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ABSTRACT

Some nonlinear stationary reaction-diffusion systems involving nonlinear

terms which may be discontinuous are considered. Such systems occur, for

instance, in the study of chemical reactions and the discontinuities

correspond to reactions of order zero. In such concrete model, the set where

the reactant vanishes plays an important role. Here we prove the existence of

solutions for a general class of such systems satisfying Dirichlet or

nonlinear boundary conditions. Necessary and sufficient conditions are given

assuring that the reactant component vanishes on a set of positive measure.

Estimates on the location of such set are given.
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SIGNIFICANCE AND EMPANATION

Nonlinear reaction-diffusion systems arise in a variety of applications

including mathematical biology, chemical reactions, and combustion. The

nonlinear terms in the model equations are often merely continuous or even

discontinuous. A typical example occurs in the study of a single irreversible

nonisothermic reaction of order less than one and the discontinuous terms

correspond to reactions of order zero.

In this paper the authors formulate the model nonlinear system with the

help of maximal monotone graphs and they prove the existenc,, of solutions for

a general class of stationary systems (including the model of chemical

reactions) satisfying Dirichlet or nonlinear boundary conditions. The

regularity and uniqueness of solutions are also considered. Of particular

interest is the existence (or nonexistence) of a dead core 01 i.e. a set in

which the reactant component vanishes. This set plays an important role in

the modelling of chemical reactions. Necessary and sufficient conditions are

given for the existence of Q.8 as well as estimates for the location of such

a dead core whenever it exists. Accession For
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]M9
ON THE EXISTENE OF A FREE BOUNDARY FOR A CLASS

OF REACTION-DIFFUSION SYSTEMS

J. lldefonio Diaz
(1 7 4" 7 and Jesus Hernandez

42 )

J0. Introduction.

Many papers have been devoted during recent years to the study of

reaction-diffusion systems which arise very often in applications such as,

e.g., mathematical biology, chemical reactions, combustion theory, etc.

Here we consider a system describing a single, irreversible,

nonisothermic stationary reaction of the form

(0.1) -Au + P2 F(u)e v -0 in 0

S -Av - VP F(u)e v 0 in Q

a+ "u-1) -0 on a

(0.2)

To

where 9 is a bounded open subset of IN, 12 is the Thiele number, V is

the Prater temperature and Y is the Arrhenius number (see [31). Here e

and C (the Biot numbers) are positive, being in some cases infinity, in

which case (0.2) is interpreted as the Dirichlet boundary conditions

(0.3) u - I , v - I on a

The function F(u) is assumed to be nondecreasing and it is also assumed to

satisfy F(0) - 0, F(1) - I and F(s) > 0 if s > 0. The unknowns u and

(1)

Seccion de Matematicas, Universt.1iad de Santander, Santander, Spain.
(2)J Division de Matematicas, Universiad Autonoma do Madrid, Madrid, Spain.
(*)
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v are nonnegative and they represent, respectively, the concentration and the

te.mperature of the reactant.

Very often F takes the simple form F(u) - up, where p A 0 1 the

order of the reaction (see [31 Vol 1). In the case of a reaction of order

zero F is given by F(O) - 0 and F(s) - 1 if s > 0 (thus P is a

discontinuous function).

Existence and uniqueness results for the parabolic problem associated

with (0.1), (0.2) (or (0.1), (0.3)) have been given by some authors (c.f. e.g.

[21, 141, (201). Existence and, in some particular situdtions, uniqueness

results for the elliptic problem can be found in (21, (231, [171 and (211 for

p 1. The case 0 ( p < I is considered in [31 p. 311 (see also (221) but

existence theorems are not given. It is shown in [31 and [221 that for

p - 0, if P is large enough, no strictly positive solution can exist. It

is also shown that, in some particular examples, the set

20 - {x G 12: u(x) - 0) (called th~e dead core-) is not empty and has positive

measure if 0 4 p < 1.

The main idea used in (221 and many other papers (cf. [31) is to reduce

(0.1), (0.2) to a nonlinear elliptic boundary value problem for u alone.

Here we follow a different approach which allows us to obtain better

results. Moreover, we are able to treat the case of nonlinear boundary

conditions, which cannot be handled by the preceding device.

