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ABSTRACT

A Bayesian updating procedure is proposed for filtering the process

parameters in the two-stage Markovian constant variance model for time varying

normal data in the situation where the signal to noise ratio is unknown. A

forecasting procedure is described which yields the entire predictive

distribution of future observations; a numerical study involves an on-line

analysis for chemical process concentration readings. A similar method is

developed for Poisson data and applied to the analysis of an industrial

control chart.

AMS (MOS) Subject Classifications: 62M05; 62M20
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SIGNIFICANCE AND EXPLANATION

Simple two-stage Bayesian models are considered for time-varying normal

and Poisson data, in the linear prediction situation. The normal model is

equivalent to an ARINA process and posterior estimates for the process levels

and signal to noise ratio are compared with the Box-Jenkins likelihood

procedure. The posterior distribution of the variance ratio may be updated

on-line and the unconditional posterior densities and predictive

distributions, of the process levels and future observations, may be

calculated at each time stage, providing useful inference procedures for

filtering and forecasting. The methodology is applied in some detail to the

Box-Jenkins chemical process data. In the Poisson situations similar

procedures are developed using a Gamma approximation to one of the updating

distributions in the model. This method is illustrated by an analysis of an

industrial control chart.
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A BAYESIAN APPROACH TO MARKOVIAN MODELS

FOR NORMAL AND POISSON DATA

Tom Leonard

1. Introduction

Following Kalman (5], Blight (1), and Harrison and Stevens [4], we

consider the two-stage Markovian (constant variance) model

Yi ei . + 6 (11

ei =ei-1 +ci (1.2)

(i = 1,2,...,m)

where the 8. represent the process parameters and the 6. and C. are

mutually independent and normally distributed error terms with zero means.

The 6 1and C. are taken to possess respective common variances T2 and

,with the exception of C, which for convenience is taken to possess

2 2variance = yT where Y is known. The initial mean 8 then possesses
1 1

a normal prior distribution with mean 0  and variance
00"

For i = 2,...,m the model in (1.1) 'and (1.2) is mathematically

equivalent to an ARIMA process, of the type discussed by Box and Jenkins ([2],

p. 8) where

- Y 1 = q -q (1.3)

with the qi representing independent and normally distributed random

variables with zero means and common variance - T 2, and with E denoting

the smaller root of the equation

2 + a + (1.4)

with

2 2
a d /T rA -
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The equivalence may be demonstrated by differencing out the 8. from

(1.1) and (1.2). In Chapter 7, Box and Jenkins recommend a procedure for the

approximate maximum likelihood estimation of E. We will later compare this

with our inferences based upon the posterior distribution for a.

2 2From (4], we have that, when T and a are known, the posterior

distribution after time m of the parameter 8 is normal with mean am and

variance vm. The latter may be obtained from the updating relations

a =aiI + D(y -a a (1.5)

(i - 1..m

and

D -(D + Q)/(D + 1 + 1) (1.6)
i i-1 i-i

i =2,.,m)

with Vim T2 Di, a - /T 2 , a 0 a 60, and DI = Y/(l+Y).

Note that am provides a smoothed value after time m for the process

parameter 0, it is also the J-step ahead forecast for 0 for any j =

1,2,..o *

We propose to extend these results to the situation where T2 and a2

are unknown by supposing that any prior information about the variances may be
adequately represented by taking V1 K /T

2 and V 2/a2 to possess

2
independent x 2-distributions with VI and V2 degrees of freedom

1 2
-1 -1

respectively. The values K1  an K could be specified as the respective

prior means of the precisions T-2 and C-a V1 and V2 are then prior

'sample sizes' measuring the strength of the prior information. For example,

SV 1 + M the first-stage variance T2 becomes known and equal to K

Ignorance prior@ will be discussed in Section 4; the presence of prior

information is not requisite for the practical applicability of our method.

-2-



2. Bayesian Theory

Under the prior assumptions described in the previous section the joint

prior density of T 2  and a = o2/T 2  is given by

2r(T ,a)=

2 1/2 (v1+V2+2) 
1/2 (v 2+2)

(T 2 ) a exp{-1/2v1 Ki/T 2 -1/2 V2 K 2/T2} (2.1)

2(0 < T2 <m 0 a < )

We seek the posterior distribution of the variance ratio a after m

observations y = (y,...,y )" It is firstly necessary to find the

distribution of y(m) given T2  and a.

