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ABSTRACT
2

It is shown that the second order sufficient (necessary) optimality

condition for the dual of a nonlinear program is equivalent to the inverse

of the Hessian of the Lagrangian being positive definite (semidefinite) on

the normal cone to the local primal constraint surface. This compares with

the Hessian itself being positive definite (semidefinite) on the tangent

cone on the local primal constraint surface for the corresponding second

order condition for the primal problem. We also show that primal second

order sufficiency (necessity) and dual second order necessity (sufficiency)

is essentially equivalent to the Hessian of the Lagrangian being positive

definite. This follows from the following interesting linear algebra

result: A necessary and sufficient condition for a nonsingular nxn matrix

n
to be positive definite is that for each or some subspace of Rn , the

matrix must be positive definite on the subspace and its inverse be positive

semidefinite on the orthogonal complement of the subspace.

AMS (MOS) Subject Classifications: 90C30, 15A03

Key Words: Nonlinear programming, second order optimality, duality
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SIGNIFICANCE AND EXPLANATION

Many constrained real-world minimization problems are not globally

valley-like. For such problems we obtain conditions which tell us

whether we have local valley-like behavior both for the original problem

and its dual. This is useful in obtaining local upper and lower bounds

to the value of the minimum.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



LOCAL DUALITY OF NONLINEAR PROGRAMS

0. Fujiwara, S.-P. Han & 0. L. Mangasarian

1. Introduction

We consider the following nonlinear program

minimize f(x)

x

(P) subject to g(x) < 0

h(x) = 0

and its Wolfe dual [14,7]

maximize L(x,u,v)
(x,u,v)

(D) subject to VxL(x,u,v) = 0

u >0

where f:Rn R , g:Rn _Rm and h:Rn Rq are differentiable functions

n T T
on Rn, L(x,u,v):= f(x) + uTg(x) + v h(x) is the standard Lagrangian

and 7xL is the gradient with respect to x. The relationships

between the above two problems have been extensively studied for the

convex case [14,7]. Our principal concern here are local duality

results which in the absence of convexity assumptions require the use

of second order optimality conditions.

In Section 2 we give a geometrically meaningful second order

sufficient optimality condition in Definition 2.1 for the dual problem (D)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work supported by the National Science Foundation
under Grants ENG-7903881 and MCS-7901066.
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and prove in Theorem 2.2 that it Is equivalent to the standard second

order sufficient optimality condition [6,2) applied to the dual problem (D).

Thus, as is well known, the second order sufficient optimality condition

for the primal problem (P) is the positive definiteness of the Hessian

of the Lagrangian on the tangent cone to the local constraint surface.

Our second order sufficient (necessary) optimality condition Theorem 2.2

(Theorem 2.5) for the dual problem (D) is that the inverse of the Hessian

of the Lagrangian is positive definite (semidefinite) on the normal cone

to the primal local constraint surface. It is worthwhile to note that

while positive definiteness of the Hessian of the Lagrangian ensures the

satisfaction of the second order sufficiency condition for the primal

problem, this is not the case for the dual problem where a constraint

qualification is needed (Theorem 2.3) in order to ensure that dual second

order sufficiency holds under positive definiteness of the Hessian of the

Lagrangian.

In Section 3 we characterize Karush-Kuhn-Tucker points of the primal

problem that locally solve both the primal and dual problems simulta-

neously. We show (Theorems 3.6 and 3.7) that these points are essentially

points where the Hessian of the Lagrangian with respect to the primal

variables is positive definite. In order to establish these results we

prove an interesting result of linear algebra (Theorem 3.5) which states

that a necessary and sufficient condition for a nonsingular nxn matrix

to be positive definite is that for each or some subspace S of Rn, A

must be positive definite on S and A- must be positive semidefinite

on the orthogonal complement S± of S.



-3-

We briefly describe our notation now. All vectors will be column

vectors unless transposed to a row vector by the superscript T. For x

in the n-dimensional real Euclidean space Rn, xi, i=l,...,n, will

denote its components. For an mxn real matrix we shall say that

AERmXn, A. will denote the ith row of A, and if Ic{l,...,m} then AI

will denote the submatrix with rows Ai, iEl. For a differentiable

function g:Rn _Rm, Vg(x) will denote the transpose of the mxn

Jacobian matrix of g at x. For a twice differentiable function

L:Rn+m -R, V xL(x,u) will denote the nxl gradient with respect to

x, Vu L(x,u) will denote the mxl gradient with respect to u, V2L(x,u)

will denote the (n+m) x (n+m) Hessian with respect to both x and u

whose submatrix components are denoted as follows

V2L(x,u) FVxxL(x,u) VxuL(x,u)

V L(x,u) V L(x,u)
L- U..UU.
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2. Geometrically meaningful second order optimality condition for the

dual problem

In order to establish local duality results without any convexity

assumptions, second order necessary and sufficient optimality conditions

become essential. The second order sufficient condition for the primal

program (P) was given by McCormick and Fiacco [6,2] and has been exten-

sively studied. Research on this topic continues (see, for example, [4,13]).

