ltz,a)

(2.5)

(0<rz<qno<a<°)

where the first and second contributions to the right hand side are given in
(2.1) and (2.2) respectively. Integrating out T2 we find that the marginal

posterior distribution of the variance ratio a is

- 3
- / AV
, « ur(a) {Ut(a)} T (2.6)
1 2
(0 < ac =
where
=5 (v _+2)
U:(a) = Q U1(a) (2.7)
Ug(a) = v Kk + VK /a + U,(a) (2.8)
and
vT = v1 + v2 +m (2.9)

with Ui(a) and Uz(a) defined in (2,3) and (2.4) respectively.
We are now in a position to obtain the unconditional posterior mean a;,
of 9m, after m stages. This is given by the expectation

- = [® (m) (m)
a* = E(8 |y ) Io E(O |y " ,a)(aly " )da (2.10)




of the conditional posterior mean given a (i.e. a_ from (1.5)) with

respect to the posterior distribution of &, given y(m), in (2.6). Note

that a; may be calculated by a straightforward one-dimensional integration.
The above procedure possesses the appealing property that it is easy to
update in time; this aspect will be considered in the next Section. For

VT > 2 the posterior variance after m time stages is equal to the

expectation of the quantity
2 ; -1
- a* vV - U*(a)D 2,11
(am am) + o 2) 2( ) n ( )
with respect to the same distribution of & in (2.6), where ag, Dm' U;(a),
and vT are given in (1.5), (1.6), (2.8), and (2.10) respectively.

It is moreover possible to compute the whole posterior density of Sm,
)

. (m .
given vy , using

(m)

w(O |y ") = fo n(8 ,aly’" )aa

1 (2.12)
@ 1 - /2 (v +1)

- =/ -1 _ 2 T
/oD us(a){us(a) + D (8 - a )} da

with U;(a) and U;(a) defined in (2.7) and (2.8) respectively.

The posterior density of the first stage variance T2 may be obtained by
integrating the quantity in (2.5) with respect to a; however when vT > 2
the posterior mean of r2 may be obtained more simply, using

(m) (m)

E(Tzly ) = f; E(Tzly .c)ﬂ(aly(m))da
(2.13)

-1 00
= vy - 27" [ us@rntaly™aa

where the first and second contribution to the integrand are given in (2.8)

and (2.5) respectively.
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Lastly, it is straightforward to compute the predictive distribution
after m time stages for a future observation Ym+j' For j =1,2,... this
will possess mean a; in (2.10), and density

) ot (
p(ym+j|!(In ) = IO p(ym+j,a|! l|l))du

), -
- /b -1
« f; 0% us (@) {us(a) + D25 Vs

-V (v _+1)
2
- a )’} T aa (2.14)

(== < Ym+j < ®)

where Dp =1+ ja + Dm'

5]
Our approach provides us with formally justified filtering and
forecasting procedures, and enables us to make inferences at any time stage

about the process parameter Qi, the variances 12 and 02, and the future

observations Ym+j by considering their posterior or predictive

distributions.

e e




e st il

o —— R = Y

- s

3. Updating Procedures

In order to perform the numerical integration in (2.10), store a, in

(1.5) and the distribution in (2.6) for the values of a 1lying in a set
Q2 = {h,2n,3n,...,2n0} . (3.1)

The integer £ and width h choose be chosen after balancing
considerations of computer speed and storage with the degree of accuracy
required in the numerical integration. With Simpson's rule, £ = 100 and
h = 0,01 should suffice. We introduce the notation W(a) to denote the
expression on the right hand side of (2.6).

After any time stage i it is only necessary to store the latest values
of a;, Dy, U:(a), U;(a) and W(a) for each a € Q. Previous values and

observations may be discarded. The relevant quantities are defined in (1.5),

(1.6), (2.7), (2.8), and (2.6) respectively. For example, after time i = 1

we have

a1 = 60 + D1(x1 - 60) .

D1 = Y/(1+Y)

-p (v,+2)
uj(a) = a o U3(a) = VoK + VyKy/e
and
_yﬁ(v1+v2)
Ww(a) = U;(G){Ui(ﬂ)} .

