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ABSTRACT .

In this paper we solve completely and explicitly the long standing

problem of classifying pairs of nxn complex matrices (A,B) under-te

simultaneous similarity, (TAT--,TBT-). Roughly speaking, the classification

decomposes to a finite number of steps. In each step we consider an open
0

algebraic set, Mn x Mn (Mn- the set of nxn complex valued

matrices). Here r and p are two positive -irteeo-& ) Then we construct a

finite number of rational functions wA -in the entries of A and B

whose values are constant on all pairs similar -"'--to (A,B). The

values of the functions *i(A,B), i - 1,'*,s, determine a finite number

(at moe- -K-(n,2,r)), of similarity classes in M - •* Let S be the

subspace of complex symmetric matrices in * For (A,B) e S n( Sn we

consider the similarity class (TATt, TBT \where T ranges over all complex

orthogonal matrices. Then the characteristic olynomial IXI - (A+xB)I

determines a finite number of similarity classIs for almost all pairs

(A,B) e sn x sn
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SIGNIFICANCE AND EXPLANATION

Consider the following linear singular differential system
dx(1) dt = 

(A + B/t)x.
t ( n n

Here x = (x I1 906,x) is a column vector and A = (a)1 and B = (bi 1 are

nxn complex valued matrices. A linear change y = Tx, transforms (1) to

(2) dy = (A + 1 = TAT 1 , B = TBT-1 .
dt 1 B1/t)y, 1

Thus we are led to study the properties of pairs of matrices (A1 ,BI ) which

are simultaneously similar to (A,B). It can be shown that more complicated

singular differential systems under more general transformations will lead again to

a certain similarity class of pairs of matrices.

We now give another example of simultaneous similarity. Let A and B be

real symmetric. Then -A and B can represent a potential and kinetic energy of

some physical system. By changing to another orthonormal basis we shall get another

pair (A11B1 )

(3) A1 = T , B =TBTt

for the corresponding orthogonal matrix T. The class of all such symmetric pairs

(A1 ,BI ) gives all representations of the same physical system. Thus to classify

such similarity class is equivalent to classifying the physical system up to a

choice of an orthonormal basis.

In this paper we solve completely the first mentioned problem. The

classification of the similarity classes (TAT-ITBT-1 ) decomposes to a finite

number of steps. In each step we consider an algebraic variety V (a set of points

defined by polynomial equations) of pairs of matrices. We construct a set of

invariant functions, sort of "generalized eigenvalues" of the pairs (A,B) lying

in V. Those "eigenvalues" classify all similarity classes of (A,B) except for

some algebraic subvariety W in V . We now repeat the process for W.

In the case of symmetric pairs (A,B), we do as follows. With each such pair

we associate the characteristic polynomial p(X,x) = JAI - (A+xB)I. Clearly, any

similar pair (A1 1B1 ) has the same characteristic polynomial. In this paper we

show that for almost all symmetric pairs (A,B) the characteristic polynomial

p(X,x) determines the orthogonal similarity class up to a finite number of

possibilities. We strongly believe that our results would have some applications to

the invariants of singular differential systems as well as to other areas, in

particular mathematical physics.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.



TABLE OF CONTENTS

0. Introduction.

1. Classification of similarity classes of tuples of matrices.

2. The 2 x 2 case.

3. Polynomial maps and varieties.

4. Algebraic functions.

5. Special polynomials in two variables.

b. Irreducible pencils.

7. Symmetric pairs.

8. Polynomial matrices with a constant spectrum.

9. The equation [F,[F,A]] = 0.

10. Symmetric polynomial matrices.

11. Conclusions, remarks and open problems.



SIMULTANEOUS SIMILARITY OF MATRICES

Shmuel Friedlandt

0. Introduction.

Let Mn denote the s _ of nxn complex valued matrices and Gn  the

group of all invertible matrices in Mn. It is a classical problem to clas-

sify the similarity classes (orbits) of m+1-tuples of matrices (A 0,.-,Am

under the action of G

(0.1) orb(A 0,**,A) = [(B 0 , o,B M), Bi = TAT-, i = 0,,m, T G G 1.

See Gelfand [1970], Gelfand-Ponomarev [19691, Brenner [19751, Nathanson

[19801, Processi [1976] and Friedland (1980] for certain problems in which

the classification of such orbits needed, for various results on this problem

and additional references. It is known that the classification of similarity

classes of m+1 tuples can be reduced to the classification of simultaneous

similarity of pairs of matrices (A,B). In fact one can assume that A and

B are commuting and even nilpotent. See Gelfand-Ponomarev [19691 and

Nathanson [1980]. Therefore in certain cases, for the simplicity of the expo-

sition we are dealing with the simultaneous similarity of pairs of matrices

(m=1). In cases when the choice m=1 does not simplify the treatment of the

problem we are dealing with an arbitrary m. In Friedland, [19811 we out-

lined a general procedure for classifying the orbits of a given algebraic

group acting on an irreducible variety over any algebraically closed field.

For the problem of simultaneous similarity our procedure works as follows. In

the step number i we are given an irreducible variety V in

(0.2) M 1 =M x ... X Mn, m+1 nnn

m+1

t
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which is invariant under the action of Gn . That is if V contains a tuple

(A0,oa*,Am ) then V contains orb(A 0 1 .0,Am). Let [V] and V) be the

02
ring of polynomials and its field of quotients whose variables dre (m+1)n

(k)
entries of A ( a.. ), ic = 0,**k,m and whose values are restricted to V.

A rational function f G (V) is called invariant if f is constant on all

orbits lying in V. Denote by (V]G and (V)G the subring and subfield of

invariant functions in [VI and (V) respectively. Since (V)G is a sub-

field of rational functions in (m+1)n2 variables (a 0)..., a
(0 )

11 nn
CM) .. (in) Ga1 1 , ,a nn) it is known that (v) is finitely generated. That is there

exist q invariant functions X ,oOq (V)G such that any X G (V)G can

be expressed as a rational function in X,.*°,Xq. See for example Fogarty

[1969, p. 69]. Then there exists an invariant (strict) subvariety W c V

such that the functions XI,.OoXq are defined on each point of the open set

V-W and their values determine the orbit of (A 0,',Am). The orbits in V-W

are characterized by two numbers their dimensions and their degrees as irre-

ducible algebraic varieties in Mm,m+ I. So in the next stage one has to clas-

sify orbits on W and the process ends in a finite number of steps. In Sec-

tion 1 we identify the sets V-W with open algebraic sets M 0  whichn,m+1,r,p

are characterized by two integers r and p. In fact n2-r is the dimension

of any orbit in Mnm+i and p is another integer which has a relatively

simple characterization. Roughly speaking p is the number of linearly

independent polynomial equations which determine the orbit of (A ,..,A n).

We show explicitly how to find a set of invariant functions i,..., s  in

(M )G such that any orbit in M0  is determined by the value
n,m+1,r,p n,m+],r,p

ot these functions up to a finite number K(n,m,r) of them.

To understand the complexity of the general problem we give a complete

classification of pairs of 2x2 matrices (A,B) under the simultaneous

similarity (TAT-1 ,TBT-1 ). We do it directly without using the results of

-2-



Section 1. Our classification then is reduced to three steps. In the first

step the coefficients of the characteristic polynomial AlX - (A+xB) l

determine the orbit of (A,B) completely as long as JAI - (A+xB)l is irre-

ducible over the ring C[A,xJ. Let U be the set of all pairs (A,B) such

that JAI - (A+xB)J splits to a product of two linear factors. Then U is

given by a single equation

2 2 2 2 2
U = {(A,B3),{2tr(A )-[tr(A)] 1{2tr(B )-[tr(8)] I = [2tr(AB) - tr(A)tr(B)]

It follows that U is an irreducible variety of codimension 1. Let V

be the set of all pairs (A,B) such that JAI - (A+xB)J is a square of a

linear factor. That is, for any x A+xB has a double eigenvalue. Then V

is given by a set of these equations

2 2 2 2V = {(A,B), 2tr(A 2 ) = [tr(A)] , 2tr(B 2 ) = [tr(B)] , 2tr(AB) = tr(A)tr(B)}.

So V is an irreducible variety of codimension 3. we show that on U-V

the characteristic polynomial of Ji - (A+xB)I determine 3 distinct

orbits. In order to distinguish between these 3 orbits we have to introduce

rational invariant functions in U

(b -b )a a 2+ a - a1 b
(A,B) = 1- 22 1221 a21121. 112112a1 2 b 2 1 - a 2 1 b 1 2

(a -a )b b + b b a -b b a11 22 12b21 22b12a21 11b21a12
O(A,B) =

12a21 21 12

Those functions are defined on non-commuting pairs (A,B) in U. The orbit

of the commuting pair (A,B) ( V is determined by its characteristic

polynomial. It is easy to see that IV]G' is generated by tr(A) and

tr(B). So the transcendence degree of the quotient field of [V]G is 2.

However, the transcendence degree of (V)G  is 3 since we have an additional

rational invariant function on y(A,b) = a 12/b12 = a 21/b21

-3-



Then tr(A), tr(B) and y(A,B) (or IIy(A,B)) determine the orbit of

(A,B) as long as A and B are not the scalar matrices. In the last case

tr(A) and tr(B) determine orb(A,B). This shows that in the classification

process carried out in Section 1 we must at a certain stage consider rational

invariant functions in V. We now list briefly the contents of the rest of

the paper. Sections 3-5 are technical and needed in the sequel. They deal

with polynomial maps p:C + C and some special properties of certain

algebraic functions in two variables. In Section 6 we deal with irreducible

paris (pencils) (A,B). These are the pairs for which JXI - (A+xB)I is an

irreducible polynomial over C[A,x]. The orbits of these pairs are determined

completely by the generators of the ring of the invariant polynomials on

M xM . According to Processi [1976] these generators can be picked to be of
n n

1 1 J1 m Imthe form tr(A ,.., A B ), and we described a procedure to determine

the orbit. We showed that the transcendence degree of [Mn41nIG  is n(n+l)

Ghowever we were not able to find a transcendent basis in (M 4141

The rest of the paper is devoted to the study of m+1 tuple (A 0 '*',A )

of symmetric matrices under the action of complex orthogonal group On  In

this context

sorb(A ,46*,A = [(B 0 ,' 1 ,B m), Bi = QAiQ , i = 0,.*,m,Q Q 0 n,

This case is of importance in mathematical physics at least for m=1. In

that case we can interpret A0 and A I as the potential and the kinetic

energies. The orbit of (AoA 1 ) will correspond to the representations of the

potential and the kinetic energies in different orthogonal bases. Usuallly

A0 and A I are real, however in some instances one considers the complex

case too. See for example 1oiseyev-Friedland [1980]. Let Sn be the set of

nxn complex symmetric matrices and put

$ n,m+l S n Sn

-4-



Denote by S n,m+1)0 the set of invariant polynomials in the entries

(A , °,A ) 6 S under the action of 0 n  In Section 7 we show that them n,m+l

transcendent degree ot [S n,m+] 0 is n[(n+1)m+2]/2 for m=1. The general

case is discussed in Section 11. We also find a simple transcendence basis in

this ring. Unfortunately, this basis is not symmetric in A0'°°*Am . Let
m

A(x) I Ax i  and consider p(X,x) = jXI-A(A)i the characteristic poly-
i=U

nomial of A(x). Clearly, the coefficients ot p(X,x) belong to

[Sngm+1O . The number of these coefficients is n[(n+1)m+2]/2! This suggests

(as in 2x2 use) that these coefficients form a transcendence basis in

0
[Sn,m+ ] 0 . This is indeed the case and Sections 8-11 are devoted to prove

this result.

We also determine a class of characteristic polynomials p(X,x) which

determine the orbit of (A 0,O,A m ) up to a finite number and we estimate

from above the number of distinct orbits corresponding to p(A,x). In Section

8 we study polynomial matrices A(x) with constant eigenvalues. In Section 9

we show that if A,B @ Sn, A+xB has constant n distinct eigenvalues then

B = 0 for n 4 4. This result implies that for n 4 4 the polynomial

p(,X,x) = JXi - (A+xB)I determines at most

n
M(n) = I i1/ 2 n

-

i=1

distinct orbits of (A,B) (and generally this is the number of distinct

orbits) on condition that p(X,x) is non-degenerate. That is p(X,x) = 0

does not have a multiple root for all x.

For n > 5 this result does not apply. Section 10 deals with a general

symmetric polynomial matrix A(x). We show that if p(X,x) = JXi - A(x)j is

a non-degenerative polynomial and for each finite or infinite x each A

root of p(A,x) = 0 is either single or double then there are at most

2 (
n -1)(mn-l) distinct orbits corresponding to m+1 symmetric tuples

-5-
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(Ao,-,A ) such that
m

p(X,X) = lXI - I Aixil.

i=U

The proof of this result is non-trivial and lengthy. The basic idea is to use

the theory of one complex variable, in particular the Liouville theorem. The

last section is devoted to various remarks, comments and conjectures.

-6-



1. Classification of similarity classes of tuples of matrices.

Let A G Mn. As usual denote by IAI the determinant of A. In what

tollows we adopt the notation of Marcus-Minc [1964].

Denote by Qk,n the set of strictly increasing sequences of integers

a = (a1,,k), 1 a a1 < *'" < Q 4 n. For any rectangular matrix A we

denote by A[CIO] the submatrix generated by the rows a = (a ,) and

columns 0 = (a I X ). In case that k = £ IA[aIO]I denote the appro-

priate minor of A. Also A[i,j] denotes the (i,j) entry of A. For A,B

G Mn let L(B,A) be the following operator on Mn

L(B,A)X = BX-XA, X 6 Mn.

t
In tensor notation L(B,A) is represented by the matrix I 0 B - A t I.

Here by At we denote the transposed matrix of A. See for example Marcus-

Minc (1964, p. 8]. Let V(B0 ,...,Bm,A 0 ...,Am) be the dimension of the sub-

space of matrices satisfying

(1.1) B X - XA. = 0, i = 0,'.,,m.

For Bi = Ai, i = 0,.',m denote the dimension of this subspace by

V(A0,''',A ). Note that V(A ,'.',A ) 1 1 since X = I is a solution of0 m 0 m

(1.1) tor Bi = Ai, i = 0,.*,m. Denote by L(B0,,Bm,A 0,.*,A m) an

(m+l)n2xn2 matrix composed of the submatrices L(BiAi), i = 0,.-.,m.

Clearly

(1.2) rankL(B0 , .. ,Bm,A0, **,A) = n 2-V(B0,'..,Bm,A0 ,*,Am) .

Let A,B G Mn. Suppose that B = TAT- 1 . Then L(A,X) and L(X,A) are

correspondingly similar to L(B,X) and L(X,B) for any X G Mn

I B - Xt 0 1 = (I T)(I 0 A - Xt 0 I)(I @ T -I )

(1.3)

I 0 X - Bt 0 I = ((Tt )_ 1 I)(I 8 X - At 0 I)(Tt @ I)

So it T(A ,''',Am ),- = (B 0,',B m ) we have

-7-



L(B0 *.. ,mX ,,FOOX )

(1.4) diagtI x T,--,I X TWLA 0 1O**IAmPX oI*IX m )(I x T

da(Tt-X1 ,*-( t 1 )(o.*XmA,. )(t 1)

Here by diag(A0 1*..,A m we mean the block diagonal matrix with matrices

AO'09' m on the main diagonal. By choosing X1i A . in the first

equality in (1.4) we get

(1.5) v(BO'0'mA'.' m VAo*., m

if (A4'*,A M) and (B,,**,B m) are simultaneously similar. In general,

the equality (1.5) does not imply the similarity or (A0G. A ",A and

Boi@*iB m) even in the case m=0. See Friedland [ 1980]. However (1.5)

implies the similarity of (B0 1 **,B m) and (A 0 1 ".,A m) provided that

(L,),.*B )lies in some open set U containing (A 0 1 ".,A m).

Theorem 1.6. Let A ,,A m M nand put V = V(Ao,..,A ),

r=n2_ .Asm htaGQr(~~ 2 'O Qrn2 satisfy the following

assumptions

Wi there exists B 0 ,",.B G M such that

(1.7) IL(B ... ,B,#A,.**,A m)(a18]I * 0.

(ii) Identify 0 with a subset of N x N ,N = (1,--,n}. in the

system (1.1) consider r equations given by the index set a. Let

X( = (x )m be the unique solution of these r equations satisfying theij 1

conditions

A~ssume that JX(Efl does not vanish identically on CV.

Denote by U aOthe set of all (B ,**,..B m) which fulfill Wi and

(ii). Let U be union of all U aaE Q rmln2, 8 C Q n2whr a

and Bsatisfying Wi and (ii). Then U is a non-empty open (algebraic) set

-8-



in Mn,m+l which contains (A 0, ,A m). Moreover (B ,'.,B m ) is

simultaneous similar to (A0,o.*,A m ) if and only if (B0 ,.**,B m ) U and the

following equalities hold.

(1.8) IL(B ,°.°,Bm,A0,*.,Am )(yJ]I = 0 Q 6 Q Q 2
r+1,(m+1))n r+1,n

Proof Let a and 8 satisfy the assumptions (i) and (ii). Since the coef-

ticients of the variables 1,-ooF in the polynomial JX(M)I are rational

functions in the entries of (A 0'.1A ) and (B ,.*.B ) it follows that
0 m 0 m

U is an open algebraic set. That is U is a union of a finite number

of sets, each of them is characterized by some non-vanishing polynomial. Sup-

pose that (B 0#..B m) is simultaneous similar to (A0,...,Am). Then the

matrices L(A 0'**,Am,A0,'*,Am ) and L(B0,'*',BmA0,'**,A m ) are equiv-

alent. Theretore the above matrices have the same rank. So there exists

Q and G r 2 which satisfy the assumption (i). Further-r,(m+l)n 2  r,n

more as Bi = TAiT-', i = 0,'*,m the polynomial IX( )I does not vanish

identically. This shows that U ,$ is a non-empty open algebraic set, and

hence U is a non-empty algebraic open set. Moreover if (B 0,.,B m ) is

0 m

simultaneously similar to (A0, ..,A m ) then (B '',B m ) Q U. In particular

(A,**',A m ) Q U. Assume that (B ,.',1m ) Q U. Then there exist a non-

singular matrix X which satisfies r independent equations of (1.1). The

equality (1.8) implies that all other equations of the system (1.1) are linear

combinations of these r equations. So X satisfies (1.1) which means that

(Bo,.',B m ) is simultaneous similar to (A0,.*,Am). U

Let v and r be defined as in Theorem 1.6. Consider the following

algebraic variety X in M defined by the equations
n,m+l

(1.9) IL(X, .. ,Xm ,A 0 ,*.*,A m )[(a8]I = 0, a Q 2'r+1,(m+1)n r+1,n

This variety splits to K irreducible varieties
K

(1.10) X = U X.
i=1

-9-



See Section 3 for various properties of algebraic varieties needed here and

the appropriate references.

In Section 3 we show that K is bounded

V(mn2 +V) 2(1.11K < r , =n r.

Let U be an open set defined in Theorem 1.6. According to Theorem 1.6

X n U c orb(A 0, .,Am).

Since the orbit of (A0 " ,A) is a manifold of dimension r it

follows that the point (A 0,..,A ) is contained exactly in one irreducilbe

variety - say X1 . Also the dimension of X is r.

Definition 1.12. Let Mn,m+!,r be the set of all matrices

(A0 ,'e,A ) G M such that0 i n,m+1

IL(A0 ,*,A, 0 ,.**,Am)[CL1]I = 0, a Q Q 2 G r 6 Q 2
r+1 ,(m+1)n r+1 ,n2

By M0 denote the open (algebraic) subset of M of
n,m+1 ,r nm+1,r

(A0, .,A m ) satisfying

2
V(A0,'**,A ) = in -r

(It may happen that M 0  is empty). Let K(n,m,r) be the maximal number
n,m+l ,r

of irreducible varieties Xi of dimension r in the decomposition (1.10) of

the variety X given by (1.9) having a non-empty intersection with M0

n,m+1 ,r

for all possible choices of (A ,..,A ) G M 0  (K(n,m,r) = 0 if
0 m n,m+1,r

M 0 is empty).
nm+1 ,r

So (1.11) implies

v(mn2 +v) 2
(1.13) K(n,m,r) 4 r , V = n -r.

