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ABSTRACT

A continuum mechanics approach to two-phase flow is reviewed. An

averaging procedure is discussed and applied to the exact equations of

motion. Constitutive equations are supplied and discussed for the stresses,

pressure differences and the interfacial force. The nature of the resulting

equations is studied.
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SIGNIFICANCE AND EXPLANATION

Equations describing the motions of two materials, one dispersed

throughout the other, are derived. There is some controversy over the

ability of certain simplified forms of these equations to predict meaning-

ful flows. Consequently, evidence is presented to verify the forms of

various terms appearing in the equations. The consequences of the assumed

forms are discussed.
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I.

MATHEMATICAL MODELING OF TWO-PHASE FLOW

D. A. Drew

INTRODUCTION

Dispersed two-phase flows occur in many natural and technological

situations. For example, dust in air and sediment in water contribute

to ernsion and silting, and can cause problems for machinery such as

helicopters and power plants operating in such an environment. Also,

many energy conversion and chemical processes involve two-phase flows.

Boiling a fluid such as water or sodium and extracting the heat by

condensation at a different location provides a practical energy flow

process. Many kinds of chemical reactants and catalysts are mixed in a

dispersion of fine particles to expose as much interfacial area as

possible.

In such a large class of problems, many diverse mechanisms are

important in different situations. The models used for these different

situations have many common features, such as interfacial drag.

This paper examines the common features of dispersed two phase

flows from a continuum mechanical approach. Since it is not universally

accepted that such an approach is valid, we shall discuss some

philosophical reasons for taking such an approach. The approach is

based on the view that it is sufficient to describe each material as a

continuum, occupying the same region in space. This new "material"

consists of two interacting materials (called phases, even though they

often are not different phases of the same material). The two phase

material is often called the mixture. In analogy with continuum

mechanics, we shall have to specify how the mixture interacts with

itself. In ordinary continuum mechanics (ignoring thermodynamic

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



-2

considerations) that requires a constitutive equation expressing the

stress as a function of various fields. In two-phase flow mectianics, it

requires specification of stresses for each phase, plus a relation for

the interaction of the two materials.

Researchers who do not subscribe to this view treat the mechanics

of the two materials, plus the dynamics of the interface as fundamental,

and use derived results and/or measurements to gain the understanding

needed for their particular application. It is instructive to consider

the approaches to gas dynamics. Most scientists believe that a gas is a

collection of many molecules which move, vibrate, and interact in a

complex, but describable way. Indeed, with the aid of large computers,

molecular dynamics has made great strides in understanding such

phenomena as shocks and phase transition, among others. In spite of the

knowledge of the "correctness" of this model, many scientists and

engineers use a continuum model for gas dynamics. Indeed, anyone

wishing to describe, for example, the flow around an airfoil, would be

hard pressed to find a computer big enough to do it as a problem in

molecular dynamics. As a problem in continuum gas dynamics, it is still

a large problem; however, it is done quite routinely numerically,

including shocks. In addition, certain solutions to the continuum

equations can be obtained analytically. While these are not always of

direct technical interest, they often suggest phenomena or techniques

which do have direct bearing on problems of interest. Experiments in
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gas dynamics can be useful. Without a model for comparison or scaling,

however, one is limited to understanding only the particular geometry

and scale of the experiment. The ability to infer is lost.

While these points seem obvious for gas dynamics, they nevertheless

should be discussed and understood for the analogous situation of two-

phase flow mechanics. For a particular flow with ,nly a few particles

which interact only slightly, it is best (and perhaps even necessary) to

describe them "molecularly", that is, by predicting the trajectories of

each one. If many particles are involved, it is better to use a

continuum description. As in gas dynamics, both descriptions have their

place. Furthermore, it is often instructive to try to ascertain what

one model implies about the other, as in using the Boltzmann description

of a gas to get continuum properties.

The analogy is apt for a continuum description of two-phase

flows. This paper will review the connection with the exact, or

microscopic description through the application of an averaging process

to the continuum mechanical equations describing the exact motion of

each material at each point. If the exact flows were known, the

averaged equations would be completely determined, and therefore

unnecessary, since desired averaged information (such as the average

concentration of particles) could be determined without using the

averaged equations. The solutions are not known, nor is it necessary to

the continuum approach that they be known. The resulting averaged

eluations are assumed to describe a material (the mixture) for which the
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interactions must be specified. This specification is then done

according to certain rules which are reasonable and not too limiting.

We shall discuss these rules and their implications.

The forms of the resulting equations are determined by the choice

of a list of variables which are assumed to influence the interactions.

The resulting equations have several unknown coefficients. These

coefficients are assumed to be determinable by experiments. For the

model we propose, we examine the experimental data and their

implications on the coefficients. The result is, in essence, a

recommendation for a model which has many known features of two-phase

flow dynamics. An enlightened investigator can use the model to make

predictions in a situation which falls within the range of assumptions

made. The model can also be a starting point to obtain generalizations

(such as the inclusion of electromagnetic effects). As with all models,

it should never be used blindly, but with caution and careful

examination of the results and implications.

Historically, geophysical flows involving sediment and clouds were

among the first two-phase flows observed from a scientific point of

view. Sediment meant erosion and loss of property, or deposition and

loss of navigability. Clouds signalled possible rainfall. The amounts

could mean drought, bountiful harvests or devastating floods. An

analytical description awaited the development of the calculus, fluid

mechanics and partial differential equation theory. The industrial

revolution spurred the need for understanding of all of basic science,

including two phase flows, although the correlation between progress and



the acquisition of fundamental knowledge is not exact. For example,

automobiles have worked reasonably well without a detailed knowledge of

the flow and evaporation of fuel droplets; on the other hand, efficient

design of fluidized beds have been reliant on the understanding and

stabilizing effects obtained from analytical models.

Early work on the form taken by beds of particles subject to forces

due to flowing fluid (DuBuat 1786, Helmholtz 1888, Blasius 1912 and

Exner 1920) lead to interesting fundamental results such as the

stability of the interface between two fluids and a practical

understanding of the macroscopic properties of sedimentation and bed

form evolution. A more microscopic look (Bagnold 1941) dealt with the

mechanics of the interactions between the particles and the fluid, and

the particles and the bed. A recent perspective is given by Engelund

and Freds~e (1982).

Developments in cloud physics occured in physical chemistry of

nucleation and formation. The need for detailed mechanical

considerations was low due to the fact that the vapor, nucleation sites

and the formed droplets all flow with the surrounding air (until

raindrops form).