Given the stored values after time i - 1 it is straightforward to
update to new values after reading in a fresh observation y; at time i.
The validity of our routine may be checked from (1.5), (1.6), (2.3) and (2.4),
step (ii) was devised to minimize problems f exponeni .al overflow when
calculating W(a) for large i, The followin~ fou. steps should be completed

in order for each a € %,

¥
H
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(i) Calculate a new value for U;(G) by dividing the old value by

.

a 2,

(1 + + Di-1)

(ii) Calculate the quantity

2

-1
zi = (1 +a +D ) (yi - a )

i-1 i-1

and obtain a new value for W(a) by multiplying the old value by
A
2
(1 +a+D;_,) "“Q.(z,)
with .
_1 - (v1+v +1i)
g, (a) = {us(@)}™ 2(1 + q/ug(a)} 2 (3.2)
(iii) Calculate a new value for Uz(a) by adding z. to the old value.

i
(iv) Calculate new values a; and Di from (1.5) and (1.6) respectively.

After each time stage the function W(a) should be normalized by
dividing through by its total over the set {.

We seem to have provided a simple procedure for updating, to any required
accuracy, the posterior distribution in (2.6). Note, from (2.10) that the
unconditional - 1n a; of Oi may now be computed by numerically integrating
a, over &€ , and with respect to this distribution.

It is straightforward to employ the stored values after time i to
calculate all the means, variances, and distributions described in the
previous Section. It, for example, follows from (2.11) that the posterior
distribution of Gi after time i is proportional to the integral with
respect to a of

W(G)D; 1/2q)i{rai"(6i - ai)z} (3.3)
where Q.(q) is defined in (3.2). The expression in (3.3) may be averaged

over a € 1 for each required value of 91. The obvious analogous procedure

is available for the predictive distribution in (2.13).
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4. An On-Line Analysis of Chemical Process Readings

The data in the second column of Table 1 were reported by Box and Jenkins
(p. 525); we have subtracted 17.0 from each observation. On p. 239 Box and
Jenkins fit in ARIMA model in the complete set of 197 observations. Their
identified model takes the form given in (1.3), with & = 0.70. This
correspends to a value for the variance ratio of a = 0.13.

. . . 2
We firstly proceed under an assumption of prior ignorance about 91, g,

1
and 12 and set Y =® and hence D, = 1., The term (1+4Y) /2

] on the right

hand side of (2.3) should then be removed together with the first term on the
right hand side of (2.4).
We select the improper prior density

2 0<t? ¢ 0¢x <) (4.1)

n(Tz,a)¢ T
for 12 and & Dbecause this particular choice ensures that the posterior
distribution will remain proper for an i = 1,...,m. This is equivalent to
setting K1 = K2 = 0 and replacing v1 and vz by 2 and -2 respectively
in the analysis of Section 3.

We obtained, under this ignorance prior, the smooth values a;, for
ei' listed under (A) in the third column of Table 1; the posterior means @,
of a are in the fourth column. The smoothed value a; for, say, i = 20,
was calculated from (2.10) and only depends upon the first twenty observations
y20. It is therefore the latest on-line value for the process level after 20
stages of the chemical experiment.

The estimate aA is initially rather large, causing the a; to, very
reasonably, remain close to the observations. As the process proceeds, GA
tends to get smaller, and greater smoothing ensued. After time m = 197 our
values are xm = 0.4, a; = 0,49 and aA = 0.20. The final posterior mean in

(2.13) of the first stage variance is equal to 0.066, Our value for a

A




implies that this is five times as large as the second stage variance

suggesting that a moderately large amount of noise in the process is accounted
for by the first stage fluctuations, but that the process parameters still
vary noticeably with time.

The final posterior density of @ possessed a mode at a = 0,13, This,
quite interestingly, is absolutely identical to the value recommended by Box
and Jenkins. However, both the posterior distribution and likelihood of «
are positively skew with thick tails, suggesting that our recommended value
0.20 (i.e. the posterior mean) might also be plausible.

We calculated the whole posterior density curve of 0197 from (2.12) and
found this to be almost exactly normal with mean 0.49 and variance 0.022.
Similarly, the predictive density curves for Y1987 Y199re+¢1¥ggy Were all
well-approximated by normal distributions with mean 0.49 and respective
variances 0.101, 0.114, 0.127, 0.140, and 0,153, Note that these
distributions are easily calculated after any time stage.

The analysis was repeated under an assumption of definite prior

information about 12 and 02. We set «x, = 0,05, x

1 = 0.025, and

2

v1 = vz = 10, leading to a prior mean of 0.63 for the variance ratio a,

The smoothed values for analysis B are listed in the fifth column of Table

1, and the corresponding posterior means GB for @ in the sixth column.