We shall consider the case of discontinuous functions F(u) in the

framework of maximal monotone graphs in R2 (see 181). For the reader's

convenience, we recall that a maximal monotone graph a in I2 is always

specified by a real non-decreasing function 8 by a(r) - (-,O(r)] if

O(r) - --, (r) - [0(r-),0(r+)] if -- < 0(r-). - 0(r+) < +- and

a(r) - 10(r-),+-) if 0(r+) - W. We define D(a) - {r 41 R a(r)I- a and

-2-



the sections a +  and a- by

a+(r) max{z • z 6 G(r)) if r a DM()

a-(r) min(z : z 6 a(r)) if r 6 D(a)

a+(r) = a(r) 4 if r 4 D(C), r ) sup D(a) ,

a+(r) = a-(r) - - if r 4 D(a), r I inf D(a)

Finally, we define 0(r) as the element of a(r) with minimal absolute

value.

Through the paper we shall study the following general formulation

including the system (0.1) as a particular case:

-Au + a(u)f(v) 5 0 in 2
(IlLS)

-Nv - B(u)g(v) 8 0 in 2

with the boundary conditions

(DBC) u= , v= 2  on 3

as well as the nonlinear boundary conditions

au

hru Yi (:n + b(u) - on oQ

(B) CVv + CMv -2 on 30

where 0 is a bounded open subset of N with smooth boundary 2. We also

assume for the rest of the paper that

(0.4) a and 0 are maximal monotone graphs such that 0 6 a(O) n 0(0)

(0.5) f and g are CI  functions and f(s) ) 0, g(s) ) 0 if s W 0

(0.6) ' 0 2' *I and 6 C2( 2)

(0.7) b and c are C2  non-decreasing real functions.

In particular, if a and 0 are single-valued (i.e. they are nontinuous real

functions) then the set inclusion of (MLS) should be replaced by equality.

A 3



In the general situation, (uV) G H2( ) x K2(2) is a solution of (3LS)

if there exists a, d Q L2 (9) such that a(x) 6 a(u(x)), d(x) e 9(v(x)) a.e.

xe Q and

-Au + af(u) - 0 and -Av - dg(v) - 0 in 0

We shall prove the following existence result, which extends in some

sense those in (21, (231 and [17).

Theorem A. Assume

(A.1) 0(a) - D(O) - ,

(A.2) f(s) • a )P 0 Vs tR

and

(A.3) 0 4 g(s) m "2 Vs 6 R

Then there exists at least one solution (u.v) of (NLS)(DDC) (resp.

(NLS)(NBC)). Moreover u, v e W2 ' (0) for any p, 1 4 p < +w.

We also consider the eo1-tence and non-existence of a dead core 20

where u - 0 and consequently the existence of the free boundary 20(1)0

Rougjhly speaking, such a dead core for (0.1), (0.3) arises when it is

impossible for diffusion to supply enough reactant from outside 2 to reach

the central part of 0. (cf. (221). This may happen if the reaction rate

Y

F(u)e re,,ains high as the reactant concentration decreases. Thus (for

(0.1), (0.3)) the existence of Q0 depends essentially on three things: the

reaction order, the Thiele number and the -ize of 2.

Our main result in this direction can bp ,tated in the following general

terms.

(1)

There iM d large literature about this subject in the case of d singe
nonlinear equation. See, e.g. the systematic study of (121.
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Theorem B. Assume thdt Lhte hypotheses of Theorem A are satisfied. Then the

following properties are true:

i) If M(s) = V 2IsIP-1S and (uv) is any solution of (NLS)(DBC)j

then a dead core may exist only 
if 0 4 p < 1.

ii) Let a(s) - 2 IsIp's with 0 < p < I and let (uv) a solution

of (NLS)(DBC). For )> 0 let

= {xG : f(v(x)) )

Then

(0.8) no  {x 0 a (x,al - (as - supp ) (-4) 2

where N ' - lo Iand

1

K (2(l+p+(N-1)(p-1)])p-1

A 2 (1-p)
2

2.
iii) Let Q(s) = P2 sign s. Then the estimate (0.8) holds if we replace

* 2
4 by 14 - Uzi - where z satisfies Az = 2m1  in

L (ji)

Li and z - o, on ag.

* Furthermore, if A is convex, the above results are still valid for

(NLS)(NBC) in the sense that if 0 4 p < 1, then S0  has a positive measure
0

for p large and it is possible to estimate a0  (see (2.22)).

