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ABSTRACT

The problem addressed concerns the estimation of a p-dimensional multi-

variate density, given only a set of n observation vectors, together with

information that the density function is likely to be reasonably smooth. A

solution is proposed which employs up to n + k p(p+l) smoothing parameters,

all of which may be estimated by their posterior means. This avoids the well-

known difficulties, associated with even one-dimensional kernel estimators, of

estimating the bandwidth or smoothing parameter by a mathematical procedure.

The posterior mean value function, unconditional upon the smoothing parameters,

turns out to be a data-based mixture of multivariate t-distributions. The

corresponding estimate of the sampling covariance matrix may be viewed as a

shrinkage estimator of the Bayes-Stein type. The results involve some finite

series which may be evaluated by a straightforward simulation procedure.

AMS(MOS) Subject Classifications: 62G05, 62H12

Key Words: multivariate density estimation, Bayes, Dlrlchlet, Wishart,
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SIGNIFICANCE AND EXPLANATION

A method is proposed for the smooth estimation of a multivariate

density, given a finite number of observation vectors. The main

procedure suggested employs a generalized kernel estimator, where

the nodes are selected via a preliminary cluster analysis. An exchange-

able Dirichiet prior for the coefficients is used together with an

inverted Wishart prior for the smoothing parameters. The posterior

means of these quantities are obtained, and the unconditional posterior

mean value function of the multivariate density is shown to be a

finite mixture of multivariate t-densities. All results involve the

summation of a finite series; this is best evaluated by a simulation

technique.
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BAYES ESTIMATION OF A MULTIVARIATE DENSITY

Te. v Leonard

1. PRIOR ASSUMPTIONS

Suppose that the observation vectors x1 ,... xn are independent, given

their common p-dimensional multivariate density g(x); x e RP . Generalized

kernel estimators of the form

r r
g*(x) = E o.0.(x) for xeRP; . = 1 (1.1)

~ j=l " ~ j=l

are considered, where

=(x) = (C ) Icl exp{(x )TC-(x-j) (j=l,...,r) (1.2)

The assumptions in (1.1) and (1.2) place multivariate normal kernels over

the r points CV .""'sr' and then estimate g by a weighted average of these

kernels, with weights 01' 0r . The matrix C"1 is related to the idea of band-

width for one-dimensional kernel estimators; its specification has a large

effect upon the estimation of g. (e.g. Silverman, 1978). The unequal

weights 0ll... 0 r, for the points -l"** contrast the equal weights stipulated

by kernel estimators, (for the n kernels centered on the data points

x1 ,...,xn ) . They are designed to avoid the typical practical difficulties

associated with equal weights e.g. either oversmoothing or overbumpy tails

depending on the choice of bandwidth.

A number of further assumptions are made about el,...,er; C, and

l""'-r" They are

Sponsored by the United States Army under Contract No., DAAG29-80-C-O041.
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(a) The proportions e1 , . . . ,*r are taken to possess a Dirichlet prior distribution

Cu 1 -1 an2-1 wIr-1
w(ela,n) e1  e2  ... e r (1.3)

(0 < < ;lin1)

over their simplex of permissible values; here n1 , . . . , nr denote the respective

prior means of 81,...e r, and a controls the degree of shrinkage of our

posterior estimates towards Tlp""nT'1

The following procedures are available for choosing n1 , . .,rIr and either

choosing or empirically estimating a.

() If we possess prior ignorance about 01',...,r we could set

a r; T1 ' ,.rr = r 1, yielding a uniform, but proper, prior distribution

over the simplex.

(ii) If we regard e1,...ber as exchangeable then we could set

ll = " "r = r1l and then estimate a from the data by either a hierarchical

or empirical Bayes method (see section 3). This yields data based Bayes - Stein

shrinkage estimators for 6
, . . . ,96r ; it is our main suggestion. The shrinkage

estimators avoid over concentration of the density estimates at particular

nodes 4j.

(iii) If we possess prior information to suggest suitable weights for

the r kernels, then we could choose n1 , . . . ,Ir accordingly, and then estimate

a from the data, as in (ii).
F
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(b) The matrix C is taken to possess an inverted Wishart prior distribution

-(CvT) cT Il (+P+l)exp{-trace CT) (1.4)

where

S 2vp/2 ;p(p-l)/ 4 P rL-2. (1.5)

j--1

given Its parametric matrix T and degrees of freedom v. Here (v-2)'lT

is a prior estimate of C and v is a prior 'sample size' measuring the

strength of this Information.

The following choices are available for v and T.