A possible advantage of a proper prior distribution for & is that the
smoothed process settles down more quickly; smaller values are observed for
GB in the initial stages. The estimate aB however remains somewhat larger

than aA in our example, in view of the information introduced by the prior

distribution.




An On-Line Analysis of Chemical Process Concentration Readings

Table 1:
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Table 1 (continued)

Smoothed
Value B

Observation Smoothed
(xi) Value A

Time
Stage (i)

NNNN

[ Ny} g W oe ] NANNNNNNNNNNNNNNNNNN
L] L

WM ANNNNONT =T ON

LEREREEREEE

TR L e W e o

R e Y. " W S S, .

A EECEE EEED RN PEEERE EE R M E N e

-12-




Table 1 (continued)
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Table 1 (continued)

Smoothed
Value B

Smoothed
Value A

(xi)

Observation

Time
Stage (i)

OOV OV ON €0 G0 6D G0 €O €O G0 O r~ O 90 0 GO
.
00 o

0000000000000000

.M.Un‘1;0.9.1.:.7.nv:a1¢9.1.9.o,9.1.1.1.§.§.Q.av1.9.:;1?6.6.0.5.4.1
1.9.9.nvnvnv1.1.1.1.1;1.9.9.n.nvnv1.1.nva,R.ﬁ.&42.1.1.1.9.ioﬂaau9.
\d L]

0000

wy N
00000ﬂﬂoo000000000**0000000000

o N OQANORNANDNO vt =
9.o-osMwmwos1.1.mw1.Mu1.1.1.1.9.m“ono‘mwmw
00

Oooooooooooooooo

Q 82138575 M~ NON
Ld 4 A
00 00O

L4 L *
oooooooo

0.74
0.68
0.72
o.N
0.53
0.49

0.21
0.47

Q.Q.A.o.l.a.nvd.o.o.1.1.1.&.9.1.1.nvQa1;aanunv‘u:anv1.1.9¢¢u:acanvnvnva‘.é.ﬂ.ﬂnunv.‘.b.B.I.‘.ﬂ
0000%%000O00OOOﬂﬂOﬂvaOOOOOWO0000000000001100000

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

=14~




. e N o "
. o : o e SRRy A Vg At e e A — o pd
e < GO o i SR o e L ; - P

5. Poisson Observations

Suppose now that we replace the first stage of the model in (1.1) by the

assumption that Yy¢r Yoreee ¥y, are independent and Poisson distributed with

@

respective means 91, 02,...,9m. The y; might for example represent the

numbers of items per successive batch by an industrial process. A similar

P Sl T

e

analysis to the one described below may be developed if Yy instead possesses

a binomial distribution with probability ei and sample size ny (e.q. ;
n; = 1 for binary process).

In the Poisson situation we retain a similar second stage to the model by

o g—— e

supposing that

ei = 31-1 + ei (i = 1,....“) (501)

where € reees€ ~are independent terms with zero means. For i = 2,...,m we
suppose that €

possesses variance af _ so that the variance changes

. i i-1’
with the non-negative mean in a sensible (and technically convenient)
;T manner. The first error term € is taken to possess variance Y0 _, so that 1
0

1 -
t
91 has a prior distribution with mean 90 and variance Yeo. No further !z

distributional assumptions need to be made about 51,...,€m until we present !

ourselves with the problem of estimating a.




6. Linear Prediction

denote our smoothed value for Gm, given y(m), and for j =

o
Let 2,0

1,2,00¢ let 9; 3 represent our j-step ahead forecast for em+j after
’

time m. Attention is for the moment restricted to linear predictors of the

form

m
8,5 =805 * 18,

m,j i=1 jyi

(3 = 0,1,2,44s)
where an""'ij represent unknown constants not depending upon the data,
and o is initially taken to be known. Optimal values for BOj""’ij may
be obtained by minimizing the Bayes risk of 9;'j under the quadratic loss
function
L(e;,j'em+j) = (e;,j - 0m+j . (6.2)

The first two moments of the joint distribution, given a, of Yyreeos¥p
and 01,...,9m is described in Section 5, and the Bayes risk may be obtained
by taking expectation of the loss function in (6.2) with respect to this joint
distribution. Setting Bij = Bi' for 1 = 0,1,eee,m and j = 0, 1,2,404.,
for notational simplicity we find after some manipulation that the Bayes risk

is given by

[ A X ] - 2
E(L(O;' em+j)'°} = (B8, +oec+ B 08 +8 -0])

j'
+ jceo

2 ces 2
+ (81 + + am)eo
(6.3)

2 2 LR N J e - 2
+al(g - 1"+ (8 +8 . - 1) 4eet (B 4vecs B, - 1)T}0,

(XN ] - 2
+ Y{ﬂm $ooe s 81 1} 90 .




