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-~ In this paper we solve completely and explicitly the long standing

[~
problem of classifying pairs of nXn complex matrices (A,B) under -the
/N

simultaneous similarity, (TA%ZlymBT-1)Z/ Roughly speaking, the classification

decomposes to a finite number of steps. In each step we consider an open

0
: X - e n 1
algebraic set M”TYTTV 7 M M (Mn thg set of ?i complex valued
matrices). Here r and P are two positive"Ihtegers:D Then we construct a

finite number of rational functions -¢T,;4;1¢§5>in the entries of A and B
whose values are constant on all pairs similar ia—f_ \\;to (A,B). The
n;2,Y,
* values of the functions ¢i(A,B), i=1,°°+,s, determine a finite number

. t s
n,2,r,p Le n be the

! subspace of complex symmetric matrices in M _.  For (A,B) € Sn x Sn we
t, TBT where T ranges over all complex

consider the similarity class (TAT
orthogonal matrices. Then the characteristic\polynomial |AI - (A+xB)|
determines a finite number of similarity classes for almost all pairs
‘ (a,B) € Sy % Sp \
gk
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SIGNIFICANCE AND EXPLANATION

Consider the following linear singular differential system

(1) &= (a + B/t)x
Here x = (x_,°***,x )t is a column vector and A = (a..)n and B = (b..)n are
1 n i3 ij"
nXn complex valued matrices. A linear change y = Tx, transforms (1) to
dy _ _ -1 _ -1
(2) at = (A1 + 31/t)y, A, = TAT ', B, = TBT .

Thus we are led to study the properties of pairs of matrices (A1,B1) which
are simultaneously similar to (A,B). It can be shown that more complicated
singular differential systems under more general transformations will lead again to
a certain similarity class of pairs of matrices.

We now give another example of simultaneous similarity. Let A and B be
real symmetric. Then "A and B can represent a potential and kinetic energy of
some physical system. By changing to another orthonormal basis we shall get another
pair (A1,B1)

(3) a t

= Tatt, B, = TBT

1 1
for the corresponding orthogonal matrix T. The class of all such symmetric pairs
(A1'Bl) gives all representations of the same physical system. Thus to classify
such similarity class is equivalent to classifying the physical system up to a
choice of an orthonormal basis.

In this paper we solve completely the first mentioned problem. The

1,rer 1) decomposes to a finite

classification of the similarity classes (TAT
number of steps. In each step we consider an algebraic variety V (a set of points
defined by polynomial equations) of pairs of matrices, We construct a set of
invariant functions, sort of "generalized eigenvalues" of the pairs (A,B) 1lying

in V. Those "eigenvalues" classify all similarity classes of (A,B) except for
some algebraic subvariety W in V ., We now repeat the process for W.

In the case of symmetric pairs (A,B), we do as follows. With each such pair
we associate the characteristic polynomial p(A,x) = |AI - (A+xB)|. Clearly, any
similar pair (A1,B1) has the same characteristic polynom%ﬁl. In this paper we
show that for almost all symmetric pairs (A,B) the characteristic polynomial

p(A,x) determines the orthogonal similarity class up to a finite number of
possibilities. We strongly believe that our results would have some applications to

the invariants of singular differential systems as well as to other areas, in

particular mathematical physics.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report,




TABLE OF CONTENTS

0. Introduction.
5{ * 1. Classification of similarity classes of tuples of matrices.
4 2, The 2 X 2 case.
: . 3. Polynomial maps and varieties,
4, Algebraic functions.
S. Special polynomials in two variables.
6. Irreducible pencils.
7. Symmetric pairs.
8. Polynomial matrices with a constant spectrum.
9, The equation [F,(F,A]] = 0. |
10, Symmetric polynomial matrices,
1. Conclusions, remarks and open problems.

“ravry




SIMULTANEOUS SIMILARITY OF MATRICES
Shmuel Friedland'

0. Introduction.

Let M, denote the ¢ . of nXn complex valued matrices and G, the
group of all invertible matrices in M. It is a classical problem to clas-
sify the similarity classes (orbits) of m+1-tuples of matrices (A0,°°°,Am)

under the action of Gy

-1 .
(0.1) orb(Ao,---,Am) = {(Bo,---,sm), B, =TA,T , i=0,%""m, TE€ Gn}.

See Gelfand {1970), Gelfand-Ponomarev [1969], Brenner [1975], Nathanson
[1980], Processi [1976] and Friedland [1980] for certain problems in which
the classification of such orbits needed, for various results on this problem
and additional references. It is known that the classification of similarity
classes of m+1 tuples can be reduced to the classification of simultaneous
similarity of pairs of matrices (A,B). 1In fact one can assume that A and

B are commuting and even nilpotent. See Gelfand-Ponomarev [1969]) and
Nathanson [1980). Therefore in certain cases, for the simplicity of the expo-
sition we are dealing with the simultaneous similarity of pairs of matrices
(m=1)., In cases when the choice m=1 does not simplify the treatment of the %
problem we are dealing with an arbitrary m. In Friedland, {1981] we out-
lined a general procedure for classifying the orbits of a given algebraic
group acting on an irreducible variety over any algebraically closed field.
For the problem of simultaneocus similarity our procedure works as follows. 1In

the step number i we are given an irreducible variety V in

(002) M =M X eee X M
n,m+1 n n
m+1
t
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University of Wisconsin-Milwaukee.

Sponsored by the United States Army Under Contract No. DAAG29-80-C-0041.




which is invariant under the action of Gn' That is if V contains a tuple
(Ao,°",Am) then V contains orb(Ao,°'°,Am). Let {Vv] and (V) be the

ring of polynomials and its field of quotients whose variables are (m+1)n2

a(k)),
13

A rational function f € (V) 1is called invariant if f 1is constant on all

entries of Ak = ( k =0,***,m and whose values are restricted to V,

orbits lying in V. Denote by [V]G and (v)G the subring and subfield of

invariant functions in (V] and (V) respectively. Since (V)€ is a sub-

field of rational functions in (m+1)n2 variables (a11 ,"',ann , *°e,

m)
n

a(m)

G
T )

,"°,a; ) it is known that (Vv is finitely generated. That is there

exist g invariant functions x1,°'°,xq € (V)G such that any x € (V)G can
be expressed as a rational function in x1,"°,xq. See for example Fogarty
{1969, p. 69]. Then there exists an invariant (strict) subvariety Wecv

such that the functions x1,°'°,xq are defined on each point of the open set
V-W and their values determine the orbit of (Ao,'°°,Am). The orbits in V-W
are characterized by two numbers their dimensions and their degrees as irre-

ducible algebraic varieties in M So in the next stage one has to clas-

m,m+1°

sify orbits on W and the process ends in a finite number of steps. In Sec-

tion 1 we identify the sets V-W with open algebraic sets Mo which
n,m+1,r,9

are characterized by two integers r and p. 1In fact nz-r is the dimension

of any orbit in M and p 1is another integer which has a relatively

n,mn+1

simple characterization. Roughly speaking ¢ is the number of linearly
independent polynomial equations which determine the orbit of (A0,°'°,An).

We show explicitly how to find a set of invariant functions ¢1'.."¢s in
G . . . .
(M ) such that any orbit in Mo is determined by the value
n,m+1,r,p n,m+1,r,p

ot these functions up to a finite number «(n,m,r) of them.
To understand the complexity of the general problem we give a complete

clagsification of pairs of 2Xx2 matrices (A,B) under the simultaneous

1

similarity (TAT™ ,TBT" 1), We do it directly without using the results of




Section 1. Our classification then is reduced to three steps. In the first
step the coefficients of the characteristic polynomial |AI - (A+xB)|
determine the orbit of (A,B) completely as long as IAI - (A+xB)| is irre-
ducible over the ring C[A,x). Let U be the set of all pairs (A,B) such
that |AI - (A+xB)| splits to a product of two linear factors. Then U is
given by a single equation
u = {a,B), {2er(a?)-(tr (A) 12 H2er (8%) - [tr (8)1°) = [2tr(aB) - tr(A)tr(B)]°.
It follows that U 1is an irreducible variety of codimension 1. Let V
be the set of all pairs (A,B) such that |AI - (A+xB)| is a square of a
linear factor. That is, for any x A+xB has a double eigenvalue. Then V
is given by a set of these equations
v = {(a,B), 2er(a?) = (tr(a)1?, 2tr8%) = (tr(B))?, 2tr(aB) = tr(a)tr(B)}.
So V 1is an irreducible variety of codimension 3. We show that on U-V
the characteristic polynomial of |AI - (A+xB)| determine 3 distinct
orbits. In order to distinguish between these 3 orbits we have to introduce

rational invariant functions in U

(0)17P5)8,58,0 + 35581105 7 21425005
a(A,B) = a b -a_b —
12°21 21°12
- b -b_.b
B(A.B) = (a1173227P15P51 * PyaPi2%21 = PiiPp3y,
’ = .
12321 T Py,

Those ftunctions are detined on non-commuting pairs (A,B) in U. The orbit
of the commuting pair (A,B) € V 1is determined by its characteristic
polynomial. It is easy to see that [V]G is generated by tr(A} and
tr(B). So the transcendence degree ot the quotient field of [V]G is 5.

However, the transcendence deygree of (V)I® is 3 since we have an additional

rational i iant £ t A,B) = a = .
nvariant function on Y(A,B) 12/b12 321/021

..3_




Then tr(A), tr(B) and Y(A,B) (or 1|Y(A,B)) determine the orbit of
(A,B) as long as A and B are not the scalar matrices. In the last case
tr(A) and tr(B) determine orb(A,B). This shows that in the classification
process carried out in Section 1 we must at a certain stage consider rational
invariant functions in V. We now list briefly the contents of the rest of
the paper. Sections 3-5 are technical and needed in the sequel. They deal
with polynomial maps p:c"I + CV and some special properties of certain
algebraic functions in two variables. 1In Section 6 we deal with irreducible
paris (pencils) (A,B). These are the pairs for which |AI - (A+xB)| is an
irreducible polynomial over C[A,x]. The orbits of these pairs are determined
completely by the generators of the ring of the invariant polynomials on

Mnxnn. According to Processi [1976) these generators can be picked to be of

ig 3

the form tr(Ai1Bj1 (***, A B ), and we described a procedure to determine
the orbit. We showed that the transcendence degree of {Mann]G is n{(n+1)
however we were not able to find a transcendent basis in [Mann]G.

The rest of the paper is devoted to the study of m+1 tuple (A0,~-',Am)
of symmetric matrices under the action of complex orthogonal group O, 1In
this context

sorb(a ,***,A ) = {(Bo,---,sm), B, = QAiQt, i=0,°"¢,m06€ on}.

This case is of importance in mathematical physics at least for m=1, 1In
that case we can interpret A, and A, as the potential and the kinetic
energies, The orbit of (AO,A1) will correspond to the representations of the
potential and the kinetic energies in different orthogonal bases. Usuallly
Ap and A, are real, however in some instances one considers the complex
case too. See for example Moiseyev-Friedland [1980]. Let 5, Dbe the set of

nxn complex symmetric matrices and put

= X ses X .
Sn,m+1 Sn Sn

Q)




bl i

Denote by (S the set of invariant polynomials in the entries

)o
n,m+1

under the action of On. In Section 7 we show that the

L X N ]
(AU' 'Am) € Sn,m+1

transcendent degree ot [Sn,m+1]0 is nl(n+1)m+2}/2 for m=1,., The general

case 1s discussed in Section 11, We also find a simple transcendence basis in
this ring. Unfortunately, thié basis is not symmetric in AO,"',Am. Let
A(x) = ? Aixi and consider p{(\,x) = |AI-A(x)| the characteristic poly-

1=0
nomial of A(x). Clearly, the coefficients ot p(A,x) belong to

[Sn m+1]0’ The number of these coefficients is n[(n+1)m+2]/2! This suggests
’

(as in 2x2 use) that these coefficients form a transcendence basis in

0
[Sn ] .

n+1 This is indeed the case and Sections 8-11 are devoted to prove
’
this result,

We also determine a class of characteristic polynomials p(A,x) which
determine the orbit of (AO,°",Am) up to a finite number and we estimate
from above the number of distinct orbits corresponding to p(A,x). In Section
8 we study polynomial matrices A(x) with constant eigenvalues, 1In Section 9
we show that if A,B € sn, A+xB has constant n distinct eigenvalues then *
B =0 for n € 4. This result implies that for n € 4 the polynomial

p(A,x) = IAI - (A+xB)| determines at most
n
. n-
M(n) = T it/2

i=1
distinct orbits of (A,B) (and generally this is the number of distinct

1

orbits) on condition that p(A,x) is non-degenerate. That is p(A,x) = 0
does not have a multiple root for all x.

For n 2 5 this result does not apply. Section 10 deals with a general
symmetric polynomial matrix A(x). We show that if p(A,x) = |AI - A(x)| is
a non-degenerative polynomial and for each finite or infinite x each A
root of pl(A,x) =0 is either single or double then there are at most

2(n-1)(mn-l) distinct orbits corresponding to m+1 symmetric tuples




|
r
]
l
¢
|
i

(AO,"',Am) such that
m .
p(A,x) = |AL - } Aixll.
1=V
The proof of this result is non-trivial and lengthy. The basic idea is to use

the theory of one complex variable, in particular the Liouville theorem. The

last section is devoted to various remarks, comments and conjectures.

| e e




1. Classification of similarity classes of tuples of matrices.

Let A € M . As usual denote by |A| the determinant of A. In what
tollows we adopt the notation of Marcus-Minc [1964].

Denote by Qk,n the set of strictly increasing sequences of integers

a = (al'...’“k)' 1 < 01 < see ¢ aK € n., For any rectangular matrix A we
denote by A[aIB] the submatrix generated by the rows a = (a1,"',ak) and
columns B = (81,"°,32). In case that k = £ |A[a|8]| denote the appro-
priate minor of A, Also A[i,j] denotes the (i,j) entry of A. For A,B
€ My let L(B,A) be the following operator on ML
L(B,A)X = BX-XA, X € M.
In tensor notation L(B,A) 1is represented by the matrix I € B - At 8 I.

Here by at

we denote the transposed matrix of A. See for example Marcus-
Minc [1964, p. 8]. Let V(BO,"°,Bm,AO,"',Am) be the dimension of the sub-
space of matrices satisfying

(1.1) BiX—XAi =0, 1=20,°°°,m,

i = 0,***,m denote the dimension of this subspace by

V(AO,"°,Am). Note that v(A0,°'°,Am) 21 since X =1 is a solution of

(1.1) tor B, = Ay,

i =0,***,m. Denote by L(Bo,'°',Bm,AO,'°°,Am) an
2 .
(m+1)n xn2 matrix composed of the submatrices L(Bi,Ai), i=20,°*",m.
Clearly

2
(1.2) rankL(BO,"',Bm,AO,"‘,Am) =n —V(Bo,"',Bm,AO,‘°°,Am) .
Let A,B € M . Suppose that B = TAT™!. Then L(A,X) and L(X,A) are
correspondingly similar to L(B,X) and L(X,B) for any X € M,

t

I®B-X ®1I !

(I18®T)(I18A-X ®I)(I®T )

(1.3)

t

Iex-B"681=(H "en(rex-atenrten

fl

i -1
So 1if T(AO,'°',Am)T = (BO,°°',Bm) we have




M el

L(BO'...'Bm'xo'...'xm) =

1

diag{I x T,eee,1 x T}L(AO,---,Am,x o0, X (I x T )

(1.4) o’

L(xo'...'xm'Bo'.."bm) =

1

-1 -
aiag{(tH) ™" x 1,00, (r%) IIL(Xg, * e X _,A ---,Am)(Tt x 1),

OI
Here by diag{A0,°",Am} we mean the block diagonal matrix with matrices

AO,"',Am on the main diagonal, By choosing X, = A in the first

~

equality in (1.4) we get

(1.5) V(By,***,B (A "‘,Am) = V(AOI"',Am)

o’
if (AU,"',Am) and (BO,°",Bm) are simultaneously similar. In general,
the equality (1.5) does not imply the similarity of (A0,°°-,Am) and
(BO,"‘,Bm) even in the case m=0, See Friedland [1980]. However (1.5)
implies the similarity of (Bo,°°°,Bm) and (Ao,"-,Am) provided that
(BU,"',Bm) lies in some open set U containing (AO,O",Am).

Theorem 1.6. Let Ao,'“,Am €M and put Vv = V(AO,"',Am),

r = nz—v. Assume that o € Q , B=C Q
r,(m+1)n r,n

5 satisfy the following

assumptions
(i) there exists Bo,'°',Bm € Mn such that

(1.7) |L(BO,°",Bm,A ---,Am)[a|31| # 0,

o’
(ii) 1Identify B with a subset of N x N, N= {1,¢e¢,n}. 1In the
system (1.1) consider r equations given by the index set a. Let
X(€) = (xij)? be the unique solution of these r equations satisfying the
conditions
Xy = El(i,j)’ (i,j3) ¢ B, & = (51,"',€V).

. . v
Assume that |X()| does not vanish identically on C .

benote by Ua 8 the set of all (BO,-",Bm) which fulfill (i) and
’

(ii). Let U be union of all U ae P Beg 3 where a
r,(m+1)n r,n
and B satisfying (i) and (ii). Then U is a non-empty open (algebraic) set

a,B




in M

n,m+l which contains (Ao,°",Am). Moreover (BO,°'°,Bm) is

simultaneous similar to (Ao,°",Am) if and only if (Bo,°'°,Bm) € U and the
following equalities hold.

(1.8) |L(B,***/B A oA ) Y|8]] =0, YeEQ , 1 8€0 5*
r+1,(m+1))n r+i,n

Proof Let a and B satisfy the assumptions (i) and (ii). Since the coef-

ficients of the variables §1,'~°,£v in the polynomial lx(E)I are rational
functions in the entries of (AO,"‘,Am) and (Bo,°°°.Bm) it follows that
Ua,B is an open algebraic set. That is Ua,B is a union of a finite number
of sets, each of them is characterized by some non-vanishing polynomial. Sup-
pose that (BO,'°',Bm) is simultaneous similar to (Ao,'°°,Am). Then the

0 0

matrices L(Ao,"-,Am,A ,---,Am) and L(BO,°",Bm,A ,°",Am) are equiv-

alent. Theretore the above matrices have the same rank. So there exists

a € and B € ¢ 2 which satisfy the assumption (i). Further-
r,{(m+1)n r,n
more as B; = TAiT°1, i = 0,***,m the polynomial |X(£)| does not vanish
identically. This shows that Ua 8 is a non-empty open algebraic set, and
14

hence U 1is a non-empty algebraic open set. Moreover if (BO,°",Bm) is

simultaneously similar to (Ao,°",Am) then (BO,"',Bm) € U. 1In particular
(A0,°",Am) € U. Assume that (BO,"',Bm) € U. Then there exist a non-

singular matrix X which satisfies r independent equations of (1.1). The

equality (1.8) implies that all other equations of the system (1.1) are linear

combinations of these r equations. So X satisfies (1.1) which means that
(BO,°",Bm) is simultaneous similar to (Ao,'°',Am). B

Let v and r be defined as in Theorem 1.6. Consider the following

algebraic variety X in M defined by the equations

n,m+1
(1.9) IL(xO,~~-,xm,A0,---,Am)[a|8]| =0, a€Q , Beo 5"
r+1,(m+1)n r+i,n
This variety splits to K irreducible varieties
K

1

(1-10) X=u X. o
i=

1




@ v bbb

Definition 1.12. Let M

See Section 3 for various properties of algebraic varieties needed here and
the appropriate references.
In Section 3 we show that « 1s bounded

2
v \Y]
(1.11) x < pU(mn+v)

;, V=n"-r,
Let U be an open set defined in Theorem 1.6. According to Theorem 1.6
X nu c orb(AO,"',Am).
Since the orbit of (AO,°",Am) is a manitold of dimension r it
follows that the point (AO,"°,Am) is contained exactly in one irreducilbe

variety - say X,. Also the dimension of X, is r.

be the set of all matrices

n,m+1,r
(AO' 'Am) € Mn,m+1 such that
|L(A0’..-,Am,AO,-.o,Am)[alBll =0, a€Q , BeQ 5
r+1,(m+1)n r+1,n
0 ,

By n,m+l,r denote the open (algebraic) subset of Mn,m+1,r of

(Ajre*/h ) satisfying

V(A ,**¢,A ) = n°-r .
o’ “m

(1t may happen that Mo is empty). Let «k(n,m,r) be the maximal number

n,m+1,r

of irreducible varieties Xi of dimension r in the decomposition (1.10) of

the variety X given by (1.9) having a non-empty intersection with MO

n,m+1,r
for all possible choices of (AO,--',Am) € Mg,m+1,r , (k(n,m,r) =0 if
g,m+1,r is empty).
So (1.11) implies
(1.13) K(n,m,r) < rv(mn2+v)’ Vv = nz-r.

0

heore .14, A _,00° 2
T m 1.14 Let ( o' ,Am) € Mn,m+1'r.