Porous medium theory, a two phase flow where the solid phase does

not move appreciably, developed with some different concerns (Darcy

1856), but Blot (1955) was instrumental in putting the empirical

knowledge on a sound continuum basis. The desire to extract
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hydrocarbons from deep inside the earth's crust has given a great

impetus to the study of flow in porous media. See Scheidegger's (1974)

book for a discussion of porous bed modeling concerns.

The next important milestone in the development of two-phase flow

continuum mechanics theory was the development and use of equations of

dusty gases in the 1950's. Models for dusty gases are summarized by

Marble (1970).

Chemical processing in fluidized beds gave an urgency to the

development of the theory of particle-fluid systems. Early theoretical

papers include those of Jackson (1963), Murray (1965a,b), and Anderson

and Jackson (1967, 1968). The flow regime involved in fluidization is

one of the most difficult for particle-fluid flows. The particle

concentrations are high, the dispersed phase is relatively dense, the

dispersed phase undergoes a random micromotion, and often is is

desirable to have chemical reactions occur in the flow.

In the early 1960's the emergence of commercial atomic energy

spurred the study of flows of steam and water. The work of Zuber (1964)

was a pioneering landmark. Fluid-fluid flows have a difficulty not

encountered in particle-fluid flows, namely that the shape of the

dispersed-phase can change, resulting in changing interfacial area and

consequent interactions between the fluids. In spite of much progress

(Lahey & Moody 1977), two phase flow studies in nuclear reactors are

still a concern.
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The parallel development of mixture theory had some small influence

on the progress of two-phase flows. Indeed, the concept of

interpenetrating continuum is natural in mixtures where the dispersion

occurs on the molecular level. The development of the ideas of

diffusion by Fick (1855), the thermodynamic concepts in mixtures by

Duhem (1893), Meixner (1943), Prigogine and Mazur (1951) lead naturally

to the theory of mixtures expounded by Truesdell and Toupin (1960). The

theory of mixtures, as applied to the specific mixtures where the two

constituents remain unmixed, is the basis of the present work, and

(whether explicitly recognized or not) much of the more specific

previous work. Kenyon (1976) applies the mixture theory to multiphase

flows. See also the review by Bedford and Drumheller (1982).

By the 1960's enough of the common features of the diverse two-

phase flows were evident. Several influential books of a general nature

appeared, including Fluid Dynamics of Multiphase Systems by Soo (1967),

One-dimensional Two-Phase Flow, by Wallis (1969), and Flowin Gas-Solid

Susensions, by Boothrcyd (1971). Wallis' approach was strongly

influenced by gas-liquid flows, and dealt with the basic concept of

interpenetrability by considering cross-sectionally averaged equations,

and introduced constitutive assumption by quoting appropriate

experiments. Soo's work was largely based on particle-fluid flows. He

assumed interpenetrability from the start, and included forces in the

particular momentum equation known from experiments or inferred from

calculations. Boothroyd was interested in particle-gas flows, and

contributed ideas on turbulence and drag reduction.
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A different, but somewhat related approach to the problem of a

mechanical description of two-phase flows uses the single-particle or

several interacting particle flow fields, along with an averaging

approach to yield rheological or transport properties. The celebrated

result in this area is the effective viscosity result due to Einstein

(1906), which shows that in slow flow the mixture behaves like a fluid

5
with viscosity increased by a factor of 1 + , where a is the

2

volumetric concentration of particles. An approach outlined by Brinkman

(1947) has been influential. The philosophical roots of this approach

are elegantly discussed in the book LowReynolds Number H drod namics,

by Happel and Brenner (1965). The idea is to use solutions of the flow

equations in special cases (such as Stoke's flow around an array of

spheres) to infer information about the flow (such as the total force on

the particulate phase). Several aspects of this work have been

discussed in this Review; see the papers by Brenner (1970), Batchelor

(1974), Herczynski and Pienkowska (1980), Leal (1980) and Russel (1981).

Several authors (Bedford & Drumheller 1978, Drumheller & Bedford

1980) have pursured a variational approach to two-phase flows,

generalizing the work of Biot (1977). The variational formulation

starts with Hamilton's principle, given by

tI  t2
ft' (T-V)dt +f2 6Wdt =0t6d 2 0

where 6 represents the variation over an appropriate space of

functions, T and V are the kinetic and potential energies, 6W is

the virtual work and t1 and t2 are two arbitrary times. A
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variational formulation has an advantage in that if it is desired to

include a certain effect (for example, the virtual work), that effect

would be included consistently in the mass, momentum, and kinetic energy

equations. A more concrete and immediate advantage is in formulating

numerical techniques, and specifically, finite element techniques, where

variational formultion eases the translation of the partial differential

equations into discrete equations.

In order to use a variational formulation, it is necessary to

define the variation 6, the kinetic and potential energies T and

V and the virtual work 6w. Constraints must be included with Lagrange

multipliers. Bedford & Drumheller (1982) note that Hamilton's principle

is usually formulated with a "control mass", that is, for material

volumes. The problem of having two materials moving at different

velocities is dealt with by assuming a control volume which coincides

with a rigid surface through which no material of either phase passes.

They use the technique to show how the effect of oscillations in

bubble diameter can be included by including the kinetic energy of the

liquid due to a change in bubble diameter. They similarly include

virtual mass by arguing that relative accelerations increase the kinetic

energy. A conceptual difficulty with the approach is that the user must

decide which fluctuations contribute to the total kinetic energy, and

which contribute to virtual work. For example, viscous drag is due to

"fluctuations" of the fluid velocity near a particle,but is included as

a virtual work term. A rule of thumb might be to consider whether the

energy is recover-ible or not. Virtual work is associated with
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unrecoverable energy, kinetic and potential energy with recoverable

energy. Variational formulations (in general) do not mention the effect

of Reynolds stresses, which are one manifestation of fluctuations. We

conclude that while variational formulations are useful, it is not

always straightforward to formulate them.
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EQUATIONS OF MOTION

We start by assuming that each material involved can be described

as a continuum, governed by the partial differential equations of

continuum mechanics. The materials are separated by an interface, which

we assume to be a surface. At the interface, jump conditions express

the conditions of conservation of mass and momentum.

The equations of motion for each phase are (Truesdell and Toupin

1960)

(1) conservation of mass

ap + V-PV = 0 (1)
at

(2) conservation of linear momentum

aPV + V-pvv = V.T + pf (2)
at

valid in the interior of each phase. Here P denotes the density, w

the velocity, T the stress tensor, and f the body force density.

