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ABSTRACT

Some nonlinear stationary reaction-diffusion systems involving nonlinear

terms which may be discontinuous are considered. Such systems occur, for
ingtance, in the study of chemical reactions and the discontinuities
correspond to reactions of order zero. In such concrete model, the set where
the reactant vanishes plays an important role. Here we prove the existence of
solutions for a general class of such systems satisfying Dirichlet or
nonlinear boundary conditions. Necessary and sufficient conditions are given
assuring that the reactant component vanishes on a set of positive measure. ;

Estimates on the location of such set are given.
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SIGNIFICANCE AND EXPLANATION

Nonlinear reaction-diffusion systems arise in a variety of applications
including mathematical biology, chemical reactions, and combustion. The
nonlinear terms in the model equations are often merely continuocus or even
discontinuous. A typical example occurs in the study of a single irreversible
nqgigothermic reaction of order less than one and the discontinuous terms
correspond to reactions of order zero.

In this paper the authors formulate the model nonlinear system with the
help of maximal monotone graphs and they prove the existence of golutions for
a general class of stationary systems (including the model of chemical
reactions) satisfying Dirichlet or nonlinear boundary conditions. The
reqularity and uniqueness'of solutions are also considered. Of particular
interest is the existence (or nonexistence) of a dead core QO, i.e. a set in
which the reactant component vanishes. This set plays an important role in
the modelling of chemical reactions. Necessary and sufficient conditions are

given for the existence of 90, as well as estimates for the location of such

a dead core whenever it exists. Accession For
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ON THE EXISTENCE OF A FREE BOUNDARY POR A CLASS
OF REACTION-DIFFUSION SYSTEMS

(1)(*) (2)

J. Ildefonso Diaz and Jesus Hernandez

$0. Introduction.

I TIBWRNMWSN

Many papers have been devoted during recent years to the study of
reaction-diffusion systems which arise very often in applications such as,
e.g., mathematical biology, chemical reactions, combustion theory, etc.

Here we consider a system describing a single, irreversible,"

nonisothermic stationary reaction of the form

-X
YV

-Au + u2F(u)e =0 in Q

(0.1)
R
4 =4v - Vu“F(u)e =0 in Q

%£-+ €{u-1) = 0 on o8
{0.2)
%§-+ Zlv-1) = 0 on dR

where § is a bounded open subset of IF, "2 is the Thiele number, Vv s
the Prater temperature and Y is the Arrhenius number (see [3])). Here €
and § (the Biot numbers) are positive, being in some cases infinity, in
which case (0.2) is interpreted as the Dirichlet boundary conditions

(0.3) au=1 , vs=1 on 9 .,

The function F(u) 1is assumed to be nondecreasing and it is also assumed to

satisfy F(0) =0, F(1) =1 and F(s) >0 if s > 0., The unknowns u and
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v are nonnegative and they represent, respectively, the concentration and the
temperature of the reactant.

Very often F takes the simple form F(u) = uP, where p > 0 is the

order of the reaction (see [3) Vol I). 1In the case of a reaction of order

zexo F is given by F(0) =0 and F(s) =1 if 8 >0 (thus F is a

discontinuous function).

Existence and uniqueness results for the parabolic problem associated
with (0.1), (0.2) (or (0.1), (0.3)) have been given by some authors (c.f. e.g.
(2], (4], [20]). Existence and, in some particular situations, uniqueness
results for the elliptic problem can be found in (2], [23), [17) and [21] for
Pp? 1. The case 0 € p < 1 is congidered in [3]) p. 311 (see also [22]}) but
exigstence theorems are not given. It is shown in [3]) and [22] that for
P=0, if u is large enough, no strictly positive solution can exist. It
is also shown that, in some particular examples, the set
Qo = {x € 8 : u(x) = 0} (called the dead core) is not empty and has positive
measure if 0 € p < 1,

The main idea used in (22] and many other papers (cf. [3]) is to reduce

(0.1), (0.2) to a nonlinear elliptic boundary value problem for u alone.

Here we follow a different approach which allows us to obtain better
results. Moreover, we are able to treat the case of nonlinear boundary
conditions, which cannot be handled by the preceding device.