Let X1 be the irreducible
component of the variety (1.9) containing the point (AO,'-',Am). Then

orb(AO,°",Am) is an open algebraic set in X1- That is

(1.15) oro(Ao,-'°,Am) = X1.
Moreover
(1.16) orb(A_,**s,A ) = X.n M© .
0 "m 1 n,m+1,r

-10-
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Proof. As orb(Ao,"°,Am) is a manifold of dimension r by Theorem 1.6 we
get orb(AO,-°',Am) c X1. Let U be defined as in Theorem 1.6. According to
Theorem 1.6
. =X n -
orb(A0,° °,Am) 3 U

As U is an open algebraic set in M we get that orb(A ,***A )

n,m+1

is an open algebraic set in the irreducible variety X1. So (1.15) holas,
(Here orD(A0,°'°,Am) means the closure of the orbit set of (AO,'°°,Am)).

. 0 ; .
Let (BO, ,Bm) € X1 n Mn,m+1,r' So any neighborhood of (BO,°' ,Bm)

contains a point (CO,°°°,Cm) € orb(Ao,'°',Am). According to the equalities
{1.3) the matrices L(BO,"',Bm,AO,°°',Am) and L(BO,'°°,Bm,CO,°'°,Cm) are
equivalent. As (Bo,"',Bm) € X1 we deduce

IL(BO,'°',Bm,CO,"’,Cm)[G|B]l =0, @a€Q , Beg 5
r+1,{(m+1)n r+t,n

As analogous results to Theorem 1.6 yields that there exists a neighborhood

U of (Bo,"',Bm) such that (Co,"°,Cm) € orb(BO,"',Bm) provided that
(Co,°",cm) € U and the above equalities hold. So there exist (CO,"',Cm)

which lies in the orbits generated by (Ao,-'°,Am) and (Bo,’-°,Bm). whence
M0

ese B eee - s C
(BO, ' m) € orb(Ao, ,Am) As orb(AO, ,Am) n,mel, x

we finally
deduce the equality (1.16). (]
Consider the left hand side of the equalities (1.9). These are

multilinear polynomials in the entries of x0,°'°,xm. Let W be the

n,m+1
linear space of all multilinear polynomials in the entries of x0,°-',xm. we

(0,1)

formally define (|

as follows, Denote by M the set of all nxn

n,n+1 n
matrices Y = (yij) with (0,1) entries, i.e, Yij = 0,1, For X = (xij) €
M, we let y
= 1 xY, ve M;0'1) (x{. 2 1).
1€1,3¢n 3 3
Then wn’m+1 consists of all polynomials
Y
0 m
(1.17) P(X_,°%0,Xx ) = ] P, L.y X oecee,x
0 YieMl:O'1 ) YO' er o m

-11-

A S S Ao




Clearly

(m+1)n2
(1.18) dim W = 2 .
n,m+1
With this notation
IL(XU'.'.'xm'AU'...'Am)[alBll =
z P (A s **°,A ,G,B)X O’...'x m’
{(1.19) Y.GM(O'1) YO'...'Ym 0 m 0 n
i n
a € , B€Q 5 *
r+1,{(m+1)n r+1,n
Denote by P(A0,°°°,Am) the
(m+1)n?  n? (m+1)n2 '
) x 2 ]
r+1 r+i
matrix whose rows are the vectors
" . (0'1)
(PY L%, Y (Aol ’Amluls))l YO" 'er € Mn .
0 m
In fact the matrix P(Ao,"',Am) contains a lot of zero columns, Indeed if
we pick up a minor of the form (1.19) then each entry of such a minor consists
of a sum one element of some xk and some Aj. Therefore the polynomial
(1.19) contains exactly (r+1)! moninomials of degree r+1 of the form
£1,"°,£r+1 in the entries of xo,--',xm. So the number of distinct

mononomials of degree r+1 appearing in all possible expression in (1.19) is

(m+1)n2)( n2

« The number of distinct monomials of degree
r+1 r+1

exactly (r+1)!(
2
1
a € r which may appear in (1.19) is d!((ﬂH’d)n )(3 ). Hence the upper bound

for nontrivial columns appearing in P(AO,"°,Am) is

r+1 2 2 2 2
. (m+1)n"y(n r+1.(m+1)n" y/n
. = < . 3
(1.20) Nn,m,r l d!( d )(d ) 2 ( r+1 )(r+1) !
d=0 ¢
oo 2 M
By Mn,m+1,r,p denote the subset of all tuples (A, ,Am) € h,ml, ¢ such

that rank P(AO,"',Am) < p.
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Clearly, M is an algebraic set. Let M0 be the

n,m+1,r,p n,m+l,r,p
0
LX) e 1
subset ot all tuples (Ao, ,Am) Mn,m+1,r satisfying
(1.21) rank P(AO,°-°,Am) = P
Again, it is easy to see that Mo is ‘an open (algebraic) set in

n,m+l,r,p
We now give sets of invariant rational functions which determine

uniquely a finite number of orbits lying in M0 To do that we need
n,m+1,r,p.

n,n+l,r,p.

to recall the notion of Hermite normal form of a rectangular matrix A. See
for example Marcus-Minc [1964]. Two pXq rectangular matrices A and B
are called row equivalent (A~B] 1if there exists a nonsingular matrix Q |
such that B=QA. Any pXq matrix A can be brought to the unique Hermite

normal form E = E(A) using the elementary row operations. E = (eij) is

characterized by the conditions
< see ¢ < =
1 P, < p2 < * < pp P, P rank A,

(1.22) eipi =1, eij =0 for j < P/ for j =p

i+1l...lppl i=1,ee%,p

e. =0 for 1i > p.
1q

The integers p1,"',pp are called the discrete invariants of A and the

entries e,

iq’ P, <q# pi+1,'°°,pp, i =1,%¢¢,p, are called the continuous

invariants of A. Given p1,"',pp then the continuous invariants are well

determined rational functions of A.

Theorem 1,23, Let r and p be positive integers such that M0 is
——— n,m+l,r,p
0

n,m+l,r,p° 1t

nonempty. Assume that (Ao,°'°,Am),(Bo,'°',Bm) e M
(A0,°°°,Am) and (EO,'°°,Bm) are simultaneously similar then
(1.24) P(AO,"‘,Am) ~ P(BO,"',Bm).
Moreover, there are at most «k(n,m,r) distinct orbits in MO which
n,m+1,r,p

satisfy the equality (1.24). That is the discrete and the continuous

invariants of P(Ao,°°°,Am) determine at most «k(n,m,r) distinct orbits in

0
n,m+1,r,p’




-1 .
Proof. Assume that (BO,"°,Bm) = T(AO,'°',Am)T . Then (1.4) yields that

the matrices L(XO,"',xm,AO,°",Am) and L(xo,"',xm,BO,'°',Bm) are equiva1

lent. Moreover the transformation matrices do not depend on the matrices

XO,"',xm. So any kxk minor of L(XO,'°',xm,BO,'°',Bm) (L(XO'...'XmIAOI

"°,Am)) 1s a fixed linear combination of all kxk minors of L(XO,"',

oo s B ,***,B « So the trices A _,***,A and
X 1B Am) (L(xo, X 1By ' m)) o matr P{ 0’ ' m)

P(BO,°",Bm) can be transtformed each one to the other one by elementary row
operations. That is the equality (1.24) holds.
Consider the algebraic variety deftined by (1.9). In the decomposition

(1.10) we may assume that X1,"',XT are all the irreducible varieties which

0

is an open non-
n,m+l,r,p

have exactly the dimension r such that Xi n M

empty set in Xi for 1 = 1,***,T. By the definition of «(n,m,r),

T € X(n,m,r). Suppose that

0

i =1,°%°°°,71
n,m+1,r,p ' ' !

(A(i),'°-,A(i)) eX. nM
o] m i

and assume that (Aél),'°°,A(l)) is a regular point in Xi. That is X, |is

m 1
a manifold of dimension r in the neighborhood of (Aél),°",A;1)). we

3 1 (1) - - e = see
assume the normalization Ak = Ak, k =0, (Me SO X1 = orb(AO, ,Am).
The equalities (1.4) yield that orb(Aél),
(i) (1) : . . .
(1.9). As orb(A0 ,'--,Am ) 1s a manifold of dimension r which passes

, (i) (1)
through a regular point (Ao ,°°',Am ) of Xi we deduce that

) eee a8y ¢ X . Now Theorem 1.14 implies that orb(a‘l’,eee,atl)y s
0 m - i 0 m
(i) (i)

i 3 1 sece = . e
an irreducible variety. So orb(Ao B ,Am ) Xi Let (Bo, ,Bm) [

0
n,m+l,r,p

-'-,Aél)) satisfies the system

and assume that (1.24) holds. Thus any (r+1) x(r+1) minor of
Be L(xo,"',xm,Ao,'°'Am) is a linear combination of all kxk minors of
L(XO,"',xm,BO,°°',Bm) and vice versa. Therefore (XO,"',xm) satisfies
the system (1.9) if and only if (xu,"°,xm) satisfies the system

(1.25) L(x0,°°',xm,B0,"°,Bm)[a|B) =0, ae€ g 5 ! Bey 5
r+t,(m+1)n r+i,n

2 . .
As v(BO,°‘-,Em) =n -r, (BO,°°',Bm) 1s a solution to the above
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equalities. Whence (Bo,'°',Bm) satisfies the equations (1.9)., Therefore

orb(Bo,"'Bm) satisfies the equalities (1.9). Since (Bo,'°'.Bm) €

0 0
c

see |3 . So
n,m+1,r,0 " we deduce that orb(BO, . m) n,m+1,r,0

orb(BO,"',Bm) is an irreducible variety of dimension r such that its

; . . (V) . . —_—
intersection with is a non-empty open set in orb(B,,***,B ).
n,m+l,r,p 0 m
— 0
see = F i <1, sse. B €
Hence orb(Bo, . 'Bm) i for some 1 i 1. As (BO' ’ m) Mn,m+1,r

. L (i
Theorem 1.14 yields that (BO,°'°,Bm) is simultaneously similar to (AO ),"',

A;l)). Thus, then at most T (< k(n,m,r)) distinct orbits such that any

two points on those orbits satisfy the equalities (1.24), {3

0 .
X e M . A th W= vee is the set
Let (AO, ,Am) n,m+1,r, P ssume at (p1, ,pp) s

of discrete invaviants of P(AO,-",Am). Let Vo(w) be of the set of all

(B _,***,B ) € M0 for which @ 1is the set of the discrete invari-
0 m n,m+1,r,p
0

« More-
n,m+1,r,p

ants of P(BO,°°',Bm). Clearly Vo(w) is an open set in M

. .. . 0 L.
over, M0 is a finite union of set V (w), for admissible we€ Q
n,m+3l,r,p p,n2

n, = Nn g On each Vo(w) the set of continuous invariants of
r ’

P(A0,°",Am) - which are rational functions in the entries of AO'...'Am -

: . . 0 o .
classify the orbits in V (w) wup to a finite number not exceeding K(n,m,r).

We conjecture

0

q see oo
Conjecture 1.,26. Let (AO, ,Am), (B ,Bm) € Mn,m+1,r,p'

Assume that the
equality (1.24) holds. Then (Ao,'°',Am) and (BO,°'°,Bm) are simultane-

ously similar.

For m = 0 the above conjecture is valid. Indeed, according to Friedland [1980])
(1.27) V(B,,Ag) € [V(A,,A ) + A(B,,B;)]/2
and the equality sign holding if and only if AO and B0 are similar.
According to the proof of Theorem 1.23 the equality (1.24) implies that all
(r+1)x(r+1) minors of L(B,,Ay) vanish. So
2
VI{E ? - = = .
(BO,AO) n -r v(AO,AO) v(BO,BU)

Hence we must have the equality sign in (1.27) which means that Ay and B, are

similar. In the next section we verify the above conjecture for m=1 and n=2.




2. The 2 X 2 case.

Let A,B, 6 M2. Clearly

(2.1) ¢, = tr(d), ¢, = tr(a?), ¢, = tr(m), 9, = tr(8%), ¢g = tr(AB)
are invariant polynomials under the simultaneous similarity.

Theorem 2.2, Let U be the following algebraic variety

(2.3) U = {(a,8)|{2er (A% -[tr (A) 12} 2tr (BD)-[tr (B)1%) = (2tr(aB) - tr(a)tr(B)1°) I
Then, for any pair (A,B) not lying in U the orbit of (A,B) is deter-

mined uniquely by the values of ¢E(A'B)' i = 1,5,

Proof. Suppose first that A has distinct eigenvalues Al,kz, Al # kz. That

is [tr(A)]2 # 2tr(A2). The eigenvalues A, and AZ are determined by the

1

values of tr(A) and tr(Az). Then we can choose a pair (D,E) 1lying in the

orbit of (A,B) such that

3 i
A 0 €11 €12
(2.4) D = D(X1,A2) = . N , E = E(e11,e22,e12,e21) . . .
2 21 22
Now 3
tr(E) = e__+e tr(DE) = A e _+A_e tr(Ez) = ez +e2 +2e_ .e_ ..
11 22 1711 2722 1122 122
Thus
tr(DE) -~ Aztr(E) tr (DE) - A1tr(E)
€y = X=X, ' €22 T RAERY
(2.5)
2 2 2
€158y = [EX(ET) - ey, - e)01/2
We claim that e,85, # 0, Otherwise (D,E) € U, i.e. (A,B) € U contrary

to our assumption. Therefore by considering xpx~' and XEX'1, where X is
a diagonal matrix, we may assume
(2.6) ey = 1.
In that case D and E are determined uniquely by N
tr(D) = tr(a), tr(Dz) = tr(Az), tr(E) = tr(B),

tr(E%) = tr(B%), tr(DE) = tr(AB).
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Suppose that (tr(a)1? = 2tr(A2). Consider the matrix oA+8B. Then
2 2
2tr((aa+BB) "] - [tr(aA+BB])" =
y y 2 2
(2.7) 2 lzer (8% - (er )12} + B2 2w 8%) - (w1}
+ 2aB{2tr(aB) - tr(a)tr(B)}.
Thus «aA+BB has a double eigenvalue for all a and B if and only if
A,B) lies on the variety
2 2
(2.8) v = {(a,B)|2er(a%) = [tr(a))?, 2tr(8%) = [(tr(B)]1,
2tr(AB) = tr(a)tr(B)}.
Since V c U we see that (A,B) ¢ V. So we can choose B # 0 such that A1
A + BB has aistinct eigenvalues. Thus, there exists a matrix X such that
-1 _ -1 _ .
XA1X = D, XBX = k.
Again, if €118 = O then A, and B are simultaneously similar to upper
(lower) triangular matrices. So A and B are simultaneously similar to upper

(lower) triangular matrices which contradicts the assumption (A,B) € U. That

is the orbit of (A,B) contains a matrix of the form D-BE and E where
D 1is diagonal, e,; =1 and D and E are defined uniquely by

i(A,B), i =1,%¢+,5 having fixed the value of 8. a

We now examine the matrix meaning of the variety U,

Theorem 2.9. A pair of matrices (A,B) belongs to U if and only if

(A,B) 1is simultaneously similar to a pair of upper triangular matrices,

Proof. Assume first that A has two distinct eigenvalues A_,A A1*A2'

1' 2'
Then (A,B) is simultaneously similar to a pair (D,E) where D and E are
given by (2.4). A straightforward calculation yields

2tr (%) - [er(a))? = 2er (0?) - [tr(D)]?

1]
[

2
(A1-X2)

(2.10)  2er(8%) - {tr(8)12 = 2tr (%) - [tr(E))?

]
"

(eggeyp) + ey,

2tr (AB) - tr(A)tr(B) = 2tr(DE) - tr(D)tr(E) = (AI—AZ)(e11—e22).

The assumption that (A,B) € U means

2 2 2 2
(Al-Az) [(e11—e22) +4e12e21] = (X1-X2) (e1‘—e22) .




AT

Aad

Since AI*XZ we get that e;,e,, = U. 1f e,, =0 then D and E are

upper triangular. Suppose that ey, = 0. Define

0 1).

p=(; o

Then (A,B) are simultaneously similar to the upper diagonal matrices (PDP~
PEP"). This establishes the lemma in case that A has distinct eigen-
values. Assume that A has a double eigenvalue. If A = AI then clearly

(A,B) are a simultaneously similar pair of upper diagonal matrices. So

suppose that (A,B) are simultaneously similar to a pair (D,E)

e
(2.11) p=(* 1), k= (e11 e12).

21 22
Since (A,B) € U we must have
0 = 2tr(AB) - tr(A)tr(B) = 2tr(DE) - tr(D)tr(E) = 2e21.

that is (D,E) are upper triangular. [

Corollary 2.12., The variety U is invariant under the linear transformation

(2.13) A =ocA+ BB, B =TYA+ 88, ad - By # 0.
Let 2 2
u, = {(a,8)|(A,B) € U, 2tr(a%) # [tr(A)] }
(2.14)
u, = {(a,B)|(A,B) € U, 2tr (8%) # (er(m?)).

Theorem 2.15. On U1 or U, the values of ¢i(A,B), i =1,99e,5
correspond to 3 distinct orbits. On U; n U, the values of ¢i(A,B),
i=1,2,3,4 correspond to 6 distinct orbits, while on U1 U U2 - Un U2
these values correspond to 3 distinct orbits.
Proof: Suppose that (A,B) € Uje Then (A,B) 1is simultaneous similar to
(D,E) given by (2.4). From the proof of Theorem 2,9 it follows that €158
= 0. 8o we have the possibilities e,p = 0 and €5 # 0, €5, = 0 and
€5 #0 and €15 = €5y = O. As in the proof of Theorem 2.2 using diagonal
similarity we can assume that E may have the following form

Ey = E(eqys€32/1,0), By = Eleqq1,€35,0,1), E3 = E(eyq,€55,0,0).

C e g
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We claim that the pairs (D,Ei) and D,Ej) are not simultaneously similar

tor 1#¥j. Indeed, suppose

p=xox"', g = XEx™',  itj.

since D 1is diagonal with distinct eigenvalues the first equality implies

that X is alsodiagonal. Then the second equality is impossible. Let

u and u2 be the eigenvalues of B, Clearly {u1,u2} = {e1 }. so

1 17%22
., = e__. Let

either U, = e H, = e or U, = e 2 11

1 11’ "2 22 1 22'

E, = E(e2

. 1,0), E_ = E(e22,e11,0,1), E, = E(e,,re,,,0,0).

2'%11 2 3

= -1 _ . . . .
1t u1 # u2 then Ej # XEix for any non-singular diagonal matrix X. This

shows that for (A,B) € U, n U2 the values of the functions ¢i(A,B), i =

1
1,2,3,4 corresponds to 6 distinct orbits. If B has a multiple eigenvalue
then Ei = Ei and the above values correspond to 3 distinct orbits. Thus
we proved that on U, v U2 - U1 n u, the values of ¢i(A,B), 1 €41 < 4,

determine 3 distinct orbits. Suppose we are also given ¢5(A,B) = tr(AB).

Note that

(A1u1+kzu2) - (A1u2+k2u1) = (k1-kz)(u1-u2).

Thus for (A,B) € U, n U

1 2

tr(DE,) #* tr(DE,).
1 ]
Therefore on U1 u U2 the values of ¢1(A,B), 1 €1 €5 correspond to 3
distinct orbits. |
Let (A,B) € U, Assume that (A,B) 1is simultaneously similar to
diagonal matrices (D,E3). Then A and B commutes. That is (A,B) 1lie on
the manifold

(2.16) c = {(a,B)|aB-BA = 0},

Clearly U DN C 1is a subvariety of U. That is a generic orbit in U
contains a pair of the form (D,E,). The fact that the orbit corresponding
to (D,E3) 1s not generic can be seen in the following way. Consider the

orbit orb(A,B) as a manifold. Denote by dim orb{(A,B) the dimension of
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this manifold. Then

dim orb(A,E1) = 3, A€ U,
{2.17)
dim orb(D,E3) = 2, D e U1

Indeed consider all matrices X which commutes with D and E;
DX - XD = O, Eix - XEi =0, De€ U1.
For i=1,2 X = Al and for i=3 X is any diagonal matrix. This
establishes (2.17). We shall see later in this section that oi(A,B),
1t € i €5 are generators of [v)e.

From the proof of Theorem 2.15 it follows that the values of these
functions do not separate between the two generic orbits corresponding to the
pairs (D,E1) and (D,Ez), D € U;. According to the result in Friedland
[(1981) there exist rational functions ei € (U)G, i = 1,%e°,r which separate
the orbits in U-W, for some algebraic subvariety W in U. We now give such
functions Oi. Let (A,B) € U, Then Theorem 2.9 claims that A and B
simultaneously similar to a pair of upper triangular matrices. Suppose that

2 2

(A,B) € Uy n Uy and dim orb(A,B) = 3. Then A = (aij)1 and B = (bij)1

have exactly one common eigenvector (xl,xz)t. Corresponding to the

eigenvalues X1 and U, respectively

1

[}
(=)

(ag4=2)x, +a,.x, a5,X) *+ (ay,=A)x, =0

[}
o

(b”-u1)x1 + b1 x b 1x

2%y 2 + (b22—u1)x2 = 0,

1

Assume for simplicity that

* 0.
3193510101 % %, ¥ O

Then we have the equalities

(ay9720bgp = (b =H)ayyr (@yy=A by, = (Byyml)ay,:
so
) - ;ll A b11a1:'a11b12 . :21 - bzzaz;'a22b21.
12 12 21 21
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From the last two equalities we can compute the value of A1 and then the

value of u1

(B1470)50a 095 ¥ 3,531,051 7 21125,Py;
AI = a(a,B) = a..b - a_.b
12°21 21212
(2.18)
(@a473,0b 5051 + DyyPiodny = Dby,
IJ1 = B(AIB) = b

12221 7 ©21212

Theorem (2.19). The functions «a(A,B), B(A,B) belong to (U)G. Moreover

these functions are defined on orb(A,B) such that (A,B) € U-C and the

values of a(A,B), B(A,B), tr(A), tr(B) determine these orbits uniquely.