Conservation of angular momentum becomes T = Tt, where t denotes the

transpose. At the interface, the jump conditions are

(1) jump condition for mass

[[P(v - v.)'n]] = 0 (3)1

(2) jump condition for momentum

[[Pv(v - v )n- T'n]] = aKn . (4)

Here [[ ] denotes the jump across the interface, vi  is that

velocity of the interface, a is the surface tension, assumed to be a

constant, K is the mean curvature of the interface, and n is the

unit normal (Aris 1962). We shall assume that n points out oF phase

k, and that the jump between f in phase k and f in phase I is
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£k
defined by ([f]] = f _ f , where a superscript k denotes the

limiting value from the phase k side. As a sign convention for the

curvature, we assume that K is positive (concave) toward -n. The

mass of the interface has been neglected, and the surface stresses have

been assumed to be in the form of classic surface tension.

We do not discuss any thermodynamic relations in this paper.

Thermodynamic considerations are important for many multiphase flows.

Our discussion focuses on the mechanics of two-phase flows, hence we

elect to forego a discussion of thermodynamics for the sake of

simplicity.

Constitutive equations must be supplied to describe the behavior of

each material incolved. For example, if one material is an

incompressible liquid, then specifying the value of p, and assuming

T = -pI + p(Vv + (Vv) t ) determines the nature of the behavior of the

fluid in that phase. Similar considerations are possible for solid

particles or a gas. The resulting differential equations, along with

the jump conditions, provide a fundamental description of the detailed

or exact flow.

Usually, however, the details of the flow are not required. For

most purposes of equipment or process design, averaged, or macroscopic

flow information is sufficient. Fluctuations, or details in the flow

must be resolved only to the extent that they effect the mean flow (like

the Reynolds stresses effect the mean flow in a turbulent flow).
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Averaging

In order to obtain equations which do not contain the details of

the flow, it has become customary to apply some sort of averaging

process. It is not essential to do so; indeed, some researchers prefer

to postulate macroscopic equations without reference to any microscopic

equations. Certainly, the necessary terms in the macroscopic equations

can be deduced without using an averaging process. One advantage of a

postulational approach is obvious - not having to deal with the worries

of the averaging process. The advantages of averaging are less obvious.

First, the various terms appearing in the macroscopic equations are

shown to arise from appropriate microscopic considerations. For

example, stress terms arise from microscopic stresses (pressure, for

example) and also from velocity fluctuations (Reynolds stresses).

Knowledge of this fact does give a modicum of insight into the

formulation of constitutive equations. If a term appeared in the

averaging which was not expected in the postulational approach, then it

would be obligatory to include it in the postulated model, or else

explain why it is superfluous.

An additional advantage of averaging is that the resulting

macroscopic variables are related to microscopic variables. If the

microscopic problem can be solved for some special situation, the

solution can then be used to get values of the macroscopic variables.

This cannot replace the need to postulate constitutive equations, but is

can give insights into the types of terms expected to be important in

the constitutive relations. The philosophy taken here is that whatever

J
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information can be gained from averaging is worthwhile, and therefore we

present a generic averaging method, and its results. If the reader

fee-s that averaging is unnecessary, he can skip this section, and

assume the equations (40) - (43) have been postulated, along with the

interpretations given at the end of this Section.

Averaging the equations of motion is suggested by the averaging

approach to turbulence (see Hinze 1959). Time and space averages were

the first to appear (Frankl 1953, Teletov 1958). These averages have

been refined by weighting, by multiple application, and by judicious

choice of averaging region. The highlights can be found in the work of

Anderson and Jackson (1967), Vernier and Delhaye (1968), Drew (1971),

Whitaker (1973), Ishii (1975), Nigmatulin (1979), and Gough (1980).

Statistical averages are most convenient for the rheology work, see

Batchelor (1974) for a summary. The application of statistical averages

to the equations of motion is straightforward; the paper of Buyevich and

Shchelchkova (1978) summarizes the approach nicely.

Let ( > denote an averaging process so that if f(z,t) is an

exact microscopic field, then <f>(x,t) is the corresponding averaged

field. We shall specify shortly the requirements which an average

should possess, however, for now we merely suggest that it should be

smoothing in the sense that no details appear in the averaged

variables. Some examples of commonly used averages in multiphase flow

are the time average:

<f ft f(x,t')dt' (5)
r1 (Xt) th

where T is an averaging time scalei the space average:



-15-

<f +xt =- 1 2 x + -1L x+-
2l 1 1 1321(6<f>2(X,t )  21 f 2 L 3+ 21/ 7 f(x',t)dxdx~dxl' (6)

L x - 1 L x2 - - L x- L
1 2 2 2 3 2

where L is an averaging length scale; a weighted space average

<f> 3 (x,t) = ff g(x-x')f(x',t)dx' (7)
3

R

where ff g(s)ds = 1, and various combinations of averages and/or
3

specific types of weightings. Also mentioned in the literature are

ensemble averages:
N

<f> (x,t) = f (x,t) (8)
n=1 n

or

<f>5(x,t) = fQ f(x,t;w)dU(w) (9)

where fn (x,t) or f(x,t;w) denote a realization of the quantity f

over a set of possible "equivalent" realizations 9. One way in which

randomness might be introduced in a particular flow situation is by

allowing the particles to have random initial positions.

The averaging process is assumed to satisfy

<f+g> = <f> + <g> (10)

<<f>g> = <f><g> (11)

<c>= c

af
< - (12)at,- at
af a

<-> = <f> (13)ax. x.1 1

The first three of these relations are called Reynolds rules, the

fourth is called Liebnitz' rule, and the fifth is called Gauss' rule.
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Some difficulty is encountered when trying to apply the average to

the equations of motion for each phase. In order to do this, we

introduce the phase function Xk(x,t) which is defined to be

1 if x is in phase k at time t
Xk(x~t) = 1-(14)

0 otherwise .

We shall deal with Xk as a generalized function, in particular in

regard to differentiating it. Recall that a derivative of a generalized

function can be defined in terms of a set of "test functions" *, which

axk
are "sufficiently smooth" and have compact support. Then anda Xk
axk are defined by

i aXk

f ax (x,t)O(x,t)dxdt = - 5 Xk(2,t) 21 (m,t)dzdt , (15)
RxR a 

R3XR

axk

f axi (x,t)*(x,t)dxdt = - 1 x X (x,t)dzdt (16)
R 3xR xi R 3xR k ax. (xtdt(6

It can be shown that
axk
a-+ viVX 0 

(17)
a t i k=

in the sense of generalized functions. To see this, consider

axkR + Vi'Vxk )Odt

R3XR

f X xk(Lt +v.vdxdt
R 3xR ka
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a+ Ov)dx)dt
fW (dJ€ - .v

-' dt_ R Wt) dx)dt
dt k

- * dx 0_---o8)

since * has compact support in t. Here Rk(t) is the region

occupied by phase k at time t, and we assume that Vi  is extended

smoothly through phase k (in order that the second line makes sense).