We shall consider the case of discontinuous functions #(u) in the
framework of maximal monotone graph# in m? (see [8)). For the reader's
convenience, we recall that a maximal monotone graph a in ‘2 is always
specified by a real non-decreasing function 9 by a(r) = (-=,8(r)]) if
O(r) = ==, a(r) = [06(r-),08(r+)] 4if -» ¢ O(r-) € O(r+) < +» and

a(r) = [6(r=),+») if O(r+) = +», We define D(a) = {r @ R : a(r)|= P} and
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the sections 0+ and o by

a+(r) = max{z : z @ a(r)} if r € D(a) ,

a (r) = min{z : z @ a(r)} if r € D(a) ,

at(rx) =a"(r) =+ if ¢ ¢ D(a), r > sup D(a) ,

at(r) =a”(r) = = if r ¢ D(a), r € inf D(a) .
Finally, we define ao(r) as the element of a(r) with minimal absolute
value.
Through the paper we shall study the following geﬁeral formulation

including the system (0.1) as a particular case:

-Au + a(u)f(v) 9 0 in R
(NLS)

-4y - B(u)g(v) @ 0 in 0

with the boundary conditions
(DBC) U=y o, V=9, on M

as well as the nonlinear boundary conditions

du
Bu = + b(u) =y, on 99
(NBC) {. 3n !

Cv = %% + clv) = 02 on N

where £ is a bounded open subset of ®  with smooth boundary 94Q. We also
assume for the rest of the paper that

(0.4) a and B are maximal monotone graphs such that 0 € a(0) n B(0) .
(0.5) £ and g are c' functions and f(s) > 0, g(s) > 0 if s >0 .
(0.6) ¢, v, ¥, and ¥, @ c’(3m)

(0.7) b ‘and c are c? non-decreasing real functions.

In particular, if @ and B are single-valued (i.e. they are continuous real

functions) then the set inclusion of (NLS) should be replaced by equality.




In the general situation, (u,v) @ Hz(ﬂ) x Hz(Q) is a solution of (NLS)

if there exists a, d € £2(Q) asuch that a(x) e afu({x)), a(x) e B(v(x)) a.e.
x €8 and
-Au + af(u) = 0 and =~Av - dg(v) =0 in R .
We shall prove the following existence result, which extends in some
sense those in (2], (23] and [17].

Theorem A. Assume
Et § 3 ] ————tt—

(A1) D(a) = D(B) =R ,

(h.2) f(s) » n, >0 Vs 6§ R ,
and

(A.3) 0 € g(s) < m, ¥Vs § R .

Then there exists at least one solution (u,v) of (NLS)(DBC) (resp.

(NLS)(NBC)). Moreover u, v € wz’p(ﬂ) for any p, 1 € p < +=,

We also consider the existence and non-existence of a dead core 90
where u = 0 and consequently the existence of the free boundary 390(1).
Roughly speaking, such a dead core for (0.1), (0.3) arises when it is
impossible for diffusion to supply enough reactant from outside R to reach
the central part of fl. (ct. (22]). This may happen if the reaction rate

v-1

Flu)e Y vemains high as the reactant concentration decreases. Thus (for
(0.1), (0.3)) the existence of 90 depends essentially on three things: the
reaction order, the Thiele number and the size of .

Our main result in this direction can he stated in the following general

terms.

(1)
There is a large literature about this subject in the case of a gingle
nonlinear equation. See, e.g. the systematic study of ([12].




3223529:5‘ Assume that Lhe hypotheses of Theorem A are satisfied. Then the

following properties are true:
i) I1If a(s) = u2|s|p'ts and (u,v) is any solution of (NLS)(DBC);
(1)

then a dead core may exist only if 0 € p < 1.

ii) Let a(s) = u2|s|9'1s with 0 < p <1 and let (u,v) a solution

of (NLS)(DBC). For A > 0 let

8 = {xeq: £(vix)) » 1A} .

Then
l-p
M 2
(0.8) Q > {xe® : dlx,90, - (32 - supp v.)) > (=) “}
0 A . A 1 KX u
’
where M = l¢1l ® and
L (99)
L
K 2[1+p+(N-1)(p—1)])p-1
A
1,

Xu2(1-p)2

iii) Let a(s) = uz-sign 8. Then the estimate (0.8) holds if we replace

*
M by M =10zl , , where z satisfies Az = u2m1 in

L (Q)

@ and z = ¢, on .

Furthermore, if @ is convex, the above results are still valid for

(NLS) (NBC) in the sense that if 0 € p < 1, then Ro has a positive measure

for uw large and it is possible to estimate 90 (see (2.22)).