Theorem 1.14. Let (A0 ,.,Am) M,+,r. Let X, be the irreducible

component of the variety (1.9) containing the point (A0 ,..,A). Then
0 m

orb(A 0 '°'Am) is an open algebraic set in X1 . That is

(1.15) orb(A0 .°,A ) = X1

Moreover

(1.16) orb(A 0 , '*,A) = X n M 0
1 n,m+1,r °

-10-



1

Proof. As orb(A ,...,A ) is a manifold of dimension r by Theorem 1.6 we
0 in

get orb(Ao,***,Am) c X Let U be defined as in Theorem 1.6. According to
0 in

Theorem 1.6

orb(Ao,.,Am) = X n U.
0 in 1

As U is an open algebraic set in M we get that orb(A 0 .,A )n,m+l a in

is an open algebraic set in the irreducible variety X1 . So (1.15) holds.

(Here orb(Ao, "O,Am ) means the closure of the orbit set of (Ao, m

Let (B ,,B ) I X n M0  so any neighborhood of (Bo, .,B
0 i 1 n,m+1,ro m

contains a point (C .O,C ) G orb(Ao' ,*'A ). According to the equalities
0 M 0 i

(1.3) the matrices L(b0'*,B i'A0 ' *° 'Am ) and L(BO,*.*,B m ,C ,'0,C m ) are

equivalent. As (Bo, '*,B m) G X we deduce

L(B 0 ,.'°,B mICOO',Cm)[alo]I = 0, a 6 Q 2 2 G Q 2 or+1 , (m+1)n 2  r+1 ,n

As analogous results to Theorem 1.6 yields that there exists a neighborhood

U of (B0'**,B m ) such that (C0,'',C m ) G orb(B , *,B m ) provided that

(C,''.,C M ) 6 U and the above equalities hold. So there exist (C ,.,Cm

which lies in the orbits generated by (A0 ,.*O,A m ) and (B0 '0000Bm)o Whence

(Bo,°*,B ) G orb(A ,o*O,A ). As orb(A 0..*,A ) c M 0  we finally
0 i 0 n,m+1,r

deduce the equality (1.16). []

Consider the left hand side of the equalities (1.9). These are

multilinear polynomials in the entries of X0 , **.,X,. Let Wn,m+ I be the

linear space of all multilinear polynomials in the entries of X0 **,X m. We

fraldeie W(0,1) testo l x
formally define ,m+ as follows. Denote by Mn  the set of all nxn

matrices I = ( ij) with (0,1) entries, ioe. yj = 0,1. For X = (xij) G

Mn we let
Y,

x x. i , ;M (0 I )  (x. 0I).

1ji,j n U n 1 1

Then Wn,m+i consists of all polynomials

S(0 ..,xm
1 n

~-11-



Clearly

(.18) dim W = 2(m+1 )n
2

n,m+l

With this notation

IL(XU , * ,xm ,A O , *.* , Am )[018]I =

Y Y

(1.19) 
X m

1 fl

r+1,(m+1)n2  r+,n 2

Denote by P(Ao,**.,A m ) the

2 2(m~l~n n(m+l)n 2

r+1 r+1

matrix whose rows are the vectors

(P Yo,..*,(A0'''''Am ' a ' o ) ) ' Y0'.'"Ym e M(Ol'

(p IAM , , 0 m n

In fact the matrix P(A ,'OA ) contains a lot of zero columns, Indeed if0m

we pick up a minor of the form (1.19) then each entry of such a minor consists

of a sum one element of some Xk and some Aj. Therefore the polynomial

(1.19) contains exactly (r+1)! moninomials of degree r+1 of the form

,°.,rF i in the entries of X0,..e,X m. So the number of distinct
1 r+10 m

mononomials of degree r+1 appearing in all possible expression in (1.19) is

exactly (r+l)I((m+l)n)( n The number of distinct monomials of degreer+1 r+1

d r which may appear in (1.19) is di((m+l)n)(n Hence the upper boundd d

for nontrivial columns appearing in P(AO , ,A m ) is

(1.20) N +1= l d((m+l)n2)(n 2 2 r+l((m+l)n2 )(n )
n,m,r I= dI d~n)~ r+1 r+1d=O dr+

By Mn,m+l,r, p  denote the subset of all tuples (Ao ,','A) enm+l,r such

that rank P(A ,0,A) 4 p.
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Clearly, M is an algebraic set. Let M be then,m+1 ,r,P n, m+1 ,r, p

subset ot all tuples (A,',A) M A0  satisfying
O M n,m+l ,r

(1.21) rank P(A0 ,*.,A m ) = p.

Again, it is easy to see that M0  is an open (algebraic) set in
n,m+1 ,r,p

M We now give sets of invariant rational functions which determinen,m+1 ,r,p.

uniquely a finite number of orbits lying in M 0  To do that we need
n,m+1 ,r,p.

to recall the notion of Hermite normal form of a rectangular matrix A. See

for example Marcus-Minc [1964]. Two pxq rectangular matrices A and B

are called row equivalent (A-B] if there exists a nonsingular matrix Q

such that B=QA. Any pxq matrix A can be brought to the unique Hermite

normal form E = E(A) using the elementary row operations. E = (e ij) is

characterized by the conditions

1 4 P1 < p2 < < p p, @ = rank A,

(1.22) e ip = 1, ei = 0 for j < pi, for j = pi+l=1..p
1

e. = 0 for i > P.
iq

The integers pI'.**,p P are called the discrete invariants of A and the

entries eiq, P1 < q # Pi+.',p I i = 1,000,p, are called the continuous

invariants of A. Given pI'**,p' then the continuous invariants are well

determined rational functions of A.

00

Theorem 1.23. Let r and p be positive integers such that nm0 lr~ is

nonempty. Assume that (A ,***,A )(B '***',B ) M 0  If0 m m n,m+l1,rp

(A0,',A m ) and (B0,*OO1Bm) are simultaneously similar then

(1.24) P(A0 , ,Am) P(B0, ',Bm).

0Moreover, there are at most K(n,m,r) distinct orbits in Ml whichn,m+-1 ,r, P

satisfy the equality (1.24). That is the discrete and the continuous

invariants of P(A0 ,01 ',A m ) determine at most K(n,m,r) distinct orbits in

M 0
n,m+1 ,r,p"
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Proof. Assume that (#o'A',B) = T(A 0 ''"'A)T-. Then (1.4) yields that

the matrces L(Xin,X ,A ,#A ) and L(X ,',Xm,B ,1,B ) a.e equiva-

lent. Moreover the transformation matrices do not depend on thce matrices

X0, ,X m . So any kxk minor of L(X , °,Xm ,B ,'0,B ) (L(X o,..,XmAC,

o,*,A )) is a fixed linear combination of all kxk minors of L(Xo,''*,

X ,A , " A ) (L(Xo',',XmB0,',B )). So the matrices P(A 0o ,A m ) and

P(BO'0' In ) can be transformed each one to the other one by elementary row

operations. That is the equality (1.24) holds.

Consider the algebraic variety defined by (1.9). In the decomposition

(1.10) we may assume that X ,...,X T are all the irreducible varieties which

have exactly the dimension r such that X. n M0  is an open non-n,m+1,r,p
empty set in Xi  for i = i,°..,T. By the definition of K(n,m,r),

T 4 K(n,m,r). Suppose that
(Ai) o.(i)

(A , ,A ) G X. n M0  i = 1,0-,T
0 i n,m+1,r,p '

(i) .. (i)
and assume that (A 0 °A i)) is a regular point in Xio That is Xi  is

(i) 00(i)a manifold of dimension r in the neighborhood of (A 0) Aim ). We

(1) .assume the normalization AI = A, k = of,m. So X = orb(Ao',°',A ) "

The equalities (1.4) yield that orb(A(i),..,A (i)) satisfies the system
0 mn

(1.9). As orb(A (i) ,A (i) is a manifold of dimension r which passes

through a regular point (A0
i ) , "° °,A (i ) ) of X i we deduce that

(A(i) i)m -- X.. Now Theorem 1.14 implies that orb(A(i) ) is

(A0  (A)) 1 A0 .,A)Bis

an irreducible variety. So orb(A 0' ,...,A X. Let (B,'.,Bin
0 mn I i 0

M 0 nand assume that (1.24) holds. Thus any (r+1) x(r+l) minor ofnem+1 ,r,p

L(X0 ', XmAo',.A m ) is a linear combination of all kxk minors of

L(Xo,0*,Xm*,B ,., ) and vice versa. Therefore (X ,'*°,X ) satisfies

the system (1.9) if and only if (X , o,X ) satisfies the system

(1.25) L(X 0 , 1 °°,Xm,Bo,° 0,8 m)["10) = 0, a 6 2 8 2
r+1, (m+1)n r+1,n

2
As V(Bo'.,B ) = n -r, (B ,*..,Bm) is a solution to thf- above
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equalities. Whence (B.00 ,B in) satisfies the equations (1.9). Therefore

orb(B 0 0,*"Bm ) satisfies the equalities (1.9). Since (B0 ,'0.B m ) Q

M , we deduce that orb(B,.,Bm) c M 0  So
n,m+1 ,r,p ' m n,m+l,r,p

orb(B0,',B m ) is an irreducible variety of dimension r such that its

intersection with 1 is a non-empty open set in orb(B 0 ,',Bm).n,m+1,r,p
.°° M0

Hence orb(B0, ,B ) = for some 1 4 i 4 T. As (B 0, 1b,) e P.40
m 10 m n,m+1,r

Theorem 1.14 yields that (B0,'.0,B m ) is simultaneously similar to (A 0i )

A (i)). Thus, then at most T (< K(n,m,r)) distinct orbits such that any
m

two points on those orbits satisfy the equalities (1.24). []

Let (A0,'°,Am) l M 0  
1  o Assume that c = (pl,°*O,pp) is the setm n,m+1,r,p'

of discrete invaviants of P(A 0 ,'°,A). Let V0(w) be of the seto0 1, Le V w) b ofthesetof all

(B0  ',B m ) e M0  for which w is the set of the discrete invari-' n,m+1,r,p

ants of P(B0 ,**,B ). Clearly V0 (w) is an open set in M 0  More-0 m n,m+1,r,p*
M 0 0

over, M is a finite union of set V0 (w), for admissible w Q
n,m+1 ,rlp Pn

n 2 = N n,m,r. On each V (w) the set of continuous invariants of

P(Ao,*.*,A ) - which are rational functions in the entries of A0 ,0.,A -

classify the orbits in V0 (W) up to a finite number not exceeding K(n,m,r).

We conjecture

Conjecture 1.26. Let (A 0,.,A), ( m ) G M
0  ° Assume that theO m ~~0'~'8 m n,m+-1,r,p Asuetath

equality (1.24) holds. Then (A0 ,.**,A m ) and (Bo,'.',Bm) are simultane-

ously similar.

For m = 0 the above conjecture is valid. Indeed, according to Friedland [19801

(1.27) V(B0 ,A0) [v(A 0 1A0 ) + X(B0 ,B0 )]/2

and the equality sign holding if and only if A0  and B0 are similar.

According to the proof of Theorem 1.23 the equality (1.24) implies that all

(r+1)x(r+1) minors of L(B,1 A0) vanish. So

2
V(B0,A 0 ) ; n -r = V(A0,A 0 ) = V(B0,B ).

Hence we must have the equality sign in (1.27) which means that A0  and B0  are

similar. In the next section we verify the above conjecture for m=1 and n=2.
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2. The 2 x 2 case.

Let AB, G M2. Clearly

(2.1) 41 = tr(A), 02 = tr(A 2 ), 03 = tr(B), 04 = tr(B 2)' 05 = tr(AB)

are invariant polynomials under the simultaneous similarity.

Theorem 2.2. Let U be the following algebraic variety

2, 2 2 2 2
(2.3) U = ((A,B)j[2tr(A )-(tr(A)2 )(2tr(B )-[tr(B)}]} = [2tr(AB) - tr(A)tr(B)] 2}

Then, for any pair (AB) not lying in U the orbit of (A,B) is deter-

mined uniquely-by the values of 4i(A,B), i = 1,0**,5.

Proof. Suppose first that A has distinct eigenvalues XVi 2, X * X2 ' That

is [tr(A))2 * 2tr(A 2 ). The eigenvalues X and X are determined by the
1 2

values of tr(A) and tr(A 2 ). Then we can choose a pair (D,E) lying in the

orbit of (A,B) such thatX0 0 e
I e 1 1  12

(2.4) D = D(A1 , 2) = X , E = E(e 1 1 ,e 2 2 ,e 1 2 ,e 2 1) = 21

Now
2 2 2

tr(E) = el 4e 22 , tr(DE) = Ae 1 1 +X2 e 2 2 , tr(E 2 ) = e 1 1 +e 2+2e e
112'11 2 1 22 12 21

Thus

tr(DE) - A 2tr(E) tr(DE) 1 1 tr(E)
e _ T , e X=1 I -X 2 22 2 - 1

(2.5)
2 2 2]2

e (tr(E)-e 2-e 221/2
e12e2l [t(2 11 - e22

We claim that e 11e 22 * 0. Otherwise (D,E) G U, i.e. (AB) Q U contrary

to our assumption. Therefore by considering XDX 1  and XEX -1 , where X is

a diagonal matrix, we may assume

(2.6) e 21 = 1.

In that case D and E are determined uniquely by

tr(D) = tr(A), tr(D 2 ) = tr(A 2 ), tr(E) = tr(B),

tr(E 2) = tr(B 2 ), tr(DE) = tr(AB).
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Suppose that (tr(A)]2 = 2tr(A 2 ). Consider the matrix aA+BB. Then

2tr[((A+$B) 
2 ] - (tr( A+OB]

2

2 2 2 2 B2) 2}
(2.7) a 22tr(A2) - [tr(A)] I + B2{2tr(B 2 ) - [tr(B)] 2 I

+ 2cz[2tr(AB) - tr(A)tr(B)I.

Thus cLA+OB has a double eigenvalue for all a and 0 if and only if

A,B) lies on the variety

2 2 2 2
(2.8) V = ((A,B)j2tr(A 2 ) = [tr(A)] , 2tr(B 2 ) = [tr(B)]

2tr(AB) = tr(A)tr(B)).

Since V c U we see that (A,B) 4 V. So we can choose a 0 such that A

A + BB has aistinct eigenvalues. Thus, there exists a matrix X such that

XAX - 
= D, XBX- 

= E.

Again, if e1 1e22 = 0 then AI and B are simultaneously similar to upper

(lower) triangular matrices. So A and B are simultaneously similar to upper

(lower) triangular matrices which contradicts the assumption (A,B) G U. That

is the orbit of (A,B) contains a matrix of the form D-BE and E where

D is diagonal, e 21 = 1 and D and E are defined uniquely by

i(A,B), i = 1,0-*,5 having fixed the value of 0. M

we now examine the matrix meaning of the variety U.

Theorem 2.9. A pair of matrices (A,B) belongs to U if and only if

(A,B) is simultaneously similar to a pair of upper triangular matrices.

Proof. Assume first that A has two distinct eigenvalues A A iA 2 .

1 2' 1 2

Then (A,B) is simultaneously similar to a pair (D,E) where D and E are

given by (2.4). A straightforward calculation yields

2tr(A 2) - [tr(A)] 2 = 2tr(D 2) [tr(D)] 2 = (A X-2 )
2

2 2 2 2 2
(2.10) 2tr(B 2 ) - [tr(B) 2 = 2tr(E 2 ) - [tr(E)] 2  (e 11-e 22) + 4e 12e21

2tr(AB) - tr(A)tr(B) = 2tr(DE) - tr(D)tr(E) = (A -A )(e 11-e 22).

The assumption that (A,B) 6 U means

2 2 2 2( X 2 ) 2[(e 1-e 22) +4e 12e2] = (A1-A 2) (e -e 22)
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Since A we get that e e U. If e21 = 0 then U and E are

upper triangular. Suppose that e12 = 0. Define

1= 0 °

Then (A,B) are simultaneously similar to the upper diagonal matrices (PDP- ,

PEP-). This establishes the lemma in case that A has distinct eigen-

values. Assume that A has a double eigenvalue. If A = I then clearly

(A,B) are a simultaneously similar pair of upper diagonal matrices. So

suppose that (A,B) are simultaneously similar to a pair (D,E)

e e
(2.11) D = E = 1  12

0 e21 e22

Since (A,B) e U we must have

0 = 2tr(AB) - tr(A)tr(B) = 2tr(DE) - tr(D)tr(E) = 2e2 1.

that is (D,E) are upper triangular. U

Corollary 2.12. The variety U is invariant under the linear transformation

(2.13) A1 = aA + 8B, BI = yA + 6B, a6 - 8y * 0.

Let2
U1 = {(A,B)I(A,B) 6 U, 2tr(A 2 ) * (tr(A)]2 }

(2.14)

U2 = {(A,B)I(A,B) e U, 2tr(B 2 ) * (tr(B)21}.

Theorem 2.15. On U1  or U2  the values of Oi(A,B), i = 1,*,5

correspond to 3 distinct orbits. On U1 n U2 the values of *i(A,B),

i = 1,2,3,4 correspond to 6 distinct orbits, while on U1 u U2 - U1 n U2

these values correspond to 3 distinct orbits.

Proof: Suppose that (A,B) e U1 . Then (A,B) is simultaneous similar to

(D,E) given by (2.4). From the proof of Theorem 2.9 it follows that e1 2e2 1

= 0. So we have the possibilities e1 2 = 0 and e2 1 * 0, e21 = 0 and

e 0 and e1 2 = e2 1 = 0. As in the proof of Theorem 2.2 using diaqonal

similarity we can assume that E may have the following form

E= E(e1 1,e22,1,0), L2 = E(e1 1 ,e2 2,0,1), E3 = E(e1 1,e22,0,0).
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We claim that the pairs (D,E ) and D,E.) are not simultaneously similar

tor iAj. Indeed, suppose

D = )X -
, Ej =XEX-

, i~j.

Since 1 is diagonal with distinct eigenvalues the tirst equality implies

that X is alsodiagonal. Then the second equality is impossible. Let

1I and p2 be the eigenvalues of B. Clearly {112 = lel ,e 22. So

either PU e11' P2 = e22 or 1I = e22' U2 
= ell* Let

El = E(e2 2 'e1 1 1,0), E2 = E(e22'e11 
'0'1), E3 = E(e22'e1i ' 0 '0 ).

it 0 2  then E * XE.X -  for any non-singular diagonal matrix X. This1 2

shows that for (A,B) G U1 n U2 the values of the functions 4i(A,B), i =

1,2,3,4 corresponds to 6 distinct orbits. If B has a multiple eigenvalue

then E = E and the above values correspond to 3 distinct orbits. Thus1 1

we proved that on U1 U U2 - UI n U2 the values of 4i(A,B), 1 4 i 4 4,

determine 3 distinct orbits. Suppose we are also given *5 (A,B) = tr(AB).

Note that

(A1I1+X2p2 ) - (1I2+-2j1) = 1A -+)(i -u2).1 1 22 1 22 1 1 2 1 2

Thus for (A,B) G U1 n U2

tr(DE.) * tr(DE.).
i 3

Theretore on UI1 U U2 the values of * I(A,B), 1 4 i 4 5 correspond to 3

distinct orbits. U

Let (A,B) G U. Assume that (A,B) is simultaneously similar to

diagonal matrices (D,E3 ). Then A and B commutes. That is (A,B) lie on

the manifold

(2.16) C = ((A,8)jAb-BA = 0}.

Clearly U n C is a subvariety of U. That is a generic orbit in U

contains a pair of the form (D,E1 ). The fact that the orbit corresponding

to (D,E3 ) is not qeneric can be seen in the following way. Consider the

orbit oru(A,B) as a manifold. Denote by dim orb(A,B) the dimension of
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this manifold. Then

dim orb(A,E) = 3, A e U1 ,

(2.17)

dim orb(D,E3 ) = 2, D e UI

Indeed consider all matrices X which commutes with D and Ei

DX - XD = 0, EiX - XEi = 0, D C U1 ,

For i=1,2 X = AI and for i=3 X is any diagonal matrix. This

establishes (2.17). We shall see later in this section that *i(A,B),

1 ( i 4 5 are generators of [V]G.

From the proof of Theorem 2.15 it follows that the values of these

functions do not separate between the two generic orbits corresponding to the

pairs (D,E1 ) and (D,E2 ), D C U,. According to the result in Friedland

G[1981] there exist rational functions e. 6 (U) , i = 1,**,r which separate1

the orbits in U-W, for some algebraic subvariety W in U. We now give such

functions 6.. Let (A,B) Q U. Then Theorem 2.9 claims that A and B
1

simultaneously similar to a pair of upper triangular matrices. Suppose that

(A,B) G U1 n U2 and dim orb(A,B) = 3. Then A = (a ) 2 and B = (b )2
1 2ij 1 ij 1

thave exactly one common eigenvector (x],x 2 ) . Corresponding to the

eigenvalues A and t1 respectiv'ely

(a1 1 - 1 )xI + a 1 2 x 2 = 0 a21x I + (a 22-1 )x2  0

(b 11-11 1 )X1 + x = 0 b 21x + (b 22-1)x = 0.