If f is smooth except at S, then fVXk is defined via

f R3RfVXkdxdt = - fR 3 xkV(fo)dzdt

= f -c f Rk W V(fo)dxdt

= f- fs nkf k  dSdt , (19)

where nk  is the unit normal exterior to phase k, and fk denotes

the limiting value of f on the phase-k side of S.

It is also clear that Vk is zero, except at the interface.

Equation (19) describes the behavior of VXk  at the interface. Note

that it behaves as a "delta-function", picking out the interface S,

and has the direction of the normal interior to phase k.

This motivates writing

ax
VXk (20)
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where aX/an is a scalar ,alued generalized function which has the

property that

fR3x R  3n (x,t)] x,t)dxdt = -0_ f (x,t)dSdt • (21)

The quantity ax/an then picks out the interface S. We write

ax = s (22)

where s is the average interfacial area per unit volume.

Averaged Equations

In order to derive averaged equations for the motion of each phase,

we multiply the equation of conservation of mass valid in phase k (1)

by Xk and average. Noting that

aP a axk a
=  

-
=  + I* iV.5xk (23)

and

Xk V.pv = V.xkpv - PvVxk , (24)

we have

t <Xkp> + V'<Xkpv> = <[p(v-l)]kV> " 25)
Similar considerations for the momentum equations yield

a
W- <xkpv> + .<xkpW> = V.<XkT> + <Xkpf> (26)

k+ <[Pw(v-v.) - T]1

The terms

<[P(vi]k. vxk> = r k (27)

and

<-pv(v-v i Tlk.vxk> = k (28)
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are the interfacial source terms. As noted, VXk picks out the

interface, and causes discontinuous quantities multiplying it to be

evalued on the phase-k side of the interface.

The jump conditions are derived by multiplying equations (2.3) and

(2.4) by ax/an, and recognizing that n = -2 . We obtain

2 2

I c[p(v v.Hkvxk> = I rk = 0 (29)
k=1 k=1

2
<[pv(v-v 1 ) - TI 'VXk = a<,VX,> (30)

k=1

=14
m

The term is the contribution to the total force or the mixture due

to the interface, and specifically due to surface tension.

Applying a different averaging process requires a different set of

machinations regarding the interfacial source terms (Anderson & Jackson

1967, Drew 1971, Ishii 1975, Delhaye and Achard 1979). Almost all of

the derivations for specific averaging processes seem to be more

complicated than the above; however, the trade-off for the simple

derivation is that all manipulations now involve generalized functions.

The volumetric concentration (or volume fraction, or relative

residence time) of phase k is defined by

ak = <Xk> . (31)

We note that
aak axk

- at -> (32)

and

Va = <VX k> . (33)
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There are two types of averaged variables which are useful in two-

phase mechanics, namely the phasic, or Xk-weighted average, and the

mass-weighted average. Which is appropriate is suggested by the

appearance of the quantity in the equation of motion. The phasic

average of the variable 0 is defined by

k = <X k>/ak (34)

and the mass weighted average of the variable P is defined by

A
4k = <X kp*>/akpk (35)

It is convenient to write the stresses Tk  in terms of pressures

plus extra stresses. Thus,

Tk = -pkI + tk • (36)

It is expected that readers familiar with fluid dynamical concepts are

familiar with the concept of pressure in fluids; in this case, Pk can

be thought of as the average of the microscopic pressure. If one of the

phases consists of solid particles, the concept is less familiar. In

this case, the microscopic stress (involving small elastic deformations,

for example) is thought of being made up of a spherical part (acting

-qually in all directions) plus an extra stress. The spherical part,

when averaged, yields the pressure Pk in equation (36).

It has further become customary to separate various parts of the

interfacial momentum transfer term. This is done by defining the

interfacial velocity of the kth phase by

k.r kk,= <[Pv(v-Vi)] VX k> , (37)

and the interfacial pressure on the kth phase by

Pk,iIVak12 , <pk VXR>7 k ( (38)
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Equation (38) is the dot product of Vak  of the "standard" definition

(Ishii 1975) of the interfacial pressure. The standard definition uses

three equations to define one scalar quantity, and cannot be a generally

valid definition. Here the remaining part of the contribution of the

pressure at the interface is lumped with the viscous stress contribution

at the interface, and is treated through the use of a constitutive

equation. Thus, we write

Kk = rkk i - Pk,i k k14 d (39

d k k
VXk - tVXk> is referred to as the interfacial

force density, although it does not contain the effect of the average

force on the interface due to the average interfacial pressure. The

term -pk,i Vk, which does contain the force due to the average

interfacial pressure, is sometimes referred to as the buoyant force.

The reason for this terminology is, of course, that the buoyant force on

an object is due to the distribution of the pressure of the surrounding

fluid on its boundary.

With equations (31) and (34) - (39), the equations of motion (25)

and (26) become

a + Vkkk k (40)

aap - -v

k- k -a +p +* p (= +a
at k kvvk k kVPk k (t + k

+ kk,i + (pk,i - k)V k

d (41)+ q
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The jump conditions (29) and (30) are

2
Z rk = o (42)

k=1

22 [ rV~~ +p 1d =. (43)
k1 k k,i +pk,i k + PO Mm(3

k=1 Pkikm

Adequate models for compressibility and phase change require

consideration of thermodynamic processes. These are beyond the scope of

this paper; therefore we shall restrict our attention to incompressible

materials where no phase change occurs. Thus we assume that

k = constant (44)

and

r = 0 . (45)k

In order to simplify the notation, we shall drop all symbols

denoting averaging.
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CONSTITUTIVE EQUATIONS

In order to have a useable model for an ordinary single-phase

material, relations must be given which specify how the material

interacts with itself. These relations specify how the material

transmits forces from one part of the body to another. For single-phase

materials a relation between the stress and other field variables is

usually required. For two-phase materials, where we desire to track

both phases, we must specify the stresses for both phases and the way in

which the materials interact across the interface. Thus, we require

constitutive equations for the stresses (T + 0 k), the interfacial

force density d, and the pressure differences pk - Pk,i' consistent

with the equations of motion and the jump conditions.