The above theorem is specially meaningful if m,; in (A.2) is strictly
positive (this is true in the case of the combustion system {0.1)), (0.3))

because then we have QX =Q for any A 8 (0,m1) and so the estimate (0.8)

reads
i-p
(0.9) R, > (x @R : dlx,00) > (=) %) .
m,,u

1

(1)
By convention |s
=1 if 8 > 0)0

|"'s = sign s (= =1 if 3¢ 0, = [-1,1] if s =0 and




Prom the definition of KA u in Theorem B we deduce that KA uﬁn 0 when
[} [
ANO0 or WO, and that K, " A+ {f X 7m or u 7'+», Therefore for
[

a fixed bounded @ the existence of a dead core Qo may only be guaranteed

(by estimate (0.9)) if '
1-p
M 2
diameter of 8 > (K ) '
m,.,u

1'
assuming 0 € p < 1. Then a critical value uc of u can be found such that

ﬂo has positive measure if u >-uc. In fact, direct computations show

(vhen N = 1) that function u is strictly positive in @ if u < Mo

and u vanishes only at one point if u = uc (see the proof of Lemma 2,1 and j

also [22)). Estimate (0.8) of Theorem B can be also written independently of

the function v for other systems in which it is not difficult to estimate
the set QA (for instance QA =Q if in (NLS) we assume f{3) = s and
2 6§ >0 for § large (or A small) enough).

Through the paper we also remark on other more yeneral formulations of ‘

{NLS). The parabolic problem associated with (NLS) will be studied in a
forthcoming paper by the authors [13]. The case of @ unbounded will be also

treated elsewhere [14].




$1. Existence results.

Consider first the problem

-Au + a{u)f(v) 3 0 in Q
(DP) -Ay - B(u)g(v) 0 in R
u-\P1 ,u=¢2 on &2 ,
where 1 is a bounded open subset of ’Y with smooth boundary 32 and
a, B, £, 9, 9,, ¥, satisfy (0.4), (0.5) and (0.6). Set X = (H>(@))>

Definition 1. We shall say that (u,v) @ X is a solution of (DP) if there

MIBIMBIW=JP W I3

exist functions a, b € Lz(ﬂ) such that a(x) € af(u(x)), b(x) € B{v(x)) a.e.

in % and
-Au(x) + a(x)*f(v(x)) =0 a.e. x€ 8 ,
-Av(x) - b(x)g{v(x)) =0 a.e. x6€ 82 ,

and the boundary conditions (DBC) are satisfied,

Definition 2. The pair [(uo,vo).(uo,vo)] € X x X is a sub-supersolution of

0 0
‘ o =e
o u,vo<v a.e. on 1 and

- +, 0 1]
(1.1) -Auo + a0 (uo)f(v) €0¢ -Auo +a(u)f() wC lvo.v | I

(DP) if u

(1.2)  -dv, - Bo(u)g(vo) <0< -av? - 8%ugtv?) w e [uo.uol ,

0

(1.3) u, < 2 <u on M ,
0

(1.4) Y < cpz <v on 98 ,

where (X,2] = {h € L2(@)|K(x) € hix) € &(x) a.e. on A} if K,% @ r2(Q).
Our main existence result for (DP) is the following

Theorem 1.1. Suppose that [(uo,vo).(uo,vo)l is a sub-supecsolution

satisfying

0 ”»
(Hy) uo,vo,uo,v eL ()

and that




P

(H,) D(a) = D(B) = R .

Then there exists at least one solut’on (u,v) of (DP) such that

ua, € uc« uo, v, €v¢ vo. In addition u,v € WZ'P(Q) for any p.,

0 0o
1<p<+".

Remark 1.1. This theorem generalizes results of [2], ‘17], (18] and [22].

To prove Theorem 1.1 we define E = [Lz(m]2 and
K = [uo,uol x [vo,vol. It is clear that K 1is a convex, closed and bounded
subset of E. Now we define a nonlinear operator T:K + E in the following

way: for (u,v) € K, T(u,v) = (w,z) is the unique solution of the uncoupled

systenm

(1.5) -Aw + a(w)f(V) + wd u in 8
(1.6) w =9, on a1
{(1.7) -Az + M.z = Bo(ﬁ)g(;) + M.v in @
(1.8) w=y on 30 .

2

Here M > O is such that the right-hand side of (1.7) is increasing in v
(we can choose such a M because g is ¢! and (H;) has been assumed).
Indeed by (Hz) we can apply the results of Brezis~Strauss [10] to obtain the
existence of a unique solution w of [1.5], (1.6). Moreover, by (H,), (Hy)
and the LP-regularity results (see e.g. [16]) w € wz'P(Q) for any p,

1 € p< +#, A similar argument works for z.

The proof of Theorem 1.1 will follow from Schauder's fixed point theorem
applied to the operator T. It is sufficient to check that T 1is compact and
that it sends K into itself.

Lemma 1.1. T 1is compact.
Proof. As K isg bounded it is eagy to show that

fwi 1 <C
H ()

with C independent of (u,v) € K. Thus it is sufficien’: to recall the




compactness of the imbedding H‘(ﬂ) < Lz(ﬂ) to see that T sends bounded
subsets into relatively compact ones (the same for z). To prove that T is

continuous, suppose that (un,vn) + (u,v) in E. Then
-A(w-wn) + a(w)f(v) - G(wn)f(vﬂ) +we-w 3u-u in Q
w-w =0 on 3q .