Assume for simplicity that

a12a21 b 21x 2  0.

Then we have the equalities

(a ]-X1)b 1 2 = (b 11- 1 )a 1 2  (a 22 - 1 )b 2 1 = (b 22-A)a 2 1 .

So

b12 b11 a12 -a 11 12 b 22 a21-a 22 b21
I'a =-A + - A +

a 12  1 a 12  a 21  1 a 21
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From the last two equalities we can compute the value ot A and then the

value of I
1 (b 11- 22)a 12a2 a22a2 b - a 11a21b12

a (AB) 2 12 b21 -2 1221 111

(11-a22)b12b21 + 22b12a21 - 11621a12

b12a21 21a12

Theorem (2.19). The functions c(A,B), 8(A,B) belong to (U)G. Moreover

these functions are defined on orb(A,B) such that (A,B) C U-C and the

values of a(A,B), O(A,B), tr(A), tr(b) determine these orbits uniquely.

Proof. Clearly, a(A,B), O(A,B) G (U) since a12b2 1 - a2 1b 1 2 is not

vanishing identically on U. Put

2 = tr(A) - c(A,B), i2 = tr(B) - B(A,B).

Then a straightforward calculation yields

2 2 2 2 2 2I + A 2= tr(A), 1 + I 2 = tr(B2),

as (A,B) G U. That is a(A,B) and O(A,B) are the eigenvalues of A and

B respectively. This shows that a,8 G (V) G . Assume that A C U1  and

AB-'A * U. Then the orbit of (A,B) contains a pair (D,E1 ). Clearly

a(A,B) and 8(A,B) is not defined for (D,E1 ). Let (P,Q) C orb(A,B)

lying closely to (D,E1 ). That is

P =(I+X)- 1D(I+X), Q=(I+X)- 1E 1(I+X),

2 2p = p (ij )1, (q ij)1 •

Then

P12 =  ( 2 1-2)X12 +  O( U2 P21 2 X 1 )X21 +  O(IXl2

q 12 =  1 + O(IXI), q21 = ( 2-IA )X21 
+  O(NXU

2 ).

So

P 12 q21-P 21 q12 = -( X-2 )(112- 1 1)X 12 x21 -(2- 1 )X21 + O(KXN2)

Whence it is possible to find (P,Q) G orb(A,B) such that the above

expression is different from zero. Put

a(A,B) = a(P,Q), O(A,B) = O(P,Q)
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and the functions C and 8 are well defined. The matrices (U,EL) have

exactly one common eigenvalue which corresponds to A and e1. So

A = ~(A,B), e = O(A,B)] 11

2 tr(A) - c(A,B), e = tr(B) - O(A,B)
2 22

and the matrices D and E I are determined. The same arguments apply if

B G U2, AB-BA * 0. Suppose that A 4 U1  and B 4 U2. That is (A,B) is

simultaneously similar to (E(X,E), E(U,n)) where

(2.20) E(X, ) = (11 E).

But then E(X,E) and E(P,n) commute. The proof of the theorem is

completed. U

For any 2x2 matrices A,B the (1,1) entryof AB-BA equals to a12D2l

- a21 b12 . That is a12b2 1 - a2 1b]2  vanishes identically on C and therefore

the functions a(A,B) and 8(A,B) are not defined on C.

If A e U1  and A and B commutes so A and B are simultaneously

diagonal then trom the proof of Theorem 2.15 it follows

Theorem 2.21. On (U1 U U2 n C) the values ofthe functions 0i (A,B), i =

1,2,3,4,5 determine the orbit of (A,B).

We are left with the orbits in U n C such that A and B have double

eigenvalues. It means that (A,B) are simultaneously similar to (E(X, ),

E(I1,n)). As E(X,E) and E(P,T1) commutes we get

(2.22) V c C.

Thus we need to classify the orbits in V.

Theorem 2.23. Let (A,B) 6 V. Then

(2.24) y(A,B) = a /b = a /b
12 12 21 21

Gbelongs to (V) . Suppose that either Y(A,B) or 1/Y(A,B) is defined on

the orbit of (A,B). Then the values of tr(A),tr(B) andy(A,B)(1/y(A,B))

determine a unique orbit in V.
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Proof. According to what we proved orb(A,B) contains a pair (E(X, ),

E(I,nl)). Clearly

X= 1/2 tr (A), p = I1/ tr (8).

By considering the matrices

A, = A - )I, B = B - UI

we can assume that X=0 and P=0. Let
X-1 -

A = XE(0,)X , B = XE(0,n)X

Then a straightforward calculation shows that Y(A,B) =/n.

That is y(A,B) is indeed an invariant function on V. Assume that

n * 0. In that case y(A,B) is well defined. Choosing an appropriate

diagonal matrix X and considering the matrices XE(X,E)X -
, XE(IJ,n)X we

can assume that n=1. Then = y(A,B). Hence, tr(A),tr(B) and Y(A,B)

determine the orbit of (A,B). The same arguments apply if * 0, i.e.

1/y(A,B) is well defined. U

Suppose that neither y(A,B) nor 1/y(A,B) are not defined on the orbit

of (A,B). Then we must have that (A,B) lie on W

(2.25) W = {(A,B)la12 = a21 = b21 = b12 = 0, a11 = a22' b11 = b22

Clearly, on W tr(A) and tr(B) determine the orbit completely.

Thus we completed the classification of the simultaneous similarity of

2x2 pairs of matrices according to the program outlined in Friedland

(1981]. Next we note that on all subvarieties in M2 M 2 except V the

values of the functions *i(A,B), 1 C i 4 5 determine a finite number of

orbits. We claim tft on V the values of any set of invariant polynomial

functions, i.e. functions belonging to (VI G , cannot in general determine a

finite number of orbits in V.

Theorem 2.2b. The functions tr(A) and tr(B) are the generators in [VIG.
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Proof. Let (A,B) G V. Then orb(A,B) contains a pair E(X, ), E(if).

Then

El1,d,O,O) E(X,E)E(1,d,U,O) = E(X,Ed)

-1
L (1,d,O,O)E(P,n)E(1,d,O,O) = E(P,rld)

letting d + 0 we get that the closure of orb(A,B) contains the matrices

E(X,0), E(P,O). Suppose that *(A,B) G [V]. Then

*(A,B) = f(E(X,0),E(M,U)) = g(X,u) = h(tr(A),tr(B)),

for some h S C[x,y]. U

Thus the transcendence degree of [VIG over C is 2. The

transcendence degree of (V)G over C is 3. More precisely we have

Theorem 2.27. The functions tr(A), tr(B) and y(A,B) generate (V)G and

they are algebraically independent.

Proof We claim that

(2.28) dim orb(A,B) 4 2, (A,B) G V.

Indeed, suppose that (A,B) is simultaneously similar to E(A,C), E(U,n).

Then E(a,O) commutes always with E(X,F) and E(I,n). Moreover if either

or q * 0 then E(a,B) is the only matrix which commute with E(X,) and

E(P,n). This proves (2.28). As the dimension of V is 5 the transcend-

ence degree of (V)G is at most 3. Clearly tr(A), tr(B) and y(A,B) can

be given any values zl, z2 and z 3. So these functions are algebraically

independent, i.e. the transcendence degree of (V)G is 3. Let *(A,B) G

(V). Then f(A,B) is algebraic with respect to x1 = tr(A), x 2 = tr(B),

X = y(A,B) m
m

(2.29) m + Pi (Xl,X 2 ,X3 ) = 0, Pi Q C(xiX2' x 3)
i= 1

be the minimal equation for 0 . So the left hand side of (2.29) is an

irreducible polynomial over C(x1 ,x21x 3 ). But then given the values of

x1 ,x2 ,x3 we know that orb(A,B) is determined (x3 is well defined).
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Thus, it * is defined on orb(A,B), tor example Pi (xox2 1 X3 ) 0, then

* has unique value. But it is well known that (2.29) must be m sheeted

cover ot C. Whence m=1 and 0 is rational in xi, i = 1,2,3. U

N(xt we use the arguments ot Theorem (2.27) to show that (M2 412  is
2 2

generated by *i(A,B), i=1,2,3,4,5.

Theorem 2.30. The functions Oi(A,B), i=1,2,3,4,5 generate (M2 44 2)G and

G
are algebraically independent. Moreover these functions generate (M 2*M 2

Proof. Since the dimension of the generic orbit in M 4M is 3 the
2 2

G
transcendence degree of (M2 XM2) is 5. As a generic orbit is determined by

the values of Oi(A,B), 1 < i € 5 we easily deduce that Oi(A,B), i=I,''',5

are algebraically independent. Therefore these functions form a transcend-

ental basis in (M 2XM )G Let 0 e (M 2 XM2) So 0 is algebraic over

#i*o-,#5 .That is

15 m

(2.31) *m + I p (* .. , ) -  = 0.
i=i

Let (A,B) e U. Then orb(A,B) is determined uniquely by *1,* ,5

Combine this with (2.31) to deduce as in the proof of the previous theorem

that m=1, i.e. 0 is rational in 0i,'.'05 •  This shows that 5

G G..
generates (M2 XM2 ) . Let 6 [M2 M41 G. So 0 is rational in 0 ' 10"5"

Also 0 has a finite value for any 1 "5 Thus 0 must be a polynomial

in °5 That is [M2 xM2]G is generated by

We finally compare the results of this section to the classification

procedure outlined in Section 1. We first note that if A and B are not

commuting then the only non-trivial solution X to the system

(2.32) AX-XA = 0, BX-XB = 0

is X = Al. That is

(2.33) M2 XM2 - C = M2,2,3
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We conjecture

(2.34) M XM - U = M2 , u - C = M 2 2 3 , P1 > P2
2 2 2,2,3,P2,1p2 1 21 2

It seems that for (A,B) e M XM - U all 4x4 minors of L(X,Y,A,B) are

linearly independent. That is equivalent to the equality

P1 = (") = 70.

On C- W the system (2.32) has two independent solutions X=A, X=B and

X=I if A or B are zero matrices. So

(2.35) C- w = M2,2, 2 '

We conjecture

(2.36) V - W = M2,2,2,p 3 (U 1 U 2) n C - W = M2 ,2,2,p 4' P3 > P4

Finally

(2.37) W = M2,2,0 '

We now verify Conjecture 1.26 for m=n=2.

Thegrem 2.38. Let A,B, C M2 and assume r = 4-V(A,B) where V(A,B) is

defined as in Section 1. Let X be the algebraic variety given by (1.9)

(re=n=2). Then

X = orn(A,B) for (A,B) G M2 XM 2 - U

X = X I u X2 , X I = orb(A,B), dim)(2 = 5, for (A,B) C U -

(2.39) X = X U X2 UX3 , X, = orb(A,B), Xi+1 = {(X I' iI)}' i = 1,2

for (A,B) G C - V

X = orb(A,B) for (A,B) 8 V - W,

X = orb(A,B) = {(A,B)}, for (A,B) G W.

In particular Conjecture 1.26 is valid.

Proof. Assume tirst that (A,B) N 2XM2 - U. It is enough to consider the

case where A has two distinct eigenvalues. Thus we may assume that A=D,

H=E where D and E are of the form (2.4) and e 1 2 e 2 1 * 0. In particular
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rankL(A,B,A,B) = 3. Suppose that

(2.40) PX-XD = 0, QX-XE = 0, P = 2 (q.
=j ij 1

has a non-trivial solution X such that IXI = 0. By considering the

matrices

P1 = TPT-I Q, =T T -
, X1 =TX

we may assume that either

(2.41) X (1 X)
0 0

or

(2.42) X = (0 1).
0 0

Suppose that possibility (2.41) holds. Then the first equation of (2.40)

yields

(2.43) P11 = X' PA21 =0, x = 0.

The second equation of (2.40) implies that e 12 = 0 which is

impossible. So, if X * 0 satisfies (2.40) then IXI * 0. Hence (P,Q) is

simultaneous similar to (D,E). That is X = orb(A,B) and this orbit is

closed.

Suppose next that (2.42) holds. Then the first equation of (2.40) implies

(2.44) P 1 1  2' P21 = 0.

The second equation of (2.40) yields e2 1 = 0 which is impossible. This

proves the theorem for (A,B) G M 2XM2 - U. Assume now that (A,B) G U - C.

Again we may assume that A has two distinct eigenvalues. So let A=D, B=E,

12 0, e2 1 = 0.

Suppose that X is of the form (2.41). Then (2.43) holds. Then the second

equality of (2.40) yields that e 12 = 0 which is impossible. Assume now that

X is of the form (2.42). So the equality (2.44) holds. Then the second

equality of (2.40) implies

(2.45) q11 = e2 2 ' q 2 1 = 0.

-27-



We claim (P,Q) is not similar to (D,E). Indeed if P,Q do not commute then

P and Q have one common eigenvector corresponding to the eigenvalues X2

and e22 respectively. Since the common eigenvector of D and E corresponds

to X and e11 respectively, (P,Q) and (D,E) are not similar. Clearly,

if P and Q commute then (P,Q) and (D,E) are not similar. The set of all

matrices (P,V) satisfying (2.44) and (2.45) forms a manifold of dimension 4.

Consider all pairs (PI,QI) simultaneous similar to (P,Q). As the set of

matrices (P,Q) satistying (2.44) and (2.45) is invariant under the

transformation (TPT- , TQT- I ), T is an upper triangular matrix. We deduce

0
that the manifold X consisting of matrices (P1 ,Qi) is of dimension 5. Thus

2

X = closure X is an irreducible variety of dimension 5. This establishes the
2 2

theorem in this case. Note that in this case
A I  0 ell 0

(2.46) X n X2  orb(D,E1 ), D = ( 1 ), E1 = 
(  e

1 210 2 1 0 22
Assume next that (A,B) G C - V. So A and B are simultaneously similar to

diagonal matrices such that at least one of them has distinct eigenvalues. Again

we may assume A=D has two distinct eigenvalues and B=E with e1 2 = e2 1 = 0.

Let X satisfy (2.40). Then as before either (2.41) and (2.43) holds or (2.42)

and (2.44) holds. As V(A,B) = 2 we have an additional linearly independent

matrix Y satisfying

(2.40)' PY-YD = 0, QY-YE = 0, Y = (yij) .

We also assume that IaX+bY = 0 for all a and b. By interchanging the roles

of X and Y we get 3 possibilities

(2.47) X1 = 0 = 0 0 2 = X, Y t2 = Y'

X3 = YI' Y3= I-X1"

The choice X1 and Y is impossible since we get X1 = A2. The choice

Xi+ 1,Y1i+ yields the solutions P = X I and Q = eiiI for i=1,2. So the

theorem is established in this case.
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Next let (A,B) G V-W. By considering the matrices

A = aA+OB, B, = yA+6B, a6-OY $ 0

and making the similarity transformation (TAT-1, TBT -1 ) we may assume that

(2.48) A = 1), =( 0)

0 X 0 11

Suppose that X is of the form (2.41). It is easy to check that it is

impossible to satisfy the first equation of (2.40). So X must be of the form

(2.42). Then the linearly independent matrix Y which satisfies (2.40)' can be

chose of the form Y3 given by (2.47).

So the equalities (2.40)-(2.40)' yield P = XI, Q=B. Since the matrices

(A(a) = (X '),B) G orb(A,B)

for any a * 0 we deduce that (P,Q) G orb(A,B). So orb(A,B) is the only

irreducible component of the system (1.9).

Assume finally that (A,B) G W, i.e. A = XI, B = III. Then v(XI,pI) = 4

so r(XI,UI) = 0. But then L(X0X ,XI,UI) = 0 if and only if X = XI and
0' 1

X, = VI. Thus we proved the equality (2.39). Suppose (A,B), (A11B1 )

G M and assume that the equality (1.24) holds. Then the variety X
2,2,r,P

given by (1.9) contains the irreducible varieties orb(A,B) and orb(Ai,Bl)

of dimension r. The equality (2.39) yield that X contains exactly one

irreducible variety of dimension r. So or-b(A,B) = orb(AI,B 1). Now Theorem

1.14 (the equality (1.16) yield that (A,B) and (AI,Bl) are simultaneously

similar. a

Remark 2.49. The proof of Theorem 2.38 yields the existence of non-similar

pairs of matrices (A1 ,B1 ),(A2,B2 ) such that

(2.50) V(AI,B) V(A 2 ,B2 ) = V(AI ,B1 ,A2 B2 ) = 1, (AI'B 1 ),A2 'B2 ) G U - C.

This cannot happen in case that m=0 since the equality sign in (1.27)

implies the similarity of A 0 and B0 for any dimension n. (See Friedland

[1980]).
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3. Polynomial maps and varieties.

Let

e C c , 0 = (C (V),...,e (c)), G C

be a polynomial map, i.e. (€) is a polynomial for i : 1,*-,v. In what1

tollows we shall survey various properties of these maps needed in this

paper. See van der Waerden [1950], Shafarevich [1974] and Whitney (1972) for

general references on the algebraic and analytic properties of the polynomial

maps. Specific results will be given the exact reference. The inverse image

-.1of w, i.e. e (w) is called an algebraic variety in C That is any

algebraic variety in C is given by some system of polynomial equations

= i' i = 1,'',V, for some V. We denote this algebraic variety

by X. In what follows all the varieties mentioned here are algebraic. X is

called reducible if X= X I u X 2 where X. * X for i=1,2 and each X i is

a variety. Otherwise X called irreducible. It is well known that any variety

is a finite union of irreducible ones. Any irreducible variety is connected. A

point x in an irreducible variety X is called regular if in the neighbor-

hood of this point, X is a manifold. The dimension of this manifold does

not depend on a choice of the regular point and it is called the dimension

of X. Let XU be the set of all regular points in X. Then X0 is an open

connected set in X . In particular X0 is a manifold. Recall that Y is

an open set in X if y = X n w for some open set W in C. Y is called

algebraically open if W is the set of points for which p(4) * 0, for some
m

polynomial p. Note that a finite union of open algebraic sets U W

(defined by pC * 0) is an open algebraic set W given by p = p1  *Pm.

If Y is an open algebraic set in irreducible variety X then Y is con-

nected. Let X be an irreducible and X0 be the manifold of the regular

points of X
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Then X 0 is an open algebraic set. That is the set of singular points

in X is a subvariety of X. For a reducible variety X the dimension

of X is defined as the largest dimension of its irreducible components. A

variety X is called homogeneous if tX = X for all t * 0. In that

case X is the zero set of 8 (C) = 0, i=l,**-,V, where each . (;) is a

homogeneous polynomial. For any variety X, let Xh be the homogeneous

variety given as the closure of the union of tX, for all possible t.

Clearly X is irreducible if and only if Xh is irreducible. To study the

homogeneous varieties it is convenient to introduce the projective space

pu-1. It is the set C - {0) when one identify C with t for any

t * 0. Thus any homogeneous variety X of dimension d gives rise to the

V-1projective variety X of dimension d-1 in P and vice versa. A well

known result for projective varieties claims (e.g. Shafarevich (1974)).

Theorem 3.1. Let X1 and X2 be projective varieties of dimensions di-1

and d 2-I respectively in P - If d 1+d2 > v+1 then X1 n X2 is a non-

empty projective variety at least of dimension V-d -d 2+1.

Let X be a projective variety of dimension d-1. Let Y be a

projective variety given by the intersection of d-1 hyperplanes
V

(3.2) H = {x, I a. .x. = 0, x G P V-1, i=1,-*-,d-1.
j=1 3 3

Then, according to Theorem 3.1 X n Y is a non-empty projective variety. We

assume here that (a i,' .,aiv) P- 1, i=1,',9,d-1. Moreover except for

some variety Z in

V-I,d-1 V-1 V-IP =P x .. X P

d-1

V-1
X n Y consists of exactly 6 points in P - The number 6 is called the

degree ot the variety X and is denoted by deg X. In what follows we need

the following result.
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Theorem 3.3. Let X be an irreducible projective variety in Pd-l of

dimension d-1 # 1 and degree 6. Let H,,**,Hd- 1 be any d-1 hyperplanes

V-1
in P . Let

k V k

(3.4) Xk = X n H. = U Xki , k 4 d-1
9=1 i=1

X * X are the irreducible components of X k Then

(3.5) dim(\) > d-l-k

and

(3.6) deg Xki 4 deg X = 6.

Proof. Consider

If XC H then XI = X, V1 = 1 and the theorem trivially holds. If X

does not lie entirely in HI then V

U Xi=1 i

and

dim i = d-2, i = 1,e*',V .

So

d-1,. d-1
X n H. =u(X n H.)

i =:2 ^ d-1 =
andn H. will consist of degX1. distinct

for ge er c = d i =2 co si t f 2 D ~ d 1'j=2 H

points.