The fundamental process consists of proposing forms for the

necessary terms within the framework of the principles of constitutive

equations, finding solutions of the resulting equations, and verifying

against experiments. The process can be iterative, with some experiment

indicating that a more involved form is needed for some constituted

variable. The ideal end result of the process is a set of equations

which could be used to predict the behavior of the two-phase flow, for

example with a computer code. With the equations should come a set of

conditions for the validity of the values of the constants and other

functions used in the constitutive equations.

The stresses Tk + ak, the interfacial force density d and the

pressure differences p- pki are assumed to be functions of a

a k /at, Vak, Vk, VVk, 3Vk/at ... where ... represents the material
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properties, such as the viscosities and densities of the two materials,

and other geometric parameters such as the average particle size, or the

interfacial area density.

For concreteness, we shall refer to phase one as the particulate,

or dispersed phase and include in that description solid particles,

droplets, or bubbles. Phase two is then the continuous, or carrier

phase, and can be liquid or gas. We shall denote

= a (46)

so that

1-a a (47)2

It is evident that both a and 1-a need not be included as

independent variables in forming constitutive equations.

Drew and Lahey (1979) consider the general process of constructing

constitutive equations. The principle of consequence is that of

material frame indifference, or objectivity. This principle requires

that constitutive equations be appropriately invariant under a change of

reference frame. The motivation behind this assumption is that we

expect the way in which a two-phase material distributes forces to be

independent of the coordinate system used to express it. Those who

doubt this principle often argue that the momentum equation is not frame

indifferent, needing Coriolis forces and centrifugal forces to correct

it in non-inertial frames. This argument is incorrect, since the

appropriate formulation of the momentum equation deals not with

"acceleration" but with "acceleration relative to an inertial frame".

When formulated with the "acceleration relative to an inertial frame",
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the momentum equations are frame indifferent (Truesdell 1977). This

introduces an interesting question: Can the mixture know whether or not

it is being referred to a inertial frame? That is, can the interfacial

force and the Reynolds stresses depend on the reference frame? The

principle of material frame indifference, as used here, claims that they

cannot. Others claim that they must (Ryskin and Rallison 1981).

The principle of objectivity is now examined (Drew & Lahey 1979).

The approach we take deals with coordinate changes, but is equivalent to

more abstract approaches (Truesdell 1977). Consider a coordinate change

from system z to system z , given by

• = Q(t).z + b(t) , (48)

where Q(t) is an orthonormal tensor and b is a vector. A scalar is

objective if its value is the same in both the starred and unstarred

systems, that is, if

0 (X ,t) = (xt) . (49)

A vector is objective if it transforms coordinates correctly, that is,

if

v = Qv . (50)

A tensor is objective if

* t
T = Q-TQ (51)

The scalar a is objective; however Da/3t is not. It is

straightforward to show that D k/Dt = a/3t + Vk -Va is objective.

Let us next consider objective vectors. The volume fraction

gradient Va is objective. If we differentiate (48) with respect to

t following a materitl particle of phase k, we see that



-26-

= Q(t)k + ) (52)

Hence velocities are not objective. This is obvious physically, since

the velocity of a point depends on the coordinate system. If we take

equation (2.53), for k 1 and 2, and subtract, we have

V1 - 2 = Q'(vl - 72 ) " (53)

Thus, the relative velocity between the phases is objective.

For acclerations, differentiating (52) following a material

particle of phase j yields

Dv D.v
QO + Qx + Qv. + Qv + b . (54)

Dt Dt k

Thus, subtracting the value for j = 1, k = 1 from the value for

j = 2, k = I yields the result that

DI 2  Dv2(12 Dt Dt

is objective.

The list of tensors which we consider is motivated by the desire to

model two-phase flows. Thus, velocity gradients (expressing rate of

deformation) are included, but displacement gradients (expressing

deformation) are not. It is well known (Truesdell and Toupin 1960) that

= - (V + (VVk) t) (56)Dk,b 2 k +

are objective. We further note that V(,I - v) is an objective

tensor.

Thus, the problem of forming constitutive equations reduces to

expressing

Tk + 0 k' k - Pk,i' (57)
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in terms of

a, Dka/Dt, Va, v - v2 , D2vI/Dt - D1v2/Dt,

Dib, D2 ,bV(VI - v2) . (58)

We shall assume that the materials are isotropic. This means that

no direction is preferred in either material or in the way they

interact. Note that a particular flow may occur in such a way that a

preferred direction (down, for example) might emerge. In that case, the

flow is anisotropic, but the materials and the mixture are isotropic.

If f is a scalar, then f can depend on the scalars and the

scalar invariants formed from the vectors and tensors in the list

(58). The length of a vector is a scalar invariant, as are the trace,

determinant and Euclidean norm of a tensor.

If F is a vector, then F must be linear in all the vector in

the list (58), plus any vectors which can be formed in an invariant way

from the vectors and tensors in that list. Thus

F = a. V. (59)1 1

where Vi are the objective vectors so formed. Each scalar coefficient

ai can be a function of all the scalars and scalar invariants.

If F is a second order tensor, then

F = E B . (60)j J

where Y. are the objective tensors which can be formed from the list
I

(58). The scalars B. can be functions of all the scalars. If F is

symmetric, we need only consider symmetric Y..
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The general approach (Drew and Lahey 1979) gives a problem too big

to be practical or meaningful. Thus, we shall consider here forms for

the stresses, etc., which we expect to be important in two-phase

flows. Obviously, we shall have the constant worry that something has

been forgotten; however, the alternative of stopping at this point,

awaiting evaluation of over two-thousand scalar coefficients seems less

attractive.

Stresses

Let us now discuss specific considerations for the specific

constitutive equations needed. Let us begin with the stresses. The

extra stress (viscous or elastic) and turbulent stresses are combined as

Tk + ak . Macroscopically, at least in the context of this model, one

sees no way to separate them. Microscopically, one is due to the actual

stresses, and the other is due to velocity fluctuations from the mean.

In many cases of interest the extra stress is smaller than the turbulent

stress, one reason being that any appreciable slip between the phases

generates velocity fluctuations, which appear in this model in the

turbulent stresses. These fluctuations can transport momentum. The

conceptual situation is analogous to that for single-phase turbulent

momentum transport, with "eddies" carrying momentum across planes

parallel to the shearing direction and losing it into the mean flow.