For i = 2,...,m, we hae under the notation introduced in (1.5) and

S(i-I) 2(1.6), that the conditional distribution of y given y , r2, and

C, is normal with mean ai_1  and variance T 2(1 + a + D._). Since YI'

given T2  and a is normal with mean e0  and variance T2(1+y), the

required distribution of y (m) is

p(y Tj 2 Ma) = p(yl1T 2 ,) 1 P (i-1), 2,)

i=2 (2.2)

2
=(r2) - I 2  UI(a) ex {1z2()

with

U (a) - (1+Y) (1 + a + D ) 12 (2.3)i=2

and

U2 ( +Y) -e 0 + 1 (1 + a + D i 1  (Y2i a-1= )(1y x1 02 z -1 . )2 (2.4)
-2
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where t> a a, and Di may be obtained from the updating relations in (1.5)

and (1.6).

By Bayes' theorem, the joint posterior distribution of T2 and ( is

given by

v(T 2 ,aly(m)) 1(T2,a)p(y m) 2a)
(2.5)

(0 < T2 <-M 0 < a <)

where the first and second contributions to the right hand side are given in

(2.1) and (2.2) respectively. Integrating out T we find that the marginal

posterior distribution of the variance ratio a is

-1/2 VT (2.6)

= U*(a,) tu*(a)1 26
1 2

(0 < a <)

where

UT*(a) = a 1/2 (V2 +2) (a) (2.7)1 1

U*(a) = V IK + V 2/a + U2(a) (2,8)2 1 1 2 2'~ U2( 28

and

VT = V I + V 2 + m (2.9)

with U (a) and U2 (a) defined in (2.3) and (2.4) respectively.

We are now in a position to obtain the unconditional posterior mean a*,

of am, after m stages. This is given by the expectation

a*=E(eI,) O E O am) (ay(m))da (2.0)
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of the conditional posterior mean given a (i.e. am from (1.5)) with

(mn)
respect to the posterior distribution of a, given y , in (2.6). Note

that a* may be calculated by a straightforward one-dimensional integration.
m

The above procedure possesses the appealing property that it is easy to

update in time; this aspect will be considered in the next Section. For

T > 2 the posterior variance after m time stages is equal to the
T

expectation of the quantity

(a - a*)2 + (V - 2)- Iu*()D (2.11)
m m T 2 m

with respect to the same distribution of a in (2.6), where am, Dm, U(a),

and V are given in (1.5), (1.6), (2.8), and (2.10) respectively.
T

It is moreover possible to compute the whole posterior density of 8,
m

given y(i), using

(M) (M)

(2.12)
cc '/' D_ 1/2U*(a) {U* (a) + D-1 (0 -am)2}12(V da-1 a

with UJ*() and U*(a) defined in (2.7) and (2.8) respectively.
1 22

The posterior density of the first stage variance T may be obtained by

integrating the quantity in (2.5) with respect to a; however when VT > 2

2the posterior mean of T may be obtained more simply, using

E(T2 y(m)) = fo (( M ) )da

(2.13)

=(VT - 2)1 f U(a)1(al(m) )da

where the first and second contribution to the integrand are given in (2.8)

and (2.5) respectively.

-5-
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Lastly, it is straightforward to compute the predictive distribution

after m time stages for a future observation ym+j" For j = 1,2,... this

will possess mean a* in (2.10), and density
m

P(ym+j (m ) f 'o Pl ym+j 0aIy l m) d

1 D/U*(G(U*Q) . m+ 2 1/2 (VT+1)cc r0 1D7 2l lal + D Ym+j am)2} dot (2.14)
0=,'j 2 0-1  - -12 3~

("< ym~ < 00)

where Dn j = 1 + ja + D.

Our approach provides us with formally justified filtering and

forecasting procedures, and enables us to make inferences at any time stage

about the process parameter Bil the variances T2  and 0 , and the future1

observations Ym+j by considering their posterior or predictive

distributions.

-6-



3. Updating Procedures

In order to perform the numerical integration in (2.10), store am in

(1.5) and the distribution in (2.6) for the values of a lying in a set

= {h,2h,3h,...,1h} . (3.1)

The integer I and width h choose be chosen after balancing

considerations of computer speed and storage with the degree of accuracy

required in the numerical integration. With Simpson's rule, I = 100 and

h = 0.01 should suffice. We introduce the notation W(a) to denote the

expression on the right hand side of (2.6).

After any time stage i it is only necessary to store the latest values

of ai, Di, U*(Q), U*(Q) and W(M) for each a 6 S. Previous values and

observations may be discarded. The relevant quantities are defined in (1.5),

(1.6), (2.7), (2.8), and (2.6) respectively. For example, after time i = 1

we have

a, = e0 + D1(x -0 O)

D = Y/(I+Y)1

-1/2 (v2 +2)
U* (a) = a ,U*(Q) V Kl + V2K2/C1
11 1 22

and
1 /2 (V1+V 2

W(Oi) = U*(C1)(U*(CI)} 1 2

Given the stored values after time i - I it is straightforward to

update to new values after reading in a fresh observation yi at time i.

