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ABSTRACT

The problem addressed concerns the estimation of a p-dimensional multi-
variate density, given only a set of n observation vectors, together with
information that the density function is likely to be reasonably smooth. A
solution is proposed which employs up to n + % p(p+1) smoothing parameters,
all of which may be estimated by their posterior means. This avoids the well-
known difficulties, associated with even one-dimensional kernel estimators, of
estimating the bandwidth or smoothing parameter by a mathematical procedure.
The posterior mean value function, unconditional upon the smoothing parameters,
turns out to be a data-based mixture of multivariate t-distributions. The
corresponding estimate of the sampling covariance matrix may be viewed as a
shrinkage estimator of the Bayes-Stein type. The results involve some finite
series which may be evaluated by a straightforward simulation procecdure.

AMS(MOS) Subject Classifications: 62G05, 62H12

Key Words: multivariate density estimation, Bayes, Dirichlet, Wishart,

multivariate t-distribution, smoothing, bandwidth, covarfance

matrix, Bayes-Stein, kernel estimator, computer simulation.
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SIGNIFICANCE AND EXPLANATION

A method is proposed for the smooth estimation of a multivariate

\ density, given a finite number of observation vectors. The main
procedure suggested employs a generalized kernel estimator, where

the nodes are selected via a preliminary cluster analysis. An exchange-
able Dirichlet prior for the coefficients is used together with an
inverted Wishart prior for the smoothing parameters. The posterior
means of these quantities are obtained, and the unconditional posterior

mean value function of the multivariate density is shown to be a
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finite mixture of multivariate t-densities. A1l results involve the
b summation of a finite series; this is best evaluated by a simulation

technique.
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BAYES ESTIMATION OF A MULTIVARIATE DENSITY

Tam Leonard

1. PRIOR ASSUMPTIONS

Suppose that the observation vectors Xys-oosX, are independent, given
their common p-dimensional multivariate density 9(5); X € RP. Generalized

kernel estimators of the form

8, =1 (1.1)

ne1-=s

r
g*(x) = I 8:05(x) for xerP;

J=1 J

are considered, where
2500 = (20)7PIc| ™ expl-ulxg,) € (xgy)  (G=lhei)  (1.2)

The assumptions in (1.1) and (1.2) place multivariate normal kernels over
the r points El”"’ér’ and then estimate g by a weighted average of these

kernels, with weights e],...,e The matrix E'] is related to the idea of band-

r
width for one-dimensional kernel estimators; its specification has a large

effect upon the estimation of g. (e.g. Silverman, 1978). The unequal

weights e],....er, for the points 5]""’§r’ contrast the equal weights stipulated
by kernel estimators, (for the n kernels centered on the data points

51""’5n)‘ They are designed to avoid the typical practical difficulties
associated with equal weights e.g. either oversmoothing or overbumpy tails
depending on the choice of bandwidth.

A number of further assumptions are made about 61.....6r; g. and

E],...,gr. They are
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(a) The proportions 0].....9r are taken to possess 2 Dirichlet prior distribution

an1-l anz-l

anr-l
n(gla,g) « 8, 8, «e. 8

. (1.3)

(0<ac< °°;'anﬂ)

over their simplex of permissible.values; here Nyseeeony denote the respective
prior means of 9].---,9r, and o controls the degree of shrinkage of our
posterior estimates towards Nyseseaf.
The following procedures are available for choosing Nyseeeon, and either
choosing or empirically estimating a.
(1) If we possess prior ignorance about 6,,...,8 we could set

1. yielding a uniform, but proper, prior distribution

G = P Npseeeahy, = r
over the simplex.
(i) If we regard 9].....er as exchangeable then we could set
Ny =... =N = r'] and then estimate o from the data by either a hierarchical
or empirical Bayes method (see section 3). This yields data based Bayes - Stein
shrinkage estimators for e],...,er; it is our main suggestion. The shrinkage
estimators avoid over concentration of the density estimates at particular
nodes Ej’
(1i1f) If we possess prior information to suggest suitable weights for
the r kernels, then we could choose Msesssly accordingly, and then estimate

a from the data, as in (ii).




(b) The matrix C is taken to possess an inverted Wishart prior distribution

n(clv.T) = clT|®Ic| P Degpiitrace CT) (1.4) |
where
P
¢V = VP72 pp(p-1)/4 jn]r(!:%ilg (1.5)

given its parametric matrix T and degrees of freedom v. Here (v-z)']I
is a prior estimate of g and v is a prior 'sample size' measuring the

strength of this information.

The following choices are available for v and T.

(1) In situations where there is no prior information about C; v =1

and T equailing the n x n identity matrix are reasonable

| choices.