The above theorem is specially meaningful if m1  in (M.2) is strictly

positiv. (this is true in the case of the combustion system (0.1)), (0.3))

because then we have S1 A S for any X B (O,m 1 ) and so the ,-tirmate (0.8)

reads

(0.9) o [ (x 0 n , d(x,30) ; (_--_) 2)

ml ,U

By convention 1s1- s - sign s (- -1 if a < 0, - [-1,11 if s - 0 and

-1 if s > 0).

& -5-



From the def4inition of K,, in Theorem B we deduce that K 'u 0 when

X 0 or p 'v 0, and that K, A + if A or P 4 +. Therefore for

a fixed bounded Q the existence of a dead core 2 may only be guarantee]

(by estimate (0.9)) if

diameter of Qk ( KM ) 2

assuming 0 4 p < 1. Then a critical value pc of p can be found such that

a has positive measure if P >. Pc. In fact, direct computations show

(when N= 1) that function u is strictly positive in a if ti < u

and u vanishes only at one point if u - pc (see the proof of Lemma 2.1 and

also (22]). Estimate (0.8) of Theorem B can be also written independently of

the function v for other systems in which it is not difficult to estimate

the set 9a (for instance 0A "a if in (ULS) we assume f(s) = s and

2> 6 > 0 for 8 large (or A small) enough).

Through the paper we also remark on other more general formulations of

(NLS). The parabolic problem associated with (NLS) will be studied in a

forthcoming paper by the authors [131. The case of a unbounded will be also

treated elsewhere [14].
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ti.. Existence results.
Consider first the problem

-Au + alu)f(v) S0 in a

(DP) -Av - (u)g(v) 0 0 in a

u = , u =0 2  on 32

where Q is a bounded open subset of RN with smooth boundary 32 and

of Of ff 9# 01 , 02 satisfy (0.4), (0.5) and (0.6). Set X - (H2 (Q))2,

Definition I. We shall say that (u,v) 6 X is a solution of (DP) if there

2
exist functions a, b 6 L (2) such that a(x) 6 a(u(x)), b(x) 6 0(v(x)) a.e.

in 0 and

-Au(x) + a(x)f(v(x)) - 0 a.e. x e 2

-Av(x) - b(x)g(v(x)) - 0 a.e. x e a

and the boundary conditions (DBC) are satisfied.

Definition 2. The pair ((uoVo),(uO, vO )) X x X is a sub-supersolution of

0 0( u0  , V0 ( v a.e. on 2 and

(1.1) -Au0 + c-(u 0fMv) 4 0 4 -Au0 + (u 0 fM ) Vv C [Vv 0 1 ,

0.2) -AVo - 0 0 (u)g(v0
) 4 0 • -AV 0 (ulgv°) vu- aUoU° ]  ,

1.3) u 0  01 • U0  on 32 ,

(1.4) v0 02 4 v °  on D2 ,

where (K,1] - (h 6 L2 (O)IK(x) 4 h(x) 4 Z(x) a.e. on 2) if K,I 6 L2 (9).

Our main existence result for (DP) is the following

Theorem 1.1. Suppose that [(uo, V),(u ,v )J is a sub-sulscsolution

satisfying

(H1 ) u0 ,V0,U0,V 0 e 7( )

and that

-7-



(H2) D(M) D(O) uR

Then there exists at least one solution (u,v) of (DP) such that

u 0  u u, v 0 A v •vC. In addition u,v 0 42IP(fa) for any p,

Remark 1.1. This theorem generalizes results of [2], (17], (181 and [22].

To prove Theorem 1.1 we define E - [L2 (92 and

K = [u0,u
0 1 x [v0 ,v

01. It is clear that K is a convex, closed and bounded

subset of E. Now we define a nonlinear operator T:K + E in the following

way: for (u,v) 6 K, T(u,v) = (w,z) is the unique solution of the uncoupled

system

(1.5) -Aw + a(w)f(V) + w a u in 0

(1.6) w = I1  on 3

(1.7) -Az + 14.z 0(u)g(v) + M.v in 0

(1.8) w = 2 on

Here M > 0 is such that the right-hand side of (1.7) is increasing in v

(we can choose such d M because g is C1  and (H1 ) has been assumed).

Indeed by (H2) we can apply the results of Brezis-Strauss [101 to obtain the

existence of a unique solution w of [1.51, (1.6). Moreover, by (H), (H2 )

and the LP-regularity results (see e.g. 116]) w 6 W2 'p(a) for any p,

1 4 p < +-. A similar argument works for z.

The proof of Theorem 1.1 will follow from Schauder's fixed point theorem

applied to the operator T. It is suIfficient to check that T is compact and

that it sends K into itself.