Multiplying by w - w, and integrating by parts we obtain (for the case a

singlevalued for simplicity)

2
[glVw=w )12 + [olatnEw) - atw )E(v 1w ) + [olw=n | =
= [ |Vw=w ) |2 4 [ @I E(v) - alw IE(V) ] (w-w_) +
Q n Q n n
2
+ [q alw MEW) = £(v D) (w=v ) + flw=w |% = [gtu—u ) (w-w ) >

> fn|V(w-wn)|2 + [q atw JE(V) = £(v D (w-w ) ,

and by the Cauchy-Schwart inequality it follows that

2
Nw-w |l < la(w ) 1£(v) - £(v )N lw-w | +
nal " LTR) iy Py

+ lu -ul fw-w 0 .

2@ ")

Now it is easy to conclude that wn +w in H‘(ﬂ). A similar argument can be

used for z.

Lemma 1;3. T(K) € K

Proof. We first prove u_. € w, i.e, (uo -wt=0, with h*t= max(h,0).

0

For v=1v, (1.1) yields
> - v) - v -
(1] -A(u0 w) + a(uo)f(v) a(w)E(v) + ug =W .
(We again suppose a singlevalued for simplicity in the notation.) Multiply

this inequality by (uo - w)+, integrate over 1 and use Green's formula to

obtain




—

Remark 1.2. It follows easily from Morrey's theorem (wz'p(ﬂ) hnd C"r(ﬁ)

0 0 2
Then if Ugr Vgr U, V € H'(Q) satisfy

0> [g -blug-wuw)’ + [ (atu) - aw)EE) (a0’ +

+ +,2
+ [q (g™ > [o|Viu -7

by the monotonicity of a. This gives (uo-w)+ = 0, A similar argument shows
that w < uo. ’
For the second component v we have, with u = u in (1.2),
0> -a(vy-z) + 8%Dg) - B%@Ig(v®) + mivy2) .

Multiplying by (yo-z)+ and integrating yields
0> —fn A(vo-z)(vo-z)+r+ IQIBO(G)Q(VO) + My, - Bo(ﬁ)g(z) - Hz](vo-z)+ >
> falv(vo-z)+|2
{(by the choice of M the second integral is positive).
Then T has at least one fixed point (u,v) in K which is a solution

nl .
of (DP). Moreover u, v € L“(Q) and this implies that u, v € wP@) for i

any p, 1 € p«e,

if p> N with r =1 --%) that u, v € C1'6(§) for any 0 < 6§ ¢ 1. On the
other hand, if we suppose for instance that a and 8 are C1 then u,
v € C2'6(§) for every 0 < 8§ ¢ 1. Indeed, in this case a(u)f(v),
B(u)g(v) @ cs(ﬁ) and we can apply Schauder theory ({16]).
The main conclusion of Theorem A (for the Dirichlet problem) follows from

the next lemma.

Lesma 1.4. Suppose (H,), (H,) and

(1.9) —bu_ +ma(u) <0< -2 +mat®) in @
0 1 0 1 —
(1.10) uy < ¢, < uo on 3R .

)g(vo) in @

L (aR)

(1.11)  -8v - B°(-l¢1|
L (9Q)

g(v.) € 0 < -av? -8%wh
0 1

=10=-




Yy

{(1.12) v, € ¢ <Vo

Yo~ %2 on 34

the couple [(ug,vy), % v%] is a sub-supersolution for (DP).

* *
Proof. Let v € u ¢ uo, v, €v ¢ vo. By the maximum principle we have

0 0
0
-0 1 <u <0<u <ot .
V®pa)  ° L™(3n)
Then, by (1.9)

- * -
'A“o + a (uo)f(v ) € -Auo +ma (uo) <0

-Auo + G*(uo)f(v*) b -Auo + m10+(uo) >0 ,
and also by (1.11)

0, * 0
-Av) - B7(u )g(v,) < -av, - B (-|w1| - )g(vo) <0

0 L7 (3Q)

-av% - 8%u")g(v%) » -av0 - 8%(1e, Jgv® >0 .

L (9Q)

Moreover, a simple argument gives vo €0¢ vo.

Now the problem is to find Uy uo, Vo vo (-] L.(Q) satisfying (1.9) -

(1.12). The fact that such LNy uo and Vo exists follows from the results

of [10) applied to a and B8 respectively (we point out that

BO(-I¢1I - ) € 0). Hence we only need a solution v of
L (39)
0 - 8%0rer . Jgv®) 20 in @
L (3Q)
vo b ¢2 on 9 .