The validity of our routine may be checked from (1.5), (1.6), (2.3) and (2.4),

step (ii) was devised to minimize problems )f exponeni .al overflow when

calculating W(Q) for large i. The followinr fo". steps should be completed

in order for each a 6 A.

-7-
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- - '5 y  4 -' r . q . . .

(i) Calculate a new value for UT*(Q) by dividing the old value by

(1 + a + Di_1 )' / 2.

(ii) Calculate the quantity
)-1 )2

z. =(1 + a + D 1 ay
Di-i -. i-1

and obtain a new value for W(C) by multiplying the old value by

(1 + a + D )J/ 2 Qi(zi )

with
1 2(1+V2+i)

Q (q) {U*(a)) 1/2 {1 + q/U*() 212
-- 2 (3.2)

(iii) Calculate a new value for U*(a) by adding zi  to the old value.
2 1

(iv) Calculate new values ai and Di  from (1.5) and (1.6) respectively.

After each time stage the function W(Q) should be normalized by

dividing through by its total over the set f.

We seem to have provided a simple procedure for updating, to any required

accuracy, the posterior distribution in (2.6). Note, from (2.10) that the

unconditional - -n a* of 9. may now be computed by numerically integrating3.1

a i over M G Q, and with respect to this distribution.

It is straightforward to employ the stored values after time i to

calculate all the means, variances, and distributions described in the

previous Section. It, for example, follows from (2.11) that the posterior

distribution of 9. after time i is proportional to the integral with

respect to 0 of

W(CI)D 1/2 Q{D 1 ( - a )2 (3.3)
i ii I II

where Qi(q) is defined in (3.2). The expression in (3.3) may be averaged

over a e 9 for each required value of 9.* The obvious analogous procedure

is available for the predictive distribution in (2.13).
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4. An On-Line Analysis of Chemical Process Readings

The data in the second column of Table 1 were reported by Box and Jenkins

* (p. 525); we have subtracted 17.0 from each observation. On p. 239 Box and

Jenkins fit in ARIM4A model in the complete set of 197 observations. Their

identified model takes the form given in (1.3), with =0.70. This

corresponds to a value for the variance ratio of a = 0.13.

2We firstly proceed under an assumption of prior ignorance about O1, a

and T2and set YI = a* amd hence D,= 1. The term (1+y)/2 on the right

hand side of (2.3) should then be removed together with the first term on the

right hand side of (2.4).

We select the improper prior density

Yr(Ta CL) (0 < Ir< ;0< <a)(4.1)

for T and a because this particular choice ensures that the posterior

distribution will remain proper for an i = ,.,. This is equivalent to

setting Ki = K 2= 0 and replacing V1and V 2by 2 and -2 respectively

in the analysis of Section 3.

We obtained, under this ignorance prior, the smooth values a*, for

O., listed under (A) in the third column of Table 1; the posterior means aA

of a are in the fourth column. The smoothed value 0~ for, say, i = 20,

was calculated from (2.10) and only depends upon the first twenty observations

20. It is therefore the latest on-line value for the process level after 20

stages of the chemical experiment.

The estimate aL is initially rather large, causing the a' to, very
A

reasonably, remain close to the observations. As the process proceeds, aA

tends to get smaller, and greater smoothing ensued. After time m = 197 our

values are x = 0.4, a* =0.49 and a = 0.20. The final posterior mean inm m A

(2.13) of the first stagje variance is equal to 0.066. Our value for a
A

-9-



implies that this is five times as large as the second stage variance

suggesting that a moderately large amount of noise in the process is accounted

for by the first stage fluctuations, but that the process parameters still

vary noticeably with time.

The final posterior density of a possessed a mode at L = 0.13. This,

quite interestingly, is absolutely identical to the value recommended by Box

and Jenkins. However, both the posterior distribution and likelihood of C

are positively skew with thick tails, suggesting that our recommended value

0.20 (i.e. the posterior mean) might also be plausible.

We calculated the whole posterior density curve of 0197 from (2.12) and

found this to be almost exactly normal with mean 0.49 and variance 0.022.

Similarly, the predictive density curves for Y198 Y19 9 '... Y20 2 were all

well-approximated by normal distributions with mean 0.49 and respective

variances 0.101, 0.114, 0.127, 0.140, and 0.153. Note that these

distributions are easily calculated after any time stage.

