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ABSTRACT

One approach to handling incomplete data occasionally encountered in the

literature is to treat the missing data as parameters and to maximize the

complete data likelihood over missing data and parameters. This paper points

out that although this approach can be useful in particular problems, it is

not a generally reliable approach to the analysis of incomplete data. In

particular, it does not share the optimal properties of maximum likelihooi

estimation, except under the trivial asymptotics in which the proportion of

missing data goes to zero as the sample size increases.
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I
ON JOINTLY ESI'IMATING PARAMEEI'kS AND MIS.SiWN DiATA !

BY MAXIMlZIMNG 'iii CuMPLP T-L)A1A i IKILI1100)

Roderick J. A. Little and Donald B. Rutin

1. Introduction

In the standard formulation of maximum likelihood theory tor complete

ata, the data z are assumed to have a distribution with density

f(z!0) indexed by an unknown parameter U. Having observed data values

z = z, the likelihood of 6 is tile density ot the observed data reqarded as

a function ot 6, that is

L(61z) = (zl0) for all 0 . (1)

The maximum likelihood estimate 0 of 6 is obtained by maximizing (1) with

respect to 0. we use the term complete data likelihood to refer to the

expression (1).

Now suppose that some o the values in z are not observed. Let z

denote the missing components and z the observed ()resent) components where

z is tile observed value of z It is not uncommon in the literature on

incomplete data to see tile sugqestion that estimates of 0 can be found by

treating the missing values zm as parameters and maximizinq the cormnlete

data likelihood with respect to 0 and z In symbols, this corresponds to

maximizinq the function

11 1(U, znt Iz )  t(z m,  z 1) 0) (2) ,

with re!spect to (U, z ). The classic exapile ot this approach is in tht-

inlyL i o)t iissinlf p ')tt; in ,)nalysis of variance where mts 'L, i t. ,,wq

.re- trar'it as, pa rat. rs ,id theni f ilid in to llhow cnmpiit, t lnall

ett1C Ltnt i.t-Chods '(,' kW 114-;,,d to)r anda y5 is (Anlersoli , 1 940; i art ctt, 1ji 31;
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,
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Oubin, 1912). More recently, DeGroot ind (,(el (1980) propose this - :.oroach a,

onu possibility for the Anailysis o d mixed up bivariate normal :-iii le, wner-!

Ltlt inis!snti data aru tuie i.ndices that allow the valIues ot the two vdrianle.; to

be paired, and a priori all Jidiriqns are assumed equally liKply. Press Lii

scott (1976) T.resent a Bayesian analysis of an incomplete multivariate anrimal

sample whicri is torma ly equivalent to msximizing (2). Trhey maximize th.

joint posterior distribution of 0 and z i, after speciryinrg d flat prior

distribution the parameter 6.

Although the literature on missinq plot analysis explicitly recognizes

the problems resulting from the suqgested procedure, the more recent

literature can be read as implying tnat maximizini (2) over missing data and

patra,,eters is just ds principled as standard maximum likelihood estimation

trom the complete data. Our irose is simply to point nut the joint

irdaxLi'izitiofl over missinq data and parameters is not a tmaximum likelihood

procedure in any usetul sense ot the term. It does not in general en3oy the

optimal ldrge sample properties ot maximum likelihood estimation, except usinq

the trivial asymptotics in which the traction of the data which are missing

goes to zero as the sicljmle size increases.

rrolh toe likelihoodt prspective, missing data z dirfer fundamentally

I roin paraweters 0 in that tiey are random variables with an a priori

specifit-l probabiLity di.,tribttion. The correct likelihood is obtained by

tiit*igratinq the iL..lh ,taL Za P) out Of the- complete data likelinood (1),

r'lt, is, tie Ijr-tlKelihOod 1,s

(UJlZ ) - t(z , . t3)(Iz , tjr all .3

t ,rr il tt ,,ll Li: t I I .I]L i rt,; I r tilt Ill n h IiS1td ItMI ,,1't11 I ,it
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wnich are observed. if the missing data are not missing at random, then the

model formulation needs to include a distribution for the set of variables

indicating whether vdlues are observed or missing. For details, see Rubin

(1976).

Assuming the missing data are missing at random, L2 given by (3) is

equal to the probability density of the observed data z regarded as a

function of the unknown parameter, that is, of quantities not having a

probability distribution. Hence L2 and not L, is the true likelihood of

0 given incomplete data z . In the next section we compare parameter
p

estimates of 0 found by maximizing LI with maximum likelihood estimates

found by maximizing L2 for some simple problems.

2. Examples

Example 1. Univariate Normal Sample

Suppose that z consists of N observations from a Normal distribution

with mean P and variance 2, z consists of n observations which are

observed and zm  represents N-n missing observations which are assumed

2
missing at random. Let z and s denote the sample mean and samplea

variance (with denominator n) of the n observed values. Then
2iS= (, 2), and maximizing L2  leads to maximum likelihood estimates

= 2 2
z' a s In contrast, maximizing LI with respect to 6 and z m

yields a common estimate z for all components of zm, and estimates

z, a s (n/N). Thus the maximum likelihood estimate of the mean is

obtained, bit the mdxi;n,.m likelihood estimate of the variance is multiplie.1 by

the tra,:tion of observed data. When tije frtction of ,i nsitnc tdta is

:;-ibstfntial (for ec-mph'-, n/N = 0.5), the estimnat,:0 variance 02 i; hadly

hi.tseil, and fthtz tis loes not vaish .ts V u nles3s n/N * 0; 'more

rtelevivt asympt)tics woil i fix n/N as the sample size increases.