Proof. Clearly, a(A,B), B(A,B) € (U) since a12b21 - az‘b12 is not

vanishing identically on U. Put

xz = tr(A) - af(A,B), u2 = tr(B) - B(A,B).

Then a straightforward calculation yields

2
1

+ Xg: tr(Az), u2 + u2 = tr(Bz),

A 1 2

as (A,B) € U. That is a(A,B) and B(A,B) are the eigenvalues of A and

B respectively. This shows that a,B8 € (V)G. Assume that A € U, and
AB=-3A # 0. Then the orbit of (A,B) contains a pair (D,E1). Clearly
a(A,B) and B(A,B) 1s not defined for (D,E1). Let (P,Q) € orb(A,B)

lying closely to (D,E1). That is

P = (I+X)7'D(I+X), ©Q = (I+X)7'E, (1+X),

2 2
P-—(P).I, Q=(q),‘o

ij ij
Then
P = (A.-A)x.. + 0(IX§%), P = (A-A)x.. + O(Ix#%)
12 17%27%12 21 27N %
qy, = 1+ 0UXN), Q= (Wux, + o(1x1%),
sSo

(A1-X2)(u2-u )

2
1 x12x21 (Az—kl)xz1 + O(HXH7),

P129217P2194
whence it is possible to find (P,Q) € orb(a,B) such that the above

expression is different from zero. Put

a(A,B) = a(p,y), B(a,B) = B(P,Q)




ol

and the functions & and B are well defined. The matrices (D,E,) have
exactly one common eirgenvalue which corresponds to Al and e, . S0

A B(A,B)

a B
1 (A,B), e

*)

tr(A) - a(A,B), e tr(B) - B(A,B)

22

and the matrices D and E are determined. The same arguments apply 1if

1

B € U, AB-BA # 0. Suppose that A ¢ U, and B é Uye That is (A,B) is

simultaneously similar to (E(A,§), E(u,n)) where

A E).

(2.20) E(XE) = (o i

But then E(A,E) and E(u,n) commute., The proof of the theorenm is
completed. [

For any 2%X2 matrices A,B the (1,1) entryof AB-BA equals to a; b5,
- a21b12. That is a12b21 - azqby, vanishes identically on C and therefore
the functions a(A,B) and B(A,B) are not defined on C,.

If A€ U1 and A and B commutes so A and B are simultaneously

diagonal then trom the proof of Theorem 2,15 it follows

Theorem 2.21. On (U1 U, n C) the values of the functions ¢i(A,B), i =

1,2,3,4,5 determine the orbit of (A,B).
We are left with the orbits in U n C such that A and B have double
eigenvalues. It means that (A,B) are simultaneously similar to (E(A,§),
E(W,Nn)). As E(A,E) and E(M,N) commutes we get
(2.22) vV < C,.

Thus we need to classify the orbits in V.

Theorem 2.23, Let (A,B) € V. Then

(2.24) Y(A,B) = a12/b1 =a,,/b

2 217 21

belongs to (V)G. Suppose that either Y(A,B) or 1/Y(A,B) 1is defined on
the orbit ot (A,B). Then the values of tr(A),tr(B) andY(A,B){(1/Y(A,B)}))

determine a unique orbit in V.
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Proof. According to what we proved orb(A,B) contains a pair

E(U,U) )o Cleatly
A =lptr(a), u=lp(s).
By considering the matrices
Al = A- AL, B, =B - Ml
we can assume that A=0 and u=0, Let
-1 ~1
A = XE(0,€£)xX , B = XE(O,n)X .

Then a straightforward calculation shows that Y(A,B) = §/n.

That is Y(a,B) 1is indeed an invariant function on V.

(E(A,8),

-

Assume that

n # 0. 1In that case Y(A,B) 1is well defined. Choosing an appropriate

. . . . . -1
diagonal matrix X and considering the matrices XE(A,§)X ,
can assume that n=1, Then £ = Y(A,B). Hence, tr{(A),tr(B)
determine the orbit of (A,B). The same arguments apply if

1/Y(a,B) is well defined.

Suppose that neither Y(A,B) nor 1/Y(A,B) are not defined on the orbit

of (A,B). Then we must have that (A,B) lie on W

(2.25) W = {(A,B)|a12 =a, =b, =b, =0, a, =a,,

b

XE(u,n)x'1

and Y(A,B)

E # 01 i.e.

=b.. 1.

11 22

Clearly, on W tr(A) and tr(B) determine the orbit completely.

Thus we completed the classification of the simultaneous similarity of

2%2 pairs of matrices according to the program outlined in Friedland

2

(1981]. Next we note that on all subvarieties in MZXM except V the

values of the functions ¢i(A,B), 1 €1 €5 determine a finite number of
orbits. We claim th@t on V the values of any set of invariant polynomial

functions, i.e. functions belonging to [V]b, cannot in general determine a

tinite number of orbits in V.

Theorem 2.20. The functions tr(A) and tr(B) are the generators in

(vi6.
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Proof. Let (A,B) € V. Then orb(A,B) contains a pair E(A,§), E(uy,n).

Proof We claim that

Then
E~Y(1,4,0,0) E(X,E)E(1,d,0,0) = E(A,Ed)

h-1(1,d,0,0)E(u,ﬂ)E(l,d,0,0) E(u,nd)

letting d * 0 we get that the closure of orb(A,B) contains the matrices
E(X,0), E(H,0). Suppose that ¢(A,B) € (V). Then
¢(A,B) = $(E(A,0),E(M,0)) = g(A,u) = h(tr(a),tr(B)),
for some h € Clx,yl. [
Thus the transcendence degree of (vi® over C is 2. The

transcendence degree of (V)G over C is 3. More precisely we have

Theorem 2.27. The functions tr(a), tr(B) and Y(A,B) generate (V)G and

they are algebraically independent.

(2.28) dim orb(A,B) € 2, (A,B) € V,
Indeed, suppose that (A,B) is simultaneously similar to E(A,§), E(u,n).
Then E(a,B) commutes always with E(A,§) and E(u,N). Moreover if either
& or n#0 then E(a,B) is the only matrix which commute with E(A,§) and
E(u,N). This proves (2.28)., As the dimension of V 1is 5 the transcend-
ence degree of (V)G is at most 3. Clearly tr(d), tr(B) and ¥Y(A,B) can
be given any values Zyr 25 and Z3« So these functions are algebraically
independent, i.e. the transcendence degree of (V)G is 3. Let ¢(A,B) €
(V). Then ¢(A,B) is algebraic with respect to Xy = tr(a), X, = tr(B),
x3 = Y(A,B)
m N m=i
(2.29) o + ) P, (X, %,,%,)9 = 0, P, € Clx, ,x

. 2
i=1
be the minimal equation for ¢ . So the left hand side of (2.29) is an

,x3)

irreducible polynomial over C(x1,x2,x3). But then given the values of

XirXyiXq We know that orb(A,B) is determined (x3 is well defined).




Thus, it ¢ is defined on orb(A,B), tor example pi(x1,x ,x3) ¥ 0, then

2

¢ has unique value. But it is well known that (2.29) must be m sheeted

cover ot C. Whence m=1 and ¢ 1is rational in x, i=1,2,3,. [ |

l'

Next we use the arguments ot Theorem (2.27) to show that lM2XM21 is

generated by ¢i(A,B), i=1,2,3,4,5.

Theorem 2.30. The functions ¢i(A,B), i=1,2,3,4,5 generate (MZXMz)G and

are algebraically independent. Moreover these functions generate [MZXMZJG.

Proot. _Since the dimension of the generic orbit in M2XM2 is 3 the

G . . . . .
transcendence degree of (MZXMZ) is 5., As a generic orbit is determined by

the values of ¢i(A,B), 1 €1 €5 we easily deduce that ¢i(A,B): i=1,°%*°*,5
are algebraically independent. Theretore these functions form a transcend-
ental basis in (MZXMz)G. Let ¢ € (M2XM2)G. So ¢ 1is algebraic over

[ ,"',¢5. That is

,
m .
m vee m-=1
(2.31) L I N A T LA

i=

Let (A,B) € U. Then orb(;,B) 1s determined uniquely by ¢1,"°,¢5.

Combine this with (2.31) to deduce as in the proof of the previous theorem

that m=1, i.e. ¢ 1is rational in ¢1,'°',¢5. This shows that ¢1,"',¢5

generates (M2XM2)G. Let ¢ € [szMZJG. So ¢ 1is rational in ¢1,°°°,¢5.

Also ¢ has a finite value for any ¢1,*°',¢5. Thus ¢ must be a polynomial

in ¢1,"',¢5. That is [szleG is generated by ¢1,°‘°,¢5. [
we finally compare the results of this section to the classification

procedure outlined in Section 1. We first note that if A and B are not

commuting then the only non-trivial solution X to the system

(2.32) AX-XA = O, BX-XB = 0

is X = AI. That is

X - = .
(2.33) M, M2 C M2'2'3

2




We conjecture

(2.34) M xM_ - U =M u-C=M

2 2 2,2,3,91'

It seems that for (A,B) € MZXM2 - U all 4x4 minors of L(X,Y,A,B) are

P, > P,

2,2,3,92 ! 1 2

linearly independent. That is equivalent to the equality
8
= = 70'
py = ()
on (- W the system (2.32) has two independent solutions X=A, X=B and
X=I if A or B are zero matrices, So

(2035) c" W= M2’2’2.

We conjecture

(2.36) Ve-Ws= M2'2,2’93,(U1 U Uz) nC-w-= N5'2,2'p4, Py > Pye
Finally
(2.37) W= M2,2,0.

We now verify Conjecture 1.26 for m=n=2.
Theorem 2,38, Let A,B, € M, and assume r = 4-V(A,B) where V(A,B) is
defined as in Section 1. Let X be the algebraic variety given by (1.9)

(m=n=2). Then

X = orpb(A,B) for (A,B) € Mzmz - U
X =X1 U X2, X1 = orb(A,B), dimX2 =5, for (A,B) CU -
(2.39) X = X1 U X2 uX3, Xz = orb(A,B), Xi+1 = {(Ail,uil)}, i=1,2

for (A,B) e C-vV

X = orb(A,B) for (A,B) € V - W,
X = orb(a,B) = {(a,B)}, for (A,B) € W.

In particular Conjecture 1.26 is valid.

Proof. Assume tirst that (A,B) € MZXM2 - Us It is enough to consider the

case where A has two distinct eigenvalues. Thus we may assume that A=D,

B=E where D and E are of the form (2.4) and e # 0. In particular

12521




rankL(A,B,A,B) = 3., Suppose that

2 2
(2.40) PX-XD = 0, QX-XE =0, P = (p )y Q= (q;,)]
has a non-trivial solution X such that |X| = 0. By considering the
matrices
-1 -1
P1 = TPT °, Q1 = TQT °, X1 = TX

we may assume that either

1 x
or

_ (0 1
(2.42) X = (o 0).

Suppose that possibility (2.41) holds. Then the first equation of (2.40)
yields

(2.43) Py, = A =0, x = 0.

11 Py

The second equation of (2.40) implies that €2 =0 which is

impossible. So, if X # O satisfies (2.40) then |X| # 0. Hence (P,Q) is

simultaneous simirlar to (D,E). That is X = orb(A,B) and this orbit is

closed.

Suppose next that (2.42) holds. Then the first equation of (2.40) implies

(2.44) P,y = >\2. P,,

The second equation of (2.40) yields e, = 0 which is impossible. This

proves the theorem for (A,B) € MZXM2 - U Assume now that (A,B) € U - C,.

Again we may assume that A has two distinct eigenvalues. So let A=D, B=E,

e £ 0, e

12 0'

21 JI
Suppose that X 1is of the form (2.41). Then (2.43) holds. Then the second

equality of (2.40) yields that €., = 0 which is impossible. Assume now that

X 1is of the form (2.42). So the equality (2.44) holds. Then the second

equality of (2.40) implies

(2.45) q11 = 622 ’ q21 =

-27=-




We claim (P,Q) is not similar to (D,E). Indeed if P,Q do not commute then

P and ¢ have one common eigenvector corresponding to the eigenvalues Xz

and €55 respectively. Since the common eigenvector of D and E corresponds
to X1 and e respectively, (P,Q) and (D,E) are not similar. Clearly,
if P and Q commute then (P,Q) and (D,E) are not similar. The set of all
matrices (P,Q) satisfying (2.44) and (2.45) forms a manifold of dimension 4.
Consider all pairs (P1,Q1) simultaneous similar to (P,Q). As the set of
matrices (P,Q) satistying (2.44) and (2.45) is invariant under the

1

transformation (TPT ', TQT"), T 1is an upper triangular matrix. We deduce

that the manifold Xg consisting of matrices (P1,Q1) is of dimension 5. Thus

X2 = closure Xg is an irreducible variety of dimension 5. This establishes the
theorem in this case. Note that in this case

—_— Ay 0 €1 °
(2.46) X, n X, = orb(D,E,), D = ( 0 Az)' E, = ( 0 e22).

Assume next that (A,B) € C -~ V. So A and B are simultaneously similar to
diagonal matrices such that at least one of them has distinct eigenvalues. Again
we may assume A=D has two distinct eigenvalues and B=E with e,, = ey, = 0.
Let X satisfy (2.40). Then as before either (2.41) and (2.43) holds or (2.42)
and (2.44) holds. As V(A,B) = 2 we have an additional linearly independent

matrix Y satisfying

(2.40)" PY-YD = 0, QY-YE =0, Y = (Yij)fn
We also assume that |aX+bY| = 0 for all a and b. By interchanging the roles

of X and Y we get 3 possibilities

10 o 1 t
(2.47) X, =(0 0), Y, =(o 0), X, =X, Y =Y

X3 = Y1, Y3= I-X1.

The choice X, and Y, is impossible since we get X1 = A_. The choice

1 2

Xi41+Y¥i4q Yields thesolutions P = AiI and Q = e;;I for i=1,2. So the

theorem is established in this case,

R e e Sy




Next let (A,B) € V-W. By considering the matrices

A, = oA+8B, B = YA+6B, ad-By # 0O

', 7B7"') we may assume that

(2.48) A = (3 ;). B = (3 g)-

and making the similarity transformation (TAT™

Suppose that X 1is of the form (2.41). It is easy to check that it is
impossible to satisfy the first equation of {2.40). So X must be of the form

(2.42). Then the linearly independent matrix Y which satisfies (2.40)' can be

chose of the form Y5 given by (2.47).
So the equalities (2.40)-(2.40)' yield P = AI, Q=B. Since the matrices
A
(a(a) = %),B) € orb(a,B)
0 A
for any @ # 0 we deduce that (P,Q) & orb(A,B). So orb(A,B) 1is the only
irreducible component of the system (1.9).

Assume finally that (A,B) € w, i.e. A = AI, B = WI. Then V(AL pI) = 4

so r(AI,uI) = 0. But then L(xo,x1,XI,uI) = 0 if and only if X4 = Al and r

x1 = uI. Thus we proved the equality (2.39). Suppose (A,B), (A1,B1)

€ M2,2,r,p and assume that the equality (1,24) holds. Then the variety X
given by (1.9) contains the irreducible varieties orb(A,B) and 3;3(A1,B1)
of dimension r. The equality (2.39) yield that X contains exactly one
irreducible variety of dimension r. So SFE(A,B) = 3?3(A1,B1). Now Theorem
1.14 (the equality (1.16) yield that (A,B) and (A1,B1) are simultaneocusly
similar. n
Remark 2.49. The proof of Theorem 2.38 yields the existence of non-similar
pairs of matrices (A1,B1),(A2,82) such that

(2.50) \’(A1131) = \’(AZIBZ) = \,(A.llB B.) =1, (A1IB1 )’(AZ'BZ) eu - C

17R25;
This cannot happen in case that m=0 since the equality sign in (1.27)

implies the similarity of AO and BO for any dimension n. (See Friedland

[1980]).

=29~

b




3. Polynomial maps and varieties.

Let
ech»c’ 6= (8 () 0,80, cech

be a polynomial map, i.e. Oi(c) is a polynomial for i = 1,°**,v, 1In what
tollows we shall survey various properties of these maps needed in this
paper. See van der Waerden [1950], Shafarevich [1974]) and Whitney [1972) for
general references on the algebraic and analytic properties of the polynomial
maps. Specific results will be given the exact reference. The inverse image
of w, 1i.e. 6—1(w) is called an algebraic variety in c¥. That is any
algebraic variety in Cu is given by some system of polynomial equations

91(6) = wi' i=1,°"",v, for some V. We denote this algebraic variety
by X. In what follows all the varieties mentioned here are algebraic. X is
called reducible if X= X1 U X2 where Xi # X for i=1,2 and each Xi is
a variety. Otherwise X called irreducible. It is well known that any variety
is a finite union of irreducible ones. Any irreducible variety is connected. A
point x in an irreducible variety X is called regular if in the neighbor-
hood of this point, X is a manifold. The dimension of this manifold does
not depend on a choice of the reqular point and it is called the dimension
of X. Let X' be the set of all reqular points in X. Then X% is an open
connected set in X . In particular X% is a manifold. Recall that Y is
an open set in X if Y =X n W for some open set W in C". Y is called
algebraically open if W 1is the set of points for which p(Z) # 0, for some
polynomial p. Note that a finite union of open algebraic sets E ]

=1
(defined by Py # 0) 1is an open algebraic set W given by p = A

a

If Y is an open algebraic set in irreducible variety X then Y is con-
nected. Let X be an irreducible and X0 be the manifold of the regular

points of X .
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then XY is an open algebraic set. That is the set of singular points
in X 1is a subvariety of X. For a reducible variety X the dimension

of X is defined as the largest dimension of its irreducible components. A

variety X 1is called homogeneous if tX = X for all t # 0. In that

da i it

case X is the zero set of ei(C) = 0, i=1,***,V, where each ei(c) is a
homogeneous polynomial. For any variety X, let xb bbe the homogeneous
variety given as the closure of the union of tX, for all possible t.
Clearly X 1is irreducible if and only if XM is irreducible. To study the
f homogeneous varieties it is convenient to introduce the projective space

V-1

v
P . It is the set € - {0} when one identify § with t§{ tor any

t # 0. Thus any homogeneous variety X of dimension d gives rise to the

. . y . . . V=1 .
projective variety X of dimension d-1 in P and vice versa. A well

4 known result for projective varieties claims (e.qg. Shafarevich [1974]).

% _ Theorem 3.1. Let X1 and X2 be projective varieties of dimensions d,-1
ve - N
and d,-1 respectively in P 1. If d1+d2 > v+1 then X1 n X2 is a non- i

empty projective variety at least of dimension V-d1-d2+1.

-~

1 Let X be a projective variety of dimension d-1. Let Y be a

projective variety given by the intersection of d-1 hyperplanes

v
. V-1 .
(3.2) H =1{x, ) a _x, =0, x€P '}, i=1,ees,a-1.
i 3=1 ij73
} Then, according to Theorem 3.1 X nY 1is a non-empty projective variety. We
4 V-1 .
assume here that (ai1,'°°,aiv) epP y 1=1,¢¢°,d-1. Moreover except for 1
some variety Z in
V-1,d=-1 - Pv-1 X ses x PV—1
— —— )
d-1

~ ~ . v-
X nY consists of exactly 6 points in P 1. The number & 1s called the

~

degree ot the variety X and is denoted by deg X. 1In what follows we need

the following result.




Theorem 3.3. Let X be an irreducible projective variety in Pg-1 of

dimension d-1 » 1 and degree §. Let H1,°°' be any d-1 hyperplanes

Mo

V-1

in P « Let v

. = = X € d-
(3.4) Xk X n Hj X 1 €k €d-1,

PS P J=1 l=1 PS

k1,°°°,kak are the irreducible components of Xk. Then
(3.5) dim()g() > d-1-k
and

vk -~ ~

(3.6) Y* deg X ; €deg X = &,

i=1

Proof. Consider

1f X:gi% then X1 =X, V, =1 and the theorem trivially holds. If X
does not lie entirely in H, then v
~ 1A
= u X
X = v Xy
and
dimX1i =d-2, 1= 1,-0-,v1.
So
~ d-1 ~ da-1
X, n H. = u(X, n H,)
1 i =2 i1 =g J
J ~ d"‘ J- ~
and for generic H_,***,H . X,. n H, will consist of degX K6 distinct
2 d-1 1i j=2 1i
points.
3 i #2 i # i eoe
Since 1 ig for i L for the generic hyperplanes Hz, 'Hd-1

~ d"‘ a d“ - "~
the sets X, n H, and X N H, must be distinct. Otherwise X . n X

1 3 12 1i 14

j=2 Jj=2

will contain a smooth manifold of dimension d-2 and thus X‘i = X12, as X1i
and X1£ are irreducible which is impossible. Hence in case X ¢ H1 we
have

deg X = ) degX ..
i=1 11




- s

B Pt Sl

-~

Consider now X n H] n H2. Then

v
- -
XnH nH =(.u X1i)n H,.
i=1
Also
u,
- i .
nNH, = U .
1i4
11 2 3=1 1j
As dim X11 ? d-~2 we have dimX1ij ? d-3. According to what we proved
above
U,
- 1
X = .
deg 11 .L degxll]
3=1
So
v v
. . oW
(3.7) degX = z degX . = ) degX, . ..
. 11 . . 113
1=1 1i=1 j=1
Also
- v . -
X _ 1U ul
- 1. . ®
2 e gmr M
Consider the decomposition (3.4) of X2 to irreducible factors. Clearly
=X,.. for some i,j. However if X c X, .. then X will not
2a 113 1pq —  1ij 1pq

appear in the irreducible decomposition of X2' Thus the equality (3.7) implies
the inequality (3.6). This completes the proof of the theorem for k=2. The
same arguments establishes the theorem for any 3 € k € d-1, |

Remark 3.8. It is easy to show that for generic hyperplanes H1,"',Hk the I
equality sign would hold in (3.5) and (3.6). Also, the degrees of all iki

must be the same.

