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ABSTRACT

Applications of the EM algorithm to the estimation of Bayesian

hyperparameters are discussed and reviewed in the context of the

author's philosophy involving the inductive and pragmatic modelling of

sampling distributions and prior structures. Frequently the hyper-

parameters may be estimated from the data, thus avoiding the subjective

assessment of these values. The ideas are applied to multiple regres-

sion models, histograms and multinomial distributions. A numerical

example is described in the context of smoothing the cell probabilities

of several multinomial distributions.
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SIGNIFICANCE AND EXPLANATION

One of the drawbacks of Bayesian methods is that it is usually

difficult to subjectively specify the hyperparameters. However in

situations involving several parameters it is often possible to assess a

sensible structure for the prior distribution and to estimate the

hyperparameters empirically from the data. The SM algorithm provides

a valuable mechanism for doing this. A general approach is described in

the contexts of multiple regression models, histograms, and multinomial

distributions and a numerical example from educational testing is used

to illustrate the procedures.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced El
Justificatio

By
Distribution/__-

Availability Codes

,Avail and/or DTIC

,Dif. Special cY
1m4~p.OTEV

2

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



APPLICATIONS OF THE EM ALGORITHM
TO THE ESTIMATION OF BAYESIAN HYPERPARAMETERS

Tom Leonard

1. Background and Statistical Ideas.

The resurgence in Bayesian statistics over the past fifteen or so years

has been due to its recognition, as a methodology based upon pure probability

theory and hence free from theoretical counterexample, and as an approach to

scientific investigation which assists the deductive, inductive, and pragmatic

reasoning of the statistician in a meaningful and illuminating way. In his

writings Professor Bruno De Finetti has highlighted three fundamental con-

cepts. These are Coherence, Scientific Induction, and Exchangeability. All

these are related to the very necessary iteration between inference about

parameters, conditional on the truth of the sampling model (coherence, deduc-

tion) and the process of scientific modelling (inductive and pragmatic rea-

soning together with more formal theoretical procedures). For accounts of

scientific modelling in a Bayesian context see Box (1980) and Leonard (1978,

1981, 1982).

Many traditional Bayesians (e.g. Lindley et al., 1978) have pursued the

concept of coherence on its own and have concentrated their energies on trying

to extract coherent subjective distributions from the scientist. Less atten-

tion has been paid to the statistical problem of gaining insight from data

sets in relation to their scientific background. Whilst.prior distributions

are very useful mathematical and philosophical constructs for generating

meaningful statistical procedures, it is unlikely that all the useful know-

ledge possessed by a scientific expert will be representable in the form of a

probability distribution. An expert's information is usually more complex and
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diverse; it is usually necessary to extract this information via an interation

between the statistician, the expert, and the statistical methodology, the

data, and the scientific background. Pragmatic and inductive judgements seem

more appropriate than trying to extend coherence for inference about param-

eters, given the model, to coherence of the whole statistical procedure. I

see Bayesian statisticians as possessing tremendous advantages in the sense

that, when treated pragmatically, their methodologies and philosophies can be

used to advise the investigator how to handle his down-to-earth practical

problems involving scientific data, in a very realistic and doubtlessly

superior manner.

Suppose that the statistician is concerned with a p x 1 vector E of

parameters of interest; let x represent his observations. To be able to

make a Bayesian inference about he is generally faced with three compli-

cated practical problems. These are

(1) Modelling the form of the sampling distribution p(2JS, ) of x given

and (perhaps) further parameters .

(2) Modelling the prior structure i.e. the form ofthe prior distribution

w(dl ) of given some hyperparameters .

(3) Ascertaining suitable values for the hyperparameters .

