
7 A-AL14 573 WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER F/S 12/1
AN EMPIRICAL BAYESIAN APPROACH TO THE SMOOTH ESTIMATION OF UNKN--ETC(U

FES 82 T LEONARD DAA29-80-C-0041

UNCLASSIFIED MRC TSR2339 NL



IIII i i 328 12.
liii ,3 IIII 2

IIIIN Illl IIiIa1110 11112-

IIIJI25 11111 1. I1.6

MICROCOPY RESOLUTION TEST CHART

NAII(NA BURLAU OF STAN[)ARDS 19b A



MRC Technical Summary Report #2339

71e AN EMPIRICAL BAYESIAN APPROACH TO THE
1;' SMOOTH ESTIMATION OF UNKNOWN FUNCTIONS

Tom Leonard

-4--- 4

Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison. Wisconsin 53706

February 1982

Received January 11, 1982

C € Approved for public release D T IC
Distribution unlimited ELECTIE

Sponsored by

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park
North Carolina 27709

82 05 18 032



UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

AN EMPIRICAL BAYESIAN APPROACH TO THE
SMOOTH ESTIMATION OF UNKNOWN FUNCTIONS

Tom Leonard

Technical Summary Report #2339
February 1982

ABSTRACT

A Bayesian procedure is described for smoothly estimating unknown func-
tions, given a finite set of observations. It is assumed that a suitable
transformation of the function can be taken to possess a Gaussian prior dis-
tribution across function space. The five special cases (a) estimation of a
logistic density transform, (b) the log intensity function of a non-
homogeneous Poisson process, (c) the log hazard function for survival
data, (d) the logit function in biossay, and (e) the mean value function
in a possibly non-linear time series of the Kalman type or equivalently a
regression function for possibly non-normal observations, are considered, and
in each case a non-linear Fredholm equation is described for the posterior
estimate. In cases (d) and (e) this reduces to a finite dimensional system.
In all five cases an approximate procedure is developed which is particularly
useful when the sample size is large. This approximates the function space
prior by a multivariate normal prior on the coefficients in a linear approxi-
mation, and then proceeds by conventional Bayesian techniques. In cases where
the prior covariance kernel is assumed to posses a particular parametrized
form (e.g. from the Orstein-Ulenbeck process) the approximations enable us to
estimate the prior parameters appearing in the kernel, empirically from the
data, via a lemma relating to the EM algorithm. Finally, in a very special
case, involving normal observations and an integrated Wiener prior, some fresh
Bayesian and empirical Bayesian results are developed.

AMS(MOS) Subject Classifications: 62G05, 62NI0, 62H12

Key Words: Empirical Bayes; function space; density estimation;
non-homogeneous Poisson process; survival data; hazard function;
biossay; logit; time series; non-linear filtering; Kalman;
Gaussian process; Orstein-Uhlenbeck; covariance kernel;
EM algorithm.
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SIGNIFICANCE AND EXPLANATION

Prior function space/non-linear Fredholm equation procedures are con-

sidered for the smooth estimation of unknown functions given finite sets of

observations. Situations considered include (a) density estimation, (b)

estimation of the intensity function for a non-homogeneous Poisson process,

(c) the hazard function for survival data, (d) the logit function in

biossary, and (e) the regression function or time-varying mean value

function for possibly non-normal observations. The problem may be approxi-

mately reduced to a Bayesian analysis in finite-dimensional space thus leading

to simple approximate solutions to the Fredholm equations. This facilitates

the empirical estimation of the smoothing and shrinkage parameters appearing

in the prior covariance kernel, via a lemma relating to the i algorithm.

Finally, in'a well-known special case, the estimation of a normal mean value

function under an integrated Wiener prior is considered and some fresh pro-

cedures are described for making inferences about the smoothing parameter X.
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AN EMPIRICAL BAYESIAN APPROACH TO THE
SMOOTH ESTIMATION OF UNKNOWN FUNCTIONS

Tom Leonard

1. INTRODUCTION.

We consider situations where the likelihood, given the observation vector

, acts as an integral operator upon an unknown function A(t), for t e

(a,b). In many such situations it is possible to find a mapping C such that

X = U(g)

where g(*):(a,b) + R1 is not subject to any functional or inequality con-

straints. The problem considered in this paper is the smooth estimation of

g and hence A , given the observation vector X.