Since X x it for i # I for the generic hyperplanes H2,*°*,Hdl

d-1 d-Athe sets X n H. and X itj=2 H. must be distinct. Otherwise X i n Xit

j=2 A A

will contain a smooth manifold of dimension d-2 and thus X - Xi,, as X i

and xI are irreducible which is impossible. Hence in case X H1  we

have

A V A

deg X 1 degX
i-i3
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Consider now X n H n H 2 . Then

1 2
X nH 1 n H2 =( U  X i) H2 .i=1

Also

11 2 j=1 ^iX1  fH 2 = 0 Xi

As dim X > d-2 we have dimX - ) d-3. According to what we proved

above
P

degX i = Z degX 1 . -j=1

So

(3.7) deqX = Z degX = degXi j -

As1 i=1 j=1
Also1

^V Ii ^
= 1 PX2  = =1U =1X lij •
i=1 j=1

Consider the decomposition (3.4) of X2  to irreducible factors. Clearly
A2

X 2 = Xli j  for some i,j. However if X pqc Xli j  then Xlp q  will not

appear in the irreducible decomposition of X . Thus the equality (3.7) implies

the inequality (3.6). This completes the proof of the theorem for k=2. The

same arguments establishes the theorem for any 3 ( k 4 d-1. a

Remark 3.8. It is easy to show that for generic hyperplanes H ,., the

equality sign would hold in (3.5) and (3.6). Also, the degrees of all Xi

must be the same.

Let M be the set of nXm complex valued matrices. We identify

n,m with mn . For simplicity of notations we shall assume

(3.9) 1 ( m 1 n.

For 1 4 r 4 m 4 n let Mn,m, r  be the set of matrices A such that

rank A 4 r. That is

(3.10) M = {A, A[0I10 = 0, a QG , 1
nmr r+1,n r+1,m
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Hence M is a homogeneous variety. Thus we can view M as, an,m, r n~m, r

projective variety in Pmn-], We claim that Mn,m,r is an irreducible

variety. Let M0  be a set of all A G M with rankA = r. Clearly
n,m,r nm

this set is open in Mn Also for A e M0
n,m,r* n,m,r

(3.11) A = PDrV, P Q GLn , Q G GLm,

where Dr = (dij), dii = 1, i = 1,000,r and all other entries of Dr

vanish. As GLn and GLm are connected manifolds M0  is a connected
n,m,r

manifold. So Mn,m,r is irreducible. We claim

(3.12) dim Mn,m,r = r(n+m-r) (r 4 m 4 n).

Indeed, pick up A0 G M
0  • Assume for simplicity that the first r
n,m,r

rows of A0 are linearly independent. Thus, if the first r rows of A stay

in the neighborhood of the first rows of A0 these rows will be linearly

independent. This gives rm independent parameters. Now, if A G Mn,m,r

then any other row of A is an arbitrary linear combination of the first r

rows of A. This gives us additional r(n-r) parameters.

So we proved (3.12). Next we claim

Theorem 3.13. Let Mn,m,r be the irreducible variety of all nxm matrices

with the rank r at most. Suppose that 1 4 r < m 4 n. Then

( 4 M(m-r)(n-r)
(3.14) degM n,m,r = (r+1)

To prove this theorem as well as other results we need the following. Let

8 :C P  C be a polynomial map. Denote by 30(4) the Jacobian of 8 at

the point . Let p be the rank of ae. A point ; G C P is called regular if

rankae() = p. A point 4 is called singular or critical if ranka8O() < p.

Let S be the set of all singular points of 0. Clearly S is an algebraic

variety. So C - S the set of regular points is an open algebraic set in

1A 1i 'IC . Therefore 8(C - S) is a connected manifold in C ot dimension p.

1i V
Hence, X = ct e(C ) is an irreducible variety of dimension P in C . Also
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8(cp - S) is an open algebraic set in X . So X - 0(C - S) is a closed

subvariety in X . Thus, there exists a non-trivial polynomial K such that

(3.15) ic(W) = 0

for any w X - O(C P - S). In particular any W E X - 6Cc P ) (W is an

omitted value in X ) must satisfy (3.15). Consider Y = ck O(S). It follows

that Y is a subvariety of X. So there exists another non-trivial

polynomial K such that any critical value w of 6 must satisfy (3.15).

Let W be a noncritical value, i.e. W C O(C" - S). Then

(3.1b) - )) = U Y.

j=1 3

where each Y. is an irreducible variety of the dimension p - rank36. The

number m is independent of the point w and is called the degree of the map

- deg 0. The continuity argument implies that whenever we have the decomposi-

tion (3.16) to irreducible varieties then i 4 degO. The map 8 is called

regular if

rank aO = min(P,v).

The arguments above show

Theorem 3.17. Let CP + C be a polynomial map. Let the degree of

degO - be defined as above. Consider decomposition (3.16) of 0-(W)

to its irreducible varieties. Then m 4 degO. If w e 0Cc ) is not a

critical value then m = degO and dimYi = P - rankD0, i = 1,-',degO.

Assume that P ) V and suppose that 0 is a regular map. Then there exists

a non-trivial polynomial K such that any omitted value w g C - e(CO) must

satisfy (3.15). Assume furthermore that P = V. Then any non-critical value

W G C is obtained exactly degO times.
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Note that if 0 is onto map then K(w) can be chosen to be EI. The most

interesting case is when P = V. In that case there are simple sufticient

conditions for 6 to be an onto map. Let p(;) be a polynomial in 0

variables. Denoted be deg p the degree of p. Define

p() lim P(t;) . deg p • 1,
t+0 tdegp

(3.18)

Put P,(W) 0 if p is a constant.

V

(3.19) 87= (8 ' ), degO = 11 deg 6.
i=I

Theorem 3.20. Let 8 + + CIA be a polynomial map. Assume that the system

(3.21) 0(i) = 0

has the only solution = 0. Then the system

(3.22) 6(;) = W

is always solvable. The number of distinct solutions of (3.22) is at most

degO. Moreover, there exists a non-trivial polynomial K(w), w Q C such

that the equation (3.22) has exactly degO distinct solutions unless w

satisfies (3.15). That is e is degO covering of C.

Remark 3.23. This theorem is essentially due to Noether and van der Waerden

(1928]. It was rediscovered by us in Friedland [1977] (Theorem 2.1).

Although Theorem 2.1 is stated in a slightly different form we did show in the

proof of Theorem 2.1 that the equation (3.21) has exactly degO distinct

solutions unless w is a critical value. In that case the arguments

preceeding Theorem 3.17 imply that w must satisfy a non-trivial equation

(3.15). In fact K(w) is non-constant if degO > 1.

Proof of Theorem 3.13. Consider generic HI,'',Hp_ hyperplanes where p =

r(n+m-r)-1 in the projective space pmn-1o So
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pM I1 H = (AI,'',A q }

n,m,r q^j = 1 11de(n,"iHp mV- v-i h

where q = deg(M r). When we vary (H 1 ,H p Q x - x P the

p

points [A],.** A I sweep an open set in M * So we may assunme that

HI,-..,H p  were chosen such that

(i) AI,'',Aq  are pairwise distinct

(ii) the rxr minors composed of the first rows and columns of

A I,,A are distinct from zero. Also (1,1) entry of each Ai  is
1 q 1

different from zero. As each Ai  lies in the projective space we

may assume that (1,1) of each Ai is equal to 1.

Then AI,"'',A q  are the solutions of the following mn polynomial equations

whose variables are the entries of X = (x ij), i=1,---,n, j=1,•-,m.

(I) all (r+1)x(r+1) minors of X which include the first r rows and

columns of X are equal to zero.

(II) Hj(X) = 0, j =

The set of equations (I) consists of (m-r)(n-r) homogeneous equations of

degree r+1. Sets II + III consist of r(n+m-r) linear equations. So we

have exactly mn equations. The left hand side of I, II and III defines a

map : Cm n  Cmn  of the degree 6 = (r+l)(mr)(nr). Next we show that the

system (3.21) has the only solution X=0. Otherwise at least one Ai will

have (1,1) zero entry which contradicts our assumption.

Theorem 3.20. yields that q 4 6. It is left to show that we have the

equality sign q = 6. As M is an irreducible variety such that
n,m,r

M is open in M it follows that p generic hyperplanes
n,m,r n,m,r

H ,''',H will intersect M transversally. That is w- may assume that1 p n,m,r

0 is regular at the points AI,' ,A q  In that case the Remark 3.23 implies

that q=6  and the theorem is proved. I

-37-



In M 2 2 consider a subspace L of matrices of the form(m+1)n2,n2

h(X 0  X,'A0 ''XA ) where X0 ,.,X m  are arbitrary nxn matrices and

is a complex parameter. Let
T)

(3.24) Y = M 2 2 Y = U Y
(m+1)n ,n ,r j=1 )

where each Y. is an irreducible homogeneous variety. According to Theorem 3.13

[(m+1)n2_r[n 2_r]

deg M 2 2 = (r+1)[= K(n,m,r).

(m+1)n ,n ,r

Next Theorem 3.3 yields

1
(3.25) rn I deg Y •K(n,m,r).

j=1

Let X be the variety given by (1.9). Assume that (1.10) is its decom-

(n+ )n 
2

position to irreducible varieties in C n . Clearly each irreducible

X i  is obtained by restricting some Yj to the hyperplane H of matrices of

the form L(X0 ,...,Xm,A 0 ,1 O*,Am). Since some Yj may have an empty inter-

section with H we have the inequality K 4 n.

This establishes (1.11). More precisely, Theorem 3.3 implies
K

(3.26) . deg ;h 4 K(n,m,r).
j=1 h h

Thus if we can compute the degree of orb(A0,-O',A ) we could probably

improve the inequality (1.11) by means of the above inequality.
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4. Algebraic functions.

Let p(X,x) be a polynomial of the form
n

(4.1) p(Xx) = A + p pi(x)An-.
i= 1

As usual let C[X,x] he the ring of polynomials in X and x. As

C[,x] is UFD (unique factorization domain) p(X,x) decomposes to

irreducible factors
k

(4.2) p(X,x) = R q.(X,x)
i=1

where each qi (X,x) is irreducible and qi and q, are coprime for i*j.

Moreover since p(X,x) is monic in X each q. (,x) can be assumed to be
1

monic in X of degree 1 at least in X variable. For this property and

others consult for example with Whitney (1972]. We call p(X,x) degenerated

if in the decomposition (4.2) some factor is repeated twice at least. That is

P > I for some i. In what follows we consider the roots of p(X,x)

(4.3) p(A,x) = 0.

Then each root A(x) is an algebraic function of x. We can name these roots

by 1(x),' *,°  n x). Clearly there are two identical roots A.(x) and

A(x) if and only if p(X,x) is degenerated. For X (x) a point C is) 1

called a regular point (point of analyticity) if . (x) is analytic in the1

neighborhood of this point. Otherwise ; is called a branch (singular)

point. Let t be a branch point. Then it is possible to group the

eigenvalues as follows

(4.4) [X 1x), **,A m (x)), x i1+1(x), .,2 +A (x), °°[K- (x), ", m (x)
1 1m2K-i+n

such that, when we circle once on the small circle around 4 each group of

eigenvalues undergoes a cyclic permutation. For brevity each group will be

called a cycle at ? and the number of elements of a cycle will be called its

period. So if the period ot a given cycle is one then the corresponding

(x) is analytic in the neighborhood of . Thus ; is a branch point if
-
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there exist a cycle of eigenvalues with the period greater than one. Assume

that { (x),.,m (x)) form a cycle. Then we have the Puiseaux series

(4.5) h (x) = I P j(h-1)(x-)/m h -

2wi/m 

j=0

where W = e2 /  See for example Whitney [1972, p. 32].

It is well known that the equation p(A,x) = 0 has a finite number of

branch points b1'','b* so each A.(x) is a multivalued analytic function

on

(4.6) D = C - {, , .

Suppose that p(X,x) is irreducible. Then each X. (x) is n valued.1

In other words each i (x) is analytic univalued on n cover sheets of D.1

More precisely, starting from one branch of i (x) it is possible to recover1

all other branches of A(x) on D by analytic continuation. Using the

decomposition (4.2) we can find how many branches each i (x). has. In1

particular, if all the eigenvalues A.(x), i=2,'O',n can be generated from
1

A (x) then p(A,x) must be irreducible. Next we study what happens when

x + 0. Assume that p(X,x) is of the form (4.1). Define

(4.7) 6 = max deg pi/i.
<,i 4n

n6
Divide the equation (4.1) by x to deduce that

6
(4.8) Ix (x)i < Kjxj for lxi - r.

So at x = , i.e. jxi > r for some large r, we divide the

eigenvalues to the cycles of the form (4.4). Now the group A1 ,''Am must

have the expansion

(4.9) Xh(x) = /hx ( /m v -Uhx-j/m) 0 < a i 6.

j=0

The case O=0 can only correspond to the case where m=1 and A (x)

is a constant function.
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Lemma 4.10. Let q(X,x) be of the form (4.1)
m

(4.11) q(X,x) = m + I qi(x)rm-i.
i=1I

Assume that q(X,x) divides p(X,x). Then

(4.12) deg q. (x) 4 i6, i=1, ',m.1

Proof. It is possible to rename the roots X of p(X,x) = 0 such
1 n

that
m

(4.13) q(x) = 1 (X-A (x)).
i=1

According to (4.9) lqi(x)I Klxli 6 for lxi big enough. This proves

(4.12). U

Definition 4.14. A point is called an intersection point if either is

a branch point or there exist two distinct eigenvalues X. (x) and X. (x) (inI J

the neighborhood of ) analytic at such that X.() = XA() if 1 is

X. (x)1 1

finite. (In case that 1 = we demand that lim X. - .)
x+* j

Consider for example

n

(4.15) p(X,x) = R [X - (a. + b xr 1, r is a positive integer.
i=I

Then we do not have any branch points but there are intersection points

(4.1b) . = (a.-a.)/(b.-b.), 1 ( i < j 4 n

if (a.,b.) * (a.,b ).

Suppose that p(X,x) is not degenerate. In order to find the inter-

section points we consider

2
(4.17) D(p) = 11 (X.(x)-X.(x)) = D(x).

14i<jn 1

Since p(A,x) is monic in X it is well known that D(p) is a polynomial in

p 1, 'p n .  Tne expansion (4.9) implies that
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(4.18) deg D(x) 4 n(n-1) 6 .

Clearly U(x) 0 if and only if p(A,x) is degenerate. Thus if p(,x) is

nondegenerate then a finite point C is an intersection if and only if

D(W) = 0. We now study the connection between the multiplicity of the root

x = C in D(x) and the nature of the intersection point 4.

Theorem 4.19. Let C be a finite intersection point. Suppose that X (x),

•.*,X (x) break up to the cycles as given by (4.4). Assume furthermore that
n

AI (C) . .... A (C) # A (C) .... A (C)
1k mk ik +m2

(4.20) 1 1

# A +i(8 ) ... = A CC), kCe .
0e-i 0e

Then x=C is a root of D(x) at least of multiplicity
K 8-1

(4.21) L = (m i-1) + 2 1 1 min(mi,m), k 0 =0, ka=K.
i=1 p=0 k +1(i<j~k p+ Ipp+

Proof. Assume that A (x),',*, (x) is a cycle of period m at x=C.

1 m

Consider the product

2
f(x) = H (X (x) - A(x))

1 )i<j m

By completing one circle on Iz-CI = r we permute A1,...,m cyclically so

f(x) is analytic and univalued in Iz-CI < r. Each \(x) has an expansion

(4.5). So (x) - X (x) is divided by (x-) . Thus f(x) is divided by

M 1 1A
(x-C) -

. This shows that D(x) is divided by (x-C) , . = (m-I).
i= 1

Assume now that XM+i (x), -,X A+1(x) is another cycle of period £ such that

A.(C) = A.(C), i,j=1,..,m+L.

Consider the function

g(x) = 1 (A.Cx) - A.(x)).
I<i4m, m+1e-j 4M+X

By circling around the point C we permute the branches A ' and

Am+1 °O,,A So g(x) remains univalued in the neighborhood of C. That
' 'm+ 2 "

is g(x) is analytic for Ix-4I < r. Without loss in generality we may

assume that m ) 1. Then g(x) is divided by [(x-)I/mxm£ -
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Thus g2 (x is divided by (x- )2t. So altogether D(x) is divided by

L
(x-) where L is given by (4.21). U

Theorem 4.22. Let C be a finite intersection point. Assume furthermore

that 4 is a simple root of D(x). Then C is a branch point of the

algebraic function p(X,x) = 0 and the equation p(A,C) = 0 has exactly

n-1 distinct roots. That is at x= one has exactly one cycle

X1 (x),2 (x) of period two while all other branches 3(x),*, n(x) are

analytic in the neighborhood of . Moreover in the expansion (4.5) P 1 0

(m=2).

Proof. Our assumptions imply that L given by (4.21) is equal to 1. So

ki = i, i=0,*°,K and m1=2, mi=1, i=2,-**,,. Thus is a branch point

and p(A,1) = 0 has exactly n-1 distinct roots. Furthermore

(4.23) (1 (x)-A 2(x)) 2 = 4(x- )( P 2j+I (x-;)j) 2 .

j=0
Thus is 0i=0 then x= is a zero of order 3 at least of D(x).

Therefore p *0. U
1

Theorem 4.22 shows that the simple zeros of D(x) describe the simplest

possible branch points of p(X,x) = 0. Theorem 4.19 enables us to analyze the

double roots of D(x).

Theorem 4.24. Let 4 be a finite intersection point. Assume furthermore

that is a double root of D(x). Then one of the following conditions

holds.

(i) p(X,;) = 0 has n-1 distinct roots, i.e.

A (;) = A2(2), (X ) i 0 (4) for 2 4 i < j < n.

In that case each A.(x) is analytic in the neighborhood of C and
111

(ii) p(X,4) = 0 has n-2 distinct roots and one of them is triple, i.e.

A2 = (3) = 2( ) = AX(), A.(i) X A ( ) for 3 4 i < j <n.
-433
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In that case x = C is a branch point with exactly one cycle

A (x),A 2(x),A 3x)}, while all other branches 4(x),**°,AnX) are

analytic. Moreover in the expansion (4.5) I1 *0 (m-3).

(iii) p(A,C) has n-2 distinct roots and two of them are double, i.e.

A ) X (), A () = A (C), A.(C) $ A.(4) for 2 4 i < j 4 n-1.
1 2 n-1 n I I

In that case x=4 is a branch point with exactly two cycles {A 1(x), 2(x)),

n -1 (x), n(X)} while all other branches A3 (x), o&,An_ 2 (x) are

analytic. Moreover, in the expansions (4.5) for (A 1 (x),A 2 x)) and

1- 2(An-i (x),A'(x)} j *0't.

The proof of Theorem 4.24 is quite analogous to the proof of Theorem 4.22

and uses only Theorem 4.19. So we omit its proof.
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5. Special polynomials in two variables.

In his section we consider polynomials p(X,x) of the form
n ir

(5.1) p(X,x) = An + -ix)Xn-., Pilx) = PijX] i=,*-.,n.

Here r is a positive integer. Such a polynomial p(X,x) is uniquely deter-

mined by the coefficient vector

(5.2) p = (pO, 1,.0.,plrO.,Pn

We shall identify p(X,x) with its coefficient vector and no ambiguity

will arise. Thus any polynomial p(X,x) is given by a point p in

pn,r = c[(n+1)r+2]n/2

We next consider the algebraic function X(x) given by the equation

p(A,x) = 0. In that case 6 defined by (4.7) is at most r. So each X(x)

has the Puiseaux expansion

(5.3) X(x) = x r I V x - j / m

j=0 J
around = . Here V0  is the root of the equation

n

(5.4) vn + i(ir)ni= 0.

Thus = is an intersection point if (5.4) has at least one double

root. Let D(x) be given by (4.17). According to (4.18) the degree of

D(x) is at most n(n-1)r.