Lemma 1.1. T is compact.

Proof. As K is bomaled it is easy to show that

IWlH 4 C

ith C independent of (u,v) 6 K. Thus it is sufficitl.: to recall the

-8-



12
compactness of the imbedding H (0) C+ L2(f) to see that T sends bounded

subsets into relatively compact ones (the same for z). To prove that T is

continuous, suppose that (u nVn) + (u,v) in E. Then

-A(w-wn ) + Q(w)f(v) - a(w n)f(v ) + w - wn a u - un  in Q

w - w =0 on
n

Multiplying by w - wn and integrating by parts we obtain (for the case a

singlevalued for simplicity)

f IV(w-wn)12 + f0(a(v)f(v) - g(wn)f(vn)(w-wn) + fIw-wn 12 =

fIV(w-wn) + Jacw)fcv) - C(wn)f(v)J(w-wn ) +

+ fa Q(wn)(f(v) - f(vn))(w-wn) + Iw-wI 2 = U(u-u n)(-wn) >

> fOIv(w-wn)12 + f a(wn)fv) - f(v n))w-w n

and by the Cauchy-Schwart inequality it follows that

lw-wn 1 21 4 Ia(w )I If(v) - f(v )L lw-Wn L2 +

H(O L(O 01) L(OM

+ lun-ul L2 w-w 1SL() n L2 (O)

Now it is easy to conclude that w + w in H (A). A similar argument can ben

used for z.

Lemma 1.3. T(K) c K

Proof. We first prove u0 4 w, i.e. (u0 - w)+ = 0, with h+ - max(h,O).

For v = v (1.1) yields

0 ) -A(u -w) + O(u )f(v) - (w)f(v) + u0 - w .
0 00

(We again suppose a singlevalued for simplicity in the notation.) Multiply

this inequality by (u 0 - w)+, integrate over 0 and use Green's formula to

obtain

-9-



0 N fa -A(u0-W)(u 0 -W) + + fj (a(uo) - Q(v))f(;)(u0 -W) +

+ f2 (u l-w)(u0 -W)+. foIV(u0-w)+1
2

by the monotonicity of cg This gives (u 0 -w)+ - 0. A similar argument shows

0
that w 4 u

For the second component v we have, with u - in (1.2),

0- 0o ; -A(vo-Z) + o(U)g(;) - Oo(u)g(v ) + M(V-Z)

Multiplying by (v0 -z)+ and integrating yields

0 ;P A (V o-Z)(Vo0-Z ) + + fj[0()g(Vo) + NVo - 0 (;)g(z) - Mz] (vo0-Z) +

falV(vo-+l

(by the choice of M the second integral is positive).

Then T has at least one fixed point (u,v) in K which is a solution

of (DP). moreover u, v e 17(g) and this implies that u, v G w2'P(g) for

any p, I p <

Remark 1.2. It follows easily from Morrey's theorem (w 2P(Q) + 1,r(a)

if p > N with r - I - N) that u, v e C"() for any 0 < 6 < 1. On the
p

other hand, if we suppose for instance that a and 0 are C then u,

v e C2,6( 0) for every 0 < 6 < 1. Indeed, in this case a(u)f(v),

O(u)g(v) e C6 () and we can apply Schauder theory ([161).

The main conclusion of Theorem A (for the Dirichlet problem) follows from

the next lemma.

Lemma 1.4. Suppose (H,), (H2) and

(H 3) 0 1 m( • f(s) Vs 0 R
The i Uo V' 0 0 2

Then if ta, Vol uo, v e H2(a) satisfy

(1.9) -Au0 + m Ia(u ) ( 0 ( -Au0 + m a+(u0 ) in 11

0 1 0 1
(1.10) u 0  u 0  on

i(1.11) "av° " s°C-Io 1 Lt.(an)]g(v°) r 0, -.Av° -° '| a)]g(v°) in. 1

~-10-



(1.12) 0o 02 v on an

the couple (Uo,Vo), (uO,v0 )] is a sub-supersolution for (DP).