Let Mn,m be the set of nXm complex valued matrices., We identify
Mn,m with C"". For simplicity of notations we shall assume
(3.9) 1t <m<n,

For 1 € r €<m<n let Mn,m,r be the set of matrices A such that

rank A € r, That is

€ Qr+1,m}°

. = [s 3 =
(3.10) LI, {a, Ala|B) =0, ac€ Qe1,n




Hence M is a homogeneous variety. Thus we can view M as. a
n,m,r n,m,r

. . . mn-1 . )
projective variety in P . We claim that M 1s an irreducible
n,m,r
0

variety. Let M be a set of all A €M with rankA = r. Clearly
n,m,r n,m

. Also for A e MO

this set is open in M
pe n,m,r n,m,r

(3.11) A =PDy, P € GL,, Q€ GLp/

where Dr = (dij), dii =1, i 1,°***,r and all other entries of D
vanish. As GL and GL are connected manifolds Mo is a connected
n m n,m,r

r

manifold. So M is irreducible. We claim
n,m,r

(3.12) dim Mn,m,r =r(ntm-r) (r € m € n).

Indeed, pick up AO (4] M: g Assume for simplicity that the first r
14 ’

rows of AO are linearly independent. Thus, if the first r rows of A stay

in the neighborhood of the first rows of Ao these rows will be linearly

independent. This gives rm independent parameters. Now, if A € Mn m.r
’ [4

then any other row of A is an arbitrary linear combination of the first r

rows of A. This gives us additional r(n-r) parameters.
So we proved (3.12). Next we claim
Theorem 3.13. Let Mn,m,r be the irreducible variety of all n*m matrices
with the rank r at most. Suppose that 1 € r < m € n. Then
(3.14) degM = (r41)(RENAED
n,m,r
To prove this theorem as well as other results we need the following. Let

\"
8 :Cu + C be a polynomial map. Denote by 96(f) the Jacobian of 6 at

the point §. Let ¢ be the rank of 296, A point [ € c s called regular if

rankd@(g) = p., A point § is called singular or critical if rankd0(Z) < p.
Let S be the set of all singular points of 6. Clearly S is an algebraic
variety. So Cu - S the set of regular points is an open algebraic set in

"}

. , , v . .
C . Therefore 9(Cu- S) 1is a connected manitold in € of dimension p.

i . . . . . v
Hence, X = cf B(Cu) is an irreducible variety of dimension P in C . Also
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8(c” - S) 1s an open algebraic set in X . So X - 6(c¥ - S) is a closed
subvariety in X . Thus, there exists a non-trivial polynomial X such that
(3.15) K(w) = 0
for any we X - G(Cu - S). In particular any we€ X - O(Cu) (w 1s an
omitted value in X) must satisfy (3.15). Consider Y = cf 0(S). It follows
that Y 1is a subvariety of X. So there exists another non-trivial
polynomial K such that any critical value w of 6 must satisfy (3.15).
Let ® be a noncritical value, i.e. W€ 6((:u - S). Then

-1 m
{3.10) 8 (w) = v v,

i=1

where each Yj is an irreducible variety of the dimension u - rankd3f. The
number m 1is independent of the point ® and is called the degree of the map
- deg 6, The continuity arqument implies that whenever we have the decomposi-
tion (3.16) to irreducible varieties then = € degb., The map © 1is called
regular 1if

rank 90 = min(u, V).

The arguments above show

H

v
Theorem 3.17. Let 6 : C + C be a polynomial map. Let the degree of

8 - degb - be defined as above. Consider decomposition (3.16) of 6-1(w)

to its irreducible varieties., Then m € degf., If we€ e(c“) is not a
critical value then m = deg9 and diin = W -~ rankdf, i = 1,°+¢,degb.
Assume that M ? Vv and suppose that © 1is a regular map. Then there exists
a non-trivial polynomial K such that any omitted value w @ Cv - G(Cu) must
satisfy (3.15). Assume furthermore that U = V. Then any non-critical value

v .
wec is obtained exactly degb® times.
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Theorem 3.20, Let 8 : C” *+ C be a polynomial map. Assume that the system

Note that if © is onto map then x(w) can be chosen to be = 1, The most

interesting case is when U = V., In that case there are simple sufticient

e —— o

conditions for 6 to be an onto map. Let p(%§) be a polynomial in ¥
variables., Denoted be deg p the degree of p. Define

p, (&) = lim RLE)  yeg p > 1,

e 9€9P
(3.18)
Put pw(C) =0 if p is a constant.
v
(3.19) e‘l‘l‘ = (81“1"'19\)")1 deg6 = Il deg ei.
i=1

U U

(3.21) On(C) =0

has the only solution ¢ = 0. Then the system

(3,22) 0(z) = w

is always solvable. The number of distinct solutions of (3.22) is at most

deg8., Moreover, there exists a non-trivial polynomial «(w), w € Cu such

that the equation (3.22) has exactly degf distinct solutions unless

satisfies (3.15). That is 8 is deg@ covering of c.

Remark 3.23. This theorem is essentially due to Noether and van der Waerden

{1928]. It was rediscovered by us in Friedland [1977) (Theorem 2.1).

Although Theorem 2.1 is stated in a slightly different form we did show in the
proof of Theorem 2.1 that the equation (3.21) has exactly degf distinct
solutions unless ® is a critical value. In that case the arguments
preceeding Theorem 3.17 imply that ® must satisfy a non-trivial equation
{(3.15). 1In fact «(w) is non-constant if deg® > 1.

Proof of Theorem 3,13, Consider generic H1,'°',H hyperplanes where p =

p-1

r(n+m-r)-1 in the projective space Pl so
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M  H, = (A ,***,A}
n,m,r j 1
- =1
mv-1 mv-1
where q = deg(M )« When we vary (H_,**°*,H ) € P X eee x P the
n,m,r 1 P ~— ~
—
p
points {A AT\ } sweep an open set in M «+ So we may ascume that
1 q n,m,r
H1,°°',Hp were chosen such that
(1) A1,"',Aq are pairwise distinct
(i1) the rXr minors composed of the first rows and columns of

A1,"',Aq are distinct from zero. Also (1,1) entry of each Ay is
different from zero. As each Ai lies in the projective space we
may assume that (1,1) of each A is equal to 1.

Then A1,"°,Aq are the solutions of the following mn polynomial equations

whose variables are the entries of X = (xij)' i=1,***,n, j=1,***,m.

(1) all (r+1)x(r+1) minors of X which include the first r rows and
columns of X are equal to zero.

(1I) Hj(x) = 0, j =1,%%°,P

(III) Xqq = Te

The set of equations (1) consists of (m-r)(n-r) homogeneous equations of

degree r+l. Sets II + III consist of r(n+m-r) linear equations. So we

have exactly mn equations. The left hand side of I, II and III defines a

§ = (r+1)(m-r)(n-r). Next we show that the

map O : ™ > ™ of the degree
system (3.21) has the only solution X=0. Otherwise at least one Ai will

have (1,1) 2zero entry which contradicts our assumption.

Theorem 3.20. yields that q € 8., It is left to show that we have the

~

equality sign q = 8., As Mn m.r is an lrreducible variety such that

14 ’

~0 ' -

M 1S open in M it follows that eneric h rplanes

n,m,r P A P g yperp

. . “0 .

H1,"',Hp will intersect Mn m.r transversally. That is w_. may assume that

’ !’

6 1s reqular at the points A1,°'°,Aq. In that case the Remark 3.23 implies

that g=0 and the theorem is proved. [ |




In M 2 2 consider a subspace L of matrices of the form
(m+1)n“,n

L(x0,°'°,xm,XAo,'°',AAm) where xo,---,xm are arbitrary nxn matrices and

A is a complex parameter. Let

n i
. = n L = U R
(3.24) Y M 2 2 PR 4 . YJ
(m+1)n ,n",r j=1
where each Yj is an irreducible homogeneous variety. According to Theorem 3,13
- 2 2
deg M = (r+1)[(m+1)n -riln"-rl _ k(n,m,r). -

(m+1)n ,n ,r

Next Theorem 3.3 yields

n -
(3.25) n < Z deg Y. € x(n,m,x).
j=1 )
Let X be the variety given by (1.9)., Assume that (1.10) is its decom-
(n+1)n2
position to irreducible varieties in C « Clearly each irreducible

Xi is obtained by restricting some Yj to the hyperplane H of matrices of

the form L(xo,'°°,xm,A "‘,Am). Since some Yj may have an empty inter-

ol
section with H we have the inequality K < n.
This establishes (1.11). More precisely, Theorem 3.3 implies
. . “n
(3.26) l deg X, € k(n,m,x).
j=1

Thus if we can compute the degree of orb(Ao,"',Am)h we could probably

improve the inequality (1.11) by means of the above inequality.




4. Algebraic functions.

Let p(A,x) be a polynomial of the form
n .
n-i
(4.1) p(A,x) = A"+ ) p, ()X,
i=1
As usual let C[A,x) be the ring of polynomials in A and x. As
C[A,x) 1is UFD (unique factorization domain) p(A,x) decomposes to
irreducible factors
k ui
(4.2) P(X:X) = it q(A,X) ’
i=1 ¢
where each qi(A,x) is irreducible and q; and qj are coprime for i#j,
Moreover since p(A,x) 1is monic in A each qi(A,x) can be assumed to be
monic in A of degree 1 at least in A variable. For this property and
others consult for example with Whitney [1972]. We call p(A,x) degenerated
if in the decomposition (4.2) some factor is repeated twice at least. That is
w,o> 1 for some i, 1In what follows we consider the roots of p(A,x)
(4.3) p(A,x) = 0.
Then each rcot A(x) 1is an algebraic function of x. We can name these roots
by A1(x),"°,kn(x). Clearly there are two identical roots Ai(x) and
Aj(x) if and only if p(A,x) is degenerated. For Xi(x) a point (¢ is
called a reqular point (point of analyticity) if Ai(x) is analytic in the
neighborhood of this point. Otherwise { is called a branch (singular)
point. Let § be a branch point. Then it is possible to group the
eigenvalues as follows
(4.4) O T ¢ 20 I C SR €O PR AL PR SN € PR L L O SN €O PR RRIR S CO D,
1 1 2 K=1 K
such that, when we circle once on the small circle around § each group of
eigenvalues undergoes a cyclic permutation. For brevity each group will be
called a cycle at § and the number of elements of a cycle will be called its

periods. So if the period ot a given cycle is one then the corresponding

Xl(x) is analytic in the neighborhood of §. Thus ¢ 1is a branch point if
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there exist a cycle of eigenvalues with the period greater than one. Assume

that [X1(x),°",km(x)} form a cycle. Then we have the Puiseaux series

(4.5) Xh(x) = 2 uwj(h-")(x-c)J/m' h=1,*"m,

3=0

2%i/m
where w = e /

« See for example Whitney (1972, p. 32].

It is well known that the equation p(A,x) = 0 has a finite number of
branch points c1,'°',cb. so each Ai(x) is a multivalued analytic function
on
(4.6) p=c-{g, ez )

Suppose that p(A,x) is irreducible. Then each Ai(x) is n valued.
In other words each Xi(x) is analytic univalued on n cover sheets of D.
More precisely, starting from one branch of Ai(x) it is possible to recover
all other branches of A(x) on D by analytic continuation. Using the
decomposition (4.2) we can find how many branches each Ai(x). has. In
particular, if all the eigenvalues Xi(x), i=2,***,n can be generated from

11(x) then p(A,x) must be irreducible. Next we study what happens when

X > o, Assume that p(A,x) is of the form (4.1). Define

(4.7) 6§ = max deg pi/i.
1<i<n

Divide the equation (4.1) by xn6 to deduce that
(4.8) |ki(x)| < K|x|6 for |x| ? r.

So at x = %, i.e. |x| >r for some large r, we divide the
eigenvalues to the cycles of the form (4.4). Now the group X1,°°°,Xm must

have the expansion

(4.9) Xh(x) = wahxa/m( 2 vj u;hx-j/m), 0 €< a < md,
3=0

The case a=0 can only correspond to the case where m=1 and A1(x)

is a constant function.
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Lemma 4.10. Let q{A,x) be of the form (4.1)

m .
(4.11) qlr,x) ="+ ) qi(x)xm".
i=1

Assume that q(A,x) divides p(A,x). Then

(4.12) deg q, (x) < i8, i=1,***,m.

Proof, It is possible to rename the roots X1,~'°,Xn of p(A,x) = 0 such

that
m
(4.13) q(x) = I (A-Ai(x)).
i=1
. ié , .
According to (4.9) Iqi(x)| < K|x| for |x| big enough. This proves
(4.12). |

Definition 4.14. A point § 1is called an intersection point if either § is

a branch point or there exist two distinct eigenvalues Xi(x) and Xj(x) (in

the neighborhood of ) analytic at & such that Xi(c) Aj(;) if ¢ 1is

A (x)
finite., (In case that § = ® we demand that 1lim Al(x) = 1,)
X+® Jj
Consider for example
n r
(4.15) p(A,x) = T [A - (ai + bix ], r is a positive integer,
i=1

Then we do not have any branch points but there are intersection points

(4.16) ¥ =<(a,-a.)/(b.-b,), 1 €i<3j<n
ij ij3 j i

if (a,,b,) # (a,,b.).
if7i j'73
Suppose that p(A,x) is not degenerate. In order to find the inter-

section points we consider

n
(4.17) D(p) = M (A (x)-A,(x))2 = D(x).
1<i<j<n J

Since p(A,x) is monic in A it is well known that D(p) is a polynomial in

P ,"',pn. Tne expansion (4.9) implies that

1




(4.18) deg D(x) € n(n-1}8.

0 if and only if p(A,x) is degenerate. Thus if p(A,x) is

Clearly D(x)
nondegenerate then a finite point § is an intersection if and only if
D(g) = 0. We now study the connection between the multiplicity of the root
x = ¢ in D(x) and the nature of the intersection point (.
Theorem 4.19, Let ¢ be a finite intersection point. Suppose that X1(x),
-°',An(x) break up to the cycles as given by (4.4). Assume furthermore that

A1(C) = eee = ) (C) # Am (L) = o0 = A (;)

"k, k,+1 "%,
(4.20)
d ka +1(8) = oo = Amk (%), kg = Ko
6-1 ]
Then x=f{ is a root of D(x) at least of multiplicity
K 6-1
(4.21) L= ) (m-1)+2] ) min(m ,m.), k,=0, kg=K.
i=1 * p=0 k +1<i<j<k 13
P p+i

Proof. Assume that Xl(x),"',km(x) is a cycle of period m at x=GC.

Consider the product

£x) = M (A (x) - A (x)°,
1<i<j<m ]
By completing one circle on |z-Z| = r we permute X1,°°°,Xm cyclically so

f(x) is analytic and univalued in |z-§| < r. Each Ak(x) has an expansion

)1/m

(4.5). So Ai(x) - Xj(x) is divided by (x-g « Thus f(x) is divided by

K
-1 ) R N
(x-c)m . This shows that D(x) 1is divided by (x-C)u, U= z (mi-1).
i=1
Assume now that km+1(x),°°°,km+z(x) is another cycle of period £ such that

Xi(C) = Xj(C), i,j=1,%°* ,m+L.
Consider the function
g(x) = 1 (Xi(x) - Xj(x)).

1€i¢m, m+1<j m+4

By circling around the point § we permute the branches X1,'--,Am and

Am+1'...'Am+£' So g(x) remains univalued in the neighborhood of . That

is g(x) is analytic for lx-;l < r, Without loss in generality we may

1/m. ml

assume that m » £, Then g(x) is divided by [(x-%) 1 = (x_c)l.




Thus gz(x) is divided by (x—c)zz. So altogether D(x) 1is divided by

(x—C)L where L is given by (4.21). [ |
Theorem 4.22. Let § be a finite intersection point, Assume furthermore
that ¢ 1is a simple root of b(x). Then ¢ 1s a branch point of the
algebraic function p(A,x) = 0 and the equation p(A,Z) = 0 has exactly
n-1 distinct roots. That is at x={ one has exactly one cycle

{Xl(x),kz(x)} of period two while all other branches A3(x),°'°,kn(x) are
analytic in the neighborhood of §. Moreover in the expansion (4.5) u1¢0
(m=2),
Proof. Our assumptions imply that L given by (4.21) is equal to 1. So
ki =1i, 1i=0,***,K and m1=2, mi=1, i=2,°**°,k, Thus g 1is a branch point
and p(A,Z) = 0 has exactly n-1 distinct roots. Furthermore

©

(4.23) (A, 0-A, ()2 = 4(x-r,)(._20 u2j+1(x-C)j)2.

Thus is u1=0 then x=§ 1is a zeri-of order 3 at least of D(x).
Therefore ui¢0. [

Theorem 4.22 shows that the simple zeros of D(x) describe the simplest
possible branch points of p(A,x) = 0, Theorem 4.19 enables us to analyze the
double roots of D(x).

Theorem 4.24. Let ( be a finite intersection point, Assume furthermore
that g is a double root of D(x). Then one of the following conditions
holds.
(i) p(A,5) = 0 has n-1 distinct roots, i.e.
A (g) = AZ(;), Ai(C) # AJ.(;) for 2 €i <¢j < n,

In that case each Xi(x) is analytic in the neighborhood of § and

A;(C) # lé(C).
(ii) p(A,6) = 0 has n-2 distinct roots and one of them is triple, i.e.

X, = (¢) = XZ(C) = X3(C), Xi(C) # Xj(C) for 3 <1 < j <n.
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In that case X = §{ 1is a branch point with exactly one cycle
{X1(x).X2(x),l3(x)}, while all other branches 14(x),°°°,kn(x) are
analytic. Moreover in the expansion (4.5) u,*o (m=3),
{1ii) p(A,Z) has n-2 distinct roots and two of them are double, i.e.
= = # <i<3j €n-1,
A1(C) XZ(C). '\n-1“) ln(C), Ai(l.') lj(C) for 2 ¢1i <3 n-1
In that case x={ is a branch point with exactly two cycles {31(x),A2(x)},
{Xn_1(x),kn(x)} while all other branches A3(x),'°',kn_2(x) are
analytic. Moreover, in the expansions (4.5) for {X1(x),kz(x)} and
#0,
{Xn_.‘ (x)pxn(X)} LI1 0

The proof of Theorem 4.24 is quite analogous to the proof of Theorem 4.22

and uses only Theorem 4.19. So we omit its proof.

POV
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5. sSpecial polynomials in two variables.

In this section we consider polynomials p(A,x) of the form
n n nei ir .
(5.1) p(A,x) =X + 2 p. (x)A . P.(x) = z p..xJ, i=1,%¢*,n,
. i i . ij
i=1 3=0
Here r 1is a positive integer. Such a polynomial p(A,x) 1is uniquely deter-

mined by the coefficient vector

(5.2) P = (p1OIP11l".rp1rl."lpnol°" )e

"“n(nr)
We shall identify p(A,x) with its coefficient vector and no ambiquity
will arise. Thus any polynomial p(A,x) 1is given by a point p 1in
P T C[(n+1)r+2]n/2.
We next consider the algebraic function A(x) given by the equation

p(A,x) = 0. 1In that case 6 defined by (4.7) is at most r. So each A(x)

has the Puiseaux expansion

L]
(5.3) AMx) = x5 § v x /M
=0
around § = 9, Here VO is the root of the equation
n .
n n-i
(5.4) v+ 121 Py (ir)" = 0.

Thus § = ® is an intersection point if (5.4) has at least one double
root. Let D(x) be given by (4.17). According to (4.18) the degree of

D{x) is at most n(n-1)r.

So
n(n-1)r i

(5.5) D(x) = 4, (p)nin-i)-t

. i

i=0
where each di(p) is a polynomial in the coefficint vector p. In particular
(5.6) dgtp) = M (v, - v.)?