Our approach will, for example, be applicable to the following situa-

tions:

(a) Let = (Yl,',yn)T where y 1 1o'o,y n  constitute a random sample from

a distribution with unknown density A(t) for t e (a,b). Then (see Leonard,

1978) it is often useful to work in terms of a logistic density transform g

satisfying

X(t) = eg(t)/jb eg(S)ds (1.2)

a
which avoids the constraints that A is non-negative and integrates to

unity. In this case the log-likelihood functional of g, given X is

denoted by
n 

f

L(g) = £ g(y.) - n log jb eg(S)ds.
i=1 a

(b) Let y 1 ,.@*,y n denote the arrivals during a fixed interval (a,b) for a

time-varying Poisson process with unknown rate function X(t) for t e (a,b).
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Here n is itself a random variable and, for n > 1, the log-likelihood

of g - log A, given X and n, is

n
L(g) - I g(y) - fb eglSlds. (1.3)

c) Let -I ., r+l, ,yn where r is a random variable, with

Yr+1'*GOYndenotin g fixed censoring times, and suppose we are concerned with

the estimation of the survivor density A(t) for t 6 (0,-), from which the

uncensored observations y1,. .y are a random sample. Let

h(t) = A(t)/(1 - A(t))

with

A(t) ft A(s)ds

0
denote the hazard function. Then the log-likelihood of the log-hazard

function g(t) = log At) is given by

L(g)= g(yi)- f e ds. (1.4)
i=1 i1 0

(d) Consider the classical biossay problem where n rats receive dose levels

Xl'*O*,x n and we wish to estimate the function A(t) for t e (0,-) which

represents the probability that a rat will die if it receives dose level t.

Let

1 if rat with dose level i dies
Y,

0 otherwise. Ci ,

Then the log-likelihood of the logit function

g(t) - log 6(t) - log[i - 0(t)]

is given by
n n g(x

L(g) - glx - log(1 + e (1.5)
i=1 i-I

(e) Suppose that we observe n independent observations yl'o"sy relating

to an unconstrained function g(t) for t 6 (a,b) such that the density or

probability mass function b(yi;g(ti)) of yi given g, depends upon

g(ti ) but not further upon g.

-2-



For example, t might denote a time variable and the Yi might be

independent and Poisson distributed with mean equal to exp{g(ti)}. When we

add a further distribution to g we see that this will yield a time series

model for Poisson observations, with possibly unequal time points. Alter-

natively t1 ,-..,t n might correspond to explanatory variables so that we are

in a non-linear regression situation. In any case
n

L(g) = I log b(yi;g(ti)) (1.6)
i=1

for which (1.5) is a special case in the binary situation.

In all five cases it is necessary to assume some prior information in

order to estimate the whole curve g, given only a finite set of observa-

tions. A wide range of prior distributions are contained in the Gaussian

family. In each case it might be reasonable to take {g(t);t e (a,b)) to

assume the probability structure of a Gaussian process with mean value

function p(t), and covariance kernel

cov(g(s),g(t)) = K(s,t) (s e (a,b); t e (a,b)). (1.7)

For example, the choice

cov(g(1),(s), g(1) (t)) = 2e-Ols-t (0 < 02 < 0;0 < B < G) (1.8)

of Orstein-Uhlenbeck kernel yielded sensible results in cases (a) and (b), as

discussed by Leonard (1978), a paper which we will refer to as (L). The

latter is a continuous version of the method for histograms discussed by

Leonard (1973).

Note that the prior parameter a2  in (1.8) measures the closeness of

g(1) to its prior estimate p () and 0 measures the smoothness of g(1}

and g. These may be referred to as the "shrinkage" and "smoothing"

parameters; we will later describe how they may be estimated empirically from

the data.

-3-



The prior mean value function U may be taken to represent the

statistician's null hypothesis for U. For example, in the biossay situation

(d) he might take

p(t) - a + 6t for t 6 (O,a)

representing a hypothesized logistic linear model. If any unknown parameters

appear in the null hypothesis then they could be estimated by standard para-

metric techniques, under the hypothesized assumption that u represents the

true model.

For the Poisson process (b) and the time series example in (c) the extra,

Gaussian, stage, to the distributional assumptions, could be taken as

representing further time dependence in the sampling model. For example, in

(b) the two stages of the distributional assumptions together give a broad

representation of doubly stochastic Poisson processes (see Snyder (1975))

whilst in (e) we obtain a large class of possibly non-linear hierarchical time

series models of the Kalman (1961) type.