* 0 * 0
Proof. Let u0  U u , v0 4 v 4 v . By the maximum principle we have

l17L(an) 4 O4OCOe 01 L 46(an)

Then, by (1.9)

-Au0 + a (uolflv) ( -Au0 + m1a (uo) 0 0

-Au0 + a+(uO )f(v*) -Au0 + ma+(uO) 0 0

and also by (1.11)

-AV0 - (u )g(v ) -Av0 - )glv 0 0

L (a f)

0Moreover, a simple argument gives v0 4 0 4 v

Now the problem is to find u0, U 0 v, V 0 L (0) satisfyinq (1.9)-

(1.12). The fact that such uo, u0  and v0  exists follows from the results

of [10] applied to a and 8 respectively (we point out that

80(-I0I a ) 0). Hence we only need a solution v0 of
L (an)

-Av0 - 00 0-P I )gv0 ) 0 in 0

v0  2  on ail

It is clear that it is sufficient to take as v0  the (unique) solution of the

linedr problem

-Aw - am in 11
2

w - 2  on 30

-11-



This proves Theorem A.

Remark 1.3. It is clear that assumption (A.3) of Theorem A is only used to

find v 0 . If for example, g is such that the nonlinear probleut

-,w - 0°0I 1 )g(w) in 9

w = 42 on a

has a solution, then we can remove (A.3). There is a very extensive

literature for this kind of problem with different assumptions on q, but we

do not want to consider this point here (cf. e.g. I1] and the survey [19]).

Remark 1.4. If a is assumed to be singlevalued and C1  the hypothesis

f(s) ) m2 • 0 is not necessary (cf. (171). On the other hand, if a and B

are singlevalued and a, B, f and g are C1 with sufficiently "small"

Lipschitz constants, then it can be shown (cf. (21, (17]) that the solution is

unique.

It is very easy now to apply the preceding results to the particular

example (0.1), (0.3) considered at the beginning of this paper. It is

Y-

sufficient to take f(v) - g(v) - e v, au) - P2up, B(u) = 2up , p > O

and -
= 2 - 1. A sub-supersolution is given by u0 = 0, u 1, v 0 - 0

and v°  the unique solution of

0 2
-Av =vp2ey in 0

0v =1 on 30

The case of nonlinear boundary conditions can be handled in a very

similar way. We only point out some- differences. First, the definition of

sub-supersolution is the same -Acept that the boundary conditions

Bu 0  #1 4Bu O  Cv 0 4 2 I Cv O

should be satisfeLod instead (1.10), (1.12).

-12-



The main existence result is

Theorem 1.2. Suppose that (UoVo), (u ,v°)1 is a sub-supersolution

satisfying (H1 ), (H2 ). Then there exists at least one solution (u,v) of

-Au + Q(u)f(v) a 0 in a

-Av - 0(u)g(v) a 0 in 0

Bu =lD1 Cv - 2  on a

such that u0 4 u (u
0 , v0  v v * v . Moreover, u, v 6 w2 P(Q) for any p,

I p< +-.

Proof (sketch). We just give the definition of the nonlinear operator Tj

the other details are very similar to those for the Dirichlet problem. For

(u,v) e K, define T(u,v) = (w,z) to be the unique solution of the system

-Aw + a(w)f(v) + w a u in 0

Bwi 1  on 0

-Az + z f 0O(;)g(;) + v in 0

Cz ff *2  on 30

The existence and uniqueness of w and z follows from Theorem 11.1 of [61

(for z we can also use the results of (10]).

A result very close to Lemma 1.3 can also he proved for the boundary

conditions (NBC).

Remark 1.6. The operator -A in (NLS) can be replaced by two (possible

different) elliptic second order differential operators or even by nonlinear

operators of the form

-Au N q-2 au

q1 i - 3

-13-



with 1 < q < Indeed, in this case one can define a nonlinear operator

T by using again [61 (cf. also [151). The more involved situation of b

and c maximal monotone graphs can also be studied by similar methods.

-14-



J2. Existence of a dead core".

In this section we shall consider the existence of a "dead core" for

solutions u of (CLS), i.e., we shall prove that the set

n o M (x a 0 : u(x) - 0) has a strictly positive measure under adequate

hypotheses on Q and eventually on 11l ) or 191. In fact much more

precise information is obtained about 0

Our study will be carried out by using results concerning a single

nonlinear equation but arguing in a different way than usual for the

combustion example. Indeed, if (u,v) is any solution of (NLS) (DBC) (resp.

(NLS) (NBC)] then u satisfies

(2.1) -Au + f(x)Oc(u) a F(x) in a (1)

(2.2) u - 4 on ai

[resp.
• a u

(2.3) 12 + b(u)- 1  on 01 ,

where F 0 and f(x) - f(v(x)) a.e. on 2.