The analysis was repeated under an assumption of definite prior

information about T and 02 . We set K, = 0.05, K2 = 0.025, and

V1 = V2 - 10, leading to a prior mean of 0.63 for the variance ratio a.

The smoothed values for analysis B are listed in the fifth column of Table

1, and the corresponding posterior means aB for a in the sixth column.

A possible advantage of a proper prior distribution for a is that the

smoothed process settles down more quickly; smaller values are observed for

CB in the initial stages. The estimate aB however remains somewhat larger

than aA in our example, in view of the information introduced by the prior

distribution.

-10-



Table 1: An Oni-Line Analxsis of Chemical Process Concentration Readings

Time Observation Smoothed SmValedb
Stage (1) Nz) Value AAVauBaB

1 0.0 0.00 5.00 0.00 0.63
2 -0.4 -0.33 5.00 -0.24 0.48
3 -0.7 -0.63 5.25 -0.47 0.48
4 -0.0 -0.85 5.54 -0.68 0.49
5 0.1 -0.08 4.92 -0.31 0.39
6 -0.1 -0.11 4.90 -0.22 0.41
7 -0.2 -0.19 4.83 -0.21 0.42
8 0.4 0.28 4.87 0.06 0.43
9 0.1 0.12 4.72 0.08 0.44
10 0.0 0.02 4.67 0.04 0.44
11 -0.3 -0.23 4.70 -0.12 0.44
12 0.4 0.26 4.35 0.12 0.41
13 0.2 0.20 4.24 0.15 0.42
14 0.4 0.35 4.24 0.27 0.43
15 0.4 0.38 4.22 0.33 0.45
16 0.0 0.09 4.08 0.17 0.44
17 0.3 0.25 3.85 0.23 0.44
18 0.2 0.21 3.74 0.22 0.44
19 0.4 0.35 3.67 0.30 0.45
20 -0.2 -0.05 3.46 0.07 0.43
21 0.1 0.07 3.16 0.09 0.43
22 0.4 0.30 3.11 0.23 0.43
23 0.4 0.36 3.13 0.31 0.43
24 0.5 0.45 3.16 0.40 0.44
25 0.4 0.41 3.05 0.40 0.45
26 0.6 0.54 3.02 0.49 0.46
27 0.4 0.44 2.84 0.45 0.46
28 0.3 0.35 2.80 0.38 0.46
29 0.0 0.11 3.00 0.20 0.46
30 0.8 0.56 2.26 0.48 0.42
31 0.5 0.50 2.02 0.49 0.42
32 1.1 0.88 2.39 0.77 0.43
33 0.5 0.62 1.69 0.64 0.41
34 0.4 0.49 1.70 0.53 0.41
35 0.4 0.45 1.68 0.47 0.41
36 0.1 0.25 1.85 0.30 0.42
37 0.6 0.46 1.44 0.44 0.40
38 0.7 0.59 1.52 0.56 0.41
39 0.4 0.48 1.31 0.49 0.40
40 0.8 0.65 1.23 0.63 0.40
41 0. 0.61 1.12 0.61 0.40
42 0.5 0.55 1.06 0.56 0.40
43 -0.5 -0.06 1.80 0.09 0.39
44 0.8 0.43 0.47 0.41 0.31
45 0.3 0.37 0.40 0.36 0.31
46 0.3 0.35 0.39 0.34 0.31
47 0.1 0.26 0.39 0.24 0.31
48 0.4 0.32 0.35 0.31 0.31
49 -0.1 0.16 0.35 0.14 0.31
50 0.3 0.22 0.31 0.21 0.31



Table 1 (continued)

Time Observation Smoothed SmoothedStage (i) (x i) Value A QA Value B "B

51 0.6 0.36 0.30 0.37 0.30
52 -0.1 0.20 0.25 0.18 0.29
53 -0.3 0.02 0.31 -0.01 0.
54 -0.2 -0.06 0.34 -0.09 0.31
55 -0.2 -0.11 0.35 -0.13 0.3156 0.2 0.02 0.30 0.01 0.3057 -0.2 -0.06 0.29 -0.07 0.3058 0.6 0.18 0.27 0.19 0.29
59 0.2 0.18 0.25 0.19 0.2960 -0.4 -0.02 0.23 -0.04 0.2861 0.1 0.02 0.21 0.02 0.2762 -0.1 -0.01 0.21 -0.03 0.2763 -0.4 -0.14 0.22 -0.18 0.2864 1.0 0.22 0.17 0.27 0.24
65 0.2 0.20 0.16 0.24 0.23
66 0.3 0.23 0.16 0.26 0.2467 0.0 0.16 0.15 0.16 0.2368 -0.1 0.08 0.15 0.07 0.2369 0.3 0.15 0.14 0.15 0.2370 -0.2 0.05 0.14 0.02 0.2371 0.3 0.12 0.13 0.13 0.2372 0.4 0.20 0.13 0.23 0.2373 0.7 0.34 0.14 0.40 0.2374 -0.2 0.18 0.12 0.18 0.2275 -0.1 0.11 0.12 0.08 0.2276 0.0 0.08 0.12 0.05 0.2277 -0.1 0.03 0.12 0.00 0.2278 0.0 0.03 0.12 0.00 0.2279 -0.4 -0.09 0.13 -0.15 0.23