Of these, (1) is particularly important when the elements of x are

continuous measurements; for categorical data Poisson or multinomial assump-

tions often suffice. The Bayesian non-parametric estimation of sampling

densities is, for example, discussed by Leonard (1973 and 1978), and Atilgan

and Leonard (1981). The Bayesian modelling of sampling distributions seems to

me to provide one of the most important furture directions for our subject,

considerable more work is needed in this area. This aspect will be discussed

further in Section 4.
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The modelling (2) of prior structures is equally important, and more dif-

ficult because the data are not so immediately relevant. It seems necessary

to avoid the obvious retreat to conjugacy, except, perhaps, for the linear

statistical model (conjugate priors only exist for a restrictive class of

sampling models and in non-normal cases they possess quite restrictive co-

variance structures). In fact, De Finetti's concept of exchangeability pro-

vides us with one way of thinking about prior structures. We could

(a) Seek a suitable p x 1 vector of transformations of the elements of

such that we are prepared to take the elements of I to be a priori

exchangeable.

(b) Model a suitable exchangeable distribution for the elements of e.g.

by employing the two stage structure recommended by De Finetti's theorem; or a

first stage prior plus empirical procedures at the second stage.

These ideas will be discussed, for particular examples, in later sec-

tions. Both (a) and (b) should in general he based upon such aspects as prag-

matic judgement in relation to the scientific background, intuition about how

substantively particular assumptions are likely to affect the posterior con-

clusions, and judgements about how reasonable the posterior estimates are in

statistical terms (e.g. there is a conceptual duality between estimation pro-

cedures and the undelying prior assumptions). Both the exchangeable distribu-

tion and transformations may be taken to depend upon the hyperparameters X.

The statistician is finally faced with problem (3) i.e. ascertaining

appropriate values for the hyperparameter X. When the dimension of X is

small compared with the data will frequently possess considerable informa-

tion about X. The information about and A is summarized by their

marginal likelihood
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We see that, rather than pursuing the unenviable task of extracting the

subjective beliefs from a scientist, it is possible to use the marginal like-

lihood to simply estimate from the data. A complicated way of doing

this is to assign a hyperprior to X, yielding a hierarchical (two-stage)

prior for a (see, for example, Lindley and Smith, (1972) and the obvious

hyperposterior for by multiplication with the marginal likelihood in

(1.1). However, whilst uninformative hyperpriors can be useful (e.g. Leonard,

1976), it would be difficult for the applied worker to model the structure of

informative hyperpriors. Also, formal Bayesian procedures for estimating ,

unconditionally from X, typically become very tedious computationally.

we will instead estimate and A by jointly maximizing the marginal

likelihood in (1.1). The EM algorithm provides us with an excellent compu-

tational scheme for doing this in a very wide range of situations. Estimates

for e will be proposed which provide good approximations to formal hier-

archical Bayes estimates whenever the marginal likelihood is moderately

informative.

In situations where the objective of the analysis is to gain insight from

a data-set, the idea of empirically estimating the hyperparameters, rather

than specifying them a priori, seems appealing. I think that a coherent

Bayesian would simply be attempting an impossible task if he tried to con-

struct an entire multivariate distribution just based upon subjective informa-

tion. However, if we think in terms of the specification of a meaningful

prior structure, with any spare hyperparameters estimated empirically from the

data, then the procedure will often make more statistical sense.
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2. The EM Algorithm.

It is possible to apply the algorithm developed by Dempster et. al. to

the estimation of and X by the maximum of the marginal likelihood in

(1.1). In the present context this involves the following two steps.

Expectation Step (E-Step). Using the latest vectors and for and

calculate the expectation

e( ,A ,A) = E[log p(xlt) + loglr( I )J (2.1)

where the expectation should be taken with respect to the posterior

distribution of d, given =3 and A =

The Maximization Step (M-step). Obtain new values for and X by

maximizing the expectation E( , j ,*) obtained at the E-step. Return to

the E-step and keep cycling until convergence.

In a University of Wisconsin 1981 technical report, C. F. Wu was the

first to give general conditions under which this procedure converges to the

maximum of the marginal likelihood (1.1). The above procedure for hyper-

parameters has been employed in particular cases by Laird (1978) and Chen

(1980).

Example: Multiple Regression Models.