1€i<j<n J

where v1,'°°,vn are the roots of (5.4). So do(p) is a polynomial in

P which is called the discriminant of

11'...’pn(nr)

n .
(5.7) p, (N = e I op ARt
i=1

i(ir)

Thus for all p € P™FY such that do(p) #0 the polynomial D(x) 1is

exactly of degree rn{n-1). Let p(A,x)be given by (4.15). Then

-45~




(5.8) Dx) = B [b, - b )x" + (ai-a.)lz-
1€i<j<n ) J

Suppose that bi # bj and a, # aj for i#j. Then D(x) is a
polynomial of degree rn(n-1). Clearly we can choose (ai,bi), i=t,eee,n
such that we would have exactly rn(n-1)/2 distinct intersection points cij

of the form (4.16). In that case each cij is a double root of D(x). We now

é show that there exist p(A,x) of the form (5.1) for which the polynomial

D(x) has rn(n-1) simple (distinct) roots. Let &(p) be the discriminant

of the polynomial D(x). That is &(p) is given by the well known deter-
minental formula
! dg(p) a(p) e e e d . (p) 0 s+ 0
0 a_(p) 4, (p) s o . d _ 0
(5.9) 68(p) = 0 1 rn{n-1)(p)
3 : ‘.
rn(n-1)do(p) [rn(n-\)-1ld1(p) LA o] ° o o

(e.g. Wwhitney {1972, Appendix IV]).
We claim
Theorem 5.10. Let &(p) be a polynomial on P™T given by (5.9). Then

8(p) does not vanish identically on P"'T, 1n particular, if &(p) # 0
then D(x) 1is a polynomial of degree rn(n-1) having rn{(n-1) simple roots.
Proof. Let p be a polynomial of the form (4.15) such that bi # bj' for

i#j and D(x) has exactly rn(n-1)/2 double roots of the form (4.16).

Let gq € P T be in the neighborhood of p. So D(x,q) is a polynomial of

degree rn(n-1) with the roots 51(q),°".5 {(q@) continuously depend

rn(n-1)

on q. For q=p
521_1(9) = Ezi(p). i=1,¢**,rn(n-1)/2, EZi(p) ¥ Ezj(p)

for 1 €i < j € n(n-1)/2,.
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So either we can find g such that &i(q) # Ej(q) for 1 €i < j € rn(n-1)

or we nust have 51(q) Ez(q) for all q (renaming the indices if

necessary). So suppose that 61(q) = Ez(q), and 51(9) = €2(p) =

_ _ LV2 I .
[(a1 az)/(b2 b1)] 0. Choose

r r r
ql(A,x) = {[X—(a1+b1x )][A-(a2+b2x )] + €&} H [X-(ai+bix )]
3<i<n

= (A2-[a +a_+(b.+b )xEIA + (a.+b.x)(a +b_ x")+€E T [A-(a +b x")]
12 12 1 1 2 2 . i i
3<i€n
where € is a small parameter. Then 51(q) and €2(q) must be the roots of

the equation
r,2 r r
[(a1+a2) + (b1+b2)x 17 = 4[(a1+b1x )(a2+b2x ) + €]
which is equivalent to
r

2 2 r 2
- b - - - - = .
(b1 bz) x + 2( ) b2)(a1 a2)x + (a1 a2) €=0

But for € # 0 all 2r roots of the above equation are distinct. This con-
tradicts our assumption that 61(q) = Ez(q). Thus we proved our assertion
that there exist q € p*T in the neighborhood of a given p such that
D(x,q) has rn(n-1) distinct roots, [ ]

We now claim that if &(p) # 0O then p(A,x) 1is an irreducible poly-
nomial. This follows from the following theorem.
Theorem 5.11. Let p(A,x) be a non-degenerate reducible polynomial of the

torm (5.1). Suppose that

> 1, i=1,2

p(A,x) = q1(A,x)q2(A,x),deg q(A,x) = n,

(5.12)

i ?i "
g. = At + ) q..(x)A , i=1,2.
i j=1 ij

Then D(x) has at most r[n(n-1)-n1n distinct roots and this number is

5]

achievable. 1In particular any reducible polynomial p(A,x) has at most

r(n-l)Z distinct intersection points.




R

¥

Proof. The equation p(A,x) = 0 splits to 01(a,x) = 0, qz(B,x) = 0. Thus,

if ¢ 1is a finite intersection point for A(x) then one of the following
conditions hold

(i) @ (2) = a,(g) for  i#j,

(ii) 8, (%) Bj(C) for i#j

(iii) ai(c) Bj(C).

The possibility (i) means that & is an intersection point of q1(k,x).
Therefore we can have at most rn1(n1-1) intersection points. In the same
way possibility (ii) can happen for at most rnz(n2~1) distinct points. To
find out how many distinct § may satisfy (iii) we look at the resultant of

q1(A,x) and qz(x,x).

R(x) = i (a, (x) - B.(x)).
1€1¢n_1<j¢n,, i )

Since q1(l,x) and qz(k,x) are monic it is well known that R(x) is

polynomial in the coefficients of A in q1(X,x) and qz(k,x). So R(x) is

a polynomial in x. The expansion (5.3) at the infinity yields that

rm_n
R(x)] < x|x| ' 2.

So the degree of R is at most rnin,. Thergfore there are at most
rnyn, distinct § satisfying (iii). Altogether we get that D(x,p) has at
most the following number of distinct zeros

rln (ny=1)+ny(ny=1)+nyn,] = ri(n +ny)(ny+ny=1)-nyn,]
= rln(n=1)~nyn,l.

Let p(x) be of the form (4.15) such that D(x) has exactly rn(n-1)/2

double roots. Define

=

il
p.'(xyx) = I

1

r r ,
‘ [X-(ai+bix )], pz(k,x) = ign1+1lx-(ai+bix )] i= n1+1.

Now we can find . in the neighborhcod of p; such that ©6(q.) # 0, i=1,2.
9 i i

Then each qy will have rni(ni-1) distinct intersection points. Aas

P




R(x,p1,p2) has exactly rn,n, distinct zeros the continuity argument implies

that (x,q1,q2) will have exactly rngn, distinct zero. Using the conti-

nuity argument again we deduce that all intersection points satisfying (i)-(iii)

are pairwise distinct. This shows that D(x,q1,q2) has r[n1(n1—1)
+ n2(n2-1)] simple roots and rnyn, double roots. Clearly
(n-1) n, € ( 1)2
n(n n,n, n

and the equality holds it only either n1=1 or n;=n-1. Hence the maximal
-
number of distinct solutions of D(x,p) = 0 is r(n-1)2.

Assume that p(A,x) is degenerate. Then all the intersection points of

p(A,x) are the intersection points of

(5.13) q(A,x) =
i

N =

q. (A, x)
;1

where (4.2) ic the decomposition of p(A,x) to its irreducible factors. As

deqg q(A,x) < n the number of intersection points of q 1is at most r(n-2)2.

SR ErL At A

Thus any reducible p(A,x) has at most r(n—1)2 intersection points. n

Corollary 5.14. Let p(A,x) be of the form (5.1). If &(p) # 0 then

' ~ i
p(A,x} 1is irreducible.

We now study the set of reducible and degenerate polynomials p(A,x) of

ptr T,

the form (5.1) in the coefficient space Denote by Mrd and Mdg the

subsets of pMT corresponding to reducible and degenerated polynomials

respectively. Clearly Mdg Mg

1 pheX

Definition 5.15. Let Aln1,n2) be a subset of which corresponds to

reducible polynomial p(A,x) of the form (5.12). Let N(nl,nz) be a subset

n,r

of P which corresponds to deqgenerate polynomials of the form

(5.16) q(A,x) = q1(A,x)2q3(A,x), deg q, > 1

n/2).

where q1(X,x) is monic in A (so qq 21 if deg q1(k,1)
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Clearly
(5.17) M = u M(n,,n-n_), M = u N(n_,,n-2n_)
rd n 1 1 dg < n 1 1
1<n1<[2] 1 n1<[2]
(5.18) N(n,,n-2n;) ¢ M(n1,n-n1).

Theorem 5.19. The sets M(n,,n-n,) and N(n1,n-2n1) are irreducible

pne T

algebraic varieties in of the dimensions

dimM(n1,n-n1) = {[(n+1)r+2)n ~ 2n1(n-n1)r}/2
(5.20)
dimN(n1,n-2n1) = {[(n+1)r+2]n-n1[r(4n-5n1+1) + 21}/2.

Proof. The equality (5.12) can be repesented by a map
n,,r n_,r n.r
(5.21) 6 : P x P +p ', n;+n, = n

n,,r
where q; is a coefficient vector in p b Clearly 9 is a polynomial

map. The image of © is exactly M(n1,n2). According to Section 3 the

closure of M(n1,n2) is an algebraic variety in P™ Y, We now show that

M(nl,nz) is a closed manifold. Assume that we have a sequence of polynomials

pi(A,x) of the form (5.1) such that pi(k,x) = q1i(k,x)qzi(k,x), deg qji(X,1)

= ng, j = 1,2 and each qji(X,x) is monic in A. Let q:i)(x)’.“'ar(li)(x)
' ' 1
and 3(1)(x),-..’3(1)(x) be the roots of q..(A,x) = 0 and q..(A,x) =0

1 ) i 2i

respectively. Assume that

lim pi(A,x) = q(A,x).

i+
Then it is possible to find a subsequence {ik} such that
(1) (i)
lim a (x) = a {x), 1lim B (x) = B (x), 1<s<n_, 1<t<n_.
ko X s Ko © t 1’ 2
Hence (5.12) holds where

™ "2

g, (A,x) = T (A-a (x)), q (A,x) = 0% (A-8_(x)).

k s=1 S 2 t=1 ¢

So M(n,,n,) is closed. The decomposition (5.17) yields that Mg is

e ol e 2RO




closed. 50 1f p € pnel corresponds to an irreducible polynomial there
exists a neighborhood ot p corresponding entirely to irreducible poly-
nomials. We now prove the first equality in (5.20). Pick up irreducible

polynomials qj(A,x) of deyree n j=1,2, such that q1 * q2. We claim

jl
that 6 1is a local homomorphism in the neighborhood of (q1,q2)- Indeed
suppose that
(A, x) = u (A, x)u_(A,x) = v (A, x)v_(A,x)
1 2 1 2

where (u1,u2) and (v1,v2) are in the neighborhood of (q,,qz). So uy
and v, are irreducible. Since C[A,x] is a unique factorization domain
and uy and v:; are monic we get either u, = v. or u, = vy The assump-

i i i
tion that q, # a, implies that u, # v, S0 u; = v, and u, = Vo Whence
© 1is a local homomorphism in the neighborhood of (q1,q2). Thus
dim M(n1,n2) = {[(n1+1)r+2]n1 + [(n2+1)r+2]n2}/2
which establishes the first inequality in (5.20). It is left to show
that M(n1,n2) is an irreducible variety., This follows easily from the
tact that 0 is a local homeomorphism in the neighborhood of (q1,q2) for
# gq. -
The assertions about M(n1,2n-2n1) can be proven in the analogous
way. n
As
{[(n+1)r+2]n—2n1(n-n1)r}/2 < {{(n+1)r+2)In-2(n-1)r}/2
{ttn+1)r+21n-n (r(4n-5n +1)+2]}/2 < {{(n+1)r+2]n-14r(n-1)+2]}/2
trom the identities (5.17) we get
Corollary 5.22. The sets M.y and Mdg are algebraic varieties in P"'T
having the tollowing codimensions

(5.23) codim Mrd = (n-1)r, codim Mdg = 2r(n-1)+1,

Moreover qu is an algebraic subvariety of Mrd‘

i -~ PPt > o3 &




o, Irreducible pencils.

Let A,B € Mn. With the pencil A+xB we associate its characteristic

] polynomial n n n-i
: p(X,x,A,b) = |AI-(A+xB)| = A" + 121 p ()T,
(6.1)
i .
p.(x) = J p.. (a,B)x?, i=1,%9,n.
1 3=0 1)

Clearly pij(A,B) is a polynomial of degree {(i-j) in the entries of A and
ot degree j in the entries of B. So pij(A,B) is a polynomial of (total)
degree 1. Let (D,E) be a similar pair in (A,B). Obviously, the pencil

D+xE has the same characteristic polynomial. So each pij(A,B) are invar-

1

iant polynomials under the action (TAT™ ,TBT"). In fact, for n=2, it is

easy to show that the ring generated by ¢i(A,B), j=0,***,i, i=1,2 is equal
to the ring generated by ¢, (A,B), i=1,°***,5, given by (2.1). We now give

3 the explicit expression for (A,B). We use the notation of Section 1,

pij

Then the coefficients of the characteristic polynomial of A+xB are given by

pl(x) = Z (A+xB) [a]a],
aecO,
i,n

6(81,82,71,72)

p;;(AB) = 1 (-1) |8, [Y 1| IBIB, Y]], F=1,°00,im

(6.2) B ey, € Q(i_j)'n,BZ,Yz € Q o B, By=7Y, Y, =4
81 82 =, Y, =a
p,o(AB) = ) |ala|a)], p,, (A/B) = ) |Blajal|, i=1,°**,n.
aEQ. *€Q.
“*i,n i,n

Here 6(81,82,71,Y2) = $1 and this tunction is completely determined by
81,82,Y‘ and Y, which satisfy the requirements (6.2). Also for
:? a € Qk n' B € Qi n we denote by a n B the common subsequence of a and
r’ ’

B. It an B = ¢ then a U B denotes the strictly increasing sequence

generated by the elements of a and B.




The tact that with each pair (A,B) we associate a polynomial of the
form (6.1) can he put formally in terms of a polynomial map

c(n+3)n/2 - pn,l

B +
p Mn x Mn
(0.3)

p(A,B) = (P10(A,B), "':Pnn(A:B) ).

We shall show in the sequel that p is a reqgular map (note that

M2 c" ).

First we need
Definition 6.4. The pencil A+xB (the pair (A,B)) 1is called reducible
(degenerated) if the characteristic polynomial (6.1) is reducible
(degenerated). Otherwise the pencil (the pair) is called irreducible (non-
degenerate). The pencil A+xB (the pair (A,B)) is called symmetric (real)
if A and B are symmetric (real).

We now show that there exist irreducible pencils. More precisely we have
Theorem 6.5. Let 6(p) be a polynomial defined on the coefficient space
n,l

P by (5.9) (r=1). Then &(p(A,B)) is a non-trivial polynomial on

Mn x Mn. More precisely, there exist a real symmetric pair (A,B) such that
S(p(a,B)) # 0.

Proof. Our proof is very close to the proof of Theorem 5,10. So we point out

only the additional arguments we have to use. Choose A and B to be real

diagonal A = diag{a1,"',an}, B = diag{b1,'°',bn}. Then the characteristic

polynomial of A+xB 1is of the form (4.15) with r=1, We choose a; and

bJ such that p(X,x) will have exactly n{n-1)/2 distinct intersection

points. That 1s D(x) given by (4.17) (r=1) has exactly n(n-1)/2 double

roots. Suppose that &8(p(D,E)) O. Then D(x,D,E) has to have a fixed

it

double root let us say 51(D,E) EZ(D,E) such that

£.(A,B) = & _(A,B) = (a1—a2)/(b2-b1).

2




P X

Definition 6.8. The matrix E 1is called irreducible if the nonnegative

Theorem 6.9. Let E,F € Mn. Assume E 1is irreducible, Then E and F are

Choose E = B and let D be a block diagonal matrix

e B e 1 e

D = diag{u1 . '",Dn_1}

where Di+1 is 1X1 matrix {ai+2} i=1,°%*°,n-2 and
a, €
D = .
1
€ a
2

As in the proof ot Theorem 5.10 we deduce that 51(D,E) # Ez(D,E) for .
€ # 0, 7This shows that O6(p(D,E)) cannot vanish identically on all real
symmetric pairs. a
According to Corollary 5.14 if 6(p(A,B)) # O then the characteristic
polynomial of A+xB is irreducible. So "most" of the pencils A+xB are
irreducible. Consider a pair (A,B). Assume that A has n distinct
eigenvalues. Then A is similar to a diagonal matrix
(6.6) D = diag{d1,°'°,dn}.
So the orbit of (A,B) contains a pair of the form (D,E). Clearly E

1

is unique up to a diagonal similarity XEX~ (X 1is diagonal). Let

E = (e..)n. Denote
ij

_ n
(6.7) E, = (|eij|)1.

matrix E, is irreducible. That is, all the entries of (I+E+)"_1 are

strictly positive. (In other terms the graph defined by E, 1is connected).
Clearly the notion of irreducibility remains invariant under the diagonal
similarity. 1In what tollows we need a criterion for the diagonal similarity

(see Engel-Schneider [1973])).

diagonally similar if and only if




i i o i Danhi ke

e . =f ., i=1,°**,n, e1 i ei i "'ei i ei i =
1 i 1t2 ats k-1k Ykt

(6.10)

=f £ | eeef i fi L 1€13¢n, j=1,°***,k, 2<k<n.
111y 2ol Ye-1rk kM

On the other hand if E, is reducible the equalities (6.10) do not imply the
diagonal similarity of E and F., We now give a set of invariant polynomials
in [Mn x Mn] whose values determine uniquely the orbit of (A,B) 1in case
that (A,B) .is an irreducible pair.
Theorem 6.11. Let A,B € Mn. The polynomials

i3 i 3

m “m

(6e12) tr (A 1B 1,"',A B ), m=n(n-1), O0<1 €1, k=1,***,m

k'jk
are invariant polynomials under the simultaneous similarity. Moreover two
irreducible pairs (A,B) and (D,E) are simultaneously similar if and only
if the above polynomials have the same values on these pairs.

Proof The fact that the polynomials (6.12) are invariant with respect to the
action of GL, is obvious. Suppose next that A has n distinct eigen-
values. Then the orbit of (A,B) contains a matrix (D,E) where D 1is a
diagonal matrix with pairwise distinct diagonal entries. The entries of D
are known since we are given tr(Ai), i=1,***,n. We claim that E 1is

irreducible. Otherwise (e.g. Gantmacher [1959]}) there exists a permutation

matrix P such that

Fiq Fqio

(6.13) PEPY

also PUEY is a diagonal matrix of the form diag{D1,Dz}. But then

|AI-(A+xB) = |XI1-(D1+xF11)||A12-(D2+xF )|

22
which contradicts the assumption that A+xB is an irreducible pencil.

According to Theorem 6.9 E is determined up to a diagonal similarity

provided we can compute the left-hand side of the equality (6.10),

Let




D, = d1ag[5i1,°",5in}-
Then a straightforward calculation shows that
e, = tt(Dib)
(6.14)

€ i ® j °°°€ ;€ j = tr(D; ED, ,c*%D, E).
1tz 1, k-11k kt 1 1 K

Since all the eigenvalues of D are pairwise distinct we have

(X-Xj)
= = I ——m— i= LN
Oy =Ry py M = B Ty Stestnn
DA N .
So the right hand side of (6.14) contains expressions of the form
21 22 zk
(6.15) tr(D ED “E,***,D E), 0<li<n-1, i=1,%e¢,k, 1<k<n-i.

Substituting A for D and B for E we realize that the above expression
are included in the expressions appearing in (6.12). This proves the theorem
in case that A has a distinct eigenvlaue. In the general case let Ao =
A+xoB.

Clearly we can choose Xq such that A, has a distinct eigenvalue.
Then in the expression (6.15) we have to substitute A+x,B for D and B
for E. A straightforward calculation also shows that all possible expres-
sions in terms of A and B which may appear in (6.15) are listed in
(6.12). The proof of the theorem is completed. [

In fact we proved a more precise statement,

Theorem 6.16. Let A be a diagonal matrix with pairwise distinct elements
and B is irreducible, Then the orbit of (A,B) is determined uniquely by
the values (6.12).

The distinction between Theorems 6.11 and 6.16 becomes apparent for

n ? 3. Indeed, if A is a diagonal matrix with pairwise distinct elements
and A+xB 1is irreducible then B 1is an irreducible matrix, However, for

n » 3 there exists A and B satisfying the assumptions of Theorem 6,16




such that A+xB is a reducible pencil (e.g. Friedland-Simon ([1981])). In

fact, the assumption that any pencil satisfying the assumption of Theorem 6.16

is irreducible, implies a false conjecture in (Avron-Simon {1974}, Friedland-
Simon [1981]}).,

Thus we proved

Theorem 6.17. The values of the invariant functions (6,.,12) separates all
orbits (A,B) if A and B does not have a common subspace and A+xB is
not a degenerated pencil.

Jet D be a diagonal matrix with pairwise distinct diagonal entries.

Consider a matrix C = (cij)n, such that cij ¢ 0, i=2,%e¢,n, Then we
can find a diagonal matrix X such that E = xcx™ = (eij)? and ey; =1,

1 =2,"""n.