So

n(n-1 )r(5.5) D(x) I d di(P)Xr(n)-

i=0
where each di (p) is a polynomial in the coefficint vector p. In particular

(5.6) d0(p) = 1 (v - V 2
14i<j'n

where V,.--, are the roots of (5.4). So d0 (p) is a polynomial inn

P1' ' 'Pn(nr) which is called the discriminant of
n

(5.7) p(A) = A+ Pi(ir)n
i=1

Thus for all p . pn,r such that d 0(p) * 0 the polynomial D(x) is

exactly of degree rn(n-1). Let p(x)be given by (4.15). Then
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(5.8) DWx) = U ((b. - b )xr + (a -a)]2
14&i<j (n

Suppose that b. b. and a. * a. for i*j. Then D(x) is a

polynomial of degree rn(n-1). Clearly we can choose (ai,bi), i=1,'°,n

such that we would have exactly rn(n-1)/2 distinct intersection points ;ij

of the form (4.1b). In that case each ;ij is a double root of DCx). We now

show that there exist p(X,x) of the form (5.1) for which the polynomial

D(x) has rn(n-1) simple (distinct) roots. Let 6 (p) be the discriminant

of the polynomial D(x). That is 6 (p) is given by the well known deter-

minental formula

d0 (p) d 1(p) * d(n1) (p) 0 * 0

(59)0 d0(p ) d1 (p) d rn(n-1)(p) 0

rn(n-1)d 0 (p) [rn(n-1)-11d 1 (p) * * 0

(e.g. Whitney (1972, Appendix IV]).

we claim

Theorem 5.10. Let 6 (p) be a polynomial on pnr given by (5.9). Then

6 (p) does not vanish identically on pn r. In particular, if 6 (p) * 0

then D(x) is a polynomial of degree rn(n-1) having rn(n-1) simple roots.

Proof. Let p be a polynomial of the form (4.15) such that b. * b., for

i*j and D(x) has exactly rn(n-1)/2 double roots of the form (4.16).

Let q . pn,r be in the neighborhood of p. So D(x,q) is a polynomial of

degree rn(n-1) with the roots (q),-•,&rn(n_1 )(q) continuously depend

on q. For q=p

21-1(p) = 2i (p), i=1,G*0,rn(n-1)/2, &2i(P) + &2j(p )

for 1 4 i < j 4 n(n-1)/2.
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So either we can find q such that Fi(q) * Fj(q) for 1 4 i < j 4 rn(n-1)

or we must have F1 (q) 2 (q) for all q (renaming the indices if

necessary). So suppose that F1 (q) = F2(q), and &]1(p) = F2 (p) =

[(a -a 2)/(b2-b )] / r * 0. Choose

q(A,x) = f[A-(a 1+b r )[A-(a 2+b 2xr)] + E;) 11 [X- (a, + b xr)]11223 (i n 1 1

= {2-[a 1+a 2+(b 1+b 2)xr] + (a +b x r)(a 2+b x r)+- H [A-(a +b x )
3<i~n I1

where e is a small parameter. Then F;(q) and t2 (q) must be the roots of

the equation

r 2 r r
[(a +a ) + (b +b )x I = 4[(a +bx )(a +bx ) + e]

1 2 1 2 1 1 2 2

which is equivalent to

(b-b2)2x2r + 2(b-bH)(a -a )x r + (a -a ) - e= 0.
1 2 1 2 1 2 1 2

But for £ * 0 all 2r roots of the above equation are distinct. This con-

tradicts our assumption that F1 (q) E 2(q). Thus we proved our assertion

that there exist q G Pn,r in the neighborhood of a given p such that

D(x,q) has rn(n-1) distinct roots. U

We now claim that if 6 (p) * 0 then p(X,x) is an irreducible poly-

nomial. This follows from the following theorem.

Theorem 5.11. Let p(X,x) be a non-degenerate reducible polynomial of the

form (5.1). Suppose that

p(X,x) = q1 (,x)q 2 (,x),deg q(X,x) = n1 > 1, i=1,2

(5.12)
n 1 n -j3

qi. =A + I qij WX i=1,2.

j=1

Then D(x) has at most r[n(n-1)-n 1 n 2] distinct roots and this number is

achievable. In particular any reducible polynomial p(A,x) has at most

r(n-1) 2  distinct intersection points.
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Proof. The equation p(A,x) = 0 splits to 01 (a,x) = 0, q2(O,x) = 0. Thus,

if ; is a finite intersection point for (x) then one of the following

conditions hold

i) a. () = (.(;) for i*j,
IJ

(ii) 8 () = 8(C) for i*j

(iii) .(;) = 8(W).1 J

The possibility (i) means that C is an intersection point of q] (X,x).

Therefore we can have at most rnj(nj-1) intersection points. In the same

way possibility (ii) can happen for at most rn2 (n2-1) distinct points. To

find out how many distinct C may satisfy (iii) we look at the resultant of

q 1 (A.x) and q2 (A,x).

R(x) = t (a ilx) - 8(lx)).

Since q1(Ax) and q2 (,x) are monic it is well known that R(x) is

polynomial in the coefficients of A in q 1 (A,x) and q 2 (A,x). So R(x) is

a polynomial in x. The expansion (5.3) at the infinity yields that

rn1 n2

So the degree of R is at most rnln 2 . Therefore there are at most

rnln 2 distinct C satisfying (iii). Altogether we get that D(x,p) has at

most the following number of distinct zeros

r(nI(n 1-1)+n 2 (n2-1)+n ln2] = r[(n 1 +n2 )(n1 +n2-1)-n 1 n21

= r[n(n-1)-n0n21.

Let p(x) be of the form (4.15) such that DCx) has exactly rn(n-1)/2

double roots. Define
n n

P = 11  -(a+b r )J, p (A'x) = n [-(a +br)] i = n +1.I2 in +I1 CabI
1=1 1

Now we can find qi in the neighborhood of pi such that 6(qi ) 1 0, i=1 2.

Then each qi will have rni(ni-1) distinct intersection points. As
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/I

R(x,plP 2 ) has exactly rnln 2 distinct zeros the continuity argument implies

that (x,q,,q 2 ) will have exactly rnln 2 distinct zero. Using the conti-

nuity argument again we deduce that all intersection points satisfying (i)-(iii)

are pairwise distinct. This shows that D(x,ql,q 2 ) has r[n 1 (n1 -1)

+ n2 (n2 -1)] simple roots and rnln 2 double roots. Clearly

n(n-1) - 1n 2  4 (n-1)
2

and the equality holds it only either n1=1 or n1=n-1. Hence the maximal

number of distinct solutions of D(x,p) = 0 is r(n-1) 2 .

Assume that p(X,x) is degenerate. Then all the intersection points of

p(X,x) are the intersection points of

k

(5.13) q(L,x) = 11 qi(X,x)
i=1

where (4.2) is the decomposition of p(X,x) to its irreducible factors. As

2deg q(,x) < n the number of intersection points of q is at most r(n-2)

Thus any reducible p(X,x) has at most r(n-1) 2  intersection points. I

Corollary 5.14. Let p(X,x) be of the form (5.1). If 6 (p) * 0 then

p(,X,x) is irreducible.

We now study the set of reducible and degenerate polynomials p(Xx) of

nandthe form (5.1) in the coefficient space Pn,r. Denote by Mrd and Mdg the

subsets of Pn,r corresponding to reducible and degenerated polynomials

respectively. Clearly Mdg Jd.

Definition 5.15. Let Rnl,n 2 ) be a subset of Pn,r which corresponds to

reducible polynomial p(X,x) of the form (5.12). Let N(n1 ,n2 ) be a subset

of pn,r which corresponds to degenerate polynomials of the form

(5.16) q(X,x) = q1 (A,x)
2q3 (,x), deg q ) 1

where q1(X,x) is monic in X (so q3  1 I if deg q1 (X,I) = n/2).
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Clearly

(5.17) Md U M(nl ,n-n ), M(19 u N(nl ,n-2n 1
5n 1 2, [g n 1 2

(5.18) N(nl,n-2nl) c M(nl,n-n1 ).

Theorem 5.19. The sets M(nI n-n1 ) and N(n1 ,n-2n ) are irreducible

algebraic varieties in pn,r of the dimensions

dimM(n 1 ,n-n ) = {[(n+1)r+2]n - 2n (n-n1 )r)/2

(5.20)

dimN(n 1 ,n-2n ) {[(n+1)r+2]n-n [r(4n-5n 1+1) + 211/2.

Proof. The equality (5.12) can be repesented by a map
(52)e n I ,r n2,

(5.21) P : P n2r + pn,r , n 1 +n 2 x n

where qi is a coefficient vector in Pnr Clearly 0 is a polynomial

map. The image of e is exactly M(nl,n 2). According to Section 3 the

closure of M(n1 ,n2 ) is an algebraic variety in Pn,r. We now show that

M(nl,n 2 ) is a closed manifold. Assume that we have a sequence of polynomials

Pi(Ax) of the form (5.1) such that pi(X,x) = qli(X,x)q2A(X,x), deg qji (X,1)
(i) (i)(x

= nj, j = 1,2 and each q..(X,x) is monic in X. Let (x), *.,C (x)
(i) (i)

and 01 (x), ,n2 (x) be the roots of qli (X,x) = 0 and q2i (,x) = 0

respectively. Assume that

lir pi(X,x) = q(X,x).
i +W

Then it is possible to find a subsequence Ii k  such that

k k(i ) (i )
lim O x (x) = s (x), lira 8t  (x) = t(x), 1s~nI , 1tn 2
k kt 

Hence (5.12) holds where
n 1n2

q 1 (X,x) = 'I (X- s(x)), q2 (A,x) = f2 (-0 t(x)).
s=1 t=1

So M(n Vn 2 ) is closed. The decomposition (5.17) yields that Mrd is
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closed. So ift p 1 Pn,r corresponds to an irreducible polynomial there

exists a neighborhood ot p corresponding entirely to irreducible poly-

nomials. We now prove the first equality in (5.20). Pick up irreducible

polynomials qj(X,x) of degree nj, j=1,2, such that ql * q2" We claim

that 8 is a local homomorphism in the neighborhood of (q1 ,q2 ). Indeed

suppose that

p(X,x) = u1 (X,x)u2 (X,x) = vI (A,x)v2 (A,x)

where (ulu 2 ) and (v1 ,v2 ) are in the neighborhood of (ql,q 2 ). So ui

and vi are irreducible. Since C[X,x] is a unique factorization domain

and ui and vi are monic we get either ui = vi or u I = v 2. The assump-

tion that q 1  q2 implies that u1 * v 2 so uI = v1 and u2 = v2 . Whence

0 is a local homomorphism in the neighborhood of (ql,q 2 ). Thus

dim M(nl,n 2 ) = ([Cn +1)r+2]n + ((n +1)r+2]n 1/2
21 1 2 2

which establishes the first inequality in (5.20). It is left to show

that M(n1 ,n2 ) is an irreducible variety. This follows easily from the

tact that 0 is a local homeomorphism in the neighborhood of (ql,q 2 ) for

q q.

The assertions about M(n1 ,2n-2nI) can be proven in the analogous

way.

As

([(n+)r+2]n-2n1 (n-n I)r}/2 < [((n+1)r+2]n-2(n-1)r}/2

{[(n+1)r+2]n-n [r(4n-5n +1)+2]}/2 4 ([(n+i)r+2]n-[4r(n-])+2]1/2

from the identities (5.17) we get

Corollary 5.22. The sets Mrd and Mdg are algebraic varieties in pn,r

having the following codimensions

(5.23) codim M rd = (n-1)r, codim Mdg = 2r(n-1)+l.

oreover Mdq is an dl(iebraic subvariety of M rd.
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b. Irreducible pencils.

Let A,B G M n  With the pencil A+xB we associate its characteristic

polynomial np(A,x,A,b) = IXI-(A+xB)I . n + n pi(x)A n - i

(6.1)
i

P x =I pi (A,B)xJ, i 1,'on.
j =0

Clearly pij(A,B) is a polynomial of degree (i-j) in the entries of A and

ot degree j in the entries of B. So pij(AB) is a polynomial of (total)

degree i. Let (D,E) be a similar pair in (A,B). Obviously, the pencil

D+xE has the same characteristic polynomial. So each Pij(AB) are invar-

iant polynomials under the action (TAT- ,TBT-1 ). In fact, for n=2, it is

easy to show that the ring generated by *.(A,B), j=O,-40,i, i=1,2 is equal

to the ring generated by Oi(A,B), i=,**@,5, given by (2.1). We now give

the explicit expression for pij (A,B). We use the notation of Section 1.

Then the coefficients of the characteristic polynomial of A+xB are given by

p(x) = (A+xB)[aja],
Qi, n

e(B 8 , 2Y I ,y2

pij (A,B) = 7. (-1) 1IA[OIY ]IIB[ 21Y2]1 ,  j=2 1...i-2

(6.2)28 ,81 82 = ,I 6 2 = 8 '

(6.2) 01Y1 e Q(i-j),n' 2 2 Qj,n' 2 1 Y2

1 02 = Y1 Y2 a

Pio(A,B) I [ jA[aIa]l, pi1 (A,B) = [ IB[QIaII, i=1,-,n.

OW~i~nCuGQi,n

Here C( 1,8 20,,y 2 ) = ±1 and this tunction is completely determined by

01,02,Y and y2 which satisfy the requirements (6.2). Also for

a Ek,n' 8 Q Q6,n we denote by a n 8 the common subsequence of a and

8. It a fn 8 = f then a U 8 denotes the strictly increasing sequence

generated by the elements of a and 8.
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The tact that with each pair (A,B) we associate a polynomial of the

torm (6.1) can be put tormally in terms of a polynomial map

p:M x M (n+3)n/2 n,1
n n

(b.3)

p(A,B) = (p1 0 (A,B),t**,pnn(A,B)).

We shall show in the sequel that p is a regular map (note that
2

M 
C ).

n

First we need

Definition b.4. The pencil A+xB (the pair (A,B)) is called reducible

(degenerated) it the characteristic polynomial (6.1) is reducible

(degenerated). Otherwise the pencil (the pair) is called irreducible (non-

degenerate). The pencil A+xB (the pair (A,B)) is called symmetric (real)

if A and B are symmetric (real).

We now show that there exist irreducible pencils. More precisely we have

Theorem 6.5. Let 6 (p) be a polynomial defined on the coefficient space

pn,I by (5.9) (r=1). Then 6(p(A,B)) is a non-trivial polynomial on

M X M . More precisely, there exist a real symmetric pair (A,B) such thatn n

6(p(A,B)) * 0.

Proof. Our proof is very close to the proof of Theorem 5.10. So we point out

only the additional arguments we have to use. Choose A and B to be real

diagonal A = diagfa1,o..,an 1, B = diag{b1,.*.,bn}. Then the characteristic

polynomial of A+xB is of the form (4.15) with r=1. We choose ai and

b such that p(X,x) will have exactly n(n-1)/2 distinct intersection

points. That is D(x) given by (4.17) (r=1) has exactly n(n-l)/2 double

roots. Suppose that 6 (p(D,E)) 0. Then D(x,D,E) has to have a fixed

double root let us say 1 (D,E) = 2(D,E) such that

F (A,B) = 2 (A,B) = (a -a 2)/(b 2-b ).
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Choose E = 8 and let D be a block diagonal matrix

D = diag{D1 , ,Dn}
1' n-1

where Di+I is 1xI matrix (a i+2  i=1,**,,n-2 and

1+ a2

As in the proot of Theorem 5.10 we deduce that I(D,E) # 2(D,E) forp1 2

C U 0. This shows that 6(p(D,E)) cannot vanish identically on all real

symmetric pairs. U

According to Corollary 5.14 if 6(p(A,B)) * 0 then the characteristic

polynomial ot A+xB is irreducible. So "most" of the pencils A+xB are

irreducible. Consider a pair (A,B). Assume that A has n distinct

eigenvalues. Then A is similar to a diagonal matrix

(b.6) D = diag{d1, ,d n}.

So the orbit of (AB) contains a pair of the form (D,E). Clearly E

is unique up to a diagonal similarity XEX-1  (X is diagonal). Let

nIE = (el3 7  Denote

1) 1n
(6.7) E+ = (le ij) 1.

Definition 6.8. The matrix E is called irreducible if the nonnegative

matrix E+ is irreducible. That is, all the entries of (I+E+)n- 1 are

strictly positive. (In other terms the graph defined by E+ is connected).

Clearly the notion of irreducibility remains invariant under the diagonal

similarity. In what follows we need a criterion for the diagonal similarity

(see Engel-Schneider (19731).

Theorem b.9. Let E,F Q Mn . Assume E is irreducible. Then E and F are

diagonally similar if and only if
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e .= f.., i=1, *,n, e e. 0 e. e. =
11 11 i 2 1213 'k-i k 1

(6.10) 1f. fiif. 3 ... f k 1 fk 1<lj&n, j=1,oo.,k, 24k~n.

1 1212 13 1k-1 k ki1

On the other hand if E+ is reducible the equalities (6.10) do not imply the

diagonal similarity of E and F. We now give a set of invariant polynomials

in [M x M I whose values determine uniquely the orbit of (A,B) in casen n

that (A,B) -is an irreducible pair.

Theorem 6.11. Let A,B G M n . The polynomials

(b.12) tr(A IB3,---,A mB , m = n(n-1), 0 41k'k 41 , k= ,,m

are invariant polynomials under the simultaneous similarity. Moreover two

irreducible pairs (A,B) and (D,E) are simultaneously similar if and only

if the above polynomials have the same values on these pairs.

Proof The fact that the polynomials (6.12) are invariant with respect to the

action of GL is obvious. Suppose next that A has n distinct eigen-
n

values. Then the orbit of (A,B) contains a matrix (D,E) where D is a

diagonal matrix with pairwise distinct diagonal entries. The entries of D

are known since we are given tr(Ai), i=1,**o,n. We claim that E is

irreducible. Otherwise (e.g. Gantmacher [1959]) there exists a permutation

matrix P such that

(6.13) PEPt =

0 F2 2

Also PUP t is a diagonal matrix of the form diag{Di,D 2. But then

IAI-(A+xB) = JAI 1-(D1+xF 11 )1A 2- (D2+xF2 2 )1

which contradicts the assumption that A+xB is an irreducible pencil.

According to Theorem 6.9 E is determined up to a diagonal similarity

provided we can compute the left-hand side of the equality (6.10).

Let
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D. = diag(6il .0',6 }.
1 ii in

Then a straightforward calculation shows that

eii = tr(DiE)

(b.14)
e.. e. e. e.. = tr(DiIED.2 ,**,D E)

ei12 2 3 k-1k ki = 1 2 k

Since all the eigenvalues of D are pairwise distinct we have

D. =Pi(D), pi(i) = X[ i=1 .*,n.
1 j i ( -j)' ='

So the right hand side of (6.14) contains expressions of the form

I I 2 1k
(6.15) tr(D ED E, ..,D E), 04( 4n-1, i=1,'o',k, 1(k~n-1.1

Substituting A for D and B for E we realize that the above expression

are included in the expressions appearing in (6.12). This proves the theorem

in case that A has a distinct eigenvlaue. In the general case let A0 =

A+x0 B.

Clearly we can choose x0  such that A0  has a distinct eigenvalue.

Then in the expression (6.15) we have to substitute A+x0 B for D and B

for E. A straightforward calculation also shows that all possible expres-

sions in terms of A and B which may appear in (6.15) are listed in

(6.12). The proof of the theorem is completed.

In fact we proved a more precise statement.

Theorem 6.16. Let A be a diagonal matrix with pairwise distinct elements

and B is irreducible. Then the orbit of (A,B) is determined uniquely by

the values (6.12).

The distinction between Theorems 6.11 and 6.16 becomes apparent for

n ) 3. Indeed, if A is a diagonal matrix with pairwise distinct elements

and A+xB is irreducible then B is an irreducible matrix. However, for

n > 3 there exists A and B satisfying the assumptions of Theorem b.16
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such that A+xB is a reducible pencil (e.g. Friedland-Simon [1981]). In

fact, the assumption that any pencil satisfying the assumption of Theorem 6.16

is irreducible, implies a false conjecture in (Avron-Simon (1974], Friedland-

Simon [1981]).

Thus we proved

Theorem 6.17. The values of the invariant functions (6.12) separates all

orbits (A,B) if A and B does not have a common subspace and A+xB is

not a degenerated pencil.

Let D be a diagonal matrix with pairwise distinct diagonal entries.

Consider a matrix C = (cij) n , such that c. * 0, i=2,-**,n. Then we

can find a diagonal matrix X such that E = XCX - I = (e. )fn and e1 i = 1,

i = 2,°°O,n.