Consider firstly the estimation of the parameters of several multiple

regressions (e.g. Lindley and Smith, 1972, Smith 1973). Suppose we observe

vectors YI 'Ym' of respective dimensions n 1,*,nm, where

2 *2 1 i
1

and that ,-, m  may be viewed as exchangeable with

This assumption will frequently be appropriate when we possess a symmetry

of prior ignorance dbout the ti. It greatly assists us in modelling the

prior structire, since we need now just concern ourselves with the within-
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regression covariance structure represented by C. This however may be simply

estimated from the data, so that no further prior modelling is required. When

ad (2 2 2
and a , are known, the posterior distribution of the

is

,~ 2 * N~,,.

where

. -2 T 2 -1 -2 T + (i = (
0i (a. xCxm) (2.1)1 1 v3 *ivl

and

-1 -2T -1
Di 0 X xx + c - . (2.2)

Rather than bringing in a set of complicated prior assumptions for

and a2 it is much more straightforward to simply empirically estimate

this quantities via their marginal likelihood. Combinations of the E-step and

M-step in Section 2 tells us that the marginal maximum likelihood estimates

satisfy the equations

* 1 m- (2.3)

i=1

C= m- 1  ( - + m- trace(D.) (2.4)
i= 1

and

2 1T * -1 Ta. = n (Y - Xi~i) (Y. - Xn .) + n. trace(X.D.X ) (2.5)

where and D satisfy (2.1) and (2.2).

Moreover, convergence is guaranteed if we substitute trial values for

,C and 02 into the right hand sides of (2.1) and (2.2), and put the

values obtained for and D into the right hand sides of (2.3) - (2.5),

then return to (2.1) and (2.2) and repeat the procedure until convergence.

In the prior ignorance case, the procedure proposed by Smith reduces to

the above equations but with the important second terms in the right hand

sides of (2.4) and (2.5) omitted. Hence overshrinkages towards were

-6-



observed in his numerical example. With the extra terms included large

shrinkages may still occur, but only when the data suggest that this is

reasonable.

F Let us now turn to the single multiple regression situation

-l' IN a 1I)

and suppose that the columns of X relate to p different sets of observed

explanatory variables. We now make the (obvious) claim that no general

purpose non-uniform prior structure exists, and that meaningful prior

structures can only be developed if we utilize background information

concerning the nature of the explanatory variables, or informative prior

knowledge about ~.In the absence of such information we should simply

estimate a by least squares.

In particular, the exchangeable prior

JT2 _N(O,T 2 1

has been proposed as a means of justifying the ridge estimator

(X = ( x+kI ) lX (.6

since the posterior mean of may be obtained by setting

k = Y2T2(27

in (2.6).

However, neither exchangeability nor ridge regression seem appropriate in

prior ignorance situations. Any non-trivial linear transformation on the X

matrix focuses attention on a new set of parameters which are not exchangeable

if the elements of 0 are exchangeable. In prior ignorance situations there

is no way of discerning to which form of the model the ridge estimator should

be applied. It therefore does not make any sense to adjust any set of param-

eter estimates towards zero, or towards any other origin; and the leaist squares

vector possesses greater statistical viability.
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If some way could be found of justifying the estimator in (2.6) then it

would of course be easy to estimate a2 and T 2 , and hence k, by the EM

algorithm. The equations are
2 - * -1 T
=n (Y X*)T (Y - X ) + n trace (X D XT ) (2.8)

and

2 -1 *T *T = p + trace(D) (2.9)

where

-1 -2TT -2 (2.10)
D X + T I.2.0

It is possible to show that the solutions to these equations are

noticeably more conservative in shrinking towards zero than is the ridge trace

method of Hoerl and Kennard (1971).

However, it is particularly important, in this single multiple regression

situation to base any deviation from the least squares vector upon definite

prior knowledge.
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3. Smoothing the Probabilities in a Histogram.