In this section we formulate geometrically meaningful second order necessary

and sufficient optimality conditions for the dual problem (D) and study the

relationship to the corresponding conditions for the primal.

Recall that an (n+m+q)-vector (i,,) is said to be a Karush-Kuhn-

Tucker triple of the primal program (P) if the following conditions hold:

(2.1) (a) VxL(iu, ) = 0

(b) g(R) < 0

(c) h(x) = 0

(d) > 0

(e) uigi(R) = 0 i=l,...,m.

Such a triple is said to satisfy the primal second order sufficient

optimality condition if f, g and h are twice continuously differentiable

at R and

(2.2) Vgj(R)Td = 0

VgK(') < 0

Vh(R)Td 0 xx

d O
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where J:= {ijgi(x)=O and 6i>O}

K:= {ilgi(i):O and ui=O}

We now give a second order sufficient optimality condition for the

dual program (D) which we shall justify by Theorem 2.2 below.

Definition 2.1 A Karush-Kuhn-Tucker triple (x,u,v) of the primal

problem (P) is said to satisfy the dual second order sufficient optimality

condition if f, g and h are twice continuously differentiable at x,

if the Hessian V xxL(R,6, ) is nonsingular and

(2.3) w Vg(X)y + Vh(R)z

Y i = 0 i E I w T Vxx L(R, ,) w

Yi > 0 i EK

(y,z) # 0

where I:= {ilgi(x)< 0} and K:= {iIgi()=O, Gi= O}.

The geometric relationship between the primal and the dual second

order sufficient conditions is an interesting one. Let T be a tangent

cone of the local primal constraint surface at the point R induced by

the second order optimality condition (2.2), that is,

(2.4) T:= {dJVgj(i)Td=o, Rg()Td<o, Vh(i)Td=0}

Then the polar cone of T, denoted by N and called the normal cone at

x, is given by

(2.5) N:= {ww Td<0, VdE T}

= {wiw=Vg()y+Vh(R)z, Yi=0, YK>O}

AA
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Therefore, the primal second order sufficient condition merely says that

the Hessian V xxL(i,5, ) is positive definite on the tangent cone T,

while the dual second order sufficient condition says that the inverse

Hessian V L(i, ,) "  is positive definite on the normal cone N. It
xx

will be shown in Section 3 that for both conditions to hold it is not

only sufficient but also necessary that the Hessian V xxL(i,5,) be

positive definite on the whole space Rn. We also note here that it was

proved in [4] that the tangent cone can also be expressed as

T = {dIVf(i)Td=o, VgA()T d<o, Vh(R) Td=o}

where A:= {ilgi(R)=O} = JuK, that is A is the index set of all

active inequality constraints at R. Consequently, the normal cone N

can also be written as

N = {wlw =pVf(i) +Vg(x)y +Vh(i)z, YA ,0' Yl = 0}.

These expressions contain the gradient Vf(R) of the objective function

and treat the index sets J and K on an equal footing.

We now justify Definition 2.1 by showing that the dual second order

sufficient condition given in this definition is equivalent to the one

derived by applying McCormick's second order sufficient optimality condi-

tion directly to the dual program (D).

Theorem 2.2 (Equivalence of dual second order sufficient optimality condi-

tion to McCormick's condition) If x is a Karush-Kuhn-Tucker triple

of the primal program (P) and if f, g and h are twice continuously dif-

ferentiable at R then (R,5,v) is a Karush-Kuhn-Tucker point of the dual
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program (D) with the (n+m)-vector (O,-g(x)) as its Lagrange multiplier.

Furthermore, the vector (xuv,O,-g(i)) satisfies McCormick's second

order sufficient optimality condition for (D) if and only if V xxL(i,U,V)

is nonsingular and condition (2.3) holds.