-0.3 -0.15 0.13 -0.20 0.2381 -0.2 -0.16 0.13 -0.20 0.2382 -0.3 -0.20 0.14 -0.24 0.2383 -0.6 -0.32 0.15 -0.37 0.2484 -0.5 -0.37 0.15 -0.42 0.2485 -0.6 -0.44 0.16 -0.49 0.2486 -0.4 -0.42 0.16 -0.45 0.2487 -0.5 -0.44 0.16 -0.47 0.2488 -0.3 -0.40 0.16 -0.41 0.2489 -0.6 -0.46 0.16 -0.48 0.2490 -0.6 -0.50 0.16 -0.52 0.2491 -0.8 -0.59 0.16 -0.63 0.2592 -0.6 -0.59 0.16 -0.62 0.2593 -0.7 -0.62 0.16 -0.65 0.2594 -0.6 -0.61 0.16 -0.63 0.2595 0.0 -0.42 0.16 -0.39 0.2496 -0.1 -0.32 0.17 -0.28 0.2597 0.1 -0.18 0.19 -0.13 0.2698 0.1 -0.09 0.20 -0.04 0.2799 -0.3 -0.17 0.19 -0.15 0.26100 -0.1 -0.15 0.19 -0.13 0.26

14 
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Table 1 (continued)

Time Observation Smoothed CA Smoothed OB
Stage (i) (xI) Value A Value B

101 -0.5 -0.26 0.18 -0.27 0.26

102 o.2 -0.11 0.17 -0.09 0.25

103 -0.6 -0.27 0.16 -0.29 0.25

104 0.0 -0.18 0.16 -0.18 0.24
105 0.0 -0.13 0.16 -0.11 0.24

106 -0.3 -0.18 0.15 -0.18 0.24

107 -0.8 -0.37 0.16 -0.42 0.24

108 -0.4 -0.38 0.16 -0.41 0.24
109 -0.1 -0.29 0.15 -0.29 0.24
110 -0.5 -0.35 0.15 -0.37 0.24
111 -0.4 -0.37 0.15 -0.38 0.24
112 -0.4 -0.38 0.15 -0.39 0.24
113 0.0 -0.26 0.14 -0.24 0.24
114 0.1 -0.15 0.15 -0.11 0.24
115 0.1 -0.08 0.16 -0.03 0.25
116 -0.3 -0.15 0.15 -0.14 0.24
117 -0.2 -0.17 0.15 -0.16 0.24
118 -0.7 -0.33 0.15 -0.36 0.24
119 -0.4 -0.35 0.15 -0.38 0.24
120 -0.2 -0.30 0.14 -0.31 0.24
121 -0.1 -0.24 0.14 -0.23 0.24
122 0.1 -0.13 0.14 -0.11 0.24
123 -0.2 -0.16 0.14 -0.14 0.24
124 0.0 -0.11 0.14 -0.09 0.24
125 0.2 -0.02 0.15 0.02 0.24
126 0.3 0.08 0.16 0.13 0.25
127 0.2 0.12 0.16 0.15 0.25
128 0.3 0.17 0.17 0.21 0.25
129 0.2 0.18 0.17 0.20 0.25
130 0.2 0.18 0.17 0.20 0.25
131 0.5 0.29 0.17 0.32 0.26
132 -0.1 0.16 0.16 0.16 0.25
133 -0.1 0.08 0.16 0.06 0.25
134 -0.1 0.02 0.16 0.00 0.25
135 0.0 0.02 0.16 0.00 0.25
136 -0.5 -0.15 0.17 -0.19 0.26
137 -0.3 -0.20 0.18 -0.23 0.26
138 -0.2 -0.20 0.17 -0.22 0.26
139 -0.3 -0.23 0.18 -0.25 0.26
140 -0.3 -0.25 0.18 0.27 0.26
141 -0.4 -0.30 0.18 -0.32 0.26
142 -0.5 -0.36 0.18 -0.39 0.27
143 0.0 -0.24 0.17 -0.24 0.26
144 -0.3 -0.26 0.17 -0.26 0.26
145 -0.3 -0.27 0.17 -0.28 0.26
146 -0.1 -0.22 0.17 -0.21 0.26
147 0.4 -0.01 0.18 0.03 0.26
148 0.1 0.02 0.18 0.06 0.27
149 0.0 0.01 0.18 0.03 0.27
150 -0.2 -0.06 0.18 -0.06 0.26
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Table I (continued)