Consider a grouped histogram concentrated on a bounded interval (a,b),

and with s cells I1'I2II of equal width. Let 91,.,s sum to

unity and denote the cell probabilities, taken in order, and let x1 Ix

summing to n, denote the cell probabilities. We let the x's satisfy the

usual multinomial assumptions given the 8's, and provide a number or refine-

ments and improvements to the method proposed by Leonard (1973) for obtaining

smooth estimates of the O's.

It is easier to think in terms of prior structures by making multivariate

normal assumptions about the logits Y1 ,..,Y S satisfying

I . s Y
S e 31 e s (j = 1,-,s) (3.1)

j=1

In particular we assume that the log-contrasts

4. = Y. - Y9 (j = 1,.',s-1) (3.2)
:3 j :+1

possess prior covariance structure

cov(4,4 = 2 pLj -kI (0 < a2 < -; 1PI < 1). (3.3)

We originally assumed the structure in (4.3) for the logits themselves,

but when considering the continuous case (see Leonard, 1978), it became

apparent that, by taking differences first, a more reasonable smoothing

(avoiding too much flattening) of the O's would result. The hyperparameter

P measures the degree of smoothness of the hypothetical true density of the

raw observations, and 02 measures the 'closeness' to the 'null hypothesis'

discussed below.

We hence assume that the vector possesses a multivariate normal prior

distribution

, 2,0 p N(e,C) (3.4)

where

TC B A B (3.5)
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with the (jk)th element of the (s-1) x (s-1) matrix A equdl to the

quantity in (4.3) and

0 0 0--------0
1 0 0
1 1 0
1 1 1 0 I

0 O (3.6)

-1 ,.

1 1 1 - - - "I/

The choice of the prior vector may be based upon the statistician's

'null hypothesis' about the probabilities in the histogram. For example, if

his hypothesis that the underlying density of the raw observations is fo(t)

for t G (a,b) then he should set

= log[ f f 0o(t)dt] for j = 1,1'.,s. (3.7)

If any unknown parameters appear in his choice of f0 (t) then we suggest

that these should be estimated from the data by conventional techniques. The

shrinkage parameter 2 plays the role of the significance level in the

standard chi-square goodness of fit test.

In this situation we of course do not have exchangeability of the Y. or
3

the F . However, the second order lagged differences3

(Yj+2 - j+2 - Yj + + ) - P(Yj+1 - 1j+I - Y. + Uj.)

are exchangeable for j = 1,*,s-2. This ties in with the philosophy

outlined in Section 1 of seeking appropriate transformations of the parameters

which are exchangeable. The lagged differences create an autoregressive type

smoothing on the O's so that the posterior estimates of 8 will take3

account of estimates in adjacent intervals.
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2
When e,O , and P are specified, we have the approximate posterior

distribution

,o2p N(),D) (3.8)

where is the posterior mode vector, and satisfies the non-linear system

n (3.9)n = - C-1( - 39

T Y '. '
where ) = (I,. - ° , s ) T , with e = e/ e g, and

D = n[diag( 1 ...,6 ) - ) + c (3.10)

denotes the posterior information matrix.

This system can be solved via Newton-Raphson, and the EM algorithm can be

used to (approximately) estimate 02  and o 2p by
s-1 s2 1 -- 1 r"

a S Z (. - n.)2 + S L r.. (3.11)
j=1 J j=1

and

2 -1 s-2 1 s-2
a P =s X (. -. )(. -n ) +s I r. (3.12)

j=J j ] ] j+ j-1 jth

where Y = j j+1' nj = uj -i jj+, and rjk is the (j,k) t h element of

=G~qT
R =G D GT

where -1

1 -1

1 -1

1 -1

Cyclic substitutions are again appropriate. See Leonard (1978, p. 115) for a

numerical example.
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4. Simultaneous Estimation for Several Multinomial Distributions.