Proof The first statement of the theorem follows immediately by direct

verification. Notice that the Lagrangian for the dual program (D) is

given by

M(x,u,v,s,t):= L(x,u,v) + sTV xL(x,u,v) + tT u

Let VM and V2M denote respectively the gradient and the Hessian of M

with respect to (x,u,v) only. Thus we have

VM(x,u,v,s,t) = V L ( x ' u ' v) + V L(x,u,v)s

Lhc: + Vh(x) Ts ]
hIx + Vg(x) Ts+

Let s = 0 and t = -g(R), then it follows that

(2.6) V2 M( Ri,,,) = Vg(R) Vh(Ri

FT
Vg(R) 0 J

I )T
Vh 0

Therefore, McCormick's second order sufficient optimality condition [6,2]

for problem (D) is that

(2.7) VxL(R,uv)x + 7g(x)Y + Vh( )z 0

Yl 0 TTT 2 < ---L I 
(x y ,x) 

Vvxz 
,u(vys,) <uOYK = 0

(X,y,Z) o
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where as before the Hessian is with respect to (x,y,v) only,

I:= {iIgi (R)< 0} and K:= {iI.gix)=0, i = 0}.

By (2.6) and the equality on the left-hand-side of (2.7), the inequality on

the right-hand-side of (2.7) is equivalent to xT V 2L(R,,)x > 0. Hence

condition (2.7) can be expressed as follows

(2.8) VxxL(X,5,V)x + Vg(x)y + Vh(i)z = 0

I= 0 T
Yl> 0 xT xx L(X,u,v)x > 0

YK=0

(x,y,z) 0

We claim now that condition (2.8) implies the nonsingularity of the

Hessian xL(xUV). Suppose it is not true, then there exists aRn

nonzero E R such that VxxL(XS, ) : 0. Let (.,):= (0,0), then

( , ,i) satisfies the conditions in the left-hand-side of implication

(2.8), and hence by implication (2.8) we have RTVxxL(X,6,v)i > 0.

This however contradicts V xxL(x,u,v)x = 0.

It now follows from the nonsingularity of Vxx L(R,5, ) that the

condition (x,u,z) t 0 in (2.8) can be replaced by (y,z) t 0, because

(y,z) = 0 implies x = 0. Therefore, by defining w:= -VxxL( ,G, )x,

condition (2.8) again can be rewritten as

(2.9) w = Vg(x)y + Vh(x)zw

Y{ wTVxxL(Rj) w > 0,

YK 0

(y,z) # 0



-9-

which is condition (2.3) of our Definition 2.1.

Conversely, it is obvious that condition (2.9) and the nonsingularity

of V xxL(X,U,V) imply (2.8) which is equivalent to McCormick's condition

(2.7). n

It should be remarked here that because we used s = 0 as a multiplier

for the dual problem (D) we were able to get away without assuming that

f, g and h are thrice differentiable at x but merely twice differentiable.

It is important to note that unlike the situation for the primal

problem, where the second order sufficiency implication (2.2) holds automat-

ically when V xxL(X,,v) is positive definite, the second order sufficiency

implication (2.3) for the dual problem need not hold when VxxL(X,U,V) is

positive definite because w = 0 may satisfy the conditions of the left-

hand-side of implication (2.3). However under a slightly more stringent

version of the standard constraint qualification of nonlinear programming

[9,7] we can show that positive definiteness of VxxL(i,U,V) does indeed

ensure the satisfaction of the dual second order sufficiency implication

(2.3) as follows.

Theorem 2.3 (Dual second order sufficiency under positive definiteness of

the Hessian of the Lagrangian) Let u be a Karush-Kuhn-Tucker point

of the primal problem (P), let f, g and h be twice continuously differ-

entiable at x, let V xxL(X,U, ) be positive definite and let the following

primal constraint qualification hold at



Vhi(x), i-l,...,q, Vgi~j(i), are linearly independent

Rn
(2.10) -and there exists a peR such that

?gK(i)Tp<o, Vgj(i)Tp=o, Vh(i)Tp=0

Then the second order sufficiency implication (2.3) holds.

Proof Let (w,y,z) satisfy the conditions of the left-hand-side of

implication (2.3). If w # 0 then implication (2.3) holds because

SxxL(R,-,)-lI is positive definite. We now show that if w = 0 we con-

tradict the constraint qualification (2.10). If YK = 0 then (y., z) 0

and we contradict the linear independence of Vhi(R), i=l,...,q, Vgij(x).