3 (i1) If there is related information from other samples then this might also
be represented by the specification of values for v and T.

(1i1) Possible extensions to the present analysis include empirical estimation
of vwhen T is specified. Also T could be assumed to take the in-
traclass form; it is then possible to empirically estimate v together

withe the variance and correlation appearing in the special covariance

structure.




(c) Possible empirical choices of 51""’§r involve

5 for j = 1,...,n; a frequent choice in the literature of

kernel estimation. We, of course, make this substitution after the prior to posterior

(i) Setting r = n and Ej =X

analysis has been performed for fixed E],...,ﬁ However, when r = n, our procedure

r
will often undersmooth; therefore choices (ii) and (iii) will usually be preferable.
(ii) Arranging El”"’ér to lie on an equally spaced p-dimensional lattice;
the choice of r depending upon the fineness of the grid.
(iii) Performing a preliminary cluster analysis, and then putting at least
one £ in the center of each cluster.
(iv) In both (ii) and (iii) suitable values of r may be obtained by
comparing realizations of the prior predictive density, and maximizing
with respect to r (see section 6).
Of the above possibilities the choice a(ii), b(i) and c(iii) seems to be
reasonable if the objective is to carry out a data-based analysis, which is
virtually free from choice of prior parameter values.
Note that our prior assumptions are very different from those proposed
by Leonard (1973, 1978, 1982) who uses a Gaussian prior/logistic transform
approach on function space. Whilst the covariances of Gaussian processes are
useful in one-dimension, they lead to overwhelmingly complicated computations
in several dimensions so that it is necess;ry to decrease the complexity
of the prior structure in order to obtain reasonable results.
Note that in case c(i1i) the procedure we describe is equivalent in spirit to the
data analytic procedure of assigning proportions to each cluster in accordance with
the number of observations in the cluster, and then estimating C as the common para-

meter matrix in the corresponding discrete mixture of multivariate normal distributions.




2. ESTIMATION OF ©

The 1ikelihood of 6 and C, given the assumption in (1.2), and the n

observation vectors, is denoted by

n r
go.cixMyen 3 840,(x;)
=2 4 g -
(2.1)

n
=T T Oui)u(i) )

where Q is the space of all possible n x 1 vectors w = {w{1),...,u(n)),
where, for i = 1,...,n, w(i) is a mapping w(i): ¥ + (1,...,r) from i to
the set of the first r integers. Under the choices in (1.2) for the ¢j(§),
(2.1) implies that
(n) = B -1
2(6,C|x\"") « |C]| T n] Gj exp{-itrace C"" D } (2.2)
2zl 4 q j= d
where

n = Lie(1,....n) :w(i)=3] (2.3)

with an = n, and

m
% = E (’fi‘*im(i)"L‘i”&»(i)’T (2.4)

j
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Note that 2 contains r" elements; however summations with respect
to weQ may be evaluated by computer simulations generating random elements ‘
from Q. This procedure is straightforward, the same set of vectors

simulated for w may be used for each of the summations involved in this

analysis.

The joint posterior distribution of © .and C is now

n(8.¢1x a,n,v,1)

= n(8la,n) w|CIv.T) 2(0,¢1x{™)

r o oastn.-1 B
« (g1 D) 5 163 expontracelc (14,0 ) (2.5)
- 2 j=1 -

Integrating with respect to C, we find that the posterior density of e

is a mixture of Dirichlet densities,

L

n(e]x™™ a,n) =z Awé(glg)/gAw (2.6)
Q
where
r aj+nj-l
C(E) = kw(g) j]:]ej (2.7)
with
k (n) = T{a+n)/ T T{a,*n,) (2.8)
[\ j j j




and

A, = 1T, | KV (n) (2.9)

Bayes estimates may.be readily elicited from (2.6), for example, the

posterior mean vector of 0, conditional upon o and n is given by

e(el(™ oun) = 5 A2/, ' (2.10)
where
a = (a]+n],...4:r+nr)T/(u+n) (2.11)
Higher moments may be obtained similarly by averaging the higher moments

of the Dirichlet distribution in (2.7).
3. EMPIRICAL ESTIMATION OF THE SHRINKAGE PARAMETER
Integrating the joint density in (2.5) with respect to both g and g,
gives, with the judicious inclusion of an extra factor in the proportionality

constant of (2.5),

son(8,¢1x™ a,n,v,T)dedc

= A8, () (2.12)




where

P(u)nr(u£j+nj)
B,(®) = TiawnIir(eE;
j J

(2.13)

and Am is defined in (2.9).

The expression in (2.12) is, as a function of a, proportional to the
marginal density of §("), given a. It may therefore be regarded as pro-
portional to the "marginal likelihood" of a.