() In situations where there is no prior information about C; v 1

and T equalling the n x n Identity matrix are reasonable

choices.

(ii) If there is related Information from other samples then this might also

be represented by the specification of values for v and T.

(ii) Possible extensions to the present analysis Include empirical estimation

of v when T is specified. Also T could be assumed to take the in-

traclass form; it is then possible to empirically estimate v together

withe the variance and correlation appearing in the special covariance

structure.
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(c) Possible empirical choices of -l"""'-r involve

() Setting r = n and . = x. for j = 1,...,n; a frequent choice in the literature of
-3 _

kernel estimation. We, of course, make this substitution after the prior to posterior

analysis has been performed for fixed &1 "'".'.r However, when r = n, our procedure

will often undersmooth; therefore choices (ii) and (iii) will usually be preferable.

(ii) Arranging S"'*-r to lie on an equally spaced p-dimensional lattice;

the choice of r depending upon the fineness of the grid.

(iii) Performing a preliminary cluster analysis, and then putting at least

one & in the center of each cluster.

(iv) In both (ii) and (iii) suitable values of r may be obtained by

comparing realizations of the prior predictive density, and .aximizing

with respect to r (see section 6).

Of the above possibilities the choice a(ii), b(i) and c(iii) seems to be

reasonable if the objective is to carry out a data-based analysis, which is

virtually free from choice of prior parameter values.

Note that our prior assumptions are very different from those proposed

by Leonard (1973, 1978, 1982) who uses a Gaussian prior/logistic transform

approach on function space. Whilst the covariances of Gaussian processes are

useful in one-dimension, they lead to overwhelmingly complicated computations

in several dimensions so that it is necessary to decrease the complexity

of the prior structure in order to obtain reasonable results.

Note that in case c(iii) the procedure we describe is equivalent in spirit to the

data analytic procedure of assigning proportions to each cluster in accordance with

the number of observations in the cluster, and then estimating C as the common para-

meter matrix in the corresponding discrete mixture of multivariate normal distributions.



-5-

2. ESTIMATION OF e

The likelihood of e and C, given the assumption in (1.2), and the n

observation vectors, is denoted by

(n)) n r
S(,C n ejj(xi)

1=1 Jul) - -i jl -(2.1)

n

Ql i=lI

where Q is the space of all possible n x I vectors w (w(1),...,w(n)),

where, for i = 1,...,n, w(i) is a mapping w(i): I * (l,...,r) from i to

the set of the first r integers. Under the choices in (1.2) for the Wj(x).

(2.1) Implies that

r nj
(e'c1xln)) ~J- el exp{- trace C ( (2.2)

where

nl = ([te11,...,n):w(I)-J (2.3)

with En. = n, and

m
D -E (x l.W(1))(Xl.() T (2.4)

Ii
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Note that al contains rn elements; however summnations with respect

to wcW may be evaluated by computer simulations generating random elements

from n. This procedure is straightforward, the same set of vectors

simulated for w may be used for each of the sunvn~tions involved in this

analysis.

The joint posterior distribution of .-and C is now '

10'0! ap~n~l) r . .+.

1,-1(vp0-1 r +nJ exp{-ktrace[C1 (T+D (2.5)

Integrating with respect to C. we find that the posterior density of e

is a mixture of Dirichiet densities,

,(,I,(n) E = A6(eIn)/EA W (2.6)

where

6(8) *k,(n) re~ ajn- (2.7)

with

kw(n) *r(a+n)I n r(cij+nj) (2.8)
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and

SIT+DI(*n)/k(n) (2.9)

Bayes estimates may be readily elicited from (2.6), for example, the

posterior mean vector of 0, conditional upon a and n is given by

E(Ix(n)ASTu) = E a W  (2.10)

where

a (a +nI ,... ,cr+nr)T/(c+n) (2.11)
r

Higher moments may be obtained similarly by averaging the higher moments

of the Dirichlet distribution in (2.7).

3. EMPIRICAL ESTIMATION OF THE SHRINKAGE PARAMETER

Integrating the joint density in (2.5) with respect to both 6 and C,

gives, with the judicious Inclusion of an extra factor in the proportionality

constant of (2.5),

Sffw(Cl(n),a,n,o,T)d

Z A.B.W() (2.12)

i '

l A-.
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where

r(c1r(oj +n )
B (c) = rlTlr F (2.13)

and A is defined in (2.9).

The expression in (2.12) is, as a function of a, proportional to the

warginal density of x(n), given a. It may therefore be regarded as pro-

portional to the "marginal likelihood" of a.