We will propose two possible methods of estimation for g(O). The first

gives a posterior maximum likelihood estimate" of g as the solution of a

typically non-linear Fredholm integral equation. The second method will just

be described under the particular covariance structure in (1.8). It promises

to be useful operationally since it also permits the empirical estimation of

the prior covariance parameters, a 2 and B. This involves approximating

g by a linear combination of known basis functions,, projecting our function

space prior onto an appropriate prior for the unknown parameters in the linear

combination, and completing a Bayesian/empirical Bayesian analysis in finite

dimensional space. The first procedure is summarized in the next section.

-4-



2, POSTERIOR ESTIMATION OF g.

By an extension to a result described on page 141 of the discussion of

T it is possible to estimate g by the solution g to the integral equation

q(t) - M(t) + K(s,t)l(g,s)ds t Q (ab) (2.1)

a

where the function {q(g,t); t 6 (ab)) is chosen to ensure that

aLCE + Cu) f (

(C Cu J (gs)u(s)ds (2.2)

is zero for all integrable functions (u(t); t Q (a,b)).

In our five special cases this yields the following choices for n(g,t):

(a) # nt) - n expg(gt))/f egSds (2.3)

(b) 4n(t) - exp{glt)} (2.4)
n

(c) (rlt) I t ( t ) e x p ( t ) }  (2.5)

n

(d) [ [yi - exp{glxi)}/(1 + exp(gixi))M6 .(t) (2.6)
i=1 1

and

n 3 log b[y i;g(ti)]
(e) a t. (t) (2.7)

i=I 3.

where
n

n(t) = [  6YCt) (2.8)
n =

with 6 It) denoting the Dirac-delta function at t = yi and I[ty](t)

the indicator function for It 4 yi].

In the biossay example (d) we obtain from (2.1) the equation

n g(xi) g(x )
git) = Mit) + K(x i't)[yi - e /(i+e )] (2.9)

for t e (a,b).

In this case, and similarly in (e), the n+1 quantities g(t),g(xi),

060,g(x ) should be interpreted as the joint posterior modes of g(t),
n

g(x 1 ),'**',g(x ). This is because equation (2.9) may be easily obtained by

multiplying the likelihood functional exponentiating (1.5) by the (n+1)-

1 -5-



dimensional multivariate normal prior distribution of these quantities, and

then maximizing the consequent posterior distribution.

Equation (2.9) may be solved computationally by firstly solving the n-

dimensional non-linear system obtained by replacing t by each xi  in

turn. Newton-Raphson will be adequate for solving this system for g(xI

0**,g(x n). Then, in terms of these n quantities, (2.9) provides an ex-
p

plicit interpolation/extrapolation formula for g(t), so that the complete

continuum may be immediately estimated.

Note that the solution g(t) to (2.9) will, for a smooth covariance

kernel, possess similarly smooth regularity properties. For example, under

the choice in (1.8) the equations become

a2 n e(xi)
g[t) - P(t) + [exp(-O(t-xi)) + 2B(t-xi)Itxiet]t)J[y - ]

8 ii 1g(x )
1+e

+ further terms not involving t. (2.10)

Upon differentiating the expression on the right hand side it is easily

checked that g possesses a continuous second derivative. This is preferable

to choosing the covariance kernel in (1.8) for g rather than g(1) since

this leads to an estimate with a discontinuous first derivative.

Under very wide regularity conditions it is easy to show that the solu-

tions for g(xI),'**,g(x n ) in (2.9) become strongly consistent as n * * for

the corresponding true values g(xI),•0,g(xn). We simply require the

almost sure convergence of m- 1 I K(xilt)yi to its sampling expectation i.e.

n g(xi)

lim n - 1 j K(xit) eg(x 0 (2.11)

-6-
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If this is true then the second term on the right hand side of (2.9) will

become arbitrarily large, and the expression in (2.11) will therefore become

equated with a similar expression but with the g(xi ) replaced by the corres-

ponding g(xi)o Hence a consistent set of solutions will exist.

It is necessary to be more careful when interpreting our estimates in

cases (a), (b), and (c), since the integral equations can no longer be reduced

to an n+1 dimensional finite dimensional system. The best interpretation

follows from a suggestion by Whittle on page 136 of the discussion of (L). He

describes how our integral equations may be derived as the limit of a high-

dimensional non-linear system obtained by discretization of the interval

(a,b), and working with the high dimensional multivariate normal prior distri-

bution discretizing our Gaussian prior on function space. In the discretized

case the solutions of the non-linear system are the modes maximizing the

posterior density. In the function space limit it is no longer meaningful to

think in terms of modes since the posterior Radon-Nikodym derivative depends

upon a choice of dominating measure. So the estimates may be referred to as

"limiting posterior modes".