In fact X is unique up to a multiplication by A # 0. That is in
"gengral" we can find a unique pair

(DE), D = diag{d1,'",dn}, d; # dj for i # j, |

(6.18)
ij 1 e1i = 1, i=2.***,n, r
in the orbit of (A,B). That is if orb(Ai,Bi) contains pairs of (Di,Ei)
of the form (6.18) then orb(A1,B1) = orb(Az,Bz) if and only if (D1,E1) =

(D2,E2). That shows that the "generic" orbits are parametrized by n2+1

parameters, If the entries of the matrix E given in (6.18) are all distinct

from zero then orb(D,E) is fixed by the values of polynomials (6.12) in view

of Theorem 6.11. S$o the ring of invariant polynomials [Mn x Mnl separates

between the "generic" orbits. That is

Theorem 6.19. The transendence dimension of the ring of invariant polynomial
G 2

M x M) is n“+1,
n n

- . . . . G
we were not able to find a simple transendence basis in [Mn x Mn] for

a general n.
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We now show that the functions (6.12) generate the field of invariants
o xu ),

Theorem 6.20, The invariant polynomials given in (6.12) generate the field of
rational invariant functions (Mn X Mn)G.
Proof. Let ¢,,%°*,9 (x=2"{"=1)) e the invariant polynomials given in
(6.12). In Theorem 6.11 we showed that the values of these polynomials
determine the orbit of an irreducible pair (A,B)., Since the set of
irreducible pairs (A,B) form an open (algebraic) set in M X Mn it follows

n

that ¢1,"',¢k form a transcendal basis in (Mn x Mn)G. That is any 6 €

(Mn x Mn)G satisfied the equation

m .
(6.21) "+ ] p.(v ,---,wk)em'1 = 0.
izo *

Let ¥ : Mn x Mn id Ck be the polynomial map given by v = (¢ "',¢k).

1!
Denote by V the closure of ¢(Mn x Mn). So © is an algebraic function

on V. On the other hand let v0 be the set of all v(A,B) such that

(A,B) 1is an irreducible pair. So V0 is an open set in V, Since for

any ¥(A,B) € VO, ¢(A,B) determines the orb(A,B) we see that 6(y(A,B))

is defined uniquely. So the minimal m in (6.22) can be chosen to be 1.

That is © is rational in ¢1.'°',¢k. Hence ¢ '0-,¢k generates the field

1'
G
X L
(M x M) =

In conclusion we note that according to Processi [1976] the invariant

polynomials (6.12) generate the ring of invariant polynomials [Mann]G.
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7. Symmetric pairse.

In this section we are going to consider (complex) symmetric pairs of

matrices (A,B). Two pairs of symmetric matrices (A,B) and (D,E) are
called orthogonally similar if there exists (complex) orthogonal matrix O

3 such that

(7.1) D = otao, E = otmo.

bDenote by Sn(sn(R)) the set ot n*n complex (real) valued matrices. So the
complex (real) orthogonal group On(On(R)) acts in the above form on

Sn x Sn(sn(R) x Sn(R)). Suppose that A 1s symmetric and has n distinct
eirgenvalues. Then there exists an orthogonal matrix O such that D = otao
1s a diagonal matrix. Thus the orbit of (A,B) contains a symmetric pair
({D,E). We claim that E is fixed up to an action of the following finite
orthogonal group,

(7.2) Do = {pjp = diag{1,d2,"',dn}, a, <1, i-= 2,***,n}.

Lemma 7.3. Let E,F & Sn. Assume that E and F are diagonally similar.
Then there exists D € DO, such that F = DED.

Proot, Suppose that I = LED™Y, D

diag{d1,'°',dn}. Assume that e.. # O,

1)
then
-1 -1

f.. =d,e.. d. =1t. .. =d.e_ .d.

1] 113 3 Jj1 Jjiin
That 1s df = d?. Suppose that E 1is irreducible. We then deduce

2

d1 = eee = di. Clearly we can choose d1 = 1. This shows that D & ODn.

Suppose that E 1is reducible., Since E 1is symmetric there exists a
permutation matrix P such that
t , .
P EP = dlag{E‘,'°',Ek}

where each Ej is irreducible. But then

t . t t t t -
P FP = d1ag{F1,"°,Fk}, P FP = P DP(P EP)P D lp




-

So each F, is a diagonally similar to an E;. Now use the above arqument to
show that D can be chosen to be in DO_. [ ]

Thus if A € Sh has n distinct eigenvalues a pair (D,E) essentially
parametrize (up to the action of DOn) to orbit of (A,B). Hence "most ot
the orbits" are parametrized by n + n(n+1)/2 parameters. That is the

(]

transcendence degree of [Sn x Sn] is (n+3)n/2.

It is easy to find a transcendence basis in [Sn x Snlo.

Theorem 7.4. The polynomials

(7.5) tr(@d’), i = 1,***,n, tr(a*BA’B), 0€i < 3j € n-1

from a transcendence basis in [Sn x Sn]o. Moreover, if A has n distinct
2.
eigenvalues then the value of these polynomials determine at most 2‘"

n+2)/2 4istinct orbits.

Prooft. First note that tr(AiBAjB] = tr(BAjBAi), for any pair (i,j). As

tr(Ai), i =1,***,n are given we know the characteristic polynomial of A.
Using the values of the polynomials in (7.5) and the remark above we can com-
pute any polynomial of the form tr(AiBAjB). Assume next that A has n
distinct eigenvalues. So the orbit of (A,B) contains a symmetric pair

(D,E) where D is a diagonal matrix with pairwise distinct diagonal entries.
The entries of D are known since we are given tr(Ai), i =1,***,n. Using
the arquments of the proot of Theorem (6.11) we deduce that we can compute

the products e for all 1 <€1i, j €n in terms of the given

137951
polynomials (7.5). As E 1is symmetric it follows that we know the values of

e2.. So each e;. 1is fixed up to $1. There are at most

n(n+1)/2
ij 1)

different matrices E. However (D,E) and (D,XEX) are in the same orbit
tor any X € DO,. Thus we have at most 2(n+1)n/2=(n=1) 4iqeinct orbits

corresponding to the values of the polynomials in (7.5). In fact, if all

eij are different from zero then the knowledge of D and all efj gives




-n+2)/2 distinct orbits, provided that D has pairwise

rise to exactly 2(n2
distinct entries. Since the orbit space of symmetric pairs (A,B) 1is
parametrized by (n+3)n/2 parameters we see that the polynomials (7.5) form a
transcendence basis in [Srl x Sn]O. ]

Combine the arquments of the proofs of Theorems 7.4 and 6.17 to get
Theorem 7.6. Let (A,B) and (D,E) be non-degenerate symmetric paris.
Assume that neither A and B nor D and E have a common subspace. Then
these pairs are orthogonally similar if and only if the polynomials given by
(6.12) have the same values on these pairs. [

We now classify the orbits of 2%X2 symmetric pairs under the orthogonal
similarity. Let U and V be subvarieties of §_ X 82 given by (2.3)
and (2.8) respectively. Suppose that (A,B) lies in U but (A,B) £ V.

Then the arguments of Theorem 2.9 show that (A,B) are orthogonally similar
to a pair of diagonal matrices (D,F). Whence it follows

Theorem 7.7. Let (A,B) & 52 x 52. Assume that (A,B) ¢V (i.e. (A,B) 1is
non-degenerate) then the values ot the polynomials Wi(A,B), 1 €41 <5
determines a unique orbit under the action of Oye

Suppose that C & 52 and C has one multiple eigenvalue. It is easy to
show that either C 1is of the form

Ada ai
(7.8) C(r,a) =
ai A-a
or C = C(A,-a). Moreert if a # 0 then C(A,a) is orthogonally similar to
any C(A,b) or C(A,-b), b # 0. Thus if (A,B) € V we have that
A =C(A,za), B = C(u,tb).
Therefore the function Y(A,B) given by (2.24) is equal to 4a/b and is

0
a nontrivial tunction in (V) 2, so Theorem 2.23 applies to 82 x SZ'




Theorem 7.Y. Let (A,B) € V 52 b 82. Then Y(A,B) = a12/b12 belongs to
0

(V) 2, If either Y(A,B) or 1/v(A,B) is defined on the orhit of (A,B)

then the values of tr(A), tr(B) and Y(A,B)(1/Y(A,B)) determine a unique

orbit in V under the action of 02. Otherwise the orbit of (A,B) consists

tr(b) I).

of one point (tr;A) I, >

The disadvantage of the transcendence basis (7.5) of [Sn x Sn]O is that
these polynomials are not symmetric with respect to A and B. The natural
candidate for symmetric basis in [Sn x Sn]O are the coefficients of the
characteristic polynomial of the pencil A+xB. Indeed, the map (6.3)

restricted to Sn x Sn yields

C(n+3)n/2 - n,1'

(7.10) p:S xs + P
n n

Thus, if plo(A,B),°°',pnn(A,B) are algebraically independent it follows that

these polynomials form a transcendenal basis in [sn x Snlo since the trans-

cendence degree of [Sn x Sn]0 is (n+3)n/2. Also the polynomials

pij(A,B) do exhibit symmetricity in A and B since

Clearly, (A,B), 0<€3j<i, 0<i<€n forma transcendence basis in

pij
[Sn x Sn] if and only if the map (7.10) is reqular. If we can show that
p 1is onto map then of course p is regular, Suppose that we showed that
p 1is an onto map for k € n-1, Thus if p(A,x) is a reducible polynomial of
the form (5.1) then there exists a pair of symmetric block diagonal matrices
(Ar,B),
| A= diag{A1,A2}, B = diag{B1,Bz}
suc1 that
[AT - (A+xB)| = p(A,x).

S0, in order to prove that p 1is an onto map, it is enough to show that any

irreducible polynomial p(A,x) of the form (5.1) is a characteristic of some




symmetric pencil A+xB. By making a transtormation x =y + X, it is enough

to consider irreducible polynomials with the property

n
(7.12) p(A,0) = I (A-di), d.1 # dj for i # j.

i=1
If |AI - (A+xB)| = p(A,x) then we find a symmetric pair (D,E)
D = diag{d1,"',dn} such that |AI - (D+xE)| = p(A,x).

Thus, if p 1s onto map then the map
(7.13) p(D,*) = s" » ptr?
P(D,E) = (p11(D,E),"',pn_1(D,E),"',pnn(D,E))

is an onto map. Clearly, (b,E) 1is a homogeneocus polynomial of degree

pji.
i in the entries of E. According to Theorem 3.20 if the system

(7.14) pij(D'E) =0, j=1,***1i, 1 =1,%sn

has a unique solution E = 0 then the map (7.13) is an onto map. The system
(7.14) is equivalent to the assertion that the pencil D+xE has constant
eigenvalues (spectrum) d1,'°°,dn. The main result of the next section is
Theorem 7.15. Let D be a diagonal marix with pairwise distinct diagonal
entries., Assume that the symmetric pencil D+xE has a constant spectrum.

Then E =0 for 1 €n<4, For n#5 and a given D there exist

nontrivial E satisfying (7.14).




8. Polynomial matrices with a constant spectrum.

In what follows we adopt the following notation. By Mn(c[x]) we denote

nXn matrices with polynomial entries. That is if A(x) & Mn(C[x]) then
(8.1) A(x) = (aij(x))? * Eo A,x) Ay 6 M.
Let GLn(C[x]) be the general lingar group over the ring C(x]. That is
U(x) © Mn(c[x]) is in GLn(C[x]) if and only if there exists V(x) €
M (C[x]) such that U(x)V(x) = I. Denote by On(C[x]) the orthogonal sub-
group of M (C[x]). That is O, (C[x]) consists of all U(x) such that
U(x)Ut(x) = I. Denote by Sn(C[x]) and An(c[x]) the subsets of symmetric
and skew symmetric matrices in M (C[x] respectively. Here A, denotes the

set of skew symmetric matrices ~(At = =A) in M. Let F(x) €& Mn(C[x]) and

consider the differential equation

du
(8.2) ax - UF(x)
with the initial condition U{(0) = I. Then U(x) 1is invertible for each

x. In fact it is easy to see that V = U"(x) satisfies the equation

dv
(8.3) ‘a;= -F(X)V

with V(0) = I. Clearly, U(x) is orthogonal for each x if and only if
F(x) is a skew symmetric matrix. However, usually U(x) will not belong
to M _(C(x]).

Theorem 8.4. Let U(x) € GLn§C[x]). Then U(x) satisfies the differential

equation (8.2) with F(x) € Mn(C[x])
L .
(8.5) F(x) = ) F,xJ.
j=o
Moreover Fz must be nilpotent.

Proof. Define

F(x)=U a‘o

So F(x) € Mn(C[x]) and U satisfies (8.2).
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Suppose that F is of the form (8.5). Then around x = ® the leading

part of (8.2) reduces to

dw L
a—;-xWbl.

Thus around x = ® the solution U(x) behaves as U(E)exp(F£x£+1/l+1)

(1&] >> 1.
1t Fl 1s not nilpotent some entries of U(x) behave at infinity as
L+1

epx (p # 0). Since U(x) 1is a polynomial in x we deduce that F

L

1s nilpotent. (See for example Lutz [1967] for the precise version of this
result), |

Let E be a nilpotent matrix then
(8.6) u(x) = ePXIE - pixy 6 crxl.

belongs to GLn(C[x]). In fact we have

Theorem 8.7 The group GLn(C[x]) is generated by GL, and the matrices of

the form (8.6).

Proof. Let U(x) € GLn(C[x]). It is well known (e.qg. Gantmacher {1959, ch.

6])) that U(x) can be brought by the elementary operation to its Smith
normal form which is the identity matrix 1I. Each such elementary operation
is carried out by multiplications from left or right by the following types of

martices A(x)

(1) A(x) = A € GLn,
. _ - g
(ii) A(x) I+ p(x)Eij exp(p(x)Eij), i J,
where Eij is the matrix whose (i,j) entry is 1 and all other entries
vanish. So Efj = 0. This proves the theorem. [ ]

Suppose that E € An (the set of skew symmetric matrices) and is
nilpotent. Then the matrix U(x) given by (8.6) is orthogonal. Clearly
for n=2 the only skew symmetric nilpotent matrix is the zero matrix.

Therefore, if U(x)e 02(C[x]) the corresponding F(x) in (8.2) must be zero
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matrix in the virtue of Theorem 8.4. That is
(8.8) OZ(C[x]) = 02.
This also follows from the simple fact that the squares of the elements 1in
each row of an orthogonal matrix U{(x) sum to 1. Indeed the equality
1 = u(x) + v23(x) = (u(x) + ivix))(u(x) - iv(x))
imply that u(x) and v(x) are constants if u(x) and v(x) are

polynomials. For n ? 3 there are non-zero skew symmetric matrices. For

example
0 141 0
(8.9) E = diag(H,0), H = -1-i 0 -1+4i
0 1-1 0 .

So we pose an obvious problem
Problem 8.10. 1Is On(C[x]) generated by On and the matrices of the form
(8.6) (E* = -E) for n > 3?

Let A(x) € Mn(C[x]). A(x) 1is called rank 1 matrix if A(x) # 0 and
all 2x2 minors of A vanish identically. Suppose that A € My is rank one
matrix. Then A = (uivj)?, where u = (u1,°'°,un)t and v = (v1,'°°,vn)
span the ranges of A and At respectively. For a rank 1 matrix A(x) we
have a similar result.

Theorem 8.11. Let A(x) € Mn(c[x]) be rank 1 matrix. Then there exists

polynomials a(x), u1(x),°",un(x), v1(x),°°',vn(x) such that

n .

(8.12) A(x) = (aij(x))1. aij(x) = a(x)ui(x)vj(x), i,y = 1,***,n

and ui, i=1,*°*,n (vi, i =1,**",n) do not have common zeros. Moreover
if A(x) 1is symmetric it is possible to choose ui(x) = vi(x), i=1,***,n,




i
!
Proot. Choose & and constant vectors o and B such that A(§)a # 0, ;
t t t
AT(E)B # 0. So A(x)a = (a1(x)(u1(x),°°',un(x)) A7 (x)B =
t R
a2(x)(v1(x),'°',vn(x)) where ai(x), uj(x) and vj(x) are polynomials
such that u1,"',un (v1,'°',vn) do not have a common zero. For x fixed
in the neighborhood of § A(x) 1is a rank 1 matrix. So A(x) =

(a(x)ui(x)vj(x))? where a(x)} 1is a rational function. It is left to show

that a(x) 1is polynomial. Suppose that a(x) b(x)/c(x) and b(n) ¥ 0,

c(n) = 0. As A(x) € M (Clx]) ui(n) vj(n) =0 for i,j = 1,°°**,n.
Since ui(x), 1 =1,*"**,n do not have a common zero there exists

1 € i € n such that ui(n) # 0. Hence vj(n) =0, j =1,*°",n, which ;
contradicts our assumption that v1(x),‘°',vn(x) do not have a common zero.
Hence a(x) 1is a polynomial. Suppose that A(x) 1is symmetric. Then we can
choose B =a so v(x) = u(x). [ ]

let U(x) & GLn(C[x]), such that U(0) = I. Define

(8.13) A(x) = U(x)BLUT (x).

Then the eigenvalues of A(x) are constant (do not depend on x). The

converse of this statement is true if A(x) has n distinct eigenvalues.
Theorem 8.14. Let A(x) € Mn(c[x]). Assume that A(x) has constant pairwise <o
distinct eigenvalues. Then (8.13) holds with U(x) € GLn(c[x]) and U(0) =
1, It in addition A(x) is symmetric then U(x) € Un(C[x]).

Proof. By considering the matrices TA(x)T_1, T € GLn we may assume that

A =D = diaq{dl,"',dn}. As A(x) has a constant spectrum each di is an

0

ergenvalue of A(x). Let

(8.15) Pi(x) = i fd. I - A(x)],(d.-di).
1<3%n, j#i J
So Pi(x) 1s rank one matrix with tr(Pi(x)) = 1, Theorem 8.11
ylelds
i i n T
Pi(x) = (uj(x)vk(X))j,k=1' j£1 uj(X)vj(x) = 1.
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Clearly ul(X) = (ui(X)."',u;(x))t, Vl(x) = (v':'(x),"',v;(x))t are the
eigenvectors of A(x) and At(x) respectively corresponding to the eigen-

value d;. As q; ¢ dj for i #j we have

I t~>5

u;(x)vz(x) =0 for i # 3.
k=1
Define
1 1 n

U(x) = (u (x),*0s,u (%)), VI(X) = (v (x),***,v" (x)).
Then V®(x)U(x) = I. So U(x),V(x) € GL (Cx]). As ul(x) is the
eigenvector of A(x) corresponding to di we have the equality

A(X)U(x) = U(x)D.

Also the assumption that Ay = D means that we can choose ui(x) to
satisfy ul(O) = (6i1,--°,61n)t, i =1,***,n. This proves the theorem for a
general A(x). Suppose that A(x) 6 Sn(C[x]). Then we can choose T € O
According to Theorem 8.11 V=U. so U(x) €0 (C[x]). a

Theorem 8.14 does not apply if A(x) has multiple eigenvalues. Indeed
let

b4 ix
A(x) =
-ix -X .

Then d1 = d2 = 0 are the eigenvalues of A(x). Also Ay = 0. So (8.13)
does not hold. Theorem 8.14 together with the equality (8.8) yield Theorem
7.15 for n = 2. Of course the case ﬁ = 1,2 can be proved easily in the
direct way. However for the cases n =3,4 (in particular n = 4) we need
also the following characterization of A(x) € M (C[x]) with a constant

spectrum. As usual let [A,B] denote the commutant AB-BA.

Theorem 8.16. Let F(x) be of the form (8.5). Consider the equation (8.2)

with the initial condition U(0) = I. Let A(x) be given by (8.13). Then
A(x) 1is of the form (8.1) if and only if F(x) satisfies the following non-

linear equation of order m
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Theorem 8.20.

(8.17) (™A JeeeerF) (R, 00 [F,A )0 00] 4 (E, [F, 000, [F,A 1000 = O,

m—1 m+1 !

In particular '

(8'18) [E‘l'[Fll...'{Fz’Aol...] = 0
S——

m+1

Proof The matrix V(x) = U"(x) satisfies the equation (8.3). Thus if

A(x) 1is given by (8.13) we have

dA . o
a = UI:AOV - UAOI'V = U[F,AO]V
d2A 1
(8.19) —5 =U{[F ,A ] + [F,[F,A )]}V
2 0 - 0
dx
d®a (s=1) :
== = ul(F Al + 000+ [F (P oee, [F,A 101}V, %
s 0 0 i
dx
s
m+1
Thus — A(x) 2 0 if and only if (8.17) holds. Assume that F(x) is of :
dx i

L(m+1)
x

the form (8.5). Then the coefficient of in the left hand side of

(8.17) is equal to [Fz,[FE," [ ] f
m+1

satisfies (8.18).

.’[Fz'AOI...] = 0 This proves (8.18).

Assume that Fl By letting F(x) = Fz in (8.2) we

obtain F(x) which satisfies (8.17). Thus we proved

Let Fz satisfies (8.18). Then

k
(8.21) A(x) = e A e =A_ + [Fz,-'°,[F£,A0]"°]§_.

1\ / k!

In particular [F2,°‘°,[F2,AO]'°'] is a nilpotent matrix.
N— -

m

The last assertion of the theorem follows from the result below.
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Lemma 8.22. Let A(x) be a nonconstant matrix of the form (8.1). If A(x)
has a constant spectrum then Ay is a nilpotent matrix.

Proof. As tr(Ak(x)l is constant we must have tr(Aﬁ) =0, k =1,2,°%°°,

So A, is nilpotent. ]
Theorem 8.23. Let A € S, have pairwise distinct eigenvalues., Then there
exists O # B € Sn such that A+xB has a constant spectrum if and only if
there exist F € A, such that

(8.24) (F,[F,A]l] = O, [F,a] # 0.