The fluctuations in single-phase turbulent flow are there because of

instabilities in the laminar shear flow; in two-phaqe flow they also

come from fluctuations generated due to the flow around individual

particles.
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Drew and Lahey (1981) have generated a model for the turbulent

stresses in bubbly air-water flow. The model they deduce in this case

has the form

0 = 2u2 D + a I + b2( I - V )(V - v 2 ) (61)
2 2 2,b 2 2 1 -2 1 2)T

for the liquid phases. Here v2 is the eddy viscosity, a2  is an
22

induced eddy "pressure", and b2  is associated with bubble passages.

T
The parameters p2 , a2 and b2 depend on a, the bubble radius r,

the relative velocity IVl - w2 I and the Euclidean norm of D2 ,b.

Nigmatulin (1979) uses a cell model, assuming inviscid flow around a

spherical particle in each cell, to calculate values of a2 and b2.

He obtains

b =- (62)
2 2 2

a2 IV - (2 (63)
a2 - 6 2 1  2

He does not obtain a term involving the eddy viscosity because the cell

model is unsuited to obtaining shear flow results. His results are

valid for dilute flows. Other effects are present in most turbulent

flows.

Drew and Lahey (1981) used mixing lengths to evaluate the

coefficients in eq. (61). The data available thus far (Serizawa 1975)

allows only evaluation of the ratios of various Karman constants,

nonetheless, the importance of the problem in nuclear reactor technology

has spurred the acquisition of more direct data in special cases (Lance

1981). This data should be available shortly, and should allow the

evaluation of a 2 and b 2 for bubbly flows.
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Evidence (Serizawa 1975) also indicates that

a = O(2  2 (64)

and is negligible in dispersed bubbly flows. A model for 0 analogous

to eq. (61) is

a= 21TDI aI+ b(v - v2)(v1 - v) (65)1 1,b 1 1 1

If the particulate phase follows the fluid phase closely, the quantities

in equations (61) and (65) representing both velocity scales and mixing

lengths of large eddy processes should be approximately equal. If this

is the case, then

T. P1 T
P1 p2  2(66)

The remaining terms in eq. (65) arise at least in part due to the

motion of the particles through the fluid. No constraints are placed on

these coefficients.

Ishii (1975) argues that for the viscous fluid phase, the average

of the microscopic viscous stress lead to

T = 2j2 D + P b(1-a) EVQ(V - V2) + (V - V2 )Vu] (67)
2 2 2,b 2 1-a 1 72 1 - 2)a

where P2  is the exact viscosity of the fluid, and b is called the

mobility of phase two. He argues that b(1-a) 1 for a near zero.

No experimental evidence has been offered to verify (67).

In the case when the particulate phase consists of solid particles,

it is usually assumed that TI = 0. If the particulate phase is also a

viscous fluid, then it is sometimes assumed that
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TI = 2P1D1,b (68)

This corresponds to Ishii's result (see eq. 67)) with b = 0.

Murray (1965a) offers a model for a particle-fluid flow in which he

assumes that the particles experience a viscous stress with a viscosity

coefficient proportional to the fluid viscosity. His argument indicates

that the force he is calculating is not a stress, but an interfacial

force.

Pressure Relations

The pressure differences pk - Pk,i are discussed next. First, we

note that with the assumption of local incompressibility of each phase,

we must constitute all but one of P1 1 P2 1 Pl,i and P2,i. The other

will then be a solution of the equations of motion.

The simplest assumption for pressure differences, is to assume

none. That is, assume Pk = Pk,i for k = 1,2. This assumes that

there is "instantaneous" microscopic pressure equilibration which will

be the case if the speed of sound in each phase is large compared with

velocities of interest. In applications which do not deal with acoustic

effects or bubble expansion/contraction, this assumption is adequate.

For a discussion of bubble oscillation effects, see the article by van

Wijngaarden (1972). Cheng (1982) studies the consequences of several

modeling assumptions on wave propagation in a bubble mixture.

In situations where surface tension is important and no contacts

occur between the particles, we assume that the jump condition (4)

becomes

1 2p -p -O'K' , (69)
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where K' is the exact curvature of the interface. Multiplying by

VX1 and averaging gives

(P1,i - P2,i )V a = aK V , (70)

where K is the average mean curvature. Since this equation holds for

all Va, we have

Pl,1 - P 2,i = OK .(71)

If the surface tension is negligible, equation (2.72) gives pl,i =

P2,i"

When contacts occur between particles, these considerations are not

always simple. The contacts provide mechanisms for causing the average

pressure at the interface in one phase to be higher than the other.

Consider solid particles submerged in fluid, with no motion, and with

the particles under a compressive force (supporting their own weight, or

the weight of an object, for example). The resulting stress will be

transmitted from particle to particle through the areas of particle-

particle contact. Just on the particle side of the interface where the

contact occurs, the stress (pressure) level will be large. At places

where no contact occurs, the stress will be equal to the pressure in the

surrounding fluid. Under normal circumstances, the contact areas will

be a small fraction of the total interfacial area. Thus, the

approximation pli p 2 , p. is usually valid. In the more general

situation, these contacts may be intermittent, when the particles are

bumping together, or may be constant, as when the particles are at

rest. In this case, also, we expect P1,i = P2,i =Pi
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stuhmiller (1977) argues that
p2 - P2,i = P2 IV 2 - V 12 (72)

where F is taken to be a constant. The argument leading to (72) is

exactly the calculation of form drag, which is usually part of the

interfacial drag. It is not clear whether using (72) and a drag law

(79) includes the form drag consistently.

We shall assume that for the fluid phase, P2 = pi. To allow for

the possibility of the extra stress due to contacts, in the particulate

phase when it consists of solid particles, we shall write

PI = Pi,i + Pc = P2 + Pc (73)

where pc is the pressure in the particles due to contacts. A model is

needed for PC. Several modelers (Gough 1980, Kuo et al. 1976) have

used a model with Pc = pc(a), with Pc (a) = 0 for a < ac, where

ac is the packing concentration of the particles, and pc (a) rapidly

increasing for a > a . This further suggests an "incompressible"c

model, with Pc = 0 for a <a c, and a = ac, and Pc unspecified,

otherwise. In this latter region, the particle momentum equation is

meaningless. Such a model has not been exploited.

Interfacial Momentum Transfer

Let us now consider the interfacial momentum transfer terms. In a

sense, the crucial modeling for two-phase flow is done with these terms,

since they are the terms which couple the two phases together.

Let us consider K m  In analogy with Ishii (1975), we write

m = o Va (74)

where K is the average mean curvature of the interface. In this case,
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the momentum jump condition becomes

Kd + V + d- p V = oK Va * (75)1 + Pli M2 - 2,i

Using condition (71), we have

+d M d = 0 (76)
1  2

Therefore, we need only provide a model for d. K then is determined
1 2

by the jump condition (76).