The study of the subset 0 corresponding to solutions of (2.1), (2.2)

(or (2.1), (2.3)) has occupied the attention of many authors, but, as far as

we know, all these results are given for the simplest case f(x) = constant.

We recall the two different approaches in the literature:

Na) = R ((7) or 0 being an unbounle,1 set ((111)

b) a being multivalued at the origin ([91, 151, [201, (241).

More recently, a systematic study has been made in (121 giving a unified view

of both situations, but always for f(x) constant. Our results, in this

section, follow the ideas of [123.

(1Equation (2.1) also appears in the study of a stationary isothermical
sirloj1. reaction. (See (3) Chap. 3.)

-15-



2.1 Dirichlet Problem.

we now prove parts i), ii) and iii) of Theorem B. For this we hegin with

some useful Lemmas.

Lemma 2.1. Let F 6 L(), 0 6 C 2 (aU) and suppose that u 6 H2 (I0)

satisfies

(2.4) -Au(X) + M21(x)ju(x)jPsign u(x) Q F(x) in 0

(2.5) u- on 3

where f L( ), f ; 0 on 0 and p ) 01. If 0 4 p < I and -

denotes the set

{ x a 7 (x) ;0} > 0

we have the estimate

S0 {x 0 a u(x) = 0) {x 9 - supp F d(x,a(Q, - supp F) - - supp 0)

(2.6) -

N -x--) 2 .

IFIJ 1I- TIIv
Here M- max(( 2 '' J), , , * }for p > 0 and K- 1:1 (with

2 p2L (nf) L ( )
Az M U2A in fi, z - 0 on a) for p - 0. K P  is given by

1

(2.7) KA (211+p 2(N-1) 2 ,1)I ).1

Proof. If we denote by u+ (reap. u_) the solutions of (2.4), (2.5)

corresponding to the data F , V + (reap. F-, V-) then by well-knzywn

(1)
If p - 0,_ equation (2.4) should be interpreted in the son.e that there

exists we L2 (S ) such that w(x) S sign(u(x)) a.e. x ei and -Au + u2iw
P in i .
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comparison theorems, we have u+ + 0 (resp. u_ 4 0) and also

u_(x) (u(x) u+(x) a.e. x 0 0. Hence iti s clear that 90 {x a

u-(x) - 0 and u+(X) - 0). For the sake oE simplicity we shall only consider

the came F - F - e the other case being analogous. Let u A 6 H2 ()

such that

XAuA + At 2IuI p F in OX

(2.8) 
on

U) I ul on a9x - 3
L ((i)

we claim that 0 4 u(x) I u (x) a.e. on Q0. Indeed (1 ), taking F(x)

-Au + X 2Up , it is clear that F(x) - F(x) + Aiv 2up - f(x)u 2uP  and hence

F C F on . Moreover, -Au + XPa2uP - F on Q. and thus by the comparison

results (cf. e.g. [121) one has 0 4 u 4 ux. Therefore the conclusion of the

Lemma will follow by constructing one of such functions uA and the set

(x ) : uA(x) - 0) will give the estimate (2.6) for Q we will choose

uA(x) h(Ix-x01) for some x0 a 0. First, note that for h 0 C2 (R) and

any 'T 6 (0,1) we have

-Ah(ix-x 0 1) + XPh(x-xol) p - -h-(IX-Xo) - ( )h'(Ix-xoI) +

+ LAth(Ix-xol)p - -h"(11x-xol) + X 2h(Ix-xoI)p * (1-V))v2h(Ix x0I)P

(x-x)0I x-ol

(1)

We shall only prove this inequality for p > 0. If p - 0, a natural
adaptatt,,t ,f the argument leads to the claim.

-17-



Now, for a fixed I, let hn be a solution of the Cauchy problem

h-"(r) * nAp2 h (r)IPsimn (h r)

(2.9)

It is easy to check (recall that 0 4 p < 1) that

2

(2.10) h (r) - L rl1 p

where I

L' 20+p) )1(2.11) z,,I - -2 1 2p-
'11)2(1-p)2

is a solution of (2.9). We have

004hlrlP - h(r) - L rp((1-n)1P2 L' 1  1- 1
r 1-p

choosing 11 such that

(2.12) 1 p41
li+p+(N-1 )(l-p)

leads to

-Ah (lx-x 0 i) + AV2 h(l-xol)P o

for any x 0 DI.