It is clear that it is sufficient to take as v° the (unique) solution of the

linear problem
w am2 in

w=y, on M .

-11=
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This proves Theorem A.

Remark 1.3. It is clear that assumption (A.3) of Theorem A is only used to

Eind vo. If for example, g is such that the nonlinear problem

-w =810 0, Jgw) in @
L (39)
w= 9 on 39

has a solution, then we can remove (A.3). There is a very extensive
literature for this kind of problem with different assumptions on 4, but we
do not want to consider this point here (cf. e.g. [1]) and the survey [19]).
Remark 1.4. If a is assumed to be singlevalued and c' the hypothesis

f(s) > m_, » 0 is not necessary (cf. [17]). On the other hand, if a and B8

2
are singlevalued and a, B, £ and g are c1 with sufficiently "small"”
Lipschitz constants, then it can be shown (cf. (2], [17]) that the solution is
unique,

It is very easy now to apply the preceding results to the particular .

example (0.1), (0.3) considered at the heginning of this paper. It is

Y-'% 2p 2 p
sufficient to take f£(v) = g(v) = e , a{u) = uu*, B(u) = vy'u*, p> 0
and ¢, = ¥y = 1. A sub-supersolution is given by u, z 0, uo 1, Yo 20 ﬁ
and v° the unique solution of
-Avo = VuzeY in @
vo = 1 on M . W

The case of nonlinear boundary conditions can be handled in a very

similar way. We only point out some differences. First, the definition of

sub-supersolution is the same =xcept that the boundary conditions

0 0
Buo < W1 € Bu ’ Cvo < *2 € Cv

should be satisfladl instead (1.10), (1.12).

-12-
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The main existence result is

Theorem 1.2. Suppose that ((uo,vo), (uo,vo)l is a sub-supersolution

satisfying (H,), (H,). Then there exists at least one solution (u,v) of

-Au + a(u)f(v) 3 0 in Q
-4v - B(u)g(v) 3 0 in Q

Bu = W1, Cv = wz on q ,

such that u_ € u < uo, v, € v« vo. Moreover, u, v € w2,p(9) for any p,

0 o

1‘p<+~o

Proof (sketch). We just give the definition of the nonlinear operator T;

the other details are very similar to those for the Dirichlet problem. For
(a,v) € K, define T(u,v) = (w,z) to be the unique solution of the system
-Aw + a(w)E(V) +wa u in Q
Bw = ¢1 on 3Q
Az + z = Bo(ﬁ)g(;) +v in 0
Cz = ¢2 on Q¢ .
The existence and uniqueness of w and z follows from Theorem II.1 of [6)

(for 2 we can also use the results of {10]).

A result very close to Lemma 1.3 can also he proved for the boundary
conditions (NBC).
Remark 1.6. The operator -4 in (NLS) can be replaced by two (possible
different) elliptic second order differential operators or even by nonlinear

operators of the form

S NS
d t=1 % 0% X




with 1 < g <™, Indeed, in this case ocne can define a nonlinear operator

T by using again [6) (cf. also [15]). The more involved situation of b

and ¢ maximal monotone graphs can also be studied by similar methods.

3.

-14-
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§2. Existence of a "dead core".
MWW R WD = IMIWE

HEABRNERBERN N RN B
In this section we shall consider the existence of a "dead core" for

solutions u of (NLS), i.e., we shall prove that the set

90 = {x € 2 : u(x) = 0} has a strictly positive measure under adequate

hypotheses on & and eventually on I¢1IL.(an) or |%|. 1In fact much more
precise information is obtained about ﬂo.

Our study will be carried out by using results concerning a single
nonlinear equation but arguing in a different way than usual for the

combustion example. Indeed, if (u,v) is any solution of (NLS) (DBC) {[resp.

(NLS) (NBC)) then u satisfies

(2.1) ¢u+hmmm)awn in &”
(2.2) us= ¢1 on 99
[resp.

{2.3) %%-+ b(u) = v, ~on Ml ,

where F = 0 and £(x) = £(v(x)) a.e. on f.
The study of the subset 90 corresponding to solutions of (2.1), (2.2)
(or (2.1), (2.3)) has occupied the attention of many authors, but, as far as

constant,

we know, all these results are given for the simplest case E(x)
We recall the two different approaches in the literature:

a) 1= Ry

([7]) or @ being an unbounled set ({11])
b) @ being multivalued at the origin ([9], [5]1, (201, (24]).
More recently, a systematic study has been made in [12) giving a unified view

of both situations, but always for ;(x) constant. Our results, in this

gection, follow the ideas of [12].