In fact X is unique up to a multiplication by X * 0. That is in

"general" we can find a unique pair

(D,E), D = diagqd 1 ,#--,dn}, di * d. for i * j,

(b.18)

n
E (eij) ,  e = 1, i=2...O,n,

in the orbit of (A,B). That is if orb(Ai,B i ) contains pairs of (Di,E i )

of the form (b.18) then orb(AiB I ) = orb(A21 B2 ) if and only if (DIE 1)

(D2 ,E2 ). That shows that the "generic" orbits are parametrized by n2+1

parameters. If the entries of the matrix E given in (6.18) are all distinct

from zero then orb(D,E) is fixed by the values of polynomials (6.12) in view

of Theorem 6.11. So the ring of invariant polynomials [M x M I separatesSn n

between the "generic" orbits. That is

Theorem 6.19. The transendence dimension of the ring of invariant polynomial

[M x M ]G is n2 +1.
n n

G
we were not able to find a simple transendence basis in [M X M I forn n

a general n.
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We now show that the functions (b.12) generate the field of invariants

(M xM )X
n n

Theorem b.20. The invariant polynomials given in (6.12) generate tne field of

rational invariant functions (M x M Gn n

Proof. Let 'P1D0,'0,k (k=2n(n
- 1 )) be the invariant polynomials given in

(6.12). In Theorem 6.11 we showed that the values of these polynomials

determine the orbit of an irreducible pair (A,B). Since the set of

irreducible pairs (A,B) form an open (algebraic) set in Mn x Mn it followsn n

that k' "'P form a transcendal basis in (Mn x Mn ) G That is any 8 G

(M X M )G satisfied the equation
n n

m

(6.21) 8m + P ipi1 ,' pk)6, -i = 0.
i=0

nx Mn + C be the polynomial map given by 'P = (p1,o . 0k).

Denote by V the closure of P(M x M ) So 8 is an algebraic functionn n

on V. On the other hand let V0 be the set of all 'P(A,B) such that

(A,B) is an irreducible pair. So V0 is an open set in V. Since for

any tP(A,B) G V0 , P(A,B) determines the orb(A,B) we see that 8('P(A,B))

is defined uniquely. So the minimal m in (6.22) can be chosen to be 1.

That is 8 is rational in 'P,°0IPk. Hence ,Plle,'k generates the field

(M x M G .

In conclusion we note that according to Processi [1976] the invariant

G.polynomials (6.12) generate the ring of invariant polynomials [M w ]
n n
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7. Symmetric pairs.

In this section we are going to consider (complex) symmetric pairs of

matrices (A,B). Two pairs of symmetric matrices (A,B) and (D,E) are

called orthogonally similar if there exists (complex) orthogonal matrix 0

such that

(7.1) D = OtAO, E = OtBO.

Denote by Sn(Sn (R)) the set of nxn complex (real) valued matrices. So the

complex (real) orthogonal group n(O n(R)) acts in the above form on

S x S (S (R) x S (R)). Suppose that A is symmetric and has n distinctn n n n

eigenvalues. Then there exists an orthogonal matrix 0 such that D = OtAO

is a diagonal matrix. Thus the orbit of (A,B) contains a symmetric pair

(D,E). we claim that E is fixed up to an action of the following finite

orthogonal group,

(7.2) DO = {DID = diag{1,d ,..,d 1, d 4 1, i = 2,*60,n.
n ' n i

Lemma 7.3. Let E,F G Sn. Assume that E and F are diagonally similar.

Then there exists D G DOn such that F = DED.

Proof. Suppose that F = "ED 1 , D diagtd,,d n. Assume that e.i * 0,

then

f. = e.. =tf.. = d.e..d .if 1 1 Ji dJ Ji d

2 2
That is d1 = d.. Suppose that E is irreducible. We then deduce

2 2
dl= = d n Clearly we can choose d1 = 1. This shows that D G OD n1 n

Suppose that E is reducible. Since E is symmetric there exists a

permutation matrix P such that

P tEP = diagtIE ,. ,E k

where each E is irreducible. But then

P tFp = diagF ,*.°,Fk PtFP = PtDP(P tEP)PtD-P
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So each Fi is a diagonally similar to an Ei . Now use the above arqument to

show that D can be chosen to be in DOn. a

Thus if A G Sn has n distinct eigenvalues a pair (D,E) essentially

parametrize (up to the action of DOn ) to orbit of (A,B). Hence "most ot

the orbits" are parametrized by n + n(n+1)/2 parameters. That is the

transcendence degree of [S X S ]0 is (n+3)n/2.
n n

It is easy to find a transcendence basis in [S X S ]n n

Theorem 7.4. The polynomials

(7.5) tr(Ai), i = 1,***,n, tr(A iBAB), 0 4 i < j • n-1

from a transcendence basis in [S x S n Moreover, if A has n distinct
n n

eigenvalues then the value of these polynomials determine at most 2 (n-

n+2)/2 distinct orbits.

Proof. First note that tr(AiBAJB] = tr(BAJBAi), for any pair (i,j). As

tr(A i ), i = 1,*.O,n are given we know the characteristic polynomial of A.

Using the values of the polynomials in (7.5) and the remark above we can com-

pute any polynomial of the form tr(AiBAB). Assume next that A has n

distinct eigenvalues. So the orbit of (A,B) contains a symmetric pair

(D,E) where D is a diagonal matrix with pairwise distinct diagonal entries.

The entries of D are known since we are given tr(Ai), i = 1,*,*,n. Using

the arguments of the proof of Theorem (6.11) we deduce that we can compute

the products eij,eji for all 1 4 i, j • n in terms of the given

polynomials (7.5). As E is symmetric it follows that we know the values of

2 2n (n+1)/2
e.. So each eij is fixed up to ±1. There are at most 2n

different matrices E. However (D,E) and (D,XEX) are in the same orbit

tor any X G DOn . Thus we have at most 2 (n+1)n/2-(n-1) distinct orbits

corresponding to the values of the polynomials in (7.5). In fact, if all

2
ei are different from zero then the knowledge of D and all ei2 gives
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2m

rise to exactly 2(n 2 -n+2)/2 distinct orbits, provided that U has pairwise

distinct entries. Since the orbit space of symmetric pairs (A,B) is

parametrized by (n+3)n/2 parameters we see that the polynomials (7.5) form a

transcendence basis in [S x S I •n n

Combine the arguments of the proofs of Theorems 7.4 and 6.17 to get

Theorem 7.b. Let (A,B) and (DE) be non-deqenerate symmetric paris.

Assume that neither A and B nor D and E have a common subspace. Then

these pairs are orthogonally similar if and only if the polynomials given by

(6.12) have the same values on these pairs. U

We now classify the orbits of 2x2 symmetric pairs under the orthogonal

similarity. Let U and V be subvarieties of S x $2 given by (2.3)

and (2.8) respectively. Suppose that (A,B) lies in U but (A,B) $ V.

Then the arguments of Theorem 2.9 show that (A,B) are orthogonally similar

to a pair of diagonal matrices (D,F). Whence it follows

Theorem 7.7. Let (A,B) 6 S2 x S 2 Assume that (A,B) 0 V (i.e. (A,B) is

non-degenerate) then the values ot the polynomials i(A,B), 1 4 i 4 5

determines a unique orbit under the action of 02.

Suppose that C G S2 and C has one multiple eigenvalue. It is easy to

show that either C is of the form

X+a ai1
(7.8) C(X,a) = -ai

or C = C(X,-a). Moreover if a * 0 then C(X,a) is orthogonally similar to

any C(X,b) or C(X,-b), b * 0. Thus if (A,B) G V we have that

A = C(X,ta), B = C(P,±b).

Therefore the function y(A,B) given by (2.24) is equal to ±a/b and is

a nontrivial function in (V) 2. So Theorem 2.23 applies to S 2 x S2
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Theorem 7.9. Let (A,B) 6 V S2 X S 2 . Then y(A,B) = a 12/b12 belongs to

0 2
(V) . If either Y(A,B) or l/y(A,B) is defined on the orbit of (A,B)

then the values of tr(A), tr(B) and y(A,B)(1/y(A,B)) determine a unique

orbit in V under the action of 02• Otherwise the orbit of (A,B) consists

of one point (WA) I, 2 ).
n '2 2

The disadvantage of the transcendence basis (7.5) of [S x S ]0 is thatn n

these polynomials are not symmetric with respect to A and B. The natural

candidate for symmetric basis in [S x S ]0 are the coefficients of then n

characteristic polynomial of the pencil A+xB. Indeed, the map (6.3)

restricted to S x S yieldsn n

(7.10) p : S x S  C (n+3)n/2 = pn,1
n n

Thus, if p10 (A,B),**',pnn (A,B) are algebraically independent it follows that

these polynomials form a transcendenal basis in [S x S ]0 since the trans-n n
0

cendence degree of (S x S ] is (n+3)n/2. Also the polynomials
n n

pij(A,B) do exhibit symmetricity in A and B since

(7.11) Pij (A,B3) = Pi(j-i)(BA), 0 4 j 4 i, 0 4 i 4 n.

Clearly, Pij(AB), 0 4 j 4 i, 0 4 i 4 n form a transcendence basis in

(S X S ] if and only if the map (7.10) is regular. If we can show thatn n

p is onto map then of course p is regular. Suppose that we showed that

p is an onto map for k 4 n-1. Thus if p(X,x) is a reducible polynomial of

the form (5.1) then there exists a pair of symmetric block diagonal matrices

(A,B),

A = diag{Ai,A 2, B = diag{Bi,B 2

suci that

I - (A+xB)j = p(X,x).

So, in order to prove that p is an onto map, it is enough to show that any

irreducible polynomial p(X,x) of the form (5.1) is a characteristic of some
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symmetric pencil A+xB. by making a transtormation x = y + x 0  it is enough

to consider irreducible polynomials with the property

n
(7.12) p(L,0) = ( (A-d.), d. * d. for i * j.

i=1 1 3

If JXI - (A+xB)I = p(X,x) then we find a symmetric pair (D,E)

D = diag~d ,--,d n I such that JXI - (D+xE)I = p(X,x).

Thus, it p is onto map then the map

(7.13) p(L), ) : n +

P(D,E) = (p 11 (D,E) n-1DE),°',Pnn (D,E))

is an onto map. Clearly, pji(D,E) is a homogeneous polynomial of degree

i in the entries of E. According to Theorem 3.20 if the system

(7.14) Pij(D,E) = 0, j = 1,**°,i, i = 1,--.,n

has a unique solution E = 0 then the map (7.13) is an onto map. The system

(7.14) is equivalent to the assertion that the pencil D+xE has constant

eigenvalues (spectrum) dl,..,d . The main result of the next section is1 n

Theorem 7.15. Let D be a diagonal marix with pairwise distinct diagonal

entries. Assume that the symmetric pencil D+xE has a constant spectrum.

Then E = 0 for 1 4 n 4 4. For n > 5 and a given D there exist

nontrivial E satisfying (7.14).
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8. Polynomial matrices with a constant spectrum.

In what follows we adopt the following notation. By Mn (C[x]) we denote

nxn matrices with polynomial entries. That is if A(x) G Mn(C[x]) then
m

(8.1) A(x) = (a ij(x)) 1 Aj i, A . M n
j=0

Let GL n(C[x]) be the general linear group over the ring Clx]. That is

U(x) 6 Mn(C[x]) is in GLn(Cgx]) if and only if there exists V(x) G

M n(C[x]) such that U(x)V(x) = I. Denote by n(C[x]) the orthogonal sub-

group of Mn (C[x]). That is On(Ctx]) consists of all U(x) such that

U(x)Ut(x) = I. Denote by Sn(C[x]) and An(Cixl) the subsets of symmetric

and skew symmetric matrices in M n(C~x] respectively. Here An denotes the

set of skew symmetric matrices (At = -A) in Mn. Let F(x) G Mn(C[xl) and

consider the differential equation

dU
(8.2) a = UF(x)dx

with the initial condition U(O) = I. Then U(x) is invertible for each

x. In fact it is easy to see that V = U-(x) satisfies the equation

dV
(8.3) d- = -F(x)V

dx

with V(0) = I. Clearly, U(x) is orthogonal for each x if and only if

F(x) is a skew symmetric matrix. However, usually U(x) will not belong

to Mn(Cix]).

Theorem 8.4. Let U(x) G GL n(C[x]). Then U(x) satisfies the differential

equation (8.2) with F(x) G Mn(Cixl)
£

(8.5) F(x) = ) F xj.
j=0

Moreover F must be nilpotent.

Proof. Define

F(x) = U
I  dU
dx

So F(x) 6 M n(C[x]) and U satisfies (8.2).
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Suppose that F is of the form (8.5). Then around x = the leading

part of (8.2) reduces to

dW 2.
- = x WF
dix X.

Thus around x = 0 the solution U(x) behaves as U(F)exp(F x /X+1)

(161 >> 1).

It F is not nilpotent some entries of U(x) behave at intinity as
9+1

Px (P 0). Since U(x) is a polynomial in x we deduce that F

is nilpotent. (See for example Lutz [1967] for the precise version of this

result). •

Let E be a nilpotent matrix then

(8.6) U(x) = eP(x)E, p(x) G C[x].

belongs to GL n(C[x]). In fact we have

Theorem 8.7 The group GLn (C[x]) is generated by GXn and the matrices of

the form (8.6).

Proof. Let U(x) G GLn (C[x)). It is well known (e.q. Gantmacher [1959, ch.

6]) that U(x) can be brought by the elementary operation to its Smith

normal form which is the identity matrix I. Each such elementary operation

is carried Out by multiplications from left or right by the following types of

martices A(x)

(i) A(x) E A Q GL
n

(ii) A(x) = I + p(x)Eij = exp(p(x)E ij), i * j,

where Eij is the matrix whose (i,j) entry is I and all other entries

2
vanish. So E.. = 0. This proves the theorem.

Suppose that E G An  (the set of skew symmetric matrices) and is

nilpotent. Then the matrix U(x) given by (8.6) is orthoqonal. Clearly

fo4 n=2 the only skew symmetric nilpotent matrix is the zero matrix.

Therefore, if U(x) 0 2 (C[xI) the corresponding F(x) in (8.2) must be zero
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matrix in the virtue of Theorem 8.4. That is

(8.8) 02 (C~x]) =0 2

This also follows from the simple fact that the squares of the elements in

each row of an orthogonal matrix U(x) sum to 1. Indeed the equality

1 = U2 (x) + V2 (x) = (u(x) + iv(x))(u(x) - iv(x))

imply that u(x) and v(x) are constants if u(x) and v(x) are

polynomials. For n > 3 there are non-zero skew symmetric matrices. For

example

0 1 +i 0

(8.9) E = diag(H,0), H = -1-i 0 -1+i

0 1-i 0

So we pose an obvious problem

Problem 8.10. Is 0 n(C[x]) generated by On and the matrices of the form

(8.6) (Et = -E) for n 0 3?

Let A(x) G M (C[x]). A(x) is called rank 1 matrix if A(x) 0 and
n

all 2x2 minors of A vanish identically. Suppose that A G Mn is rank one

n tI  , t
matrix. Then A = (uj.) 1  where u = (u,,u and v = (v 1 ,**IV

t
span the ranges of A and A respectively. For a rank 1 matrix A(x) we

have a similar result.

Theorem 8.11. Let A(x) G M (C[x]) be rank 1 matrix. Then there exists

polynomials a(x), u 1 (x),'*',u nx), v 1 (x),900,v (x) such that
nn

(8.12) A(x) = (a. (x)) I , a. x) = a(x)u (x)v.(x), i,j = 1,o.*,n
i) i) i J

and ul i = 1,**O,n (vi, i = 1,066,n) do not have common zeros. Moreover

if A(x) is symmetric it is possible to choose ui(x) = vi(x), i =1,00,n.

-66-



Proof. Choose and constant vectors a and a such that A( )a * 0,

A t(t) * 0. So A(x)a = (a (x)(u 1(x),'*,u n(x))t A t(x)8 =
t

a 2(x)(v (x),'°,v n(x)) where ai(x), u.(x) and v.(x) are polynomials

such that u1,*'',u (V ,**.,v) do not have a common zero. For x fixed1 n 1 n

in the neighborhood of A(x) is a rank 1 matrix. So A(x) =
n

(a(x)ui(x)vj(x)) where a(x) is a rational function. It is left to show
1 j 1

that a(x) is polynomial. Suppose that a(x) = b(x)/c(x) and b(n) * 0,

c(n) = 0. As A(x) G Mn(C[x]) u (n) v (1) = 0 for i,j = 1,°,.

Since ui (x), i = 1,o**,n do not have a common zero there exists

1 i 4 n such that u. (n) * 0. Hence v. (T) = 0, j = 1,-,n, which1 J

contradicts our assumption that v 1(x),'*,v n(X) do not have a common zero.

Hence a(x) is a polynomial. Suppose that A(x) is symmetric. Then we can

choose 0 = a so v(x) = u(x). U

Let U(x) G GLn(C[x]), such that U(0) = I. Define

(8.13) A(x) = U(x)A0U- (x).

Then the eigenvalues of A(x) are constant (do not depend on x). The

converse of this statement is true if A(x) has n distinct eigenvalues.

Theorem 8.14. Let A(x) G Mn(C[x]). Assume that A(x) has constant pairwise

nndistinct eigenvalues. Then (8.13) holds with U(x) G GL n(C[x]) and U(0)=

1. If in addition A(x) is symmetric then U(x) G Un(C[x]).

Proof. By considering the matrices TA(x)T - , T e GLn we may assume that

A0 = D = diag{d ,°.*,dn } . As A(x) has a constant spectrum each di  is an

eigenvalue of A(x). Let

(8.15) P. (x) = [ [d jI - A(x)),(dj-di).
1 14j-n,j*i J

So Pi (x) is rank one matrix with tr(Pi (x)) 1. Theorem 8.11

yields
n

PAX) (U Ixv (xW)n u 1 (x)v. (x) 1.k k=1' j=1 3
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i t i ii tClearly u x) = (u 1 (x),°,,u Wx)) , V x) = (v CX),',v n(x)) are the

eigenvectors of A(x) and At(x) respectively corresponding to the eigen-

value di . As d. d. for i * j we have
1 J

nukx)vk(x) = 0 fori j.
k=1

Define

U(x) = (u 1x),°**,u nx)), Vlx) = (v Cx),**,vnlx)).

Then Vt(x)U(x) = I. So U(x),V(x) G GL n(C[x]). As ui(x) is the

eigenvector of A(x) corresponding to di  we have the equality

A(X)U(x) = U(X)D.

Also the assumption that A 0 = D means that we can choose ui(x) to

satisfy u (0) = Cil ,' ,6 in) t, i = 1,0,n. This proves the theorem for a

general Ax). Suppose that A(x) G Sn CMx]). Then we can choose T G On -

According to Theorem 8.11 V = U. So U(x) G Cx]). U

Theorem 8.14 does not apply if Ax) has multiple eiqenvalues. Indeed

let

-ix -x

Then d1 = d2 = 0 are the eigenvalues of A(x). Also A 0 = 0. So (8.13)

does not hold. Theorem 8.14 together with the equality (8.8) yield Theorem

7.15 for n = 2. Of course the case n = 1,2 can be proved easily in the

direct way. However for the cases n =3,4 (in particular n = 4) we need

also the following characterization of A(x) G Mn(C[x]) with a constant

spectrum. As usual let [A,B] denote the commutant AB-BA.

Theorem 8.16. Let F(x) be of the form (8.5). Consider the equation (8.2)

with the initial condition U(O) = I. Let A(x) be given by (8.13). Then

A(x) is of the form (8.1) if and only if F(x) satisfies the following non-

linear equation of order m
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(8.17) [F ,A ]+00+[F ,[F,**,[F,A )'] + F, [FI **,[F,A] = 0.0 ~ 00

M-1 m+1
In particular

(8.18) [FR,(F ,e',[F,A 0]*.e] = 0

m+1

Proof The matrix V(x) = U-1(x) satisfies the equation (8.3). Thus if

A(x) is yiven by (8.13) we have

dA
- = UFAoV - UA FV U[FA ]V

X 0 0

d(A 1
(8.19) dx = U{[F ,Ao 0 tjF,[F,A0] ]}V

dx 2

dSA (S-i)
dx = U{[F ,A0] + '"+ [F,(,,F,A0]'.°°}V.

s

dm+ 1

Thus - A(x) = 0 if and only if (8.17) holds. Assume that F(x) is of
dx

m +l

the form (8.5). Then the coefficient of x in the left hand side of

(8.17) is equal to [F ,[F ,-0,[FFAo]°e°] = 0 This proves (8.18). I

m+1
Assume that F satisfies (8.18). By letting F(x) H F in (8.2) we

obtain F(x) which satisfies (8.17). Thus we proved

Theorem 8.20. Let F satisfies (8.18). Then

Fx -Fx m k

(8.21) A(x) = e A0 e = A0 + I , F ,A0°xk.
k= 1 TT ___/ k

k

In particular [F, .1 .*,[Fy,A 0] -] is a nilpotent matrix.

0 The last assertion of the theorem follows from the result below.
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Lemma 8.22. Let A(x) be a nonconstant matrix of the form (8.1). If A(x)

has a constant spectrum then Am is a nilpotent matrix.

Proof. As tr(A k(x)) is constant we must have tr(A ) = 0, k = 1,2,....
m

So Am is nilpotent.

Theorem 8.23. Let A G Sn have pairwise distinct eigenvalues. Then there

exists 0 * B G S such that A+xB has a constant spectrum if and only ifn

there exist F Q An such that

(8.24) [F,[F,A]J = 0, [F,A] * 0.