-3-



Lxample 2. Missing Plot Analysis of Variance

Suppose we add to the previous example a set of covariates x which is

observed ror all N observations. We assume that the value of z for

observation i with covariate values xi  is Normal with mean 80 + 8T x and

2
variance a 2 The estimates of 8 and 0 obtained by maximizing L1  are

the maximum likelihood estimates, obtained by least squares regression with

the n observed data points. However, as in Example 1, the estimate of

variance is the maximum likelihood estimate multiplied by the proportion of

observed values.

These results provide one justification for the analysis ot missing plots

in analysis of variance designs mentioned in section 1: jointly estimating

the values of the outcome variable for the missing plots and the parameters

leads to maximum likelihood estimates of the effects 8. However an

adjustment is needed to the resulting estimate ot the residual variance a 2

as the literature on missing plot analysis explicitly recognizes.

Example 3. An Exponential Sample

In the first two examples estimation based on maximizing Li  at least

yields reasonable estimates of location, even though estimates of the scale

parameter need adjustment. However in other examples, estimates of location

can also be biased. For example, consider d censured sample from an

exponential distribution with mean 1J, where z P represents the n observed

values which lie below a known censoring point c, and z. represents the

N-n values beyond c which are censored. The riaxirnum liKelihood *.stiirtate ,it

V is P = . + (N-n)c/m. Mdxiinlzdtion ot L1 leaids to etstim tilnq censoreo

values of z at the censorintl point c, and estittmtinq 4i by (n/h) U. L'h,,;

in this case the estimate ot the mean is incrri;.-tent inl!ess the propo)rtio f ,

,InssLng vlues tends to zero as the sample size increases.

-4-
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Example 4. A Bivariate Wormal Sample with Missing Predictor Variables.

Biased estimates of location parameters can also occur in problems

invoiving the normal distribution. For example, suppose that zi = (xi, y1) i

=,...,N are N observations trom a bivariate normal distribution with P'ean

(Vx' Py), variances 0 2 and 0 2, aria correlation p, where yi is
x y x y

observed for all N observations, and x 1 , ... , x n  are observed but

xn+,...,x N are missing at random. Suppose that interest is tocussed on the

2 2
regression c<efficient of on xi, 8 0 p/ x = 8 0 /0 x . ThecoticetotyIY.X y x x.y y x

maximum likelihood estimate of 0 is
y.x "2 ^2

y.x x.y y x

n n n N
wnere ' = (xi-X)Y/i (x ) - - X y N-2 (yi-2

yx N x Y and 0 + N (y)2.
Sx x.y y i xy I

Naximization of (2) over parameters and data yields tor estimated 8
y xl

^2 -2

y.x y.xx/Ox

_ 2 2 _1 2
where 0 2 0 +- N (x.-8 y.) 2. The estimate 8 can e badlyx x.yy 1 x.yi y.X

biased, arid again this bias persists as N + 0 tinlesf% the fraction of missing

observations tends to zero.

This example is a special case of the problem considered by Press and

,tcutt (197). They observe that tor the general problem they corisilered their

estiiiTtes based on idximizing L 2 are consistent only it the traction ot

misslf(? observations tends to zero. The corc#.ct mnaximum likelihood ,pproach,

as iiscusseo by Trawiwr'ki and Bargman (1964), Hartiey and iocking (1971),

Jrlicird and tvoodbtury ( 1972), i;eale ind iUttle (t975) atir !)emps ter, Iair r and

" ,linll (11977) loati to st irrtes whi(h tr,! consisftent d; thl saimil e '.[z

IIcr-,,ise s! with ttii- fractio of i~issi ri,! dat htel,] cof):4talt.



3. Missing Values as Parameters

Both maximum likelihood and the maximization of LI over prameters and

missing data assumes the existence of a model that specifies a distribution

for the observed and missing values of z. Occasionally it is possible that

situations will arise when it may be desirable to avoid specifying a

distribution for the missing values and to treat them as genuine unknown

parameters. Hartley and Hocking (1971, section 4 and 5) discuss the

regression of yi on xi, where the values xi correspond to fixed points

in an experimental design, yi is observed for all units i and components

of xi are missing for some units. Writing x and xm  for the present and

missing values of x, respectively, Hartley and Hocking (1971) suggest

drawing inferences by maximizing the complete data likelihood based on the

conditional distribution of y given x

L 3(,x m y,xp ) = f(ylx m ,xp ;) (4)

with respect to xm and the parameters 0. Hartley and Hocking discuss

analyses where values of x are unconstrained or are constrained to he any

of k alternatives. We believe that in most practical situations it is more

natural to include a distribution for the missing values in the model (Rubin,

1971). From a strict likelihood perspective, however, there is no reason in

principle to reject inferences based on (4). The question of whether x

should be treated as fixed or integrated out of the likelihood (as in (2))

relates to the more general issue of statistical inference in the presence of

ijniisince par lmeters, which lies outside the scope of this note.

-6-
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