If YK # 0 then we have the contradiction

=T - T T T T TyKVgK(x) p + yjVgj() p + zTVh(x)Tp < 0. 0

Remark 2.4 It can be shown that the constraint qualification (2.10)

implies the standard constraint qualification of nonlinear programming

[9 (Definition 11.3.5), 7) and (2.10) itself is implied by the often used

(12,8] linear independence assumption of all the active constraint

gradients: Vhi(x), i=l,...,q, VgicA(x).

We now derive a second order necessary optimality condition for the

dual problem which besides having a geometrically meaningful interpretation

will be useful in characterizing simultaneous local solutions of the primal

and dual problems. Recall that McCormick's second order necessary condition

for the primal problem (P) is that the Hessian VxxL(i, ,) be positive

semi-definite on the cone {dlVgA(R) Td = 0, Vh(R)Td = 0} where

A:= (ilgi(x)= 0). As expected, the second order necessary condition for

the dual problem (D) is that the inverse Hessian V xxL(x,U,V)I be positive

• xx



semi-definite on the normal cone N defined in (2.5). We give this

result below. Note that, under our assumption of nonsingularity of the

Hessian V xL(x,u,v), no constraint qualification is required as is the

case in McCormick's second order necessary condition.

Theorem 2.5 (Dual second order necessity) If ( is a local

maximum point of the dual program (D), if f, g and h are twice con-

tinuously differentiable at x, and if the Hessian Vxx L(i,U,V) is

nonsingular, then

(2.11) w = Vg(x)y + Vh(R)z

yi = 0 i E I w TVx(x,u,v)lw > 0

Yi O iEK }

where I:= {ilgi(R)< 01 and K:= {ilgi(R)=0 and 5i=01.

Proof Let vectors w, y and z be fixed vectors satisfying the condi-

tions of the left-handed side of (2.11). We consider the function

F:Rn+m+q+l , ~~ defined by

FL(x uVx 'U

F(x,u,v,t):= u- t

Clearly, we have F(x,u,v,O) = 0. Furthermore, it follows from the non-
singularity of Vx , that the Jacobian V F(R,5, ,O) is also

xx x,U,v

nonsingular. Hence, by the implicit function theorem, there exist a

positive number E and continuously differentiable functions x(t), u(t)

and v(t) defined on (-e,E) such that x(O) = i, u(0) = u, v(0) = and



(2.12) (a) 7 xL(x(t), u(t), v(t)) =0

(b) u(t) = +* ty

(c) v(t) = + tz

Differentiating (2.12a) at t =0, we get that

7 V L(i,5,v)x'(O) + Vg(i)y + Vh(i)z 0,

which imples, for w Vg(i)y + Vh(i)z, that

w = - L(i,5, )x'(O).

Let 6(t):= L(x(t), u(t), v(t)). Notice that for sufficiently small

tE [0, E) the vector (x(t), u(t), v(t)) is feasible to the dual program

(D) and hence 6(0) > e(t) for all sufficiently small nonnegative t.

On the other hand, we have that

6' (0) = V Lx ~ ~T xl(O) + g(R) Ty + h() T z = 0.

Therefore it follows that 0"(O) < 0. By direct verification, we have that

e"(O) = -w T V,( , ii W.

Hence, the proof is complete. 0
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3. Characterization of simultaneous local solutions of the primal and

dual problems

In this section we characterize Karush-Kuhn-Tucker points of the

primal problem that locally solve both the primal and dual programs

simultaneously. We will show that these points are essentially those

Karush-Kuhn-Tucker points at which the Hessian of the Lagrangian with

respect to the primal variables is positive definite. To establish this

we need a preliminary fundamental result, Theorem 3.5 below, which appears

to be an interesting linear algebra result in its own right. Related

results have appeared in [lO]. First we recall a well known result.

Lemma 3.1 (Sherman-Morrison-Woodbury formula £11]) Let AE Rnxn be

nonsingular and let U, VeRn m . Then A + UVT is nonsingular if and

only if I + VTA-I U is nonsingular, in which case

(A+UVT)- l = A-
l I A-IU(I+V TA- Iu-vTA

-l

We can now state and prove our preliminary fundamental result.

Theorem 3.2 (Characterization of positive definitness of a nonsingular

matrix) A necessary and sufficient condition for a nonsingular matrix

AE Rnxn to be positive definite is that for some or each o > 0 and

BERmXn, the matrices A + cLBTB and I + oBABT be positive definite.