In particular A + x(F,A] has a constant spectrum, whence [F,A] is

nilpotent.

Proof. Let A(x) = A+xB. According to Theorem 8.14 the equality (8.13) holds

for some U(x) C n(C[x]). As B * 0 U(x) is not a constant matrix. Let

F(x) be given by (8.2). Then 0 # F(x) e A (Cx]). So F(x) is of the formn

(8.5) and FL is a nonzero skew symmetric matrix. In view of Theorem 8.16

F = F satisfies the equality [F,[F,A]] = 0. Consider the matrix (8.21).

The equalities (8.19) yield

(8.25) A(x) = A + x[FA].

According to Theorem 8.20 A(x) has a constant spectrum. Lemma 8.22 implies

that [F,A] is nilpotent. It is left to show that (F,A] * 0. Suppose

that (F,A] = 0. That is F and A commute. Since A has n distinct

eigenvalues F = p(A) for some polynomial p(X). So F is symmetric!

Thus F = 0 which is a contradiction. U

Thus to prove Theorem 7.15 for n = 3,4 we have to show tiat the only

skew symmetric solution to (8.24) is F = 0 when A is a symmetric matrix

with pairwise distinct eigenvalues. To prove Theorem 7.15 for n ) 5 it is

enough to find a nontrivial solution to (8.24) with the above restriction on

F and A.
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9. The equation [F4F,A]] = 0.

We first recall some known facts about complex skew symmetric matrices.

See for example Gantmacher [1959, Ch. 11].

First, it A and B are similar skew symmetric matrices then A and

B are othogonally similar. Second, if zero is an eigenvalue of a skew

symmetric matrix F then in the system of elementary divisors of F all

those of even degree corresponding to the eigenvalue zero are repeated an even

number of times. Thus if F is a nonzero 3x3 skew symmetric nilpotent

matrix then F is orthogonally similar to the matrix H given in (8.9).

If F is a nonzero 4x4 skew symmetric nilpotent matrix then either F is

orthogonally similar to E given by (8.9) or F satisfies

(9.1) F2 = 0, ker(F) = Range(F).

Theorem 9.2. Let U * F G A and A G S n . Assume that F and [F,A] arenn

nilpotent and compute. Then for n=3,4 A has at least one multiple

eigenvalue.

Proot. We break our proof into three cases.

(i) n = 3. Then we may assume that F = H and H is of the form (8.9).

Since H and [H,A] commute they have a common eigenvector u

Hu = 0 = [H,A]u = HAu.

Since the eigensubspace of H is spanned by u we must have Au = Xu.

Also utu = 0. If A was a simple eigenvalue (i.e. a simple zero of IxI-AI

= 0) then the symmetricity of A yields that u tu * 0. So X is a multiple

eigenvalue.

(ii) Let n = 4 and assume that (9.1) holds. Then the assumption that

[F,{F,AJ] = 0 implies FAF = U. So ker(F) D A Range(F) = A ker(F). If all

the eigenvalues of A are simple then C4  splits

C = ker(F) 9 W
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i.e. W is an orthogonal complement of ker(F). So kW c W. Note that dimW
4

= dim ker(F) = 2. Also the eigenvectors of A,, ix 4 form an orthogonal

basis of C4 . In this basis F is represented by F1 * F2 where each F.

is 2x2 skew symmetric matrix. Since F is nilpotent Fi = 0 so F = 0.

This contradicts the assumption that F $ 0. Whence A has a multiple

eiganvalue.

(iii) Let n = 4 and assume

F = diag{H,O) A = t8t a

where H is given by (8.9) and B G S3.

A straightforward calculation shows that

[F,[F,A]] = (H2 0

So

t2
[H,[H,B] ] = 0, $tH

According to Theorem 8.20 [H,BJ is a nilpotent matrix. Then by the

part (i) of this proof Bu = Au where u is the eigenvector of H. Since

the range of H2 is spanned by u the equality 8tH2 = 0 implies that

tu =0. So

t t ,  t t
Av = Xv, v = u0), v v =u u =0.

Thus A is a multiple eigenvalue of A. U

Theorem 8.23 and the above theorem imply Theorem 7.15 for n = 3,4. So

we get
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Theorem 9.3. Let p(X,z) be a nondegenerate polynomial of the form (5.1)

with r = 1. Let 2 4 n 4 4. Then there exists a symmetric pencil A+xB

whose characteristic polynomial is p(X,x). The number of such non-

orthogonally similar pairs is at most

n
(9.4) N(n) H ii/2

i=2

and for almost all p(X,x) the number of distinct orbits of symmetric pairs

is exactly N(n).

Proof. By making a change of variables x = x1 + y and considering

tQ(A+xB)Qt , Q G On we may assume that p(X,0) is of the form (7.12) and

A = D = diagid ,.*,dn}, B = E. For n 4 4 we showed that the system

(7.14) has the unique solution E = 0. By Theorem 3.20 the map (7.13) is

n n
|[ i! covering of C(n+l)n/2* Thus there exist "generically" 11 i!

i=2 i=2

distinct symmetric E such that

(9.5) IXI-(D+xE)I = O(X,x).

Obviously for most p(X,x) of the form (5.1) satisfying p(X,0) = IXI-DI

all the corresponding E have non-zero entries. Also D+xE and D+xPEP

P G DOn have the same characteristic polynomial. As E has nonzero entries

then PIEPI = P2EP2 P Pi Q DOn if and only if P1 = P2. So each 2n
- 1

distinct E satisfying (9.5) belong to the same orbit. Thus, generically,

there are N(n) distinct orbits and we established the theorem.

For n=2 we obtain that if p(X,x) is non-degenerate then there exists

only one orbit of symmetric pairs corresponding to p(X,x). This result was

already obtained in Section 7. For n=3,4 we see that in general to a given

p(.X,x) of the form (5.1) with r = 1 correspond more than one orbit. In

fact, it is possible to generalize Theorem 9.3 as follows.
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Theorem 9.b. Let V = diagidld1'n  be a diagonal matrix with pairwise

distinct diagonal entries. Let p(A,x) be a polynomial of the torm (5.1)

with r = I such that p(A,0) = JAI-DJ. Assume that 2 4 n 4 4. Let B e

Mn be given. Then there exists E e Sn such that

(9.7) JAI - x(E+kJ)f = p(X,x).

The number of such E never exceeds
n

(9.8) M(n) = J if
i=2

and for most of such p(A,x) the number of such E is exactly M(n).

Proof. Consider the map

0: S + C (n+)n/2 = p n,1

n

given by

(E) = (P10 (D,E+B),P11 (D,E+B),Ooo,Pnn(DE+B)).

So

Ipw (E) = (P10 (D, E),oo Pnn (D,E)).

Thus p (E) = 0 implies E = 0 and the result follows by Theorem 3.20.

We now prove the second part of Theorem 7.15. By repeating the arguments

of part (iii) in the proof of Theorem 9.2 we get

Lemma 9.9. Let F e An be orthogonally similar to E given by (8.9).

nAssume that A 6 Sn and [F,iF,A]] = 0. Then A has a multiple eigenvalue.

Thus in case that n ) 5 we shall take E to be orthogonally similar

to F of the form

(9.10) F = diag(H,O), H = (0 P), P = (1 i).-P o0 -

More precisely using orthogonal similarity we may assume that A = A1 9 A2

where A1 6 S. and F e S of the form (9.10). Thus to prove Theorem
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7.15 for n 5 5 it is enough to consider n = 5. Choose

A= B

where

B = diagid I,d 2I

and I is 2x2 identity matrix. So

F,[F,AJ = =HHBI] H2 } [H,[HB ] 0
OH 

2  
0 0 0

Clearly

[H,[HB]]= 0.

Choose Bt = (O,b,0,c). Then IXI-AI = (X-d )(A-d2)IXI-Cl

d 0 b1
(2= U d2  c

b c a

So

IXICI= 3 t t X2 + t2 X - t3

t 1  1  + d2 + a

t 2  dd 2 + (d1+d 2)a - (b2+c

t 3 = dld 2a - d2b
2 

- dlc 2 .

Since 1 d2' t, t2 and t3 determine uniquely a, b and c 2 . Thus we

can choose a,b,c such that

IXI-CI = (X-d 3)(-d 4)(A-d5

where d * d for i * j. This proves the second part of Theorem 7.5.
-7
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10. Symmetric Polynomial Matrices.

Let Ax), B(x) r Sn(C(x]). That is
m m

(10.1) Aix) , A Xj  B(x) = x Bx 3 , Aj,B. 6 S j = r,',m.
j=0J ' j=0 n'

The matrix A(x) and B(x) are called orthogonally similar if

(10.2) B(x) = U(x)A(x)Ut(x),

and U(x) e On(C[x]). If U(x) can be chosen to be constant, i.e. U(x) E U

G 0 then A(x) and B(x) are said to be strictly orthogonally similar.n

That is the matrices tA.jn and (B }m are simultaneously orthogonally

similar

(10.3) B. = UA jUt , j = 010000m.

Clearly for n > 3 there are symmetric matrices Ax) and B(x) which are

orthogonally similar but not strictly orthogonally similar. Indeed, choose

A(x) --- A0  and U(x) 6 On(C(x]) such that B(x) given by (10.2) is a non-

constant matrix. So B * 0 and Am = 0 for some m P 1. Obviously A0mm

and B(x) are not strictly orthogonally similar. Consider a characteristic

polynomial of A(x). It is easy to see that this polynomial is of the form
n

IAI-A(x)I = An + . Pi(x)Xn-A ,

(10.4)
im

Pi(x) = pij (A i,@uAm)X', i =12,---,n,

j=0

In particular
m

(10.5) IAI-Aml = A + p i(mi (A0,*00,Am)n-i)

If A(x) and B(x) are orthogonally similar (or even similar over

GLn(Clx])) then A(x) and B(x) have the same characteristic polynomial

p(X,x). We now give a simple condition on p(A,x) which ensure strict

orthogonal similarity of A(x) and B(x) provided that A(x) and B(x) are

orthogonally similar.
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Theorem 10.6. Let A(x), B(x) e Sn (C[x]) be of the form (10.1). Assume that

(10.2) holds for U(x) e On(C[x]). Let p(A,x) of the form (10.4) be the

characteristic polynomial of A(x). Assume that Am has pairwise distinct

eigenvalues. Then U(x) is a constant matrix. That is A(x) and B(x) are

strictly orthogonally similar.

To prove the theorem we need the tollowing lemmas.

Lemma 10.7. Let A,B G Sn have the same pairwise distinct eigenvalues. Then

there exist 2n distinct orthogonal matrices U such that B = UAU

Proof. Since A and B are orthogonally similar to the same diagonal

matrix D it is enough to consider the case A=B=D. But then D = UDU t if

and only if U = diag{±1,o..,±1) and the lemma is proved.

Let 0 be a domain in Ck. Denote by H(Q) the set of analytic

functions in 2. Then S (H(Q)) and 0 (H(Q)) will denote the set of
n n

symmetric and orthogonal matrices A(x) and U(x) for x G S2 such that the

entries of A(x) and U(x) are analytic functions in S.

Lemma 10.8. Let W be a simply connected domain in Ck. Assume that A(x),

B(x) G S n(H()). Suppose that for each x G Q, A(x) and B(x) have the

same pairwise distinct eigenvalues. Let

(10.9) B(x0 ) = UoA(x0 )U, 0 Q 0,

for some x0 C SI. Then there exists a unique U(x) 0 n(H(Q)) satisfying

(10.2) such that U(x0 ) = U0 .

Proof. First we note that any U(x) 6 0 (H(Q)) satisfying (10.2) is an

solution of linear and quadratic equations

B(x)U(x) - U(x)A(x) = 0, U(x)Ut(x) = I.

As at each point x we have exactly 2n distinct solutions. The implicit

function theorem implies that for any given x1 C 9 there exists r1 = r(xI )

> 0 such that the above system has 2n distinct analytic solutions U(x) in

the disc Ix-x1I < rI . So U(x) can be continued analytically on any
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continuous curve r c 0. Thus, in general, we have a multivalued (with at

most 2n  branches) analytic orthogonal matrix valued function U(x)

satisfying (10.2) with U(x0 ) = U0 at least for some branch of U(x). The

assumption that w is simply connected implies that U(x) is univalued,

i.e. UWx e On(H(Q)).

The assumption that a is simply connected is crucial to the proof of

Lemma 10.8. Indeed let

A(x) = B(x) = J
i -I -x

Then in the domain

R= ix, 0 < lxi < 21

A(x) has two distinct eigenvalues.

Clearly (0 1
A(-1) = U A(-)Ut 1 0 =

Then the solution U(x) satisfying (10.2) with B(x) = A(x) and the

condition U(-1) = U0  is of the form

U(x) = A(x)/'x(2+x), i-v = i

Now U(x) is two valued in i since 0x(2+x) is two valued in S. On

the other hand if we choose U0 = I then U(x) = I and this solution is

clearly single valued in il. This shows that the choice of U0  is important.

Prout of Theorem 10.6. Let lxi > r. Then by dividing (10.2) by xm we get

m -i m -i
C(x - ) = B + B Bix = U(x)(A + A X )ut(x).

m M-1 m -M-1

Put y = x -I  For IjY < £ the eigenvalues of C(y) would be close to the

eigenvalues of A and therefore will be pairwise distinct. Thus we can

apply Lemma 10.8 for ymA(y-l) and ymB(y- ). Hence U(x) is analytic in

the neighborhood of x = . Now tne Liouville's theorem implies that U(x)

must be constant. U
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Remark 10.10. The results of Theorem 10.6 apply it we shall assume that U(x)

I U n(H(C)), i.e. the entries of U(x) are entire functions.

Let A(x) be of the form (10.1). Suppose that A(x) is non-degenerate.

That is IAI-A(x)t is a non-degenerate polynomial. Hence D(x) given by

(4.17) is a polynomial of degree < n(n-1)m. Assume furthermore that Am

has pairwise distinct eigenvalues. Then D(x) is a polynomial of degree

n(n-l)m. Let s,,s be all intersection points of IXI-A(x)l. So

s 4 n(n-1)m. Let B(x) be also of the form (10.1) and suppose that

(1U.11) jXI-A(x)) = IXI-B(x)I.

Pick x0 t j = 1,'**,s. Let U0 satisfy (10.9). Then, according to the

proof of Lemma 10.8 there exists an analytic multivalued orthogonal matrix func-

tion U(x,U 0 ) on the Riemann sphere (i.e. C U ( 1) punctured at j,

3 = 1,'°',s, satisfying (10.2) such that

U(xo,U O ) = U0

tor at least one branch of U(x,U 0 ). If it happens that U(x,U 0 ) is single

valued and the points C., j = 1,0..,s, are removable singularities then the

Liouville's theorem implies that U(x0,U0 ) = 0 and A(x) and B(x) are

strictly orthogonally similar. Note, as we pointed out before, sometime this

can happen only for special choices of 1)0 out of 2n possible choices. In

what tollows we give a simple condition on U0 which will ensure the needed

properties of U(x,U 0 ).

Lemma 10.12. Let A(x),B(x) be of the form (10.1). Assume that A(x) and

B(x) have the same characteristic polynomial and suppose that Am has

pairwise distinct eigenvalues. (So IXI-A(x)I is non-degenerate). Let

1,*°°, s be the intersection points ot IXI-A(x)l. Choose x0 * j
1 0 j

j= 1,*"*,s such that the real line (1-t)x + t;., t real contains only one
0

intersection point 3. Let Uj(x) be the analytic solution of the equation
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(10.2) along the open segment (1-t)x 0 + tyj, 0 4 t < 1 with the initial
0

condition U (xo) = U0  for a fixed choice of U0  satisfying (10.9). Assume

that Uj(x) can be continued analytically to a disc Ix-CjI < r for some

r > 0 and j = 1,**O,s. Then Uj(x) = U0 j = 1,9ee,s, hence A(x) and

B(x) are strictly orthogonally similar.

Proof. Let 9 be the complex plane cut along the rays (1-t)x0 + tj,

1 4 t, j = 1,***,S. So Q is simply connected, Cj i 0 , for

=1,°,s. Thus, there exists a unique U(x) 6 On(H(1)) satisfying (10.2)

and the condition U(x0 ) = U0 . Let

I =  {(1-t)x0 + tyI, t > I).

Note that 1I *i we can continue U(x) analytically along any closed

curve r in I" We claim that U(x) is a single valued in *I Indeed if

F is homotopic to a point in i11 then of course U(x) is single valued

along F. It is left to examine the case where F is homotopic to

circling k times around the point ;I* Since U,(x) can be continued

analytically in the neighborhood of I; we see that the U(x) remains single

valued on F in this case too. Finally, the assumption that U1 (x) can be

continued analytically in the neighborhood of ;, implies that U(x) is

single valued and analytic in i, = U { i}. Continuing in the same manner

we deduce that U(x) can be extended analytically to the whole complex

plane. As Am has pairwise distinct eigenvalues we get that q(X) given by

(10.5) has simple roots. Now Remark 10.10 implies that U(x) UO

Let A(x), B(x) be of the form (10.1). Suppose that A(x) and B(x)

have the same characteristic polynomial which is non-degenerate. In order to

be able to apply the above lemma we have to insure that A(x) and B(x) are

(i) analytically similar in the neighborhood of each intersection point

t. That is
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(10.13) B(x) = U(x)A(x)U(x)- , U(x) C GLn(H(D)).

Here D is some disc

(10.14) D(Cr) = (x,lx- l < r}

and GLn (H(a)) is the set of invertible matrices U(x) such that the

entries of U(x) and U-1 (x) are analytic functions in Q.

(ii) U(x) can be chosen to be an orthogonal matrix.

The question of local (analytic) similarity was studied by us in

Friedland [1980]. The first step is to bring A(x) to a block diagonal form

that
t

(10.15) V (x)A(x)V(x) = 9 A (x), V(x) Q GL (H(D(;,r))),
j=1 n

such that A () has one eigenvalue X., j = 1,°..,m and A ' k for

j * k. Here r is some positive number. Also

t
(10.16) W(x)- B(x)W(x) = 0 B (x), W(x) e GL (H(D(;,e))),

j=1 J n

and A.(x) and Bj(x) have the same characteristic polynomial in D(C,r)

for j = 1,°,t. So A(x) and B(x) are locally analytically similar if

and only if Aj(x) and B.(x) are locally similar for j = 1,**O,t.

Clearly if Aj(x) and B.(x) are 1x1 matrices then Aj(x) = Bj(x) since

Aj(x) and B.(x) have the same characteristic polynomial. In that case

AW(x) ano Bj(x) are locally similar.

In case that A.(x) and Bj(x) are not 1xI matrices it may well

happen that Aj(x) and 8(x) have the same characteristic polynomial but

Aj(x) and Hj(x) are not locally similar. A simple criterion due to Wasow

[19b31 gives an additional condition on A (4) and B.( ) which ensures theJ J

local similarity of A.(x) and Bj(x).

Theorem 10.17. Let A(x), B(x) C M n(H(D( ,r))). Assume that A(x) and

B(x) have the same characteristic polynomial. If the minimal polynomial of

A() and B(W) is equal to its characteristic polynomial then A(x) and

B(x) are locally similar.
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Let A(x) e M 2(H(D)) for some disc (10.13). The Interesting case from

our point of view is when A(C) has a double eigenvalue U 0 In the

neighborhood of ; the eigenvalues of A(x) behave as an algebriac function

of x, i.e. they must have a Puiseaux expansion (4.5) with m = 2. For a

certain Puiseaux expansion of A(x) it is possible to tell when the minimal

polynomial of A(;) is (X-U 02

Lemma 10.18. Let A(x) G M2 (H(D)), D = D(C,r). Assume that the eigenvalues

of A(x) have the Puiseaux expansion (4.5) with m = 2 in the neighborhood

of C. If 01 * 0 then the minimal polynomial of A(C) is (N- 2

Proof. Assume to the contrary that A(C) = A0I. So

(10.19) A(x) = 01 + (x- )B(x), B(x) G M 2(H(D)).

Since the eigenvalues of B(x) have the Puiseaux expansion we deduce that

11 = 0 contrary to our assumptions. U

Let A(x) be of the form (10.1) and suppose that Am  has pairwise

distinct eigenvalues. So IXI-A(x)i is non-degenerated and the discrim-

inent D(x) given by (4.17) is a polynomial of degree n(n-1)m. Let

(10.20) 6(A0,094,A m)  _= (IXI A(x)l)

be the discriminant of D(x) given by (5.9) (r--m).

Suppose that

(10.21) 6(A0 ,..,A) * 0.