The interfacial momentum transfer 1 contains the forces on the

particulate phase due to viscous drag, wake and boundary layer

formation, and unbalanced pressure distributions leading to lift or

virtual mass effects, except for the mean interfacial pressure. The

model which we discuss here should contain, as much as possible, the

above forces. Indeed, this motivates the inclusion of certain

quantities in the list of variables (58).

We postulate

da 12,v
Kd = A(v - v) + A 2 3- 1
1 2 1 2 (T -- + v1 VV2) (--- + v 2 "Vv1

+ A3(v 2 - v1)D + A(v - v)'D + A(v -v)V(v 2 - )
32 1 1b 4(2 1 2,b 5(2 1 2

+ A6 (V - v2).[V(vl - v2)]t (77)

where A, - A6  are scalar functions of the invariants.

The first term represents the classical drag forces. To conform

with customary useage, we write

C
A 1 P 2 1 v1 - v21 (78)

where r is the effective particle radius, and CD is the drag

coefficient. It is usually assumed that CD = CD (a,Re), where

0!
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Re = 2P 2 IV - v2 r/p2  is the particle Reynolds number. A careful

study, including extensive comparisons with data, is given by Ishii and

Zuber (1979). Their conclusions for the drag coefficient are summarized

in Table 1, which is adapted from their paper.

The combination

av 2  av 1
A2[(-! + V.VV2) - (---l + V2"VVl)] + A (V - V) - v() (79)
2 at 1 2 at 2 1 5 2 1 *~2 1 V

is an acceleration term. Drew, Cheng and Lahey (1979) write

A =a PC vM(a) , (80)

A = A 2(1-)(a)) , (81)

where C is referred to as the virtual volume. If CVM = and no

spatial velocity gradients are present, then (79) reduces to the

classically accepted virtual mass force. It is less easy to obtain

correlations for CVM than for CD, since the ratio of virtual mass

forces to drag forces is of order V t /r, where V is a velocity

scale and t is a time scale. In order for the virtual mass force to

be appreciable, the time scale must be of the order r/V. For most

multiphase flow applications, r is small, and V is not. Thus, we

see virtual mass effects only at relatively high frequencies.

Zuber (1964) considered finite concentration effects on virtual

mass by considering a sphere moving inside a spherical "cell". He

obtained

C (a) - 1 1+2a 1 + 3 (82)
VM = 2 -- =2

for small a. Nigmatulin (1976) also calculates the virtual mass

coefficient from a cell model. He obtained C (a) - 1- to 0(0). The
VM = 2

form of the acceleration which he derives is not objective. It is
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possible that this is due to the inability of cell models to adequately

deal with velocity gradient terms. The value of the virtual mass

coetficient derived by van Wijngaarden (1976) is

C (a) = 0.5 + 1.39a . (83)VM

Moheyev (1977) obtained an empirical correlation

C VM(a) = 0.5 + 2.1a (84)

by using an electrodynamic analog. Thus, there seems to be a concensus

that C + I as a + 0. There is less agreement on the O(a)
VM 2

correction. In addition, there are several models in the literature

(Wallis 1969, Hinze 1972) which use non-objective forms of the virtual

mass. There is no compelling evidence at this point as to whether the

objective or non-objective forms conform more closely to reality.

Cheng (1982) has done extensive predictions using virtual mass

models for accelerating air-water bubbly flows. For low frequency small

disturbances in a one-dimensional flow, he found that the value of

CVM had a significant effect on the propagation speed, but that the

data were scattered so that a particular value could not be estimated.

For higher frequency waves (sound waves) and for critical flow,

compressibility effects were important. For nozzle flow, the virtual

mass effects were insignificant. None of the calculations showed any

effect of different values of X.

The term

A4 (2 - v1)-D2,b (85)

contains the effect of the lift. We write A = a L. On the other

hand, the forces represented by A3 (V2 - v I)'D and

32aw-1



-37-

t

A 6(V - V2 ).[V(V - v 2) have no analogs in single particle

calculations, and, no observations confirm their presence. Thus we

assume A3 = A6 = 0. Very little experimental evidence for A4 exists.

Interfacial Geometry Models

It is evident from eqs. (71) and (78) that a relation is needed for

expressing the geometry of the interface. Several such relations have

been used; however, none is so compelling as to be called general. The

one which comes closest is due to Ishii (1975) (derived for the time

average; the generalization is obvious). We shall discuss this later.

First, we present the simplest models. If the particles are solid

spheres each of the same radius r, we have

4 3a = -y r n (86)

where n is the number density. Other quantities of interest are

immediately obtainable from a and r, for example, the average

3a
interfacial area per unit volume is ---. Note that n is conservedr

since a is; specifically, we have

an + V-n v 1 = 0 . (87)

If the particles are not monodisperse, it may be necessary to derive a

model where each size of particle is treated separately. Some recent

efforts along these lines show great promise (Greenspan 1982). Particle

breaking, agglomeration, or accretion/erosion also necessitates a more

complicated model. An effort (without macroscopic mechanical

considerations) is given by Seinfeld (1980). Both approaches are

essential geared to an equation analogous to (87) for a number density.
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A more general approach is suggested by Ishii (1975) (for time

averaged equations), where he writes
as O
at + vs = i (88)

where s is the interfacial area per unit volume, which in the present

notation is <ax/an>, v. is the averaged interfacial velocity, and *i

is a source of interfacial area, due to "bulging" of the interface.

This approach is probably best suited to flows where the particulate

phase (bubbles or drops) can coalesce or break up. It has not been

investigated to any degree.
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MODEL CONSIDERATIONS

The main aspect of two-phase flows which makes them fundamentally

different from a single-phase flow is the interfacial interaction terms,

and, thus, in the absence of interfacial mass transfer the difference is

d
contained in the interfacial force Nk. The modeling of this term must

proceed cirefully, with attention paid to any possible inconsistencies

or untoward predictions. A canonical pioblem involving simplified two-

phase flow models has surfaced in the literature; namely, that the one-

dimensional, incompressible, inviscid flow equations without virtual

mass effects are ill-posed as an initial value problem (Ramshaw & Trapp

1978).

To see this, consider the equations with CVM = 0 and L = 0.

