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ABSTRACT
A necessary and sufficient condition for crack branching based on a

crack branching stress intensity factor, KIb, accompanied by a minimum
characteristic distance of r is proposed. This crack branching criterion
is evaluated by dynamic phot~elastic experiments involving crack branching
of six single-edged notch specimens and six wedge-loaded rectangular double
cantilever beam specimens. Consistent crack branching at Kyb = 2.04 MPaxif
and r = 1.3 m verified this crack branching criterion. The crack
branching angle predicted by this crack branching criterion agreed well
with those measured in the crack branching experiments.
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INTRODUCTION

Literature on crack branching criteria can be grouped into two cate-

gories of dynamic crack tip stress field distortion [1,2,3]* and initiation

of the secondary cracks [4-7]. While the former relates only to the singu-

lar stress field at the crack tip, the latter incorporates the nonsingular

stress components. Studies on the crack tip stress field can also be divi-

ded into pre- and post-branching analyses. Pre-branching analysis normally

leads to a branching criterion, while direction of the branched crack and

its propagation are studied in post-branching analysis. An excellent

review of such crack branching analysis can be found in Reference [7].

Crack branching has been frequently observed during the ten plus years

of dynamic fracture research at the University of Washington [8] and at the

University of Maryland [9]. Earlier attempts to evaluate these crack

branching results were hampered by the lack of adequate data reduction pro-

cedure as well as by the paucity of theoretical understanding on elasto-

dynamic crack propagation. Much of these obstacles have removed today and

thus, it appears apropos to re-evaluate these photoelastic data on crack

branching in view of the available new data reduction procedure [i03. This

data analysis will be preceded by a brief review of existing crack

branching criteria, after which a new crack branching criterion will be

presented.

*Numbers in bracket refer to references at the end of this paper.



Ii-

BRIEF REVIEW OF CRACK BRANCHING CRITERIA

The most popularly held cause of dynamic crack branching is the pre-

branching distortion of the crack tip stress field at a critical crack

velocity. Yoffe's theoretical analysis [I] of a constant velocity crack

showed that at a crack velocity of about c/c1 = 0.33*, the maximum circum-

ferential stress, a,,**, shifted away from its original location of a = 0

at a lower crack velocity. This crack branching criterion based on dynamic

crack kinking was followed by that of Craggs [11], who derived a critical

crack velocity of c/cI 
= 0.40 for a propagating semi-infinite crack. Un-

fortunately, experimentally measured crack velocities never attained the

high velocity predicted by this critical crack velocity criterion. Although

9611 measured a branching crack velocity of c/c1 F 0.28 and 0.3 in glass,

[12], but the crack branching velocities in steels reported by Irwin [6],

Hahn et al. [13], Congleton et al. [5], and in photoelastic polymers

reported by A. S. Kobayashi et al. [8], and by T. Kobayashi and Dally [14]

were less than c/cI = 0.25. Also, the precise ultrasonic ripple marking

techniques used to mark instantaneous crack front by Kerkhoff [15] showed

only a ten percent decrease in crack speed in glass immediately after

branching, while Schardin [16] observed no change in crack velocity in

plate glass. Acloque [17] observed only a six percent decrease in crack

velocities immediately after branching in prestressed glass. Thus, the

experimentally observed lower branching velocities, which hardly decreased

after crack branching, showed that the postulated critical crack velocity

could not be a prerequisite to crack branching in these materials.

*c and c are crack velocity and dilatational stress wave velocity,
respectively.

**In terms of polar coordinate (r,e) with origin at the crack tip.
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Since crack branching is also observed at extremely low crack velo-

city, such as that in stress corrosion cracking, other crack tip parame-

ters such as the stress intensity factor, which could trigger branching of

a crack propagating at any rack velocity must be sought. For example,

attempts have been made to determine experimentally a critical crack

branching stress intensity factor, KIb. Kobayashi et al. [8] showed that

crack branching occurred in Homalite-100 single edge notch (SEN) specimens

when K, reached a maximum value of 3.6 times its fracture toughness, KIC.

Dally et al. [9,14] obtained a KIb = 3.8 KIC from SEN, double cantilever

beam (DCB) and compact specimens when the cracks are propagating at termi-

nal velocity in HomalitelOO.

A crack kinking criterion, which is based on the development of sec-

ondary cracks in a region off-axis to the primary crack, is also an attrac-

tive alternate since the crack kinking angle is governed by the dynamic

crack tip state of stress. Historically, Clark and Irwin [18] concluded

that branching occurs by advanced off-axis cracking under critical stress

intensity factor, Klb at a limiting crack velocity which was smaller than

those of Yoffe and Craggs. These advanced cracks created crack surface of

increasing roughness which were associated with increasing stress and vel-

ocity and which usually terminated after crack branching.

CRACK BRANCHING ANGLE

A characteristic feature of a branched crack is the crack branching

angle and many attempts have been made to predict this crack branching.

Sih [19] used the pre-branching minimum strain energy density to predict a

branching angle of 15-18 degrees which varies with Poisson's ratio. Kita-

gawa [20] and Kalthoff [21) used the static post branching state of stress
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of a symmetrically branched edged cracks and postulated that the small

initial wedge angle between two branched crack was governed by a vanishing

mode II stress intensity factor, i.e., KII = 0. Kitagawa et al. predicted

a branching angle of 30-40 degrees while Kalthoff's predicted branching

angle of 28 degrees agreed with his measured angle in fracturing glass.

The branching angles measured by Christie [22] in an SEN specimen

impacted by stress waves was about 25 degrees, while Congleton [5] observed

branching angles of about 30-40 degrees in center and edge-notched steel

plates and 70-80 degrees in bursting steel tubes. It will be shown later

that this variation in measured crack branching angles can be attributed to

the influence of a non-singular stress terms which govern the direction of

crack branching in various fracture specimen geometry.

CRACK BRANCHING CRITERION

As described above, experimental evidences indicate that dynamic crack

branching at a terminal crack velocity is accompanied by a critical dynamic

stress intensity factor and that the crack branching angles associated with

each specimen configuration are very similar. A plausible crack branching

criterion would be to postulate that the crack branching stress intensity

factor, Kib, as a necessary condition accompanied by a sufficient condition

for crack kinking which governs the crack branching angle. The former nec-

essary condition is supported by the crack branching data which shows that

Kib is about four times its fracture toughness in Homalite-100.

As for the latter sufficient condition, either of the two dynamic

crack curving criteria [23) advanced by the authors can be used to estimate

the crack branching angle. These dynamic crack kinking criteria are de-