Tim Observation Smoothed A Smoothed BStage (i) (xi) Value A Value B

151 0.2 0.03 0.18 0.04 0.26152 0.2 0.08 0.18 0.10 0.26153 0.4 0.19 0.19 0.22 0.27
154 0.2 0.19 0.18 0.21 0.27155 -0.1 0.09 0.18 0.09 0.26156 -0.2 0.01 0.18 -0.02 0.27157 0.0 0.00 0.18 -0.01 0.27158 0.4 0.13 0.17 0.15 0.26
159 0.2 0.15 0.17 0.17 0.26160 0.2 0.17 0.18 0.18 0.26161 0.1 0.14 0.17 0.15 0.26162 0.1 0.13 0.17 0.13 0.26163 0.1 0.12 0.17 0.12 0.26164 0.4 0.21 0.17 0.23 0.26165 0.2 0.21 0.17 0.22 0.26
166 -0.1 0.11 0.17 0.09 0.26167 -0.1 0.04 0.17 0.02 0.26168 0.0 0.03 0.17 0.01 0.26169 -0.3 -0.08 0.18 -0.11 0.27170 -0.1 -0.08 0.18 -0.11 0.27171 0.3 0.04 0.17 0.05 0.26172 0.8 0.29 0.18 0.35 0.27173 0.8 0.48 0.21 0.53 0.29174 0.6 0.52 0.22 0.56 0.29175 0.5 0.51 0.22 0.53 0.29176 0.0 0.33 0.20 0.32 0.28177 -0.1 0.18 0.21 0.15 0.29178 0.1 0.15 0.21 0.13 0.29179 0.2 0.17 0.21 0.16 0.29180 0.4 0.25 0.20 0.26 0.29181 0.5 0.34 0.20 0.36 0.29182 0.9 0.54 0.22 0.58 0.30183 0.0 o.34 0.19 0.34 0.28184 0.0 0.23 0.19 0.21 0.28185 0.0 0.15 0.20 0.12 0.28186 0.2 0.17 0.19 0.16 0.28187 0.3 0.22 0.19 0.21 0.28
188 0.4 0.28 0.19 0.29 0.28189 0.4 0.32 0.19 0.33 0.28190 0.0 0.21 0.19 0.20 0.28191 1.0 0.47 0.18 0.52 0.27192 1.2 0.74 0.22 0.80 0.29193 0.6 0.68 0.20 0.71 0.28
194 0.8 0.72 0.21 0.75 0.28195 0.7 0.71 0.21 0.73 0.28196 0.2 0.53 0.20 0.52 0.28197 0.4 0.49 0.20 0.47 0.28
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5. Poisson Observations

Suppose now that we replace the first stage of the model in (1.1) by the

assumption that YV Y20" ...,ym are independent and Poisson distributed with

respective means Oi, a2'"..*B M* The yi might for example represent the

numbers of items per successive batch by an industrial process. A similar

analysis to the one described below may be developed if yi instead possesses

a binomial distribution with probability e and sample size ni  (e.g.
i 2

ni = 1 for binary process).

In the Poisson situation we retain a similar second stage to the model by

supposing that

i = 0 + C (i - 1,...,m) (5.1)

where eir...,e are independent terms with zero means. For i = 2...,m wem

suppose that 6 possesses variance aOi_1, so that the variance changes

with the non-negative mean in a sensible (and technically convenient)

manner. The first error term CI is taken to possess variance Y¥0 , so that

o has a prior distribution with mean e0 and variance y 0. No further

distributional assumptions need to be made about CI..0"'  until we present

ourselves with the problem of estimating a.
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6. Linear Prediction

