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ABSTRACT

One approdach to handling incomplete data occasionally encount2red in the
literature is to treat the missing data as parameters and to maximize the
complete data likelihood over missing data and parameters. This paper points
out that although this approach can be useful in particular problems, it is
not a generally reliable approach to the analysis of incomplete data. 1In
particular, it does not share the optimal properties of maximum likelihood
estimation, except under the trivial asymptotics in which the proportion of

missing data goes to zero as the sample size increases.
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ON JOINTLY ESTIMATING PARAMETERS AND MISSING LDATA

BY MAXIMIZING ‘THE COMPLETL-DATA L1IKELIHGOUD
Roderick J. A. Little and vonald B, Rubin
1. 1lntroduction
In the standard formulation ot maximum likelinhood theory tor complete
data, the data 2z are assumed to have a distribution with density
£(2{8) 1indexed by an unknown parameter 0. Having observed data values

z = z, the likelihood of 6 1is the density ot the observed data regarded

a function ot 6, that 1is

as

L{08|z) = £(2}0) for all © . (1)

A

The maximum

respect to 0, We use the term complete data likelihood to refer to the

expression (1).

Now suppose that some or the values in 2z are not observed. Let 20

denote the missing components and Z,

-~

4 18 the observed value of 2z .

b D It is not uncommon in the literature on

likelihood estimate 0 of 6 1is obtained by maximizing (1) with

the observed (present) components where

incomplete data to see the suygestion that estimates of 8 can be founa by

tredting the missing values 2z, as parameters and maximizing the comnlete

data likelihood with respect to 8 and zZne In symbols, this corresponds

maximizing the tunction

, 9 zm]zp) = tlz , zp]O)

with respect to (0, z|). The classic exanple ot tnis approdach is in the
(]

ANalysis ot mlssing plots 1n Aanalysis of varidance where missloag ontoeonss
are treatern as parameters and then filled in to allow computiationally

etticlent aethods ¢ be used tor analysis (Anaerson, 14940; Rartiett, 193/;

to

(2)
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rubln, 1972). More recently, DeGroot and oel (1980) propouse thls a:proacn as
one pussibility for the andlvsis of « mixed up blvariate normal sainple, wnere
the missing data are the indilces that allow the values ot the twn variables to
be pairred, and a priorl all pairings are assumed equally likely., Press and
scott (1976) rresent a bBayesian andlysls of an incomplete multivariate nornmal
sample whicn is tormally equivalent to maximizing (2). Tney maximlze the

joint posterior distribution of 6 and =z after speciryiny a flat prior

n’
distribution the parameter 9,

Although the literature on missing plot analysis explicitly recognizes
the pronlems resulting from the sugyested procedure, the more recent
literature can be read as 1mplyiny thnat maximizing (2) over missing data and
parameters 1s just as principled as standard maximum likelihood estimation
trom the complete data. Our purpose 1s simply to polnt out the joint
maxiinization over missing ddta dnd paraweters 1s not a waximum likelihood
procedure 1n any usetul sense ot the term. It does not in ygeneral enjoy the
optinal large sample properties ot maximum likelihood estimation, except using
the trivial asymptotics 1n which the traction of the data which are missing
yoes tu 4ero as the sample size increases,

rrom tne likelihood perspective, missing ddta 2 ditfer fundamentally
teom paraneters 0 in that tney are random variahles with an a priori
specified probability distribution., The correct likelihood 1s obtained vy

thtegrating the missling datd 4n out of the complete data likelinood (1),

rnat 1s, the correct likelthood 1s

f . .
L9z ) = otz , 2 4 dz ,  tor all I, {3
2 » in P m
e torertation e ettty ecrumes taar the missing data are . assirg o at
co te Deaban,  veie), [ partrontar, the sromabh 1Lty rpat o vaige 1S mis<)n g
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wnich are observed. IE the missing data are not missing at random, then the
wodel formulation needs to include a distribution for the set of variables
indicating whether values are observed or missing. For details, see Rubin
(1976).

Assuming the missing data are missing at random, L, given by (3) is
equal to the probability density of the observed data zg regarded as a
function of the unknown parameter, that is, of quantities not having a
probability distribution. Hence L, and not L, 1is the true likelihond of
0 given incomplete data ;p' In the next section we compare parameter

estimates of © found by maximizing L, with maximum likelihood estimates

found hy maximizing L, for some simple problems.

2, Examples

Example 1, Univariate Normal Sample

Suppose that 2z consists of N observations from a Normal distribution
with mean u and variance 02, zp consists of n observations which are
observed and z, represents N-n missing observations which are assumed
missing at random. Let z and si denote the sample mean and sample

variance (with denominator n) of the n observed values. Then

2 A . . . .
6 = (u, ), and maximizing L2 leads to maximum likelihood estimates
—_ 2 2 L. :
U=2,0 = 57. In contrast, maximizing L1 with respect to 8 and zZq
yields a common estimate z for all components of 7., and estimates
- 2 2 . . . , .
=2, 0 = sv(n/N). Thus the maximum likelihood estimate of the mean is

nhtained, but the maxinmum likelihood estimate of the variance is multiplied by
the traction of observed data. When th=2 fraction of missing data is
tbstantial (€or example, n/N = 0,9), the estimated variance 02 is badly
hiased, and thais Hiags does not varish as N * 2 unless n/N * 0; more

relevant asymptotics wonll fix n/N as the sample size increases,

i
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Example 2, Missing Plot Analysis of Variance

Suppose we add to the previous example a set of covariates x which is
observed tor all N observations. Wwe assume that the value of 2z for

. . . . , , T
observation 1 with covariate values X; 1s Normal with mean 80 + 8 xi and

variance 02. The estimates of 80 and B obtained by maximizing L, are
the maximum likelihood estimates, obtalned by least squares regression with
the n observed data points. However, as in Example 1, the estinate of
variance is the maximum likelihood estimate multiplied by the proportion of
observed values.