In particular A + x(F,A] has a constant spectrum, whence [F,A] is
nilpotent.

Proof. Let A(x) = A+xB. According to Theorem 8.14 the equality (8.13) holds
for some U(x) € O (Clx]). As B # 0 U(x) is not a constant matrix. Let

E F(x) be given by (8.2). Then O # F(x) € An(C[x]). So F(x) is of the form

(8.5) and F is a nonzero skew symmetric matrix. In view of Theorem 8.16

b2

F = Fz satisfies the equality (F,{F,A}l] = 0. Consider the matrix (8.21).
The equalities (8,19) yield

(8.25) A(x) = A + x[F,Al.

[ According to Theorem 8.20 A(x) has a constant spectrum. Lemma 8.22 implies

that [F,A] is nilpotent. It is left to show that (F,A] # 0. Suppose

that (F,A] = 0. That is F énd A commute. Since A has n distinct

eigenvalues F = p(A) for some polynomial p(A). So F is symmetric!

Thus F = 0‘ which is a contradiction. N

Thus to prove Theorem 7.15 for n = 3,4 we have to show that the only
skew symmetric solution to (8.24) is F = 0 when A is a symmetric matrix
with pairwise distinct eigenvalues. To prove Theorem 7.15 for n 2 5 it is
enough to find a nontrivial solution to (8.24) with the above restriction on

F and A.
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9. The equation [¥,[F,A)] = O.

We first recall some known facts about complex skew symmetric matrices.
See for example Gantmacher (1959, Ch. 11].

First, it A and B are similar skew symmetric matrices then A and
B are othogonally similar. Second, if zero is an eigenvalue of a skew
symmetric matrix F then in the system of elementary divisors of F all
those of even degree corresponding to the eigenvalue zero are repeated an even
number of times. Thus if F 1is a nonzero 3X3 skew symmetric nilpotent
matrix then F 1is orthogonally similar to the matrix H given in (8.9).
If F is a nonzero 4%X4 skew symmetric nilpotent matrix then either F is
orthogonally similar to E given by (8.9) or F satisfies

(9.1) Fe = 0, ker(F) = Range(F).

Theorem 9.2. Let 0 # F € A and A € S . Assume that F and (F,A] are

nilpotent and compute. Then for n=3,4 A has at least one multiple

eigenvalue.

Proof. We break our proof into three cases.

(i) n = 3. Then we may assume that F = H and H 1is of the form (8.9).
Since H and [H,A] commute they have a common eigenvector u

Hu = 0 = [H,A]lu = HAu.
Since the eigensubspace of H 1is spanned by u we must have Au = Au.

'ty = 0. If A was a simple eigenvalue (i.e. a simple zero of |xI-A|

Also u
= 0) then the symmetricity of A vyields that utu # 0. So A is a multiple
eigenvalue.

(ii) Let n = 4 and assume that (Y.1) holds. Then the assumption that

[F,[F,A]] = 0O implies FAF = U. So ker(F) > A Range(F) = A ker(F). If all

the eigenvalues of A are simple then C4 splits

C = ker(F) @ W




i.e, W is an orthogonal complement of ker(F). So FW € W, Note that dimW
= dim ker(F) = 2, Also the eigenvectors of A, {xi}? form an orthogonal
basis of c4. In this basis F 1is represented by F, @ F, where each Fy

is 2x2 skew symmetric matrix. Since F is nilpotent F; =0 so F = 0.
This contradicts the assumption that F # O. Whence A has a multiple

eiganvalue.

(1ii) et n = 4 and assume
F = diag{H,0) A = .

where H is given by (8.9) and B € S,.
A straightforward calculation shows that
(4, [H,B]] H™B

[FI[FIA]] = .
8tH2

So
(1,[8,8)) = o, B8%H%.

According to Theorem 8,20 [H,B] is a nilpotent matrix. Then by the
part (i) of this proof Bu = Au where u is the eigenvector of H. Since
the range of H® is spanned by u the equality BtH2 = 0 implies that

8% = 0. so
AV = Av, vt = (ut,o), vtv = utu = 0,

Thus A is a multiple eigenvalue of A. B

Theorem 8.23 and the above theorem imply Theorem 7.15 for n = 3,4. So

we get

SEETPPRRIS SN




Theorem 9,3, Let p(A,z) be a nondegenerate polynomial of the form (5.1)
with r =1, Let 2 € n € 4, Then there exists a symmetric pencil A+xB
whose characteristic polynomial is p(A,x). The number of such non-

orthogonally similar pairs is at most
n

(9.4) N(n) = T i1/2"
i=2

and for almost all p(A,x} the number of distinct orbits of symmetric pairs

1

is exactly N(n).

Proof. By making a change of variables x = X, +y and considering
Q(A+xB)Qt, Q € 0, we may assume that p(A,0) is of the form (7.12) and
A =D-= diag{d1,"',dn}, B =E. For n £ 4 we showed that the system

(7.14) has the unique solution E = 0. By Theorem 3.20 the map (7.13) is

n n
I it covering of C("+1)“/2. Thus there exist "generically" mit
i=2 i=2
distinct symmetric E such that
(9.5) |AI-(D+xE)| = ¢(A,x).
Obviously for most p(A,x) of the form (5.1) satisfying p(A,0) = |AI-D|

all the corresponding E have non-zero entries. Also D+xE and D+xPEP ,
P € DO, have the same characteristic polynomial. As E has nonzero entries
then P,EP, = P,EP,, P, € DO, if and only if P, = P,. So each 2n-1
distinct E satisfying (9.5) belong to the same orbit. Thus, generically,
there are N(n) distinct orbits and we established the theorem.

For n=2 we obtain that if p(A,x) is non-degenerate then there exists
only one orbit of symmetric pairs corresponding to p(A,x). This result was
already obtained in Section 7. For n=3,4 we see that in general to a given

p(A,x) of the form (5.1) with r = 1 correspond more than one orbit. In

fact, it is possible to generalize Theorem 9.3 as follows.




It N A

A

T

Theorem 9.6, Let D = diagl{d,,***,d } be a diagonal matrix with pairwise
e 1 n

distinct diagonal entries. Let p(A,x) be a polynomial of the torm (5.1)
with r = 1 such that p(},0) = |AI-D|. Assume that 2 € n € 4. Let B €
M, be given., Then there exists E € Sn such that

(9.7) JAI - x(E+B)| = p(]A,x).

The number of such E never exceeds

(9.8) M(n) = @I i}

i=2
and for most of such p(A,x) the number of such E is exactly M(n).

Proof. Consider the map

. C(n+1)n/2 n,1

w: S = P

n
given by
¢(E) = (P, (D,E+B),p,, (D,E+B), "-,Pnn(u;mB)).
So
vw(E) = (P10(D,E),“‘,Pnn(D,E)).
Thus wn(E) = 0 implies E = 0 and the result follows by Theorem 3.20,.
[

We now prove the second part of Theorem 7.15. By repeating the arguments

of part (iii) in the proof of Theorem 9.2 we get

Lemma 9.9. Let F € A, be orthogonally similar to E given by (8.9).

Assume that A € Sn and [F,[F,A]] = 0. Then A has a multiple eigenvalue.

Thus in case that n ? 5 we shall take E to be orthogonally similar

to F of the form

(9.10) F = diag(H,0), H = ((_)P o) = (] 1,

More precisely using orthogonal similarity we may assume that A = Ay 9 A,

where A, € 85 and F € 8§ of the form (9.10). Thus to prove Theorem
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7.15 for n 2 5

where
and I 1is 2x%2
[F,[F,A]
Clearly

Choose Bt = (0,b,0,c)s Then |AI-A| = (A-d1)(k—d2)|AI-C|

So

Since d1 # dz, ety and tsy determine uniquely a, b2 and c2. Thus we
can choose a,b,c such that

[A1-c| = (A~d;)(A-d,)(A-d,),
where d_l # dj for 1 # j. This proves the second part of Theorem 7.5.

S r———p————— -

it is enough to consider n = 5, Choose
B 8
a-(B 8
8 a
B = dlag{d11,d21}
identity matrix. So
2
(H, [H,B]] H™B (H, (H,B]) 0
B 0 0 0
[H'[HrB]] = 0. J

d1 0 b
C = [¥] d2 c
b c a

Pai-cl =27 - e e e n -t

3
d, +d, ‘

+ a
d1d

t
]

t
1]

2 2
2 + (d1+d2)a - (b7+c")

= 2 2
t3 = d1d2a - d2b - d1c .




10, Symmetric Polynomial Matrices.

Let A(x), B(x) € S, (C{x}). That is

m . m
(10.1) Alx) = } ijj, B(x) = ) Bjx), Aj/B €5, 3 =0,°m

3=0 3=0 )
The matrix A(x) and B(x) are called orthogonally similar if

(10.2) B(x) = u{x)a(x)ut(x),

H
[

and U(x) € On(clxl). If U(x) can be chosen to be constant, i.e. U(x)
€ 0n then A(x) and B(x) are said to be strictly orthogonally similar.
That is the matrices {Aj}g and {Bj}g are simultaneously orthogonally
similar

(10.3) By = UAjUt, § = 0,%°,m

Clearly for n » 3 there are symmetric matrices A{x) and B{x) which are
orthogonally similar but not strictly orthogonally similar. Indeed, choose
A(x) = Ao and U(x) € On(c[x]) such that B(x) given by (10.2) is a non-

constant matrix. So Bm # 0 and A =0 for some m ’ 1.. Obviously A,

and B(x) are not strictly orthogonally similar. Consider a characteristic

polynomial of A(x). It is easy to see that this polynomial is of the form

n .
|AL-A(x)]| = A" + ] pi(x)x“’l,
i=1
(10.4)
im 3 |
pi(x) = 2 pij(AO'...'Am)x , i=1,2,°%,n,
j=0
In particular
m o
n [N N ] n—l
(10.5) IAI-AmI = A+ i£1pi(mi)(Ao, AN,

If A(x) and B(x) are orthogonally similar (or even similar over

GL,{(Cix])) then A(x) and B(x) have the same characteristic polynomial
p(A,x). We now give a simple condition on p(A,x) which ensure strict
orthogonal similarity of A(x) and B(x) provided that A(x) and B(x) are

orthogonally similar.




WT
1
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Proof. First we note that any U(x) € On(H(ﬂ)) satisfying (10.2) is a

Theorem 10.6. Let A(x), B(x) € 5 (Clx]) be of the form (10.1). Assume that
(10.2) holds for U(x) € On(C[x]). Let p(A,x) of the form (10.4) be the
characteristic polynomial of A(x). Assume that Ay has pairwise distinct
eigenvalues., Then U(x) 1s a constant matrix. That is A(x) and B(x) are
strictly orthogonally similar.

To prove the theorem we need the itollowing lemmas.

Lemma 10.7. Let A,B € S, have the same pairwise distinct eigenvalues. Then
there exist 2" distinct orthogonal matrices U such that B = uau®,

Proof. Since A and B are orthogonally similar to the same diagonal

matrix D it is enough to consider the case A=B=D. But then D = ubut if
and only if U = diag{#1,**+,21} and the lemma is proved.

Let 2 be a domain in €%, Denote by H(§) the set of analytic
functions in . Then Sn(H(Q)) and On(H(Q)) will denote the set of
symmetric and orthogonal matrices A(x) and U(x) for x € & such that the
entries of A(x) and U(x) are analvtic functions in 8.

Lemma 10.8. Let § be a simply connected domain in Ck. Assume that A(x),
B(x) € Sn(H(ﬂ)). Suppose that for each x € £, A(x) and B(x) have the F
same pairwise distinct eigenvalues. Let
(10.9) B(x,) = UA(x,)US, U_ €0
0 0 0" "o’ 0 n'

for some xo € 1. Then there exists a unique U(x) € On(H(Q)) satisfying
(10.2) such that U(xy) = Uge
solution of linear and quadratic equations

B(x)U(x) - U(x)A(x) =0, U(x)ut(x) = 1.

As at each point x we have exactly 2" distinct solutions. The implicit

function theorem implies that for any given X, € 1 there exists r, = rix,)

> 0 such that the above system has 2" distinct analytic solutions U(x) in

the disc |x-x1| < r,. So U(x) can be continued analytically on any




continuous curve [ < . Thus, in general, we have a multivalued (with at

most 2" branches) analytic orthogonal matrix valued function U(x)

satisfying (10.2) with U(xo) = Uy at least for some branch of U(xj. The {
assumption that w 1is simply connected implies that U(x) is univalued,
i.e. U(x) € On(H(ﬂ)).

The assumption that & is simply connected is crucial to the proof of

PPN

Lemma 10.8. Indeed let
A(x) = B(x) =

Then in the domain
Q= 1{x, 0 < |x| <2}
A(x) has two distinct eigenvalues.

Clearly

t 0 1
A(-1) = U A(-1)U., U_ = .
0 0 (o} [1 0]

Then the solution U(x) satisfying (10.2) with B(x) = A(x) and the
condition U(-1) = Uo is of the form .
U(x) = A(x)//x(2+x), /=1 =i .
Now U(x) is two valued in ® since /x(2+x) is two valued in . On
the other hand if we choose Ug=1I then U(x) = I and this solution is
clearly single valued in 8. This shows that the choice of Yo is important.

Proot of Theorem 10.6. Let |x| > r. Then by dividing (10.2) by x™ we get

m , m .
c(x" ) =B + 1B x =0 + Ja .xutm.

. m-i m . m=i

i=1 i=1
Put y = x". For |y| < € the eigenvalues of C{(y) would be close to the
eigenvalues of A~ and therefore will be pairwise distinct. Thus we can
apply Lemma 10.8 for ymA(y-1) and ymB(y'1). Hence U(x) 1s analytic in

the neighborhood of x = ®, Now the Liouville's theorem implies that U(x)

must be constant. [




Rt

2
]

Remark 10.10. 'he results of Theorem 10.6 apply it we shall assume that U(x)
€ Un(H(C)), i1.e. the entries of U(x) are entire functions.
Let A{(x) be of the form (10.1). Suppose that A(x) is non-degenerate.

That 1is lAI-A(x)I is a non-degenerate polynomial. Hence D(x) given by
{4.17) 1s a polynomial of degree <€ n(n-1)m. Assume furthermore that Am
has palrwlse distinct eigenvalues. Then D(x) 1is a polynomial of degree
n(n-l)m. Let g ,°**,Z_ be all intersection points of | AI-A(x)|. So

s € n{n-1)m. Let B(x) be also of the form (10.1) and suppose that

(RIVRRD] IAT-a(x)] = |AI-B(x)].
Pi1ck X, * Cj’ 3 =1,°**s. Let U satisfy (10.9). Then, according to the
prootf of Lemma 10.8 there exists an analytic multivalued orthogonal matrix func-
tion U(x,UO) on the Riemann sphere (i.e. € U {®»}) punctured at Cj'

3 =1,°*,s, satisfying (10.2) such that

U(xO,UO) =Yg

tor at least one branch of U(x,Uo). If it happens that U(x,UO) is single
valued and the points Cj' j = 1,**¢,s, are removable singularities then the
Liouville's theorem implies that U(xO,UO) = U, and A(x) and B(x) are
strictly orthogonally similar. Note, as we pointed out before, sometime this
can happen only for special choices of Uy out of 2" possible choices. 1In
what follows we give a simple condition on Ug which will ensure the needed
prépertles of U(x,UO).
Lemma 10.12. Let A(x),B(x) be of the form (10,1). Assume that A(x) and
B(x) have the same characteristic polynomial and suppose that AL has
pairwise distinct eigenvalues. (So |AI-A(x)| 1s non-degenerate). Let
C1,°'°,CS be the intersection points ot IXI—A(x)l. Choose XO # Cj'

j= 1,***,s such that the real line (1-t)x0 + t;j, t real contains only one

intersection point CJ. Let Uj(x) be the analytic solution of the equation
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(10.2) along the open segment (1—t)x0 + tcj, O €t <1 with the initial
condition Uj(xo) = Uy for a fixed choice of U, satisfying (10.9). Assume
that Uj(x) can be continued analytically to a disc Ix-cjl < r for some

r >0 and j = 1,***,s5., Then Uj(x) = Ug, j =1,*°°,8, hence A(x) and
B(x) are strictly orthogonally similar.
Proof. Let § be the complex plane cut along the rays (1-t)xo + tcj,

1€¢t, j=1,°°,s, So R is simply connected, cj ¢ 2, for

j =1,***,s. Thus, there exists a unique U(x) € On(H(ﬂ)) satisfying (10.2)
and the condition U(xo) = Uye Let

51 =2 {O-t)x, + tg,, t > 1l.

Note that C1 ¢é 51. We can continue U(x) analytically along any closed

- a

curve T in 91. We claim that U(x) is a single valued in 91. Indeed if

~

I' is homotopic to a point in 91 then of course U{(x) 1is single valued
along T. It is left to examine the case where I is homotopic to
circling k times around the point ;1. Since U,(x) can be continued
analytically in the neighborhood of C1 we see that the U(x) remains single
valued on T in this case too. Finally, the assumption that U,(x) can be
continued analytically in the neigﬁborhood of [, implies that U(x) is
single valued and analytic in 91 = 61 u {;1}. Continuing in the same manner
we deduce that U(x) can be extended analytically to the whole complex
plane. As A_  has pairwise distinct eigenvalues we get that q(A) given by

m

(10.5) has simple roots. Now Remark 10,10 implies that U(x) = UO. [ |
Let A(x), B(x) be of the form (10.1). Suppose that A(x) and B(x)
have the same characteristic polynomial which is non-degenerate. In order to

be able to apply the above lemma we have to insure that A(x) and B(x) are

(1) analytically similar in the neighborhood of each intersection point

C. That 1is
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(10.13) B(x) = U(x)A(X)U(x)™', U(x) € GL_(H(D)).

Here D is some disc
(10.14) p(g,r) = {x,|x-g| < r}
and GL_ (H(R)) is the set of invertible matrices U(x) such that the
entries of U(x) and U-1(x) are analytic functions in Q.

(ii) U(x) can be chosen to be an orthogonal matrix.

The guestion of local (analytic) similarity was studied by us in
Friedland [1980]). The first step is to bring A(x) to a block diagonal form
that

- t

(10.15) vV (xX)A(x)V(X) = 'l ® A (x), V(x) € GL (H(D(g,r))),
such that Aj(C) has one eigenv:éli-ljle )'j' j =1,***,m and Aj ¢+ >j( for
j # ke Here r 1is some positive number. Also

t
(10.16) W) 'BGOWX) = [ @ B (x), W(x) € GL_(H(D(g,e))),

j=1
and Aj(x) and Bj(x) have therame characteristic polynomial in D(g,r)
for j = 1,°**,t. So A(x) and B(x)}) are locally analytically similar if
and only if Aj(x) and Bj(x) are locally similar for j = 1,¢°¢°,t,
Clearly if Aj(x) and Bj(x) are 1x1 matrices then Aj(x) = Bj(x) since
Aj(x) and Bj(x) have the same characteristic polynomial. In that case
Aj(x) and Bj(x) are locally similar.

In case that Aj(x) and Bj(x) are not 1x1 matrices it may well
happen that Aj(x) and Bj(x) have the same characteristic polynomial but
Aj(x) and Bj(x) are not locally similar. A simple criterion due to Wasow
[1963] gives an additional condition on Aj(C) and Bj(c) which ensures the
local similarity of Aj(x) and Bj(x).

Theorem 10.17. Let A(x), B(x) € Mn(H(D(;,r))). Assume that 2A(x) and

B(x) have the same characteristic polynomial. If the minimal polynomial of

A(g) and B(g) is equal to its characteristic polynomial then A(x) and

B(x) are locally similar.




Let A(x) € Mz(H(D)) for some disc (10.13). The 1interesting case from
our point of view is when A(Z) has a double eigenvalue uo. In the
neighborhood of § the eigenvalues of A(x) behave as an algebriac function
of x, i.e. they must have a Puiseaux expansion (4.5) with m = 2. For a
certain Puiseaux expansion of A(x) it is possible to tell when the minimal
polynomial of A(Z) is (l-uo)z.

Lemma 10.18. Let A(x) € Mz(H(D)), D = D(g,r). Assume that the eigenvalues
of A(x) have the Puiseaux expansion (4.5) with m = 2 in the neighborhood
of §. 1If , # 0 then the minimal polynomial of A(Z) is (k-uo)2.
Proof. Assume to the contrary that A(g) = XOI. So

(10.19) A(x) = XOI + (x-§)B(x), B(x) € M2(H(D)).

Since the eigenvalues of B(x) have the Puiseaux expansion we deduce that
W, = 0 contrary to our assumptions. [

Let A(x) be of the form (10.1) and suppose that Am has pairwise
distinct eigenvalues. So |AI-A(x)| is non-degenerated and the discrim-
inent D(x) given by (4.17) is a polynomial of degree n(n-1)m. Let
(10.20) (A, oe*A ) = §(| A1-a(x)|)
be the discriminant of D(x) given by (5.9) (r=m).