(1)
Equation (2.1) also appears in the study of a stationary isothermical
single reaction. (See (3]} Chap. 3.)
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2.1 Dirichlet Problem,

We now prove parts i), ii) and iii) of Theorem B. For this we bhegin with ;

some useful Lemmas.

Lemma 2.1. Let F @ L (3), ¢€ cz(an) and suppose that u € Hz(ﬂ) 1
satisfies
V.94 P :
(2.4) ~8u(x) + u“f(x)|u(x)|¥sign ulx) @ F(x) in &
(2.5) u =y on 39

where f @ L“(ﬂ), £>0 on § and p? 0(1). I1f 0<p<1 and ﬂx

denotes the set

a = {xeQ:f(x) A} , A>0 ,

we have the estimate

90 = {xeQ:ulx) =0} >2{xe Qx - supp F : a(x,a(nx - supp F) - (99 - supp v)?
ip

(2.6) ~
M 2
>(——KA ) ¢) .

Y

F 1

o —
—-‘-‘5‘—“—’)9, 'ed . )} for p>0 and M =1dzf ,  (with
2 Ap L (3Q) L (Q)
8z = y"A in R, z =y on 3R) for p = 0. LS u is given by
14

Here M = max{(

1
- (2lrtprin- )(p-1_)_1_)7;1'

Auzn-p)z

(2.7 KX,H

Proof. I1f we denote by u, (resp. u ) the solutions of (2.4), (2.5)

corresponding to the data F*, V+ (resp. F~, ¢ ) then by well-known

(1)

1f p = 0,_ -equation (2.4) should be interpreted in the sense that there
axists w @ L°(R) such that w(x) @ sign(u(x)) a.e. x €8 and -Au + usz
3 P in Qe

16~




ol TRP— e
comparison theorems, we have u, > 0 (resp. u_ € 0) and also é
u_(x) € ulx) € u (x) a.e. x8@ Q. Hence it is clear that Qo >{xeq: J
u_(x) = 0 and u,(x) = 0}. For the sake of gimplicity we shall only consider T
. the case F = P*. ¢ = ¢+. the other case being analogous. Let uy e Hz(ﬂ)

such that
r
2
-bu, + W | P> F in @
PP { u > on 3%, n 30
u, » ful on I, ~ - 1e] .
\ A L'(n) A

We claim that 0 € u(x) < ux(x) a.e. on QA. Indeed(1), taking ;(x) =

i -Au + Auzup, it is clear that F(x) = F(x) + Auzup - ?(x)uzup and hence

; <F on QA. Moreover, <-Au + kuzup = F on nx and thus by the comparison
' results (cf. e.g. [12]) one has 0 € u < Uy« Therefore the conclusion of the
. Lemma will follow by constructing one of such functions u, and the set
7 ' {x @8, : u(x) =0} will give the estimate (2,6) for 8,

Pirst, note that for h @ Cz(l) and

We will choose

u(x) = h(]x-x,|) for some x @ 4.

0

any nh @ (0,1) we have

N=1
-Ah(|x-x°|) + Auzh(|x-x°|)p = -h'(lx-xol) - (T;:;;T-h'(lx-xol) +

+ Auzh(|x-x0|)p - -h'(lx-xol) + nluzh(lx-xol)p + (1-n)lu2h(|x-x°|)p

_AN-1)

X=X

h(x-x.|) .
R 0

. (1)
We shall only prove this inequality for p > O.
adaptation of the argument leads to the clainm.

It p = 0, a natural

al7=




Now, for a fixed n, let hn be a solution of the Cauchy problea
. . 2 P d
hp(r) @ iy lhn(:)l sign (h (r)) ;

(2.9)
hn(O) - h&(O) =0 .

It is easy to check (recall that 0 € p ¢ 1) that

2
-p
(2.10) hn(r) = Ln r
where
(2.11) = (—L"P—--)"'1
mp? (1-9)
is a solution of (2.9). We have
2p
- 2 P _ (u 1) 1-p, . 2.p=1 2(N-1)
(1-n)Ap hn(r) h'(r) “ r [(1=n)Ap Ln -——E;-d
choosing Nn such that ‘
(2.12) n < ad

1+p+(N=-1)(1-p)

leads to
-8h_(|x=x.]) + Ap?n_(|x-x.])P> 0
n 0 n 0
for any x € nx.
Finally, consider the set il = nx - supp P, The considerations made

above show that the function

2

1-p
u) (x) = ‘X,ulx-‘ol

with K, " given by (2.7) satisfies
’

-qu-h: p>0-!‘(x) in 8

ux>o-¢ on 30 n (3 - supp v) .