[ Differentiating the expression in (6.3) with respect to the Bi we find that

. the optimal values of Bi do not depend upon 3j. The optimal linear values

- 9; 3 in (6.1) may therefore be set equal to a common quantity ay for all
[

whe

j = 0, 1,2,..0 .
We now introduce an analogy with the normal process of Section 1 in order

to obtain updating formulae for ape It is straightforward to show that this

R e Tt

normal process provides exactly the same Bayes risk as given in (6.3), but
with 90, in all but the first term on the right hand side of (6.3), replaced
by the first stage variance 12 and o replaced by oz/tz. The optimal
linear predictors in the Poisson case are therefore, with appropriate

] substitutions identical to those in the normal case. However the optimal

linear predictors 6; 3 in the normal case are identical to the posterior
r

. mean a , as normality implies linearity. We therefore have the pleasing

result that a in the Poisson situation may be obtained from exactly the

m

same updating formulae as employed in Section 1, namely

a a, +D.(y, —a, ,) (6.4)
1 1

i i-1 i-1
(i = 1,.00,“\)
and

Di = (Di_1 + m)/(Di_,l + a4+ 1) (6.5)

(i = 2'ooo'm)

= e = [y
with a, o and D, Y/(14Y)
The value a, could be viewed as the 'best' linear approximation to the
posterior mean of Sm after time m. In the next Section we show how this

result may be approximately generalized to the situation where & is unknown.
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7.

Estimation of a

In order to obtain an approximation to the posterior distribution of a

we introduce an alternative method which also approximately justifies the
updating formulae in (6.4) and (6.5). Suppose that after i-1 time stages the
posterior distribution of 01_1 given a, possesses mean a1 and variance
Vi_qr 1ee.

3 N P R I (7.1)

Then

(i-1) o
o ly @@y ) (7.2)

e e g e = e

Suppose that the distribution in (7.2) is approximately Gamma with the
stipulated mean and variance. As Bi in Poisson with mean Oi we obtain,

applying Bayes theorem and some manipulation

H (i) ~
i o ly ""a (a;,v,) (7.3)
where
B a, =a, .+ vi(yi-ai_1) (7.4) -
- and
v Vi * 9y
i vi_1 + (a+1)ai_1

Setting vy = Djay yields the relations in (6.4) and (6.5). The

approximations also give

(1-1)
v, ly LR CH R R LI (7.5)

and that this distribution is approximately a Gamma mixture of a Poisson. The

density is given by

a qg 1

1-194-1
F(a, .q +Yy)g

) = 1-191-9 1799 (7.6)

a, .g +y
1-194-1 i
Ty )Ty 49, 000 +9, )

i-1) a

p(Yilg(
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where
-1
= + a . 7.7
954 (Di_1 ) ( )

The posterior density of & after m time stages is therefore

approximated by

m .
s n(aly(m)) « w(a) N p(yily(l 1),0)

i=1

& Y,

: B m a, .9, ., "i-1 ra, g. . +k (7.8)
b « w(a) I {g,_1/(1 + gi_1)} i-1711 I —i—l—i—%—T——

E i=1 . k=0 9i-1

~,§ (0 < a < =)

g ; where T7(a) denotes the prior density; we recommend the flexible choice
'k Vv -2 -y (v4v))

T(a)s a L (v1K + v,a) (7.9)

so that K-1G possesses an F-distribution with v, and v2 degrees of

3 freedom. For Vz > 2 the prior mean of & is then equal to vzx/(vz—z).

The unconditional mean a; and variance v; of Om after m

observations may be approximated by taking expectations with respect to the

distribution in (7.8) of a, in (6.4) and j

-

(a_ - a*)z + D a .
m m mm

The predictive mean of any future observation vy is also approximated

m+j
by a; and the predicted variance of ym+j may be approximated by taking
expectations with respect to the distribution in (7.8) of the quantity
2 .
- ® a .
(am am) + (1 + ja + Dm)am
It may be reasonable to take the unconditional predictive distributions

of the Ym+j to be approximately Poisson-Gamma with the means and variances 5

described above.

Updating in the Poisson situation is just as straightforward as for the

' method for normal observations described in Section 3. After any time stage

i it is necessary to store the values a;, Di' and W(a) for all a 1lying

PSS ———
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R

in 8 in (3.1), where W(a) denotes the expression in the right hand side of
(7.8).