Suppose that
(10.21) 5(A0,°",Am) # 0,

Then at each intersection point {, A(f) has exactly one double root uo.
Moreover the Pﬁiseaux expansion of those two eigenvalues satisfy the assump-
tions of Lemma 10.18 (Theorem 4.22), So if B(x) is of the form (10.1) and
[A1-A(x)| = |AI-B(x)| then A(x) and B(x) are locally similar in the
neighborhood of any finite or infinite point § if the condition (10.20)

holds. Our next step is to show that the similarity marix in (10.13) can be

chosen to be orthogonal. This is implied by the following two lemmas.
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Lemma 10.22. Let A(x) € §_ (H(D(g,r'))). Suppose that a(f) has m distinct

elgenvalues A _,*¢+*,A , where n. is the multiplicity of Aj. Then there

1! m h!
exists V(x) € O,(H(D(g,r})) satisfying (10.19) where Aj(C) has one eigen-
value kj for some r > 0.
Proof. By considering the matrix QA(C)Qt, Q€ 0n we may assume that
m
Alg) = ¥ e A lD),
j=1 )
where each Aj(C) has one eigenvalue Xj.
Choose a positive p such that
D(Ai,p) n D(Aj,p) =¢ for i #* j.
Let

E; (x) (AI-A(x)) " 'dA

it
ol
2
~—

U}

E2(x) = E.(x) = E(x), E,(x)E (x) = 0
3 J J ] Kk

for k # j, rank Ej(x) = nj. Jo=1,*m

for |x-f| < r" for some positive r“.
Let

. t
Zj = no+"'+nj_1, J=1,cm#l, n =0, u = (Gal'...'san) .

Consider

.

uu(x) = B.(x)ua, a = £j+1,--°,£j+1

J
Note that ua(;) = U a=1,***,n, Apply the Gram-Schmidt process to

u2.+1(x),"',u£. (x) to obtain analytic vectors v2.+1(x),"',vz. (x) 1in
3+ 3 bRg

the neighborhood of § such that

(x) = &

t
va(x)v a,B = £ see 2

341 3= teretem

8 aB’

Since Ej(x)Ek(x) =0 for j #k we get vg(x) v

j+1!

(x) = 8§

] ag’

1 € a,8 €n.,
Then

vi{x) = (v1(x),°°',v (x)) € 0O (H(D(Z,r)))
n n

and the equality (10.15) holds. ]




Lemma 10.23. Let A(x) € Sz(H(D(C,r'))). Then there exists U(x) €
OZ(H(D(C.r))) for some r > 0 such that U(x)A(x)Ut(x) has one of the

following torms

a(x) 0
(1) v
0 b(x)
1+a(x) b(x)
(ii) , b(8) =i
b(x) -1+a(x)
k . 1+a(x) b(x)
(iii) (I a0 2)+ x-p*" ,
j=o0 4 b(x) ~1+a(x)

b(g) =i, k » 0,

In all the cases the functions a(x),b(x) and the values 01,°°',ak are
determined by the characteristic polynomial of A(x). If the eigenvalues of
A(x) are not identical then the value of k in (iii) is bounded from above.
Proof. Suppose first that A(Z) has two distinct eigenvalues. Then A(x)
is orthogonally similar to the matrix of the form (i) by virtue of Lemma
10.22. Assume now that A(Z) has a double eigenvalue. By considering the
matrix

A(x) =14 tr(a(x))I

we may assume that A(x) of the form
a(x) B(x)]

B(x) -a(x)
Suppose that the minimal polynomial of A(Z) is Xz. Using the

A(x) = [

transformation QA(x)At, Q € 0, we may assume a(f) =1, B(Z) = i. Then

choose in the form (ii)

b= 8/1 + (a2-1)8"2

and let
u(x) -v(x)
U(x) = [ J , Vv =~i%:llu, u = 1//q+(9-1)2(3-b)-2.
+b
vix) u(x)
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Then U(x)A(x)U%(x) will be of the form (ii) with a(x) = O. Assume

now that the minimal polynomial of A(g) is A. Then A(Z) =0 and
A(x) = (x-L)B(x), B(x) € SZ(H(D(C,r))).

If the minimal polynomial of B(Z) 1is Xz then B(x) is of the form (ii)
and we achieved the form (iii). If B(%) = O then we continue in the same
manner. If we stop the process at the step k we shall achieve the form
(iii). 1If the above process never stops then we deduce that A(x) is of the
form (i) and a(x)= b(x). It is easy to see that af(x),b(x), u1,°°°,uk are
determined by tr(A(x), and |A(x)|. Suppose we have the form (iii). Then
the Puiseaux expansion of both eigenvalues of A(x) are of the form

X - -
A (x) = } . (x-2)7 + |x-g[""'o(1), h=1,2.
j=0 7

Thus if Xi(x) $ Xz(x), k has an upper bound. "
Let A(x) be of the form (10.1). Suppose that G(Ao,'°',Am) # 0.

Then D(x) given by (4.17) is a polynomial of degree n(n-1)m having

nin-1)m simple zeros ¢,,***,¢_, s =n(n-1)m. Thus |AI-A(x)| has

n{n-1)m intersection points C\'...';s' At each intersection point Ck

there exists Vk(X) € On(H(D(gk,r))) such that (10.15) holds. Here

t =n-1, A,(x) € Sz(H(D(ck,r))), A1(x) is of the form (ii)

1+ a.k(x) bk(x)
(10.24) A, (x) =C (x) = » b (L) =i
' b (x)  -1+a, (x) koK
kX k'*
in view of Theorem 4.22, Lemmas 10.18 and 10.23. Other Aj(x) are the
analytic roots of |AI-A(x)| in the neighborhood of C,+ Assume that B(x)
is of the form (10.1) and suppose that |AI-A(x)| = |AI-B(x)|. Then at the

neighborhood of each intersection point Cj there exists wk(x) €

On(H(D(Ck,r))) such that (10.16) holds and




TR

n-_1 ‘n-l
(10.25) } ea,(x) = ] @B (x).
j=1 J j=1 J

Choose x, € C, Xg # Cj’ j=t,***,n(n-1)m, such that the line (1-t)x,
+ tcj, -® ¢ t < ®, contains only one intersection point Cj' By considering
: t t . .
the matrices Q1A(x)Q1, QZB(x)QZ, Qj € 02, j =1,2 we assume
(10.26) A(x)) = B{x;)) =D = d1ag{d1,"',dn}.
Let Qk be a simply connected domain ﬂk containing the segment (1-t)x0 +
tck, 0 € £t ¢ 1 and such that ;j € “k' j =1,**,s. Choose T € DO.

Let Uk(x,T) € On(H(Qk)) be the unique solution of (10.2) satisfying

Uk(xu'T) = T. Thus tor x € ﬂk n D(Ck,r) = Qk we have

n-=1 t c
B(x) = wk(x)(jz1 ® Aj(x))wk(x) = U, (x, TIA(X)U (x,t) =
n-1 t €
Uk(x,T)vk(x)(j£1 @ A, (x)IV, (x)U,.

As Aj(;) and Az(t) do not have a common eigenvalue for j # £ we easily
deduce

n-1

t - -
(10.27) WUV, = j£1 oRr, € o (H(R)).

In particular |Rj(x)|2 =1, So for j 2 2 each Rj(x) is a constant number
of modulus 1.
For R,(x) we have
R1(x) = Qk(x,B,T) € OZ(H(ék))
(10,28)
0 (X,B,T)C, (X)Q (%,B,T) = G (x)
where C,(x) is given by (10.24).
Let
(10.29) w (B,T) = IQk(x,B,T)I, k = 1,*¢¢,n(n-1)m,
So mk(B,T) = $1,.
Lemma 10.30. Let the above assumption hold. Suppose that wk(B,T) =1 then

the matrix Uk(x) can be continued analytically to the neighborhood of Ck.
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Proot. Consider the matrix Ck(x), X € Qk. sSo Ck(x) has two distinct

eigenvalues. THus ther= are four orthogonal matrices commuting with Ck(x).

Namely +I, zQ, where |Q| = -1. Therefore if w (B,T) = 1 then
Qk(x,B,T) is a constant matrix which equals to tI.
n-1 -
Hence X & R.(x) 1is constant in ﬂk and theretfore can be analytically
j=1
extended to D(Ck,r). Finally (10.27) shows that
n-1
t
U (X, T) =W (x)( ] ®R_(x))V (x)
k k =1 3 k
so Uk(x,T) has analytic extension to D(Ck,r). B

Theorem 1U.31. Let A(x),B(x), ﬁ(x) € sn(c[x]) be of the form (10.1).
Assume that
|AI-A(x)| = |AI-B(x)| = |AI-B(x)].
Suppose that G(AU,'°',Am) # 0. Let §1,°°',Cs, s = n{n-1)m be the inter-
section points ot |AI-A(x)| and suppose that the line (1-t)x0 + tcj,
-® < t <% only one intersection point §. for j = 1,°°*°,s,
Assume that A(xo) = B(x ) = g(xo) is a diagonal matrix. Let

0
T,T € DOn and suppose that

(10.32) w (B,T) = wk(ﬁ,i), 3 =1,%*+,n(n-1)m.
Then
(10.33) B(x) = T TB(x)TT.

Proof. In the arguments preceding Lemma 10,30 replace B,U,W,R by B,U,W,R

respectively. So we get

-~ -~ -~ t
u =w (le Ry (x))V)(x),
Thus

n-1

t - -
kY = wk(.2
j=1

U :] Rj(x)Rj(x))wk

and

~ t, St _
R1(x)R1(x)ck(x)RjRj(x) = Ck(x).
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As
- t - 0w
|Rj(x)Rj(x)| = & (B,T)q (B,T) = 1

we deduce that §1(x)Rf(x) = ¢+I SO §1(x)R:(x) has an analytic continuation
in the neighbnorhood of ck. Hence the orthogonal matrix A(x) satisfying
the equation

Blx) = Q(x)B(x)Q%(x), Qxy) = TT
fulfills the assumptions of Lemma 10.12. So Q(x) = TT and {10.33) holds.
Theorem 10.34. Let p(A,x) be a polynomiél of the form (10.4). Assume that

- 2(n-1)(mn-1)

§(p) # 0. Then there are at most Vv polynomial symmetric

matrices Al(x),"°,Av(x) of the form (10.1) such that
|XI—A5(x)| = p(A,x), 3 =1,V and
A.(x) * QA (x)gt ¥
3 i ,
for i # j and any Q € On'
Proof. Assume to the contrary that the matrices A1(x),'°',Av(x) and
A(x) are of the form (10.1), their characteristic polynomial is p(A,x) and
’ .}
any of the matrices are not strictly orthogonally similar. Choose x5 as in f‘
Theorem 10.31. We assume that
Alx,) = Aj(xo) =D, Jj =1,9%%,V
where D is a diagonal matrix. Wwe first note that if T1,T2 € ODn and
#
T1 T2 then
#
wk(Aj,T1) uk(Aj,Tz)
for some k. Otherwise Theorem 10.31 imply that

J J
3 As T1T2 # 3I it easily follows that there exists a permutation matrix such
4 that
Pa.Pt =a,., @ A...
J bR )2
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Therefore
A = |AI-A, A..| = |AL, -A. AL, -A.
p(A,x) = |AI Ay, ® 32| | I, A31|| I, Ajzl
and this is impossible since p(A,x) is irreducible.
Also for any TysTp € ODn
# i # 3
mk(Ai,T1) u&(Asz), i 3j
for some k. Otherwise Ai(x) and Aj(x) are strictly orthogonally
equivalent which contradicts our assumptions. Let
w(Ai,T) = (wl(Ai’T)"..'wé(Ai’T)) s = n(n-1)m.
Then the set {M(Ai,T)}, i=1,°%°, v, T g ODn contains V 2n-1 = 2(n—1)nm
distinct vectors. As wk(Ai,T) = $1, k =1,***,n{n-1)m we deduce that
there exists i such that wk(Ai,T) =1, k=1,***,n(n-1)m. Clearly
mk(A,I) =1, k=1,***,n(n-1)m. Thus Theorem 10.31 implies that A(x) and

Ai(x) are strictly orthogonally equivalent which contradicts our assumptions.

The proof of the theorem is completed.
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11. Conclusions, remarks and open problems.

Let Sn,m+1 be the space of m+1 symmetric tuples (AO,"',Am)
= X eee X .
{(11.1) Sn'm‘._1 s, G
m+1
Thus Sn,m+1 can be identified with C(n+1)n(m+1)/2. The complex orthogonal

group O, 1is acting naturally on sn,m+1

t
(11.2) U[(AU,"',Am)] = U(Ao,"',Am)U , U € On B
To each m+1 symmetric tuple (Ao,°°°,Am) we correspond a polynomial
symmetric matrix A(x) € Sn(c[x]) by means of the formula (10.1). Consider
the characteristic polynomial |AI-A(x)| given by (10.4). Clearly

pij(Ao,"',Am) is a polynomial on Sn,m+1 which is invariant under the

i [ N J 0 . .
action of O,. So pij(AO' ,Am) € [Sn,m+1] « The coefficients of

|AI-A(x)| induce the map

(11.3) p:S » phem!

n,m+1 ! p(AO'.“'Am) = (pij(AO'...'Am))'

i = 1'ooo'n' j = 0,“',mi,

PD,I

where is the coefficient space of the polynomials of the form (5.1).

'
Denote by 5(p(A0,°",Am)) the discriminant of |AI-A(x)| given by (5.9) ]

(r=m), We claim that 6 §0 on S The proof is identical to the proof

n,m+1°

of Theorem 6.5 except that instead of the pencil A+xB we have to consider
the polynomial matrix A+x™B., Next we claim that the transcendence degree

ot (S

]0 is mn(n+1)/2 + n. Indeed, assume that A has pairwise
n,m+1 0

distinct eigenvalues, So there exist m+1 tuple (D,E °'°,Em) orthogonally

1'
similar to (Ao,°°°,Am) such that D 1is a diagonal matrix. The matrices

E1,'°',Em are fixed up to the action of the discrete group DOn. Thus

(D,E,,***,E ) parametrize most of the orbits in (S ]0. So the
1 m n,m+1

transcendence degree of [Sn m+1]0 is at most mn(n+1)/2+n. An obvious
’

modification of Theorem 7.4 yields




Theorem 11.4. "The polynomials
(11.5) tr(A;), 1=1,°"%,n, tr(A;AkAgAk), 0<ic<j<n-1, k=1,°n 4

torm a transcendence basis in [Sn m+1]0. Moreover, 1f Ag has n distinct
’

2_
eigenvalues then the values of these polynomials determine at most zm(n n+2)/2

distinct orbits.
Theorem 10.34 implies
Theorem 11.6. The polynomials pij(AO'...'Am)' i=1,**n, j=20,*mi,

given by (10.4) form a transcendence basis in (S More precisely, if

]O
n,m+1°
5(p(AO,°'°,Am)) # 0 then the values of these polynomials determine at most

2n=1)(mn=1) 4 tinct orbits.

Proof. As the transcendence degree of [S

n m+1]0 is mn{(n+1)/2+4n it is
r

enough to show that pij(AO,"',Am) i=1,*°*n, j=0,1,"*°,im are alge-

praically independent. That is the map p given in (11.3) is proper. Sup-

-1 .
n,m+1)’ p (7)) is a ;

pose that p 1is not proper. Then for "most" of n € p(S
variety of dimension

n(n-1)
2

At

+ 1 = (m+1)n(n+1)/2 - (mn(n+1)/2+n]+1

at least. Choose (Ao,"',Am) € S such that AO has pairwise distinct

n,m+1

eigenvalues and 6(p(AO,'--,Am)) # 0. According to Theo. :m 10.34 there are at
most 2‘”'1)(mn'1) distinct orbits satisfing p(BO,'°°,Bm) =7 = p(AO,°°-,Am).
As the eigenvalues of B, are pairwise distinct, there are only 2"
orthogonal matrices which commute with By So the orbit of (Bo,"',Bm)

under the action of on is of dimension n(n-1)/2 - the dimension of the

1 . -1 . .

{ connected component of On. Theretore p (%) has dimension n(n-i1)/2 for
such (Ao,°",Am). Clearly, the set of m+1 symmetric tuples (AU,°",Am)
such that G(p(AO,'°°,Am)) # 0 and Ag has a pairwise distinct eigenvalue 1is

. : ~ - " "
an open (algebraical) set in Sn,m+1' So, for "most" of W€ p(Sn'm+1),

-1 . . . . L.
p (W) is a variety ot dimension n(n-1)/2. The above contradiction proves

that p 1S a proper map. The proot of the theorem is completed. [ |




T

We conjecture

Conjecture 11.7. The map (11,3) is onto map.
The results of Sections 7-9 contirm the conjecture for
n €4 and m € 2, Theorem 11,6 yields
(11.8) deg p € 2(n—1)(mn—1).
Problem 11,9, Find the degree of the map p given by (11.3).
Next we observe that the results of Theorem 10.34 apply to a larger class
of matrices.
Theorem 11.10. Let (Ao,"',Am) € Sn,m+1 and consider A(x) € S(C[x]) given
by (10.1). Assume
(i) for each § € C, each eigenvalue of A(Z) is either simple or double,
(ii) each eigenvalue of A, is either simple or double,
Then the values of the polynomials p_.(A0,°-°,Am,, i = 1,9,

1]

0,***,mi, (i.e. the characteristic polynomial |AI-A(x)|) determine at

j=
most 2{P~1)1(mn=1) 4iciinct orbits.
Proof. The assumptions of the theorem imply that p(A,x) = |AI-A(x)| is non-

degenerate. Moreover for each intersection point §, A(x) is orthogonally
similar to .§ ) Aj(x), i.e. V in (10.15) belongs to On(H(D(C,r))),
where each i;lx) is either 2%X2 or 1x1 symmetric matrix. Suppose that
Aj € SZ(H(D(C,r))). Since p(A,x) is not degenerate Aj(x) has two
distinct eigenvalues Aa(x) - AB(x). According to Lemma 10.23 Aj(x) can be
analytically similar to a finite number of matrices of the torm (i)=-(iii) and
this number can be bounded by using the Puiseaux series of the eigenvalues
of A(x) at x ={. Therefore we have a finite number of classes A1,"'.At

of A(x) of the form (10.1) such that

(i) all of them have the same characteristic polynomial p(A,x)
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" is we restrict ourselves to S

(ii) it A(x), B(x) € Aj' then A(x) and B(x) are orthogonally
similar in the neighborhood of any § (finite or infinite). Now, the
arguments in the previous sections show that in each Aﬁ there is only a
finite number A1(x),"',Akj(x) such that Aa(x) and AB(x) are not
strictly orthogonally similar for 1 € a < B < kj. So

pij(Ao'...’Am)’ i =1,¢%%¢,n, j = 0,°**,mi, determine a finite number of
distinct orbits. The inequality (11.8) combined with Theorem 3.17 implies the
number of distinct orbits determined by Pij(Ao'.." Am),

i=1,°%*n, j=20,°"",mi is at most

2(n-1)(mn-1). [

In many physical applications AO'...’Am are symmetric and real. That
n,m+1(R)' In that case the real orthogonal

group O (R) 1is acting naturally on S 1(R). In particular each orbit

n,m+

orb(A0,°°°,Am) is compact. We pose the following problem,

oo e , . -
Problem 11.11. Let (AO, ,Am) € Sh,m+1(R)' Does the characteristic poly

m :
nomial |AI - Z Aixll determine always a finite number of orbits? What is
=0
the value of this number?
As in Section 5 let Mrd denote the variety of reducible polynomials
in PP pye
_ =1
(11.12) Srd,n,m+1 =P (Mrd)'

If p was onto map then Corollary (5.22) would yield

. imS < -1).

(11.13) codim rd,n,m+1 m{n=1)

Problem 11.14. Find codit‘nSrd,n’m+1 and codierd,n,m+1(R) in S%'m+1(R).
Here Srd,n,m+1(R) = Srd,n,m+1 a Sn,m+1(R”'

In Friedland-Simon [1981) we showed

(11.15) codimsr 1(R) < n-1

d,n,

and we conjectured the equality sign in (11.15). We proved this conjecture




for n=2,3. We now point out briefly how to prove this conjecture for n=4
(11.16) codimS, 4 4 4(R) = 3

Assume that Ag,A, € 34(R) and let p(A,x) = |AI-(A0+xA1)|. Assume
first that p(A,x) is not degenerate., Then Theorem 9.6 implies that there is
only a finite number of orble,A1) with the characteristic polynomial
p{A,x). Recall that in this case orb(Ao,A1) is a real variety of dimen-
sion 6 = 4°3/2 Assume next that p{(A,x) is degenerate. It can be shown in
Shapiro [1979]) that for n € 4 the Kippenhahn conjecture [1951] is valid.
Conjecture 11.17. (Kippenhahn). Let A,B be nxn Hermitian matrices.
Assume that A+xB is a degenerate pencil. Then A and B have a common
non-trivial subspace. That is there exists a unitary matrix U such that

U"(A+xB)U = (A,+xB;) @ (A, +xB, ).

In case that A,B are real symmetric U can be chosen to be a real
orthogonal matrix.

Thus, it follows that p(A,x) in this case determines also a finite
number of orbits orb(Ao,A1) whose dimension is 6 at most. Since the
codimension of M (R) in PP*V(R) is 3 we obtain the equality (11.6).

Also the above arguments show that Problem 11.11 has a positive answer for

m=1 and n € 4,

AL ket i &
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