These results provide one justification for the analysis of missing plots
1n analysis of variance designs mentioned in section 1: jointly estimating
the values of the outcome variable tor the missing plots and the parameters
leads to maximum likelihood estimates of the effects 8. However an

. : . . . 2
adjustment is needed to the resulting estimate ot the residual variance ¢,

as the literature on missing plot analysis explicitly recognizes,

Example 3. An Exponential Sample

In the first two examples estimation based on maximizing L, at least
yields reasonable estimates of location, even though estimates of the scale
parameter need adjustment. However i1n other examples, estimates of location
can also be biased. For example, consider a censored sample from an
exponential distribution with mean u, where z, represents the n  observed
values which lie below a known censoring point ¢, and z, represents the
N=n values beyond c¢ which are censored. The naxirum likelihood estimate ot
Wois W=7 + (N-nj)c/ne  Maximization of L, leads to estimating censorea
values ot 2z ot the censoring point e, and estimating B by (n/MN)ue  ‘Thus
in this case the estimate obf the mean 1s inconsistent unless the proportion ot

missing values tends to zero 4s the sample s12e Lncredases.
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Example 4. A Bivaridate Normal Sample with Missing Predictor Variables,

Biased estimates of location parameters can Also occur in problems
involviny the normal distribution. For example, suppose that 2, = (xi, yl) i
= 1,.00,N are N observations rrom a bivariate normal distribution with mean

2 2 . .
(ux, uy), variances Ox and Oy, ana correlation p, where Yy 1is
observed for all N observations, and Xyreoe,X, are observed but

X seeesX are missing at random, Suppose that interest is ftocussed on the
n+1 N | pp

. _ 2 2 .
regression coetficient ot Y; on x4, By.x = pdy/cx = Bx.y Oy/ox. The
maximum likelihood estimate of By < is

~ ~ -\2 AZ
B = B (o] /0 ’
YeX XeY Y X
n n n N
> - : -2 = \ ~2 -1 - - 2
where B = z (x,~x)y./ 2 (x, -x)", x = 2 X.; = N l (y.~y)",
X. . i i’ i . i Yy . 1
i=1 1=1 1=1 1=1
N n
— -1 - ~2 22 A2 -1 - 2
y = N 2 y.; and ¢ =8 0 +n 2 (x.-B. y.)".
i1 i X XeY Y i=1 i Xe.y'i

Maximirzation of (2) over parameters and data yields ror estimated 8 '

V.x
; A a2 02
= /0
Yo X By.x x/ x !
2 a2 2 a1 o - 2 2
where d = 8 o + N 2 (x. -8 y.)". The estimate B8 can be badly
x XY Y i Tx.y’i . X

i=}
brased, dana again this bias persists as N + ® unless the fraction of missing
observations tends to zero.

This example 1s a special case of the problem considered by Press and
scott (1Y7v). They observe that tor the general problem they considered their
estinates based on wdximizing L, are consistent only 1t the traction ot
missing observations tends to zero. The corcrect maximmm likelihood approach,
das alscussed by Trawinskr and Bargman (1964), Hartiey and docking (1971),
arendrd and woodbury (1972}, teale and Little (1975) and bempster, (ared and
aorn (1Y77) leaas to estimates which are consistent as the sanple cige

tncreases with the traction of missing data held constant,




t
'
{

3. Missing Values as Parameters

Both maximum likelihood and the maximization of L, over parameters and
missing data assumes the existence of a model that specifies a distribution
for the observed and missing values of z. Occasionally it is possible that
situations will arise when it may be desirable to avoid specifying a
distribution for the missing values and to treat them as genuine unknown
parameters. Hartley and Hocking (1971, section 4 and 5) discuss the

regression of Y on Xy,

where the values Xy correspond to fixed points
in an experimental design, Yi is observed for all units 1 and components
of x; are missing for some units. Writing xp and x  for the present and
missing values of x, respectively, Hartley and Hocking (1971) suggest
drawing inferences by maximizing the complete data likelihood based on the
conditional distribution of y given x

L3(6,xm|;,;p) = f(;|xm,;p;6) (4)
with respect to X and the parameters 0, Hartley and Hocking discuss
analyses where values of X, are unconstrained or are constrained to he any
of k alternatives. We believe that in most practical situations it is more
natural to include a distribution for the missing values in the model (Rubin,
1971). From a strict likelinhood perspective, however, there is no reason in
principle to reject inferences based on (4). The question of whether Xn
should be treated as fixed or integrated out of the likelihood (as in (2))

relates to the more general issue of statistical inference in the presence of

nuisance parameters, which lias outside the scope of this note.

i
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