(This represents the model used in most practical calculations.)

aa 3a
- + --- = 0 (89)

- + --- 2 = 0 (90)
t , ax

ap j a v 3-Vl1) a p+A(v 91
p1 (Y- + = Iw - - + A1 ( 2 - v 1 ) (1

av av
a2 2 ap

(1-a)p 2(-- + v 2  = -a-) -; + A (V1 - v 2 ) 2 (92)

If the pressure is eliminated from system (89) - (92) and the

resulting equations are expressed in the form A-2H + B 2H = C, where

tu = [,v 1 ,v2 ] , A and B are 3 x 3 matrices and C is a 3-vector,
dz.

then the characteristics of the system are given by ,-- = Vi, i = 1,2,3,
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where V. are the three characteristic values of det[AV-B] = 0.I

Note that since C contains no derivative terms, it is not involved in

determining the characteristics. The characteristic values V. for the

system as given are a pair of complex conjugate roots V1 = a ± iO

(with 0 yk 0), and V 3 = 0 (resulting from the assumption of

incompressibility). This implies (Garabedian 1964) that the initial

value problem is ill-posed.

One implication of the ill-posed nature of the system can be seen

as follows. Consider the linear stability of a constant solution. The

solution of the linearized equations has the form u(x,t) =

Vt+ikx
u0 + u1e , where k is real. Substitution into the linearized

system results in the eigenvalue problem

[A(u0 )v + B(u 0)ik - C(u 0)u = 0 (93)

for V. The eigenvalue equation is

C(u0 )
det[A(u ) - - B(u ) ---- 1 = 0 o (94)

0 k 0 k

For k large, two roots of (94) are

vi-i (95)

Thus,

V k(±8 - ai) * (96)
1,2

As long as 0 , 0, one of the v's will have positive real part,

indicating linear instability. Note, too, that as k increases, the

growth rate lOkI increases. This shows that finer disturbances grow

faster. This implies that at any t > 0, maxlule Vt+ikx I can be made as

large as desired by taking k sufficiently small. Contrast this with

the behavior of an instability of a well-posed system, where the
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vt~ikx
solution u e can be made as small as desired at a finite t by

making u1  small, for any k. The instability in the well posed system

has some realistic physical meaning, while the instability always

present in the ill-posed system suggests that the model is not treating

small scale phenomena correctly.

The extension of the argument to three space dimensions is

straightforward, and shows that the system is ill-posed in three

dimensions also.

The ill-posed nature of the model makes it desirable to seek

physical modifications of that simple model to find a well posed

model. An effort has been made to determine whether and/or to what

extent virtual mass makes the inviscid model well posed. Lahey, et al.

(1980) have shown that the model becomes well-posed for certain values

of CVM. The value of CVM which makes the system well-posed is

usually large unless a is extremely small, or other somewhat non-

physical assumptions are made. Thus, even though it is a possible "fix"

to the question of the well vs. ill-posed nature of the model, virtual

mass does not seem to be the total answer.

We note here that if the viscous and Reynolds stresses are included

in the equation, and they are assumed to depend on Vvk, the equations

become parabolic, and hence are well-posed if enough boundary conditions

are used. Also Prosperetti and van Wijngaarden (1976) have shown that

using certain compressibility assumptions in gas-liquid systems gives
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real characteristics. Stuhmiller (1977) shows that his model including

the form drag (see eq. 72) gives real characteristics for sufficiently

large F.

The question of the role of the inviscid model remains. In single-

phase fluid mechanics, the inviscid model is extremely important, and

governs the flow outside of boundary layers, shear layers and other

singular structures. In two-phase flows, the inviscid equations are

ill-posed, possessing the unrealistic feature that small scale phenomena

grow rapidly. This seems to imply that an inviscid model is nowhere

valid for two-phase flows, that is, viscous or eddy stresses are

important everywhere. An important unanswered question is whether the

inviscid limit of the two-phase flow equations is meaningful.

Let us examine another possible hypothesis about the interfacial

force which leads to an interesting form of the virtual mass and lift

terms. The hypothesis is that the interfacial force must be dissipative

for all conceivable flows. This requirement can be derived from

considerations involving an entropy inequality. The argument is

complicated (Drew and Lahey 1981), and will not be presented here. It

depends on the correct grouping of several terms in the energy and

entropy equations.

If we form the total kinetic energy equation by dotting (42) with

vk, and adding for k = 1,2, we obtain

2 2
2 vk2  2 vk 2

at k=2kVPk
k=1 k=1 kk2 k=1
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2 2
+ V I [ C k k+).k + 1 (Pkipk)vkVk

k=1 k=1

+ 2 ak (T k+k):Vvk + Hd (V1 -V 2  (97)

k=1

The terms on the left represent the rate of change total (mean

flow) kinetic energy. The pressure terms contribute to the stored
2

internal energy. The term I ak(T k )*vk is the working of the
k=12d

stresses. The two terms - C k(T k+):Vvk and -N.o( - 2) are the
k=1

(bulk) dissipation and the interfacial dissipation, respectively. We

require the total dissipation to be expressible as

aA
S+ V*B + C , (98)

where A ) 0 and C > 0 for all possible flows. The term A

represents the extra kinetic energy attributable to interactions, B

represents the extra kinetic energy flux, and C is the (actual) total

dissipation.

We shall present the results of the disspativity requirement for

dTk = 0 and U = 0. If we then take eq (78) for H1 , and assume

that CVM, X and L are constants, we have

d 2-H 1 (V1 -V2 ) = A 1 (v1 -v2)

+ a (v-v )2
+t [evM 2 2 ]

(v -v )2

21
+-Mac{UC P 2[V 24- (1-AL)(v 1-V2 )1- 2

(V -v 2
2 [-C vMP 2(X-2)V(v -V 2)]
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- (QCvMP2 + aL)(v -v 2)°Vv2(vl-v2) (99)

If we examine (99) for uniform fields, we obtain the first result of the

dissipativity requirement, namely that A 1 > 0. Furthermore, we note

that since the other terms depend on spatial gradients, and we can

impose them at will, we have

A=2 , (100)

L =-CVMP 2  • (101)

Note also that the requirement that A > 0 results in CVM > 0. The

resulting form for is

d
1 1 (v2_vl) + 12

M 1 1 =" V. [CvM P2 V1 (V 2-v I ) ]

( v - (Vv) ] (102)
" CvMP2 1V2) 2 2 - 2

In this form, the virtual mass terms are in conservation form, with the

convective velocity v I. The non-objective nature of these terms must

be compensated for by the lift term, resulting in the last term in

(102). Note that if (a = V x v2 is the fluid vorticity, thelast term
2 '

becomes CvMP2(v-v2 )  '2' Thus, the remaining part of the lift is

always perpendicular to the slip and the fluid vorticity.
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