Let 8 0  denote our smoothed value for 8m , given y , and for j =

1,2,... let 8* represent our j-step ahead forecast for e afterm, M+j

time m. Attention is for the moment restricted to linear predictors of the

form• m

8* 0 = B0  + 1 By (6.1)
( .j imi i02i

where 80j ' B* mj represent unknown constants not depending upon the data,

and a is initially taken to be known. Optimal values for 0 ,.,mj may

be obtained by minimizing the Bayes risk of 8* under the quadratic lossmej

function

L(8* .,( )2.* (6.2)M,) m+j M,) m+j
The first two moments of the joint distribution, given , of yl'"ym

and 8 M,...,8 is described in Section 5, and the Bayes risk may be obtained

by taking expectation of the loss function in (6.2) with respect to this joint

distribution. Setting Bij - Oi , for i = O,1,...,m and j = 0, 1,2,..,

for notational simplicity we find after some manipulation that the Bayes risk

is given by

E{L(8* , )Ia) -{(B 8 +...+ B8 + B - 8o)2
m,,,Om+j) 10 M.0 0 0

+ jao0

+ (02 +2 *+ B2)8
1 m 0

(6.3)

= 1)2 + (B + - 1)2 .(B + 2 1)2}80+ +a{(0 m + m-1 1 (0m -

+ Y( +"'+ Bi - Q 2e "

.... -16-



Differentiating the expression in (6.3) with respect to the we find that

the optimal values of B.do not depend upon j. The optimal linear values

* in (6.1) may therefore be set equal to a common quantity am for all
m,j

I = 0, 1,2,..

We now introduce an analogy with the normal process of Section 1 in order

to obtain updating formulae for am.* It is straightforward to show that this

normal process provides exactly the same Bayes risk as given in (6.3), but

with e0 in all but the first term on the right hand side of (6.3), replaced

2 2 2
by the first stage variance T and a replaced by a /T . The optimal

linear predictors in the Poisson case are therefore, with appropriate

substitutions identical to those in the normal case. However the optimal

linear predictors 8* . in the normal case are identical to the posterior

mean am, as normality implies linearity. We therefore have the pleasing

result that am in the Poisson situation may be obtained from exactly the

same updating formulae as employed in Section 1, namely

a. a + D (y. a. (6.4)

and

D. = (D. + rA)/(D + CL + 1) (6.5)

with a0  0 and D, = Y/(i+Y).

The value a m could be viewed as the 'best' linear approximation to the

posterior mean of 98 after time m. In the next Section we show how this

result may be approximately generalized to the situation where a is unknown.
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7. Estimation of a

In order to obtain an approximation to the posterior distribution of a

we introduce an alternative method which also approximately justifies the

updating formulae in (6.4) and (6.5). Suppose that after i-I time stages the

posterior distribution of e_ given a, possesses mean aii and variance

Vi1 . i.e.

U(a. , (7.1)

ey(i-1)a (a- 1vi- 1 + aai- 1 ) (7.2)

Suppose that the distribution in (7.2) is approximately Gamma with the

stipulated mean and variance. As in Poisson with mean 8 we obtain,st p l t d e n a d va i n e 1 1

applying Bayes theorem and some manipulation

eiy(i),a - (ai'v i) (7,3)

where

a, = aiI + vi(yi-ai1_) (7.4)

and

Vi  v.- + 0ai 1 _

v_ I + ,l al

Setting vi -Diai yields the relations in (6.4) and (6.5). The

approximations also giveYily(i-1),a - (ai.1,(Di.1 + C + )a 1) (7.5)

and that this distribution is approximately a Gamma mixture of a Poisson. The

density is given by

i-i) F(ai- 1 gi- 1 + y )gi-1P(yi l '~-)a)' U (7.6)
(y r +1 a)r(ai l g i _ )(1 + gi-1 )  

+ y (

• --------- 
18-



where

= (D + a) 1  . (7.7)gi-1= li-i

The posterior density of a after m time stages is therefore

approximated by
Wm Uy-i1)

laly )) W() H p(yi. y ,a)
" i=1

1/1 ) 1gi I  1  a i + k (7.8)
i=I gi-1k=O [ i-1 I

(0 < a < a)

where r(a) denotes the prior density; we recommend the flexible choice

1_, 2 1 /2 cV1+V21
W MCC a (VlK + V,a )  (7.9)

-11

so that K-1 a possesses an F-distribution with V1  and V2 degrees of

freedom. For V > 2 the prior mean of a is then equal to V2 K/(V-2).22 2

The unconditional mean a* and variance v* of e after m
m m M

observations may be approximated by taking expectations with respect to the

distribution in (7.8) of am in (6.4) and

(a - a*)2 + D a
m m m m

The predictive mean of any future observation Ym+j is also approximated

by a* and the predicted variance of y +j may be approximated by taking

expectations with respect to the distribution in (7.8) of the quantity

(am - a*)2 + (1 + ja + D )amm a i

It may be reasonable to take the unconditional predictive distributions

of the ym3 j to be approximately Poisson-Gamma with the means and variances

described above.