Finally, consider the set 9 a - supp F. The considerations made

above show that the function

2

uAx) - K AuJx-Xo1

with KX,p given by (2.7) satisfies

-AUX + A2p -- o 0 a F(x) in a

.% 0 0 -a toon9 n (3 -supp o)

Hence it is sufficient to have

(2.13) U ) sax(# lul *) on 39 - (39 n (SU- guppp))
L (

-18-



to obtain

0 (X)(u(x) on 1)

But, by the maximum principle we know that u(x) C N on 0 and this implies

that (2.13) is satisfied if we choose x0 such that

(2.14) Ix-x01 M 2

for every x e ag - (39 n (30 - supp 0)). The conclusion now follows

trivially from (2.13) and (2.14) (we recall that uA(xO) - 0).

U

Statements ii) and iii) of Theorem B follow immediately from the above

Lemma. We remark that the constant K given in (2.7) is such that

K '*A 0 when X 0 or iA 0 and that KAp + if X #+ or

' *+s. Then, if is bounded and not empty, estimate (2.6) shows that the

measure of 0 is positive at least if

02 -p

diameter of (Q0 - supp F)) 2

(assumed 0 4 p < 1). Therefore, if 2X  is given, 0 exists" if p is

large enough or K is sufficiently small. In the simple case of problem

(0.1), (0.3) with f(s) - s P , 0 4 p < 1, it is easy to find a critical value

u of p (now depending on p, Y and diameter of 0) such that 0 is not

empty if U > lce When N - 1 direct computations show that, for p, y and

0 fixed, the function u is strictly positive if v < P c (see e.g. (31 and

(221).

We shall prove part i) of Theorem B. Indeed, we shall prove that if

p A 1 then for any value of A, p and diameter of 2 ther.. exist functions

(uv) satisfying (T)P) (with u(s) - *lP-1) such that u(x)> 0 on 1. To

do this we shall const~lur the worst of the cases i.e. when diamter (B) -

-19-



(for instance N = I and 0 = (0,)) and even for a larger class of

noal i ,o-ari ties C.

Lemma 2.2. Let u 6 H 2(0,) satisfying

-u"(x) + f(x)a(u(x)) a 0 x Q (0,-)
(2.15)

u(O) = 1

where a is a maximal monotone graph such that 0 6 aO) and the function

i(s) =f a0 r)dr satisfies

0 3(s)

(These hypotheses are sati-.fLed when U(s) IsIs, pAsumetha

f 6 L7(0,') and 0 C f(x) I m2 a.e. x 6 (0,-), for some c2 > 0. Then

u(x) > 0 for any x 6 [0,-).

Proof. We shall use some ideas of 171 and [151. By reasoning as in the proof

of Lemma 2.1 we can always suppose without loss of generality that

-1
a (0) = 0 and that a is singlevalued. By a comparison argument completely

analogous to the ones in the proof of Lemma 2.1 we show that if u 6 H2 (0s)

satisfies

-u"(x) + m2G(u(x)) - 0 on (0,1)

u(0) - I

then u(x) 4 u(x) for any x 6 (0,+'). Thus it suffices to prove that

u(x) > 0 for any x 6 (0,0). Suppose that u has compact support and we

shall obtain a contradiction. The maximum principle implies 0 C u(x) C 1

and hence u" 6 L(0,-). Thus u a Cl([0,i)) with U* 0. Let

R - sup(x : u(x) # 0) (R > 0 and finite by assumption). As ul(R) - 0 it is

not difficult to see that u'(x) < 0 and u(x) > 0 on (0,R) (it is a

-20-



consequence of u" ) 0). But (2.16) yields

u(R) ds u'(r)

JO 0 _

) (r)

and we will get a contradiction by estimating on (0,R). Defining
4ji (u r))

w(x) - (u'(x))2 we have

(ONu)), - Q(u)u, = t u_ 0 n (u9,)2] ,

- - 2 - - 2 1

But w(R) - 0 and J(u(R)) = 0. By integrating we get j(u) n-vw, and,

finally,
u'(r dr =/ 2f~ds(<+mfR 0 u(r))

0 2 0

a contradiction.