The integral equations in these three cases can alternatively be derived,

for a fairly wide range of covariance kernels, via a direct optimization

scheme on function space, involving prior and posterior "likelihoods" - see

pages 117-8 of (L). Hence our estimates can also be interpreted as posterior

maximum likelihood estimates.

Note that the regularity and consistency properties described above for

case (d) also hold in the other five cases; in the first three cases the whole

continuum of g will be consistent for g.

__ _-7-
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3. SOME APPROXIMATE METHODS

In cases (a), (b), and (c) it is particularly tedious to solve the non-

linear equations iteratively, and more difficult to find a procedure esti-

mating any hyperparameters appearing in the covariance kernel. We therefore

demonstrate how to obtain approximate solutions, under the special assumption

in (1.8), but for all five cases (a), (b), (c), (d), and (e). These methods

are particularly useful when n is large.

In (L) I show that, under this Orstein-Uhlenbeck covariance structure,

the solution for g to (2.1) is a maximizer of the functional

L1 (g) = L(g) + L0 (g) (3.1)

where

-2L (g) =1 bg(2)(t) - (2)(t)}2 t
0 2 

a

+ _ fb {g( 1 )(t) - (1)(t)1 2dt

1 (1) (1) 2 1 (1) (1)}2

+--g )(a) - i1 (a)}2 + I fg( (b) - j)(b)1 (3.2)
a2 a2

is obtained via a Radon-Nikodym derivative for the prior distribution. Note

that L 1 (g) in (3.1) plays the role of a penalized log-likelihood, since

-2L 0 (g) may be interpreted as a roughness penalty. This term penalizes high

first and second derivatives for the estimated g function.

Suppose now that we approximate g by the linear functional
* T

g (t) = t(t)for t e (a,b) (3.3)

where I is a p x I vector of unknown parameters, and t(t) is a p x I vector

of known functions. For example, t could consist of p orthogonal

polynomials; alternately t could contain the basis of B-splines for which

g is a general cardinal spline with p knots. Note that this choice need

not in practice be related to regularity conditions on the "true" function;

since the true function is hypothetical enough for us to be able to fix our

own regularity conditions.

-8-
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Under the linear constraints in (3.3), maximization of L1 (g) with

respect to g is equivalent to maximization of LI(1) with respect to ,

where

LI (X) = L(L) + (3.4)

where

-2L0 () = (- )TR( - Q) (3.5)

with
1= _ B 1

R-2-A + - A +--A (3.6)
2 12 ~2 1 2 0

and

R O d 2 + i d 1 + - d o  (3.7)
S2 '2 a2 1 a2 %O

where

A 2  f (2) (t)t(2)T(t)dt

A= (11() (1 )T~d

A= f (1) (t)lMT (t)dt

o  t (a)t (a) + t (b)t (b)

(2) (2)
d f Pi (t)t (t)dt

41 f 0~() (t)dt

The function in (3.4) will be minimized when I = , where
aLl )

= -- IZ- =1. (3.8)

In the five cases introduced in the last section, the derivative on the

left hand side of (3.8) is given by

(a) t -n ftt(t)exp{T(t)}dt/fb e dt (3.9)
a a

n

where t = I

i=1

-9-
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(b) t- jb (t)exp(X t(t))dt (3.10)
a

n
where = (xi )

i=1
n Y

(c) t I f t(t)exp('t(t))dt (3.11)
i-1 a

rwhere t X t(Xi)

i=1

n e
(d) - e (xi) (3.12)

i-i i (x.
l+e

n
where t = [ Yit(xi)

i=1

and

(e) t (ti) f b(yi'u) ( (3.13)

ii U Iu = j t(t)

Note that, in the first four cases, there are p-dimensional sufficient

statistics for , given the approximations. In the spline case, t will

consist of sample B-splines, and in the polynomial case it will contain sample

moments. Therefore the choice of basis functions should perhaps depend upon

which statistics are thought to be most relevant.

Equation (3.8) may in general be solved by Newton-Raphson, combined with

an integration routine for cases (a), (b), and (c). The convergence will be

faster than ordinary maximum likelihood for I owing to the normalizing

effect on the Hessian of the R matrix on the right hand side. Then the

solution g to (2.1) may be approximated by I t(t). A spline basis gives

excellent error terms; p - 10 or 15 should be adequate; the choice of p

can be juggled to check accuracy of the computations. This seems to give a

computationally useful way of approximating the solution to our non-linear

integral equations.