Suppose now that, for i = 1,..-,m, the elements of the s x 1 vector

;6 possess a multinomial distribution with sample size ni , given the

vector of ceall probabilities ... (i' is)T, and that these m

multinomial distributions are independent, given the parameters. We now

have m sets of logit vectors i (ilsatisfying

e . = e e(i = 1,,m; j = 1,4,,s). (4.1)

As in the several regression line situation, it will often be appro-

priate to assume exchangeability between the parameter vectors 9 ,.,m

rather than between the elements within any particular vector. In this case

we assume

,p IN(,) (i =,

yielding the approximate posterior distribution

where

ni9 i = -i - - - ) (i = 1,,m) (4.2)

with 9i (oil .0, ) where
Yi Y ig

9.. =e i/I e

g

and

-+ C -1Di = ni[diag(i .,e.) -ill', + C-. (4.3)I ii' 1 *I4.3)

As we have replications on e and C is is no longer necessary to

assume a specific covariance structure like (4.3) within each multinomial,

since and C can be estimated in their entirety from the data; M gives

dnd
m m
I -m j - - W)T 1 n 1  1

C m ) + m- R
i=1 

i=I

which may be solved iteratively together with (5.2) and (5.3).
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In the first six columns of Table 1 we give the percentages of pupils

respectively obtaining grades one to six on a test taken at 40 different

schools. We assumed exchangeability between the schools and obtained the

following estimates for j, diag(C), and the correlation matrix B associ-

ated with C:

= (-0.51, 0.41, 0.56, 0.59, -0.82, -0.24)

corresponding to a common prior estimate of

= (0.087, 0.217, 0.255, 0.262, 0.064, 0.115)
T

for the Oi,

diag(C) = (1.08, 0.39, 0.25, 0.26, 0.46, 0.92),

and
1 0.79 0.57 -0.07 -0.38 -0.57

0.79 1 0.79 0.29 -0.14 -0.31

B = 0.57 0.79 1 0.61 0.21 -0.01

-0.07 0.29 0.61 1 0.68 0.62

-0.38 -0.14 0.21 0.68 1 0.83

-0.51 -0.31 -0.01 0.62 0.83 1 /
Note that the matrix B gives moderately high correlations between adjacent

cells within each school and negative correlations between Yij and Yi,j+k

for Iki > 2. The between school exchangeability has helped us to estimate

the prior structure within each school. This is similar in spirit to the

autoregressive structure in (4.3) since it enables us to take account to the

ordering of the cells.

The smoothed percentages in Table 1 smooth the observed percentages (a)

by shrinkages utilizing the collateral information in the common vector

10O by smoothing within each school; using the convariance structure

estimated via C. Note, for example, that the zeros create no extra problem:

their smoothed values are all positive, the amount dependinq on collateral and

within school infzrmation.
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TABLE 1: OBSERVED AND SMOOTHED PERCENTAGES