The posterior density of a 1is therefore given by,
n(alx(™ n) « 7(@) T AB ) (0<a<w) (2.18)
-~ Q w

where m(a) represents the prior density of o. It is then possible, in
principle, to calculate the posterior mean of 8, unconditional upon a,

from
e@lx™.n = s e@lx{™ e.mn(alx™ n)da (2.15)

where the contributions to the integrand of (2.15) are given in (2.10) and
(2.4) respectively.

Some approximations lead to simpler computations. Leonard (1977) con-
siders posterior densities of the form

m(a)x(M) « o)z A8, (o) (2.16)

and shows that, with T = (1+a)/(n+a) and
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2

- _ 2
X g(ni nni) /nni (2.17)

1

the posterior mean of Tt 1is, for large r, approximated by

| ™ = max (5,1). (2.18)

Therefore, as an approximation, the corresponding values for a = (nt-1)/(1-1)
may be substituted for o on the right hand side of (2.10). This works

! even when o = « since then aj/a = n.. More precise versions of T*, in terms of

J
incomplete Gamma functions, are available.
) 4. ESTIMATION OF C.

Integrating the joint density in (2.5) with respect to 8 we find that

the posterior density of C is
n(clx) « [¢|7HvPn-) ¢ u(w)exp{-4C (140 )} (4.1)
=1z =z a d
|
where
|
u(w) = Mr(a.+n;)/T(atn). (4.2) :
j J

The density in (4.1) is a discrete mixture of Wishart densities. The

posterior mean matrix of C is




fa .
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El]x) = (vn-2)™! 2 u(a) (T40,)/% u(w)
= (vn-2)"7 + (vn-2)"! £ u(w)D/E u(w) (4.3)
Q Q

Here (v-Z)'II is the prior estimate and the second term on the right

handside of (4.3) averages the matrix in (2.4).

5. POSTERIOR MEAN VALUE FUNCTION OF THE
MULTIVARIATE DENSITY

The posterior mean of g*(x) in (1.1), conditional upon the hyper-

parameters a, n, v, and I is
E(g*(x)lx(")) = ; E(ej¢.(x)|x("))
AR j’] J~s

where

E(eﬁ.L(E)Ix(n)) = E(G’.-(-ZT)!;:"—CI—Q exD{';’(’f'g,g)TE-](f‘gz)I"(n))

where the expectation is with respect to the joint distribution in (2.5). After
some manipulation we find that

E(g*(x) x(™)

aytny

LL u@)|T + 0, + (xg,) (xE)T17HVN) (eer™)  (5.1)

r
«I I
 L=]
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with u(w) defined in (4.2).
N The weighted average of multivariate t-densities in (5.1) is a Bayes
estimate of g*(§) under both component wise and integrated squared error

loss; it is also the predictive density for.a further observation vector X.

6. MISCELLANEOUS TOPICS

The posterior means of the central moments correspond to the central
moments of the distribution in (5.1). They may however be obtained more

directly from (1.1) and the results in sections 2-4. For example, the mean

vector and covariance matrix are estimated by

r
- (n)

and

r
. (n) T (n)yy _ T
L= jf][e(gjglf ) + &585EO51xT] - w

The covariance matrix I may be compared with the sample covariance

matrix calculated from Xpse oo X It will smooth the sample covariance matrix

~n’
by shrinking its elements to allow for our various sampling and prior assumptions.
When both o and C are estimated empirically L will take the form of a
' Bayes-Stein estimate because the amounts of shrinkage depend primarily upon

f ’ ‘ the data.
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Whilst the choice r = n is sometimes possible, the statistician might
preter to work with a fewer number of £'s e.g. with p = 2 he might,
for n around 200, spread the £'s over a 10 x 10 grid. In such circumstances,

we may compare different values of r by the critérion
log p(x(")la,r) = log £ Ame(a)-%rb log (6.1)
- Q

where A and B are defined in (2.9) and (2.13).

The expression in (6.1) is the log of the (prior predictive) marginal
density of x("). given r and the hyperparameters. If several different values
of r possess equal prior probabilities, then maximizing (6.1) yields the
value of r with maximum posterior probability.

Most of the results in this paper have been stated explicitly in terms
of one-dimensional finite series. This might be viewed as surprising in 1ight
of the apparent complexity of the problem of multivariate density estimation.
The evaluation of the finite series via computer simulations should not cause
any untoward difficulites. Whilst elements w of Q should, formally speaking,
be chosen at random without replacement, the chance of choosing the same w

twice 1is infinitesmally small, therefore the simulations may quite

reasonable proceed with replacement.
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