-10-



4. APPROXIMATE POSTERIOR PROBABILITIES

Owing to the simplicity of the quadratic form in (3.5) our approximate

estimation procedure is equivalent to an exact Bayesian analysis for I under

the specified log likelihood L(Q), and the multivariate normal prior

- N( ,R-). (4.1)

We therefore propose the mean vector and precision matrix in (3.6) and

(3.7) as possessing reasonable structures for meaningfully representing prior

information about the coefficients in a linear approximation. We are unfa-

miliar with other candidates for this, even in the straightforward polynomial

regression situation.

Under this finite dimensional Bayesian analysis the exact posterior

density of I is

w exp{L(1) -/( - )TR(I -Q ) (4.2)

and satisfying (3.8) is the exact posterior mode vector. The mode vector

is well-known to be a first approximation to the posterior mean vector;

refinements may if necessary be obtained via an Edgeworth expansion to the

posterior density. Similarly the posterior covariance matrix of may be

approximated by the exact posterior dispersion matrix D (the inverse of the

Hessian in the Newton-Raphson iterations for solving (3.8)), where

-1 - 2 logn(li) -32L(Q)
----- 1iT I> (4.3)

a( ~ a~ii)T

This gives the following approximation to the posterior distribution,

which could, if required, be replaced by exact expansions:

-il N(X,D). (4.4)

-11-



Hence the posterior distribution of the g function is approximately

Gaussian with mean value function

and covariance kernel

Tcov(g(s),g(t)) t (S)Qt(t) (4.6)

yielding the possibility of very general posterior probability statements

about g.

12

-12-



2
5. THE ESTIMATION OF 0 and 8

It is possible to estimate 02 and 8 by approximating the values

maximizing their "marginal log-likelihood"

log pQ10 2,) = log f p(OIQ),( (02,8)dO d8. (5.1)

Note that, using similar notation, it is possible to calculate (5.1)

approximately, using

log p(Ql2 ,B) = log p(Y1X) + log (xo2 ,) - log N(XI02 B)

=L() - 1,'2 iogIDI -1/2 logjRI 2 ZTt( _-) (5.2)

This approximation is based upon a backwards application of Bayes theorem

together with the normal approximation to the posterior density of X

Hence it is possible to calculate an approximation to the whole marginal log-

likelihood of 02 and 8.

In order to obtain point estimates for a2 and 8 we refer to the

following lemma, which could be viewed as a special case of the EN algorithm;

see Dempster, Laird, and Rubin (1977).

Lemma: Suppose that the sampling distribution of a vector of observations X

depends upon p unknown parameters Y 1,*00Yp and that the prior distribution

of Y1 ,-o*,Yp depends upon r < p prior parameters 8 ,..6,0 . Suppose

further that with q ) r the prior density of Yi1,'oyp belongs to the

q-parameter exponential family

= exp( I v (Q)t.() + a(Q)) (5.3)
Jul i I

where a and the vi do not depend upon I and the t do not depend upon

. Then, if the marginal likelihood of Q is differentiable, it is maxi-

mized by values satisfying the equation

I -q-, - I_ [tjc )@ - tj .,.l 0 ( k - ,. ,p . (5.3)
jul k

The proof of this lemma is straightforward upon differentiating

log P(YIQ) log f P(XIxwelIq)dl

with respect to

-13-



To apply the lemma note from (3.2) and (3.3) that the prior may be

expressed in the required form with r=2, y=3, 01 = a 2 ' 82 = , v 1

8182, v2 = 1 , and v 8 " After some manipulations the equations

reduce, under our approximation to the posterior distribution, to

a2 = (1 - e)T( . ,e) + p 1 trace(R) (5.3)

and

2

(I- T ( , + trace(A) T VP, V ,2) T A (5) 4

(Tt - 1 1  (1 - ~ ~ + trace(A2,) - ( - )T,( - 1 - trace( 5A

where

and

2 2 d2

with the A's and O's defined in (3.7). Equations (5.3) and (5.4) may be

solved by cyclic substitutions in conjection with (3.8) and (4.3).

-14-



6. FILTERING A NORMAL MEAN VALUE FUNCTION OR REGRESSION FUNCTION.

We now consider a very special case of the optimization problem in (3.1)

and (3.2) which will be relevant when the observations y1 ,'..ty are inde-

pendent and normally distributed, given their respective means g(t

g(tM ) and common variance T 2 . Consider the optimization with respect to

g of -

L (g) = '- (Y. - g(t)2 ) + - 1b[g(2)(t)]2 dt. (6.1)
i=I a

The first term on the right hand side relates to the sampling log-likeli-

hood under our normal theory assumptions. The second term may be obtained by

letting 02 + * and 00 2 + * in our Orstein-Uhlenbeck process (3.2), and

represents an integrated Wiener process.