OBSERVED SMOOTHED

1 2 3 4 5 6 1 2 3 4 5 6 n

1 6.7 17.8 24.4 28.9 6.7 15.6 6.6 18.8 24.2 28.2 7.2 15.0 45

2 0.0 21.6 24.3 18.9 13.5 21.6 3.8 16,9 22.2 26.2 9.9 20.9 37

3 5.3 15.8 42.1 26.3 5.3 5.3 8.3 21.4 29.1 26.5 5.8 8.9 19

4 22.2 25.9 29.6 11.1 7.4 3.7 19.5 26.9 26.5 17.9 4.2 4.9 27

5 16.7 33.3 11.1 16.7 5.6 16.7 12.7 25.4 22.8 22.3 5.7 11.1 18

6 5.9 7.4 26.5 33.8 8.8 17.6 4.8 12.9 23.8 31.5 8.9 18.0 68

7 31.7 17.1 14.6 19.5 9.8 7.3 24.1 22.1 21.7 19.1 5.7 7.4 41

8 4.5 4.5 22.7 31.8 9.1 27.3 3.6 12.4 20.2 29.7 9.6 24.5 22

9 16,1 45.2 19.4 9.7 3.2 6.4 17.5 33.6 23.8 16.8 3.4 5.0 31

10 13.0 31.5 31.5 24.1 0.0 0.0 14.9 30.3 29.1 20.5 2.4 2.9. 54

11 23.5 35.3 20.6 20.6 0.0 0v0 22.7 31.7 24.3 16.5 2.2 2.6 34

12 22.8 26.3 21.1 15.8 3.5 10.5 19.8 26.2 23.0 18.7 4.4 7.8 57

13 7.1 14.2 14.2 32.1 10.7 21.4 5.3 15.7 20.5 29.0 9.0 20.4 28

14 13.9 33.3 25.0 19.4 0.0 8.3 14.2 29.2 25.6 20.9 3.7 6.5 36

15 0.0 18.2 13.6 54.5 9.1 4.5 4.2 17.2 23.2 34.7 7.4 13.4 22

16 12.5 31.3 18.8 18.8 6.3 12.5 11.3 24.8 24.6 23.4 5.7 10.1 16

17 0.0 9.4 25.0 50.0 9.4 6.3 3.3 14.3 24.4 36.3 8.0 13.7 32

18 0.0 5.3 15.8 21.1 26.3 31.6 2.0 9.1 16.1 26.6 13.9 32.3 19

19 0.0 3.7 7.4 14.8 3.7 70.4 0.7 4.6 8.4 20.0 9.4 57.1 27

20 2.4 7.3 19.5 36.6 4.8 29.3 2.7 11.3 18.8 31.9 8.4 27.0 41
23 29.3 16.7 8.3 37.5 4.2 4.2 19.5 23.5 22.8 23.3 4.4 6.5 24

22 14.2 21.4 42.9 21.4 0.0 0.0 14.8 26.4 29.0 21.2 3.7 4.8 14

23 0.0 17.4 34.8 17.4 17.4 13.0 4.8 17.2 25.5 26.8 9.7 15.9 23

24 5.6 19.4 30.1 22.2 11.1 11.1 7.1 19.9 26.5 26.1 7.9 12.5 36

25 31.3 18.8 28.1 15.6 3.1 3.1 25.6 25.3 25.5 16.7 3.2 3.7 32

26 9.5 19.0 42.9 14.3 0.0 14.3 10.1 22.9 28.4 23.5 5.2 9,8 21

27 5.6 37.0 22.2 25.9 3.7 5.6 8.8 30.0 25.4 24.5 4.3 7.1 54
28 0.0 30.8 7.7 30.8 0.0 30.8 4.4 17.7 20.2 28.7 7.4 21.6 13

29 4.0 12.0 16.0 32.0 8.0 28.0 3.7 13.6 19.3 .29.5 9.1 24.8 25

30 0.0 16.7 27.8 33.3 5.6 16.7 4.5 17.1 23.9 30.1 7.6 16.8 18

31 3.7 11.1 37.0 37.0 0.0 11.1 5.8 18.0 27.6 30.9 5.8 11.0 27

32 0.0 42.9 28.6 21.4 7.1 0.0 9.6 27.6 27.4 23.6 4.8 6.9 14

33 0.0 14.3 28.6 21.4 21.4 14.3 4.5 15.8 23.2 28.1 10.1 18.2 14

34 19.5 39.0 17.1 22.0 0.0 2.4 19.4 33.0 23.4 18.1 2.5 3.5 41

35 37.9 13.8 37.9 6.9 3.4 0.0 31.8 24.6 26.2 12.8 2.4 2.1 29
36 0.0 18.8 6.2 25.0 6.3 43.8 2.5 11.9 15.9 27.2 9.4 33.1 16

37 13.3 20.0 20.0 26.7 6.7 13.3 9.8 21.6 24.5 25.7 6.4 11.8 15

38 16.7 37.5 41.7 4.2 0.0 0.0 20.3 32.4 28.3 14.3 2.2 2.3 24

39 18.3 31.7 21.7 15.0 6.7 6.7 17.5 28.7 24.0 18.4 4.8 6.5 60

40 0.0 11.1 11.1 33.3 22.2 22.2 3.4 13.3 19.7 29.4 :0.5 23.7 9
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