Hence it is sufficient to have

(2.13)  u, > max(v, lulL_(m) on 0 - (30 N (3N - supp ¥))




—

to obtain
0 € ulx) ¢ ux(x) on 8 .,
But, by the maximum principle we know that u(x) € M on @ and this implies

that (2.13) is satisfied if we choose x, such that

- 1
(2.14) lx-xol > (KM ) 2
A,u

for every x € 30 - (9@ n (30 - supp v)). The conclusion now follows

trivially from (2.13) and (2.14) (we recall that ux(xo) = 0).

Statements ii) and iii) of Theorem B follow immediately from the above
Lemma. We remark that the constant K, u given in (2.7) is such that
’

K, S 0 when AN O or u™ 0 and that Kku’w if A Aw or
’

Ap

u 7, Then, if R, is bounded and not empty, estimate (2.6) shows that the

A
measure of 00 is positive at least if

- 1-2
diameter of (R, - supp F) ? (Ké ) 2
A,u

{(assumed 0 € p ¢ 1). Therefore, if ﬂx is given, no *exists” if pu is
large enough or ; is sufficiently small. 1In the simple case of problem
(0.1), (0.3) with f(s) =8P, 0 < p <1, it is easy to find a critical value
L of u (now depending on p, Y and diameter of fI) such that 50 is not
empty if u > uc. when N = 1 direct computations show that, for p, Y and
3 fixed, the function u is strictly positive if u < uc (see e.q. [3] and
(22}).

We shall prove part i) of Theorem B. Indeed, we shall prove that if
p > 1 then for any value of A, u and diameter of 2 thare exist functions

(u,v) satisfying (DP) (with a(s) = IlIP-’s) such that u(x) >0 on f. To

do this we shall consiilur the worst of the cases i.e. when diameter () = 4»




(for instance N =1 and & = (0,®)) and even for a larger class of

nonlinearities a,

Lemma 2.2. Let u € uz(o,-) satisfying

—a"(x) + £(x)alu(x)) 30 , x & (0,%)

u(o) =1 ,

where @ is a maximal monotone graph such that 0 € a(0) and the function

j(s) = fg a%(r)ar satisfies

1 ds
(2-16) — a4 °
° A

(These hypotheses are satisfied when a(s) = |s|p-1s. p » 1.) Assume that

fe ﬁ'(o,-) and 0 € f(x) €<m a.e. x € (0,»), for some Sg 2 0. Then

2
u(x) > 0 for any x € [0,%).
Proof. We shall use some ideas of {7] and [15]. By reasoning as in the proof
of Lemma 2.1 we can always suppose without loss of generality that

0-1(0) = 0 and that a is sinngvalued. By a comparison argument completely

analogous to the ones in the proof of Lemma 2.1 we show that if u € uz(o,a)

satisfies

-u"(x) + m,a(u(x)) =0 on (0,*)

u(0) = 1

then u(x) € u(x) €for any x € (0,+*)., Thus it suffices to prove that

u(x) > 0 for any x € (0,®). Suppose that u has compact support and we

shall obtain a contradiction. The maximum principle implies 0 € u(x) € 1

and hence u" € L.(O,'). Thus u € C‘((O,“)) with u* > 0. Let *
R = sup{x : u(x) # 0} (R > 0 and finite by assumption). As u'(R) = 0 it is

not difficult to see that u'(x) < 0 and u(x) >0 on (O,R) (it is a

=20~
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consequence of u®" ? 0), But (2.16) yields

u(R)
- R
Io ds - I

e % /N

u'(r)
dr = 4

u'(r)
and we will get a contradiction by estimating on (O,R). Defining
Yj(u(r))

wix) = (u'(x))® we have

(3(2)* = atwu’ == u u" = 5= @i
2 2
But w(R) = 0 and j(u(R)) = O. By inteyrating we get j(u) --i%— w, and,
: 2
finally,

a contradiction.

Remark 2.1. By arguing in a similar way as in (11] we can prove ({14]) that
if 2 is an unbounded subset of lp, the maximal monotone graph a

satisfies
11 ds

(2.17) 0 73080

<+ (3te) =[5 Cteran) ,
and u satisfies

Bu+ £(x)alu) BF in 8 (f > A)

U=y on o9

where F and ¢ are assumed with compact support, then u has compact
support. We point out that the improper integral (2.17) converges when

a(s) = |s|P sign 8 if and only if 0 € p ¢ 1 and hence the compactness of
the support of u 1is an obvious consequence of Lamma 2.1. On the other hand,
we do not know (for N > 1) if under the general hypothesis (2.17) the set

ﬂo has positive measure for @ bounded and perhaps 1FI - and
L ()




vl sufficiently small depending on the size of Q.