The optimizer g of (6.1) is well-known (e.g. Wahba, 1975,76) to be a

cubic spline with n knots. We now consider the estimation of T2 and #-I

and consider linear combinations of the form described in (3.3) where j and

t(t) are p-dimensional. Note that when p = n this assumption is exact

under the appropriate choices of basis functions for t(t) (which leads to a

general B-spline for g with n knots and no constraints on the coef-

ficients). When p is fixed to be around 10 or 15 we have approximations

which will be particularly useful when n is large. However, the theory

described below relates to both of these exact and approximate situations.

Under the linear assumption in (3.3), (6.1) may be replaced by
L( -2 -I T AL W -T-2(l _ jTX )+ Y- v, 6.3)

where A2  is given after (3.7),

= (6.4)

i=1m

and

-15-



m

= yit(ti). (6.6)
i=1

This reduces the optimization problem to the classical Bayesian problem

of estimating a regression vector I under a multivariate normal N(Q,a2 A-1

prior, giving the standard result

I " ( .. ) (6.7)

where

S -2 -2 -1 -1
T T = -(t 2 +  A -1 2 -h (6.8)

= + AA

with
A = 2 (6.9)

and

Q-1 =-21Q + AA2 (6.10)

The parameters A and T2  may now be estimated by any one of the following

three procedures

(a) Application of the EM algorithm.

By a direct application of the EM algorithm described by Dempster et. al.

it is possible to show that the marginal maximum likelihood estimates of T2

and * satisfy the equations
T2 -1 m T 2 -1

(Yi - It(ti))2 + m trace(lt) (6.11)
ini

and

, -1%T 1 -1
1 - - 21 + p trace(,). (6.12)

Equations (6.11) and (6.12) may be solved by cyclic substitutions. Eval-

uate (6.8) and (6.10) for trial values of T and *2, substitute for I and

D on the right hand sides of (6.11) and (6.12), obtain new values for T2

and # on the left hand side and repeat the procedure until convergence. The

latter is guaranteed under general results governing the FN algorithm.

-16-



Setting A - 12/, the above procedure will achieve the maximum of the

marginal likelihood obtained by noting that the marginal distribution of

2given T , and A is multivariate normal with zero mean vector and covari-

ance matrix T 2( - + A1A ). The marginal likelihood is

2 2
.I T2,Xly) = p(IT.2,X)

(12)-l/2nA 1/2 P exp(- 1/2 -2A.A (A + X)-P11 (6.13)
-1.2 %2

for which more standard optimization procedures might prove tedious.

(b) Ba_esian Methods

2
Suppose that VW/T possesses a prior distribution which is chi-squared

with v degrees of freedom and which is independent of A. Then - is the

-2
prior mean of T and v is the prior 'sample size'. In ignorance situa-

tions a small but non-zero value e.g. v = 1 should be chosen for v. For

general V we find from (6.13) that the marginal posterior density of A is

w(I~ 1(AA2~VwA/ -1 -1 /2 (V+n)W(XjX) - (A) 1/2P[uw + ; A2(A + A) PLl ( (0 < A < ,) (6.14)

where W() may be set proportional to unity in ignorance situations, with

any proper prior distribution permissible in the presence of prior knowledge

about A. Note that Bayes estimates for A may be easily obtained from

(6.14). For example, the posterior mean may be obtained via the obvious one-

dimensional integration. Furthermore the posterior mean of T- 2  is

E(I'2IX) f E(T-2X), (XI )dA (6.15)

where

E(T 1 ,,) . (V + n)/[Vw + (A+ ),)l] (6.16)

and the unconditional posterior mean vector of I is

E(I-y) f E( ,X)W(Aly)dA (6.17)

where the first contribution to the integrand is given in (6.8).

-17-



These results may be generalized, as required, to give the unconditional

covariance matrix and posterior distribution of and the unconditional mean

value, covariance kernel, together with unconditional posterior probabilities,

for the function g(t) - XT,(t).

(c) Cross-Validation.

Wahba (1976) and others estimate A by an empirical cross-validation

procedure which does not relate to the likelihood function in (6.13). We

imagine that her procedure will prove appealing when the statistician is not

clear about his particular choice of prior functional in (6.1).

-18-
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