Proof (Necessity) Let A be positive definite, then obviously for each
Rmxn T -1T

and each B , the matrices A + oBTB and I + aBA B are

positive definite.
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(Sufficiency) Let A be nonsingular and let, for some a > 0 and

m+n T -1T
some BE R , the matrices A + aB B and I + aBA B be positive

definite. By the Sherman-Morrison-Woodbury formula we have that

A- I = (A+aBTB) - I + aA-l T(I+LBAIBT)-IBA- I

which is the sum of a positive definite matrix and a positive semidefinite

matrix and hence A-1  and consequently A is positive definite. 0

By noting that if I + cBAl1BT is positive definite for all a >

for some & then BA.-1BT must be positive semidefinite the following

corollary follows from Theorem 3.2.

Corollary 3.3 (Alternate characterization of positive definiteness of a

nonsingular matrix) Let AERnxn be nonsingular. A is positive

definite if and only for all a > & for some &>0 and for some or all

BEmxn A 1 TLBeRm  A +aBTB is positive definite and BA'BT is positive

semi definite.

A very nice geometric version of Corollary 3.3 can be stated if we

make use of the following well known result of positive definitness of

quadratic forms on a linear subspace.

Lemma 3.4 (Finsler-Debreu Lemma [3,1]) Let AERnXn and let BeRmxn

Then

A + cBTB is positive
Bx =0 xAx > 0

OMM definite for all a > &
x 0

for some & > 0

L_(
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Combining this lemma with Corollary 3.5 gives

Theorem 3.5 (Geometric characterization of positive definiteness of a

nonsingular matrix) The nonsingular matrix A in Rnxn is positive

definite if and only if it is positive definite on some or each subspace

of Rn

S = {xlBx=O}, where BER mxn,

and A-1  is positive semidefinite on the orthogonal complement SL of S:

S' = {Yly=BTu} •

We remark here that the matrix A may not even be positive semi-

definite when A is positive definite on both the space S and its

orthogonal complement S'. This can be seen from the example:

A:=L -I] , S:= {xER2x 2 =O}.

We are now ready to present our characterization results.

Theorem 3.6 (Positive definiteness of Hessian of Lagrangian under primal

second order sufficiency (necessity) and dual second order necessity

(sufficiency)) Let (xuv) be a Karush-Kuhn-Tucker triple of the

primal program (P) that satisfies the strict complementarity condition:

ui > 0 whenever gi(R) = 0, and let the Hessian V xxL(,5, ) be non-

singular. If (i,,) satisfies the primal second order sufficient

(necessary) optimality condition and the dual second order necessary

(sufficient) optimality condition, then VxxL(i,5, ) is positive definite.
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Proof Notice that when the strict complementarity condition holds K

is empty and the tangent cone T defined in Section 2 is a subspace

and the normal cone N is its orthogonal complement. When the primal

second order sufficient (necessary) condition is satisfied the Hessian

V xxL(,UV) is positive definite (semidefinite) on T. While, when the

dual second order necessary (sufficient) condition holds, the inverse

Hessian V xxL( , , is positive semidefinite (definite) on N.

Therefore, it follows from Theorem 3.5 that the Hessian Vxx L(i,5, )

must be positive definite. 0

In light of the above theorem, it is natural to expect that the

Hessian would be positive semidefinite when both the primal and the dual

second order necessary conditions hold. Curiously this turns out not to

be true as can be seen from the following example:

min -x I x 2

s.t. xI = 0

TThe vector T = (0,1) together with I = constitute a Karush-Kuhn-

Tucker point. Both the Hessian of the Lagrangian and its inverse are

[0 "1j. We also have the tangent space T = {xc R2 x1  0) and the

normal space N = {xeR 2 1x2 = 0). Therefore, both the primal and the dual

second order necessary conditions hold. But the matrix . is not

positive semidefinite.

The positive definiteness of the Hessian V xxL(R,5, ) clearly

implies the primal second order sufficient condition. By Theorem 2.3
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under the constraint qualification (2.10), the positive definitness of

V xxL(i,5, ) also implies the dual second order sufficient optimality

condition. Therefore, we have a converse to Theorem 3.6 which extends

and sharpens Luenberger's local duality result [5].

Theorem 3.7 (Primal and dual second order sufficiency under positive

definiteness of Hessian of Lagrangian and constraint qualification) Let

be a local minimum point of (P) satisfying the constraint qualification

(2.10), let f, g and h be twice continuously differentiable at R and

let (u, ) be a Lagrange multiplier associated with R. If Vxx L(i,U,V)

is positive definite then (iu, ) satisfies both the primal and the dual

second order sufficient optimality conditions.
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