L (39)

Remark 2.2. Lemma 2.1 (and then Theorem B) can also be obtained when the

operator =-A in (NLS) is replaced by other elliptic second order differential
operators as in Remark 1.6. The new definition of the functions
u,(x) = h{|x-x)|) 1in the proof of Lemma 2.1 can be found by the methods of

[12].

2.2. Nonlinear boundary conditions.

Statement iv) of Theorem B will follow as in the preceding section by
considering the nonlinear equation

-du + p2f(x)|ulP sign us F in @

(2.18) au
Bu-;;+b(u)-* on a1

where £@L (), £>0, 0Sp<1,b is C'

non-decreasing with b(0) = 0O,
FeL(Q) and ¥ & c3(3q).
First, we remark that "interior estimates® for 90 can be obtained as in

Lemma 2.1. More precisely, we have

(2,19) a_ >{xeQ, - supp P : d(x,3(R, - supp F)) » ( H ) <}
0 A . A K, "
[
where now n' = hul - (1). To show this it is sufficient to choose Xo in

L (Q)
. -~ -~
such a way that uy M on 32, being QO = nx - supp F in the proof of
Lemma 2.1, It is clear that (2.19) does not give any information about the

behavior of 90 near the boundary of Qx - supp F.

(M)
One obtains estimates for o by means of comparison theorems (see e.g.
Lemma 3 in [12)),

-7 PV ~#S S . P ti




To improve the estimate (2.19), we introduce the following notation:
given a smooth curve I in Ip and Xq e IN, we define
. — ———
(2.20) O(XO,F) = inf{cos(n(x), x-x,) : x € r}
>
where n(x) = (n,(x),...,nu(x)) is the unitary outward normal vector to T
—_— —) >
at x and (n(x), x-xo) denotes the angle between the vectors n(x) and

X=X e It is clear that the value of O(xo,r) depends essentially on the

*geometry” of I'. If for instance I = 3@ and Q is a convex bounded set

of RV it is easy to see that O(xo,F) >0 when x_ € .

0
Lemma 2.3. Assume that u € H2(9) n Lw(ﬂ) satisfies (2.18). For A > O,

let 9, = {x e 2 : £(x) » A}, Moreover, suppose O < p < 1 and

(2.21) O(xo, 3(9A -supp F) ndf) >0 w¥vx_ e Qx - supp F .

0
Define

r = 3(9x - supp F) n 32 n supp ¥ .

Then (1-p)igpl 1-p
E—— ] L (3Q)|1+p
90 >{x e QA - supp F : d(x,T) > _2KA_0(X ) and
u 0
+ 1P
d(x, 3(, - supp F) - 39) > (&) )
K
A,u
*
where M = lul .

L (R)

P-oof. Arguing as in Lemma 2.1 we only consider the case F » 0 and V¥ » 0.

Let Q = ﬂx - supp F. By using again comparison results (cf. e.g. [12]) it is

not difficult to see that if u, satisfies

(2.23) duy +wZP 30  in @

(2.24) uy > M. on 9Q - 3N
3uA -

(2,25) il we on I =32 nag nsupp ¢
n L (39)
3uA -

(2.26) I >0 on 3R n (3N - supp ¥)
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then 0 € u(x) < ux(x) for x € i, From the proof of Lemma 2.1 we know that

the function

satisfies

. 2. p Q
Aux + Ay uy > on R

for any x, e 8., Condition (2.24) is satisfied if
« 1P .
(2.27) lxxyl > (=) 2 wxeom-22 .
A

’

On the other hand
aux N 5“A 2 —:;:% > >
3;—48) = 121 s;I(x)'ni(x) = KA'H(T:EJ |x-xo| cos(n(x),x-xo) >

1+p
2 ) Jgex | VP B
> Kk,u(1-p’ |x xol 0(x,,3% n 32) .

Thus (2.26) is a consequence of (2.21), and (2.25) holds if we choose

satisfying

(1-p)ivt 1-p
L (3‘2))14’9

|x=x.] > ( vwerl .
0 2xl'u0(xo,r)

This completes the proof.,

Remark 2.3. Part iv) of Theorem B follows from Lemma 2.3 if we set F =
(2.21) holds easily if, for instance, f£(s) > m, > 0¥ @R (as in the
combustion system) and @ is a convex set,

Added in proof: After the completion of this work, the authors have learned

that C., Bandle and I. Stakgold have ohtained recently, results similar to our
Theorem B for the particular system (U.1), (0.3), by using different

methods. On the other hand, some results related with Remark 2.1 can be found
in a forthcoming work of M. Schatzman ("Stationary solutions and asymptotic

behaviour of a quasilinear degenerate paravbolic equation"),
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