Updating in the Poisson situation is just as straightforward as for the

method for normal observations described in Section 3. After any time stage

i it is necessary to store the values ai, Di, and W(a) for all a lying
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in 9 in (3.1), where W(Q) denotes the expression in the right hand side of

(7.8).

Given the stores values after time i-I we update to new values after

time i by multiplying the old value of W(M) by the expression in the right

hand side of (7.6), and using (6.4) and (6.5) to update ai  and Di.

1I



9. An Analysis of an Industrial Control Chart

The 52 Poisson observations in the second column of Table 2 were

introduced by Hald ([3], p. 720), and represent numbers of defective items in

* consecutive shifts of an industrial process.

The smoothed values (A) in the third column correspond to a uniform prior

distribution for a (set V,= 2, V 2 = -2, K - 0, and Y= in the

analysis of Section 7). The posterior distribution of Oa after 52

observations possessed a mode at a = 0 and a very thick tail. The value

OA = 0.05 suggests that whilst the random noise in the process is primarily
j~A

caused by the first-stage fluctuations of the Poisson observations yiabout

their mean 0., there is some definite evidence that the 6.are changing in

time. The final smoothed value of 2.93 may be compared with the average

3.23 of the 52 observations. The predictive variance of x5 3 is about

1.24 times its predictive mean of 2.93, suggesting that the predictive

distribution of x53 is not approximately Poisson. A Poisson-Gamma

distribution with this mean and variance might be more reasonable.

We also employed the F-distribution in (7.9) as prior for a. The

choices V1 = V= 10, Kc - 0.20, and y m lead to a prior mean of 0.25

for a. The corresponding smoothed values (B) are listed in the fifth column

of Table 2; the estimates OLB in the sixth column fluctuate rather less than

the Q A in the fourth column. The final posterior distribution of a

possessed a mode at a =0.07, its mean at a 0.10, and a thick positive

tail.
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Table 2: Analysis-of an Industrial Control Chart

Time Observation Smoothed aA Smootheda
Stage (i) (xi) Value A Value B B

1 3 3.00 0.50 3.00 0.25
2 1 1.81 0.50 1.89 0.24
3 0 0.90 0.49 1.07 0.24
4 7 3.89 0.51 3.44 0.25
5 3 3.39 0.48 3.24 0.24
7 4 3.763 0.43 3.66 0.22
6 4 3.6 0.46 3.50 0.23
8 4 3.83 0.41 3.77 0.22
9 5 4.29 0.39 4.19 0.21

10 3 3.72 0.36 3.76 0.20
11 2 3.03 0.35 3.16 0.20
12 3 3.06 0.32 3.12 0.19
13 3 3.07 0.29 3.09 0.19
14 5 3.76 0.26 3.72 0.18
15 1 2.77 0.27 2.82 0.18
16 2 2.55 0.25 2.57 0.18
1.7 2 2.41 0.24 2.40 0.17

85 3.28 0.20 3.24 0.16
19 2 2.87 0.18 2.84 0.16

L20 5 3.49 0.17 3.51 0.15
21 2 3.04 0.15 3.04 0.15
22 1 2.47 0.17 2.41 0.15
23 3 2.68 0.14 2.61 0.14
24 2 2.53 0.13 2.43 0.14
25 3 2.68 0.11 2.61 0.14
26 5 3.23 0.10 3.31 0.13
-27 1 2.69 0.10 2.63 0.13
28 3 2.79 0.09 2.74 0.13
29 0 2.17 0.09 1.96 0.13
30 .2 2.19 0.08 1.99 0.12
31 6. 3.00 0.07 3.12 0.12
32 5 3.38 0.07 3.64 0.12
33 9 5.00 0.14 5.30 0.15
34 4 4.55 0.12 4.84 0.14
35 4 4.32 0.11 4.57 0.13
36 4 4.10 0.10 4.39 0.13
37 4 4.11 0.09 4.27 0.13
38 6 4.54 0.09 4.76 0.12
39 0 3.47 0.09 3.40 0.12
40 7 4.25 0.08 4.42 0.12
41 3 3.96 0.07 4.03 0.11
42 4 3.96 0.07 4.02 0.11
43 4 3 96 0.06 4.02 0.11
44 1 3.37 0.07 3.19 0.11
45 2 3.11 0.07 2.87 0.11
46 3 3.13 0.06 2.93 0.11
47 3 3.14 0.06 2.96 0.11
48 1 2.70 0.07 2.43 0.11
49 2 2.59 0.07 2.33 0.11
50 3 2.72 0.06 2.53 0.11
51 6 3.36 0.05 3.45 0.10
52 1 2.93 0.05 2.80 0.10
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