Remark 2.1. By arguing in a similar way as in [III we can prove ([141) that

if 2 is an unbounded subset of 0 ,  the maximal monotone graph a

satisfies

(2.17) 0 s< (J(s) - f: cO(r)dr) ,

and u satisfies

-Au + f(x)a(u) 8 P in 2 (f A)

um$ on 32

where F and 4P are assumed with compact support, then u has compact

support. We point out that the improper integral (2.17) converges when

a(s) - s1P sign s if and only if 0 4 p < I and hence the compactness of

the support of u is an obvious consequence of Lema 2.1. On the other hand,

we do not know (for N > 1) if under the general hypothesis (2.17) the set

a0 has positive measure for Q bounded and porhaps IFI * and

L (-)
i -21-



sufficiently small depending on the size of 0.
L (30)

Remark 2.2. Lemma 2.1 (and then Theorem B) can also be obtained when the

operator -A in (NLS) is replaced by other elliptic second order differential

operators as in Remark 1.6. The now definition of the functions

uA(x) - h(jx-x01) in the proof of Lemma 2.1 can be found by the methods of

[12].

2.2. Nonlinear boundary conditions.

Statement iv) of Theorem B will follow as in the preceding section by

considering the nonlinear equation

-Au + V 2 (x)ujP sign u a F in a
(2.18) -u + b(u) - on

where f a L (9), f ) 0, 0 4 p < 1, b is C1  non-decreasing with b(O) - 0,

F Q L(2) and * 6 C2 (3a).

First, we remark that "interior estimates" for 0 can be obtained as in

Lemma 2.1. More precisely, we have

(2.19) 0 (x 6 OX - supp F: d(x,-(n,= supp F)) - 2

* (1)
where now 1u) To show this it is sufficient to choose x0 in

L (0)

suchawaythat uA) on an, being Q supp F in the proof of

Lemma 2.1. It is clear that (2.19) does not give any information about the

behavior of 0 near the boundary of 0 - supp F.

One obtains estimates for M* by means of comparison theorems (see e.g.
Lemma 3 in 1121).

-22-



To improve the estimate (2.19), we introduce the following notation:

given a smooth curve r in 1 and x e R, we define

(2.20) O(x0,r) = inftcos(n(x), x-xO) x e r)

where n(x) = (n (x),...,nN(x)) is the unitary outward normal vector to r

at x and (n(x), x-x0 ) denotes the angle between the vectors n(x) and

x-x0 . It is clear that the value of O(xofr) depends essentially on the

"geometry" of r. If for instance F = aQ and 0 is a convex bounded set

of RN it is easy to see that O(X0 1r) > 0 when x G 9.
0

Lemma 2.3. Assum that u 6 H2(0) n L (Q) satisfies (2.18). For A > 0,

let 11 = [x 6 0 : f(x) A A). Moreover, suppose 0 4 p < I and

(2.21) O(xo' a(Qa - supp F) n 81) ) 0 Vxo a - supp F

Define

r =8(n supp F) n 3 0 n supp .

he {x e - supp F : d(x,r) P 2 K L O( a)] 1 and

d(x, a(Q~ supp F) - all) K

where M = luE
L()

P.oof. Arguing as in Lemma 2.1 we only consider the case F 0 and I • 0.

Let Q = - supp F. By using again comparison results (cf. e.g. [121) it is

not difficult to see that if uA satisfies

(2.23) -AUA + A u2p ) 0 in a

(2.24) uA 0 M on a - a

au.
(2.25) an- 1*1 Lon r 8 n Asupp#

(2.26) T- on0an a (ag - supp #)

-23-



then 0 4 u(x) C u,(x) for x 0 0'. From the proof of Lemma 2.1 we know that

the function 2

u (x) - KAXhlx, xo -

satisfies

for any x0 6 g. Condition (2.24) is satisfied if

2
(2.27) IXX01 > (KM 2 G an - an

On the other hand,

> axip(T ) Ix-xo 1 1-p O(X))

Thus (2.26) is a consequence of (2.21), and (2.25) holds if we choose x0 G I

satisfying

Ix-xl L2 (ar) 01vx e r

This completes the proof.

U

Remark 2.3. Part iv) of Theorem B follows from Lemma 2.3 if we set F B 01

(2.21) holds easily if, for instance, f(s) ; mI > 0 Vs B R (as in the

combustion system) and 0 is a convex set.

Added in proof: After the completion of this work, the authors have learned

that C. Bandle and 1. Stakgold have obtained recently, results similar to our

Theorem B for the particular system (0.1), (0.3), by using different

methods. On the other hand, some results related with Remark 2.1 can be found

in a forthcoming work of M. Schatzman ("Stationary solutions and asymptotic

behaviour of a quasilinear degenerate parabolic equation").

~-24-
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