The posterior density of a is therefore given by,

,r(alx(n),I) i(a) E A B (a) (0 < a <) (2.14)

where l(a) represents the prior density of a. It is then possible, in

principle, to calculate the posterior mean of e, unconditional upon a,

from

E(elx(n),n) = E(8lx(n) ,a,n)n(alx(n),n)da (2.15)

where the contributions to the integrand of (2.15) are given in (2.10) and

(2.4) respectively.

Some approximations lead to simpler computations. Leonard (1977) con-

siders posterior densities of the form

.*(alx(n)) _ n(a)E AWB.(c) (2.16)

and shows that, with T - (l+a)/(n+*) and
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X= 2 E(ni-nni)
2/nn. (2.17)

1

the posterior mean of T is, for large r, approximated by

T* = max (r,) (2.18)

Therefore, as an approximation, the corresponding values for a = (nT-1)/(l-t)

may be substituted for a on the right hand side of (2.10). This works

even when a = w since then a/c = nJ. More precise versions of T*, in terms of
3 J,

incomplete Gamma functions, are available.

4. ESTIMATION OF C.

Integrating the joint density in (2.5) with respect to 0 we find that

the posterior density of C is

n(Clx) ,Il- (v+p+n-1) E u(w)exp{- C-'(T+DO)1 (4.1)

where

u(w) = nr(a +n)/r(+n). (4.2)
j3 3

The density in (4.1) is a discrete mixture of Wishart densities. The

posterior mean matrix of C is

~114
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E(CIx) - (v+n-2)"  E u(w)(T+D)/Z u(w)

M (v+n-2)1"T + (v+n-2)-1 E u( ZD/l u(w) (4.3)

Here (v-2) 11 Is the prior estimate and the second term on the right

handslde of (4.3) averages the matrix In (2.4).

5. POSTERIOR MEAN VALUE FUNCTION OF THE

MULTIVARIATE DENSITY

The posterior mean of g*(x) In (1.1), conditional upon the hyper-

parameters L, n, v, and T Is

Elg4(x)Ix(n)) r ( n)

,j=1~

where

E(e4SlxI(n) E1e I exp{-'lx- ;.)T'-1 )Ix(n)

where the expectation is with respect to the joint distribution in (2.5). After

som manipulation we find that

E(g*(x)Ixln)

r a +n 
n)I E :A- ulwlIT + *w (x+ .llx'.z l TI' (+nl) (xcRn) (5.1)

o.4



with u(w) defined in (4.2).

The weighted average of multivariate t-densities in (5.1) is a Bayes

estimate of g*(x) under both component wise and integrated squared error

loss; it is also the predictive density for a further observation vector x.

6. MISCELLANEOUS TOPICS

The posterior means of the central moments correspond to the central

moments of the distribution in (5.1). They may however be obtained more

directly from (1.1) and the results in sections 2-4. For example, the mean

vector and covariance matrix are estimated by

rE jE(e-jx (n))

- j~l ~

and

r ( n ) T ~ ( n ) ] T .Z= [E(OJCJxn) + , E(eIxn)] -Ix

- Jul :: _ j

The covariance matrix Z may be compared with the sample covariance

matrix calculated from xl ."' . , n . It will smooth the sample covariance matrix

by shrinking its elements to allow for our various sampling and prior assumptions.

When both a and C are estimated empirically £ will take the form of a

Bayes-Stein estimate because the amounts of shrinkage depend primarily upon

the data.

IJ
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Whilst the choice r - n is sometimes possible, the statistician might

prefer to work with a fewer number of C's e.g. with p - 2 he might,

for n around 200, spread the 's over a 10 x 10 grid. In such circumstances,

we may compare different values of r by the criterion

log p(x(n)la,r) = log X A B (a)-krn log n (6.1)

where A. and B. are defined in (2.9) and (2.13).

The expression in (6.1) is the log of the (prior predictive) marginal

density of x ( n ) , given r and the hyperparameters. If several different values

of r possess equal prior probabilities, then maximizing (6.1) yields the

value of r with maximum posterior probability.

Most of the results in this paper have been stated explicitly in terms

of one-dimensional finite series. This might be viewed as surprising in light

of the apparent complexity of the problem of multivariate density estimation.

The evaluation of the finite series via computer simulations should not cause

any untoward difficulites. Whilst elements w of 9 should, formally speaking,

be chosen at random without replacement, the chance of choosing the same w

twice is infinitesmally small, therefore the simulations may quite

reasonable proceed with replacement.
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