Then at each intersection point C, A(C) has exactly one double root 0"

Moreover the Puiseaux expansion of those two eigenvalues satisfy the assump-

tions of Lemma 10.18 (Theorem 4.22). So if B(x) is of the form (10.1) and

IXI-A(x)l = IXI-B(x)I then A(x) and B(x) are locally similar in the

neighborhood of any finite or infinite point C if the condition (10.20)

holds. Our next step is to show that the similarity marix in (10.13) can be

chosen to be orthogonal. This is implied by the following two lemmas.
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Lemma 10.22. Let Ax) G SnCH(r,r'))). Suppose that A() has m distinct

eigenvalues A],..,A ., where n, is the multiplicity of A. Then there

exists V(x) e On(H(D(;,r))) satisfying (10.15) where Ai() has one eigen-J

value L for some r > 0.
3t

Proof. By considering the matrix QA(;)Qt, Q Q 0 we may assume thatin
m

A(4) j * A.(4),
j-1

where each A (W) has one eigenvalue A.
3 )

Cnoose a positive P such that

D(A.,p) n D(X,p) = P for i * j.

Let

E (x) = f (XI-Alx) )-'dX

S27ri I - =

E 2(x) = E.(x) = E.(x), E.(x)E (x) 0

for k j, rank E (x) =n, j =) )
for Ix-41 < r" for some positive r".

Let

9 = n +*-+n , j = °1 ,m+1, i no  0, u a a ' cn

Consider

u a(x) = E. (x)u , a = +I °00'xj+I
J J ' +"

Note that ua( ) = ua, a = 1,**,n. Apply the Gram-Schmidt process to

u (x) to obtain analytic vectors v.+ (x),°'°,vL (x) in
) j+1 ) j+1

the neighborhood of such that

ttv t(x)v~ (X) I8 a,$ =j1 X * £
CE a a j+1 j+1'

Since Ej(X)Ek(x) = 0 for j * k we get v (x) v (x)
k a

1 ( a,8 & n.

Then

V(x) = (v (x),*.,v (x)) 6 0 (H(D(4,r)))

and the equality (10.15) holds. a
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Lemma 10.23. Let A(X) e S2 (H(U,rl))). Then there exists UWx

02(H(D(C,r)) for some r > U such that U(x)A(x)Ut(x) has one of the

following torms{a(x) 0~)

b0x -(x)J b) i

k+~x 1 bk ~axxbx

j =0 0 1 b(x) -1+a(x)J

b(C) = i, k ), 0.

In all the cases the functions a(x),b(x) and the values O1*F(kare

determined by the characteristic polynomial of A(x). If the eigenvalues of

A(x) are not identical then the value of k in (iii) is bounded from above.

Proof. Suppose first that A(C) has two distinct eigenvalues. Then AWx

is orthogonally similar to the matrix of the form (i) by virtue of Lemma

10.22. Assume now that AU;) has a double eigenvalue. By considering the

matrix

A (x) - 1/ 2 tr(A Wx)I

we nay assume that AWx of the form

[a(x) OWx
A(x) OW I.x~

2
Suppose that the minimal polynomial of A(C) is Xt Using the

transformation QA(x)At, Q 6 02 we nay assume aC) =1, 8(C) = i. Then

* choose in the form (ii)

b /1+=2_)-

and let

UW u(x)J +
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Then U(x)A(x)Ut(x) will be of the form (ii) with a(x) 2 0. Assume

now that the minimal polynomial of A() is A. Then A() = 0 and

A(x) = (x-C)B(x), B(x) G S 2(H(D(C,r))).

If the minimal polynomial of B(C) is )2 then B(x) is of the form (ii)

and we achieved the form (iii). If B(C) = 0 then we continue in the same

manner. If we stop the process at the step k we shall achieve the form

(iii). If the above process never stops then we deduce that A(x) is of the

form (i) and a(x)= b(x). It is easy to see that a(x),b(x), aI'-*" are

determined by tr(A(x), and IA(x)i. suppose we have the form (iii). Then

the Puiseaux expansion of both eigenvalues of A(x) are of the form

k k+1
X h(x) = I a .(x-) + Ix-0j o(1), h=1,2.

j=0 J

Thus if X (x) f X 2(x), k has an upper bound. U

Let A(x) be of the form (10.1). Suppose that 6(A 0,-.,Am) m 0.

Then D(x) given by (4.17) is a polynomial of degree n(n-l)m having

n(n-1)m simple zeros 4I s = n(n-1)m. Thus JAI-A(x)l has

n(n-1)m intersection points , At each intersection point k

there exists Vk (x) e 0 (H(D(k,r))) such that (10.15) holds. Here

t = n-1, A1 (x) C S2 (H(D( k,r))), AI(x) is of the form (ii)

1 + ak(%) b k(X)

(10.24) A1 (x) = Ck (X) = 1 bk( k) = i
bX) -1+ak(x)

in view of Theorem 4.22, Lemmas 10.18 and 10.23. Other A.(x) are the

analytic roots of JAI-A(x)j in the neighborhood of C . Assume that B(x)
0

is of the form (10.1) and suppose that IXI-A(x)I = IXI-B(x)l. Then at the

neighborhood of each intersection point j there exists Wk(x) G

O (H(D( kr))) such that (10.16) holds and
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n-1 n-1

(10.25) " A.(x) = * B.(x).
jj1

Choose x0 6 C, x0 * &., j=1,*°,n(n-1)m, such that the line (1-t)x 0

+ tc., -0 < t < -, contains only one intersection point j., By considering

t J
the matrices Q1 A(X)Q1, Q2 B(x)Q2, Q3 e 02' j = 1,2 we assume

(10.26) A(x ) = B(x ) = D = diag(d , °0,dn 1.

Let 1k be a simply connected domain £k containing the segment (1-t)x 0 +

trk? 0 4 t < I and such that G. 6 f, j = 1,...,s. Choose T e DO n

Let Uk(x,T) 6 On(H(ak)) be the unique solution of (10.2) satisfying

Uk(xUT) = T. Thus tor x e 6 n D(Ck,r) - we have
n-1

t t
B(x) = wk (x)( 1 * A.())W kx) =U k(xT)A(x)U (xt)=

j=1

n-1

U (x,T)V (x)( 0 0 A.(x))Vk(x)Uk .k k I- k k

As A (W) and Ai(4) do not have a common eigenvalue for j £ we easily

deduce
n-i

(10.27) W * .n R. 6 On(H€i)).
j=1 I

In particular IR-xW1 2  1. So for j ) 2 each Rj(x) is a constant number

of modulus 1.

For R1 (x) we have

R 1 (x) = Qk(x,HT) e 02(H(S ))

(10.28)

Qk(xB,T)C tx)Q(xBT) = C.k(x)

where Ck(X) is given by (10.24).

Let

(10.29) Wk(B,T) = IQk(x,B,T)I, k = 1,'o,n(n-1)m.

So wk(BT) = ±1.

Lemma 10.30. Let the above assumption hold. Suppose that W k(B,T) = 1 then

the matrix UK(x) can be continued analytically to the neighborhood ofk k
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Proot. Consider the matrix C k (x), X e Qk.so Ck(x) has two distinct

eigenvalues. THus there are four orthogonal matrices commutinq with CO~X).

Namely ±I, ±Q, where JQJ = -1. Therefore if wk (B,T) = 1 then

(2k(x,B,T) is a constant matrix which equals to ±I.
n-1

Hence 0 R.j(x) is constant in 0 k and theretore can be analytically

j=1 k

extended to D(C k'r). Finally (10.27) shows that
n-1

U (x,T) = W(x)( 1 9Rx)Vt (x)
k k j=1 ) k

so Uk(x,T) has analytic extension to D(ykr).U

Theorem 1U.31. Let A(x),B(x), B(x) Q S (C~x]) oe of the form (10.1).
n

Assume that

Suppose that S(A ,.*,A m) * 0. Let ;, . ,S s = n(n-l)m be the inter-

section points or JAI-A(x)j and suppose that the line (1-t)x 0+ ty.

-< t < -, only one intersection point ~.for j = 1oes

Assume that A(x 0 B(x 0 B(x 0) is a diagonal matrix. Let

T,T E3 DO nand suppose that

(10.32) Wk(B,T) =Wk(B,T),j= 1,*-,n(n-1)m.

Then

(10.33) ;~(x) =TTB(x)TT.

Proof. In the arguments preceding Lemma 10.30 replace B,U,W,R by B ,U ,W ,R

respectively. So we get

Uk = qk (I j ~ k W

Thus

t n-1
U k Uk = W k / 0 R.j(x)R.(x)Wk

and

R 1(x)R 1(x)C k(x)R R (x) = C kxW.
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As

IR (X)R.( )I=~B,T)Wk,(B,T) = 1

- t twe deduce that R (X)R (X) - ±I so R (x)R (x) has an analytic continuation

in the neighbnorhood of 4 k Hence the orthogonal matrix A(x) satisfying

the equation

S t
B(x) = Q(x)B(x)Q (x), Q(x0) = TT

fulfills the assumptions of Lemma 10.12. So Q(x) = TT and (10.33) holds.

Theorem 10.34. Let p(A,x) be a polynomial of the form (10.4). Assume that

6(p) * 0. Then there are at most v = 2 (n-1)(mn-1) polynomial symmetric

matrices A (x),*-*,A (x) of the form (10.1) such that

IXI-A (x)j = p(X,x), j = 1,---,v and)

A (x) * QAi(x)Qt)33

for i j and any Q e 0 n

Proof. Assume to the contrary that the matrices A (x),O.-,A (x) and

A(x) are of the form (10.1), their characteristic polynomial is p(X,x) and

any of the matrices are not strictly orthogonally similar. Choose x0 as in

Theorem 10.31. We assume that

A(x 0 ) = A (x 0 ) = D, j =

where D is a diagonal matrix. We first note that if T I T2 Q ODn and

TI * T 2 then

k (A JT I )  W(AjT 2 )

for some k. Otherwise Theorem 10.31 imply Viat

A. T1 T2 AjTIT 2 .

As T1 T 2 ±1 it easily follows that there exists a permutation matrix such

that

PAjPt = A. A2
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Therefore

p(X,x) IAI-A .1 A~2  JA I 1 A. IIXI A 2 I

and this is impossible since p(X,x) is irreducible.

Also for any T11 T 2  OD n

Wk (Ai,Tl) * c(A .T 2) j

for some k. Otherwise A i(x) and A.i(x) are strictly orthogonally

equivalent which contradicts our assumptions. Let

W(A.,T) = (w I(A ,T),*'*,w s(A.1 T)) s = n(n-l)m.

Then the set tca(A.,T)I, i=l,,*,V, T Q OD ncontains V 2nI= 2 (n-I)nm

distinct vectors. As wk(A ,T) = ±1, k = 1,***,n(n-l)m we deduce that

there exists i such that w k(A.,T) = 1, k = 1,**O*n(n-l)m. Clearly

Wk(A,I) = 1, k=l,***,n(n-l)m. Thus Theorem 10.31 implies that A(x) and

A.i (x) are strictly orthogonally equivalent which contradicts our assumptions.

The proof of the theorem is completed.
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11. Conclusions, remarks and open problems.
Let n be the space of m+1 symmetric tuples (A0,°'',A

(11.1) S S X .. x Sn,m+1 n n

m+1
Thus Sn,m+ I can be identified with C(n+1)n(m+ l)/2. The complex orthogonal

group O is acting naturally on Sn m+I

(11.2) U[(Ao,°°,A)] = U(A0,' ,A m)Ut, U On

To each m+1 symmetric tuple (A 0,.,A m ) we correspond a polynomial

symmetric matrix A(x) e S (C(x]) by means of the formula (10.1). Consider

the characteristic polynomial IAI-A(x)l given by (10.4). Clearly

p ij(A 0 ,*',Am) is a polynomial on S,m+I which is invariant under the

action of 0 So p. (A 'A ) G IS 0 The coefficients ofnf ij 0 Am n,m+l

IAI-A(x)I induce the map

(11.3) p:Sn+ 1  pn + , p(A 0 ,o ,A m) = ij (A0 , , A))

i = 1,e'e,n, j = 0, *.,mi,

where pn,r is the coefficient space of the polynomials of the form (5.1).

Denote oy 6 (p(Ao,0,A m)) the discriminant of IAI-A(x)l given by (5.9)

(r=m). We claim that 6 0 on S n,m+l The proof is identical to the proof

of Theorem 6.5 except that instead of the pencil A+xB we have to consider

the polynomial matrix A+xmB. Next we claim that the transcendence degree

ot [Sn]m+1 ]0 is mn(n+1)/2 + n. Indeed, assume that A0 has pairwise

distinct eigenvalues. So there exist m+1 tuple (D,E ,',E m ) orthogonally

similar to (A 0,990,A m ) such that D is a diagonal matrix. The matrices

E1,96,E m  are fixed up to the action of the discrete group DOn . Thus

(D,E,' 0,E m ) parametrize most of the orbits in Sn,m+ ]0. So the

transcendence degree of ( n,m+1 0 is at most mn(n+1)/2+n. An obvious

modification of Theorem 7.4 yields
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Theorem 11.4. The polynomials

(11.5) tr(A 0), 1 = 1,10,n, tr(A0AA0A k 0 4 i < j n-1, k=

torm a transcendence basis in [Sn I1. Moreover, if A has n distinct

nmi , Moeoer A0
eigenvalues then the values of these polynomials determine at most 2m(n -n+2)/2

distinct orbits.

Theorem I0.34 implies

Theorem 11.6. The polynomials pi (A 0 °"Am), i = 1, .. ,n, j = 0,-*°,mi,

given by (10.4) form a transcendence basis in (Sn,m+1 ] . More precisely, if

6(p(A0,*.*,A m)) * 0 then the values of these polynomials determine at most

2 (n-1)(mn-1) distinct orbits.

Proof. As the transcendence degree of [S n,m+1 ]0  is mn(n+1)/2+n it is

enough to show that pij (A0 ,°*,Am) i = 1,*-°,n, j = 0,1,*°,im are alge-

braically independent. That is the map p given in (11.3) is proper. Sup-

pose that p is not proper. Then for "most" of iT 6 p(S n,m+), p-(T) is a

variety of dimension

n(n-1)
2 + 1 = (m+1)n(n+1)/2 - [mn(n+1)/2+n]+12

at least. Choose (A0,..',A m ) 6 S n,m+ such that A0  has pairwise distinct

eigenvalues and 6(p(A0,..',Am)) * 0. According to Theo. 2m 10.34 there are at

most 2 (n-1)(mn-1) distinct orbits satisfing p(B 0 .,B) = it = p(A 0 ,...,A).

As the eigenvalues of B0 are pairwise distinct, there are only 2 n

orthogonal matrices which commute with B0 So the orbit of (B0 ,.*,B m)

under the action of 0 n is of dimension n(n-1)/2 - the dimension of the

-1
connected component of 0n . Theretore p (W) has dimension n(n-1)/2 for

such (A0 ,"',A m). Clearly, the set of m+1 symmetric tuples (Ao,*.°,A m

such that 6(p(A0,..,Am)) * 0 and A0  has a pairwise distinct eigenvalue is

an open (algebraical) set in Sn,m+* So, tor "most" of it G p(Sn,m+1) ,

-1
p (w) is a variety ot dimension n(n-1)/2. The above contradiction proves

that p is a proper map. The proot ot the theorem is completed.
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We conjecture

Conjecture 11.7. The map (11.3) is onto map.

The results of Sections 7-9 confirm the conjecture for

n 4 4 and m 4 2. Theorem 11.6 yields

(n-1)(mn-1)
(11.8) deg p 4 2 n n

Problem 11.9. Find the degree of the map p given by (11.3).

Next we observe that the results of Theorem 10.34 apply to a larger class

of matrices.

Theorem 11.10. Let (A0,..,A m ) 6 S n,m+ and consider A(x) G S(C[xJ) given

by (10.1). Assume

(i) for each C Q C, each eigenvalue of A(C) is either simple or double,

(ii) each eigenvalue of Am is either simple or double.

Then the values of the polynomials pij (A0,..,Am., i = 1,**o,n,

j = 0,''°,mi, (i.e. the characteristic polynomial IXI-A(x)l) determine at

most 2 (n-1)(mn-1) distinct orbits.

Proof. The assumptions of the theorem imply that p(A,x) = IAI-A(x)I is non-

degenerate. Moreover for each intersection point 1, A(x) is orthogonally
t

similar to 1 0 A (x), i.e. V in (10.15) belongs to 0 (H(D(C,r))),
j=1 n

where each A.(x) is either 2x2 or IxI symmetric matrix. Suppose that

A. C S (H(D(C,r))). Since p(X,x) is not degenerate A.(x) has two
j 2J

distinct eigenvalues A (x) A8 (x). According to Lemma 10.23 A.(x) can be

analytically similar to a finite number of matrices of the form (i)-(iii) and

this number can be bounded by using the Puiseaux series of the eigenvalues

of A(x) at x =t. Therefore we have a finite number of classes A ,t°,At

of A(x) of the form (10.1) such that

(i) all of them have the same characteristic polynomial p(X,x)
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(ii) it A(x), B(x) e A., then A(x) and B(x) are orthogonally

similar in the neighborhood of any ; (finite or infinite). Now, the

arguments in the previous sections show that in each A there is only a

finite number A 1(x),G*9,Akj ( such that A 9x) and A (x) are not

strictly orthogonally similar for 1 4 a < 0 < k.. SoJ

pi (A 0,**'Am) i 1,60,n, j = 0,600,mi, determine a finite number of

distinct orbits. The inequality (11.8) combined with Theorem 3.17 implies the

number of distinct orbits determined by pij(A0,***, AM),

i = 1,0..,n, j = 0,9*0,mi is at most

(n - )(m n-1)

In many physical applications A0',Am are symmetric and real. That

is we restrict ourselves to Sn,m+ (R). In that case the real orthogonal

group On(R) is acting naturally on Sn,m+1(R). In particular each orbit

orb(A 0,*.,A m ) is compact. We pose the following problem.

Problem 11.11. Let (A ,.-,A m) S nm+1(R). Does the characteristic poly-m

nomial lI - Aix'1 determine always a finite number of orbits? What is
i=0

the value of this number?

As in Section 5 let Mrd denote the variety of reducible polynomials

in Pn,n+1 Put

(11.12) Sd +1= P- (Mrd)O

If p was onto map then Corollary (5.22) would yield

(11.13) codimS rd,n,m+1 m(n-1).

Problem 11.14. Find codimSrdnm+1 and codimrd,n,m+ (R) in Sn,m+1(R).

Here Srd,n,m+(R) = Srd,n,m+1 n Sn,m+i(R)).

In Friedland-Simon [1981] we showed

(11.15) codimS rd,n,(R) 4 n-1

and we conjectured the equality sign in (11.15). we proved this conjecture
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for n-2,3. We now point out briefly how to prove this conjecture for n-4

(11.16) codimSrd,4,1 (R) = 3

Assume that A0 ,A1  S(R) and let p(A,x) = IAI-(A 0+xA1 )I. Assume

first that p(A,x) is not degenerate. Then Theorem 9.6 implies that there is

only a finite number of orbA 0 ,A1 ) with the characteristic polynomial

p(A,x). Recall that in this case orb(A0 ,A1 ) is a real variety of dimen-

sion 6 = 403/2 Assume next that p(X,x) is degenerate. It can be shown in

Shapiro [19791 that for n 4 4 the Kippenhahn conjecture (19511 is valid.

Conjecture 11.17. (Kippenhahn). Let A,B be nxn Hermitian matrices.

Assume that A+xB is a degenerate pencil. Then A and B have a common

non-trivial subspace. That is there exists a unitary matrix U such that

U*(A+XB)U = (AI+XB 1 ) 0 (A2 +xB2 ).

In case that A,B are real symmetric U can be chosen to be a real

orthogonal matrix.

Thus, it follows that p(X,x) in this case determines also a finite

number of orbits orb(A 0,A1 ) whose dimension is 6 at most. Since the

codimension of Mrd (R) in Pn'1 (R) is 3 we obtain the equality (11.6).

Also the above arguments show that Problem 11.11 has a positive answer for

m=1 and n < 4.
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20. Abstract (continued)

matrices). Here r and p are two positive integers. Then we construct a

finite number of rational functions * D ,Ds in the entries of A and B

whose values are constant on all pairs similar in h to (A,B). Then, 2,r,p

values of the functions *i(A,B), i - 1,000,s, determine a finite number

(at most K(n,2,r)) of similarity classes in Mn p Let S be the

subspace of complex symmetric matrices in MnO For (A,B) Q S x S wen n

consider the similarity class (TATt, TBTt) where T ranges over all complex

orthogonal matrices. Then the characteristic polynomial IAI - (A+xB)l

determines a finite number of similarity classes for almost all pairs

(A,B) 6 S x S .
n n