Given the stores values after time i-1 we update to new values after
time i by multiplying the old value of W(a) by the expression in the right

hand side of (7.6), and using (6.4) and (6.5) to update a; and Dj.
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9., An Analysis of an Industrial Control Chart i

The 52 Poisson observations in the second column of Table 2 were
introduced by Hald ((3], p. 720), and represent numbers of defective items in
consecutive shifts of an industrial process.

The smoothed values (A) in the third column correspond to a uniform prior

distribution for @ (set Vv, =2, V_ =<2, k=0, and Y =*® in the

1 2

analysis of Section 7). The posterior distribution of & after 52
observations possessed a mode at @ = 0 and a very thick tail. The value

GA = 0,05 suggests that whilst the random noise in the process is primarily
caused by the first-stage fluctuations of the Poisson observations Y about
their mean Gi, there is some definite evidence that the ei are changing in
time, The final smoothed value of 2.93 may be compareduwith the average
3.23 of the 52 observations. The predictive variance of Xg3 is about

1.24 times its predictive mean of 2,93, suggesting that the predictive
distribution of Xg3 is not approximately Poisson. A Poisson-Gamma
distribution with this mean and variance might be more reasonable.

We also employed the F-distribution in (7.9) as prior for a. The
choices V1 = vz =10, X = 0,20, and Y = ® J]ead to a prior mean of 0.25
for ao. The corresponding smoothed values (B) are listed in the fifth column
of Table 2; the estimates « in the sixth column fluctuate rather less than

the GA in the fourth column. The final posterior distribution of a

possessed a mode at & = 0.07, its mean at & = 0.10, and a thick positive

tail.
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Table 2: Analysis of an Industrial Control Chart

Time Observation Smoothed a, Smoothed a
Stage (i) (x;) Value A Value B B
1 3 3.00 0.50 3.00 0.25
A 2 1 1.81 0.50 1.89 0.24
; 3 0 0.90 0.49 1.07 0.24
' 4 7 3.89 0.51 3.44 0.25 t
t 5 3 3.39 0.48 3.24 0.24
. 6 4 3.63 0.46 3.50 0.23
1 ’ 7 4 3.76 0.43 3.66 0.22 ]
i 8 4 3.83 0.41 3.77 0.22
9 S 4.29 0.39 4.19 0.21
10 3 3.72 0.36 3.76 0.20
11 2 3.03 0.35 3.16 0.20
‘ 12 3 3.06 0.32 3.12 0.19
; 13 3 3.07 0.29 3.09 0.19
; 14 5 3.76 0.26 3.72 0.18
) 15 1 2.77 0.27 2,82 0.18
16 2 2,55 0.25 2.57 0.18
} 17 2 2.41 0.24 2.40 0.17
t "8 5 3.28 0.20 3.24 0.16
' 19 2 2.87 0.18 2.84 0.16
20 5 3.49 0.17 3.51 0.15
21 2 3.04 0.15 3.04 0.15
- 22 1 2.47 0.17 2.41 0.15
23 3 2.68 0.14 2.61 0.14
24 2 2.53 0.13 2.43 0.14 ‘
¢ 25 3 2.68 0.11 2.61 0.14 ]
! 26 S5 3.23 0.10 3.31 0.13 4
28 3 2.79 0.09 2.74 0.13
29 0 2.17 0.09 1.96 0.13 )7
31 6, 3.00 0.07 3.12 0.12
32 5 3.38 0.07 3.64 0.12
33 9 5.00 0.14 5.3 0.15
3% 4 4.55 0.12 4.84 0.14
35 4 4.32 0.11 4.57 0.13
36 4 4,19 0.10 4.39 0.13
37 4 4.11 0.09 4.27 0.13
38 6 4.54 0.09 4.76 0.12
39 0 3.47 0.09 3.40 0.12
40 7 4.25 0.08 .42 0.12
41 3 3.96 0.07 4.03 0.11
42 4 3.96 0.07 4.02 0.11
43 4 3 96 0.06 4,02 0.11
44 1 3.37 0.07 3.19 0.11
45 2 3.11 0.07 2.87 0.11
46 3 3.13 0.06 2.93 0.11 .
47 3 3.14 0.06 2.96 0.11
49 2 2.59 0.07 2.33 0.11 i
50 3 2,72 0.06 2.53 0.11 '
51 ] 3.36 0.05 3.45 0.10
52 1 2.93 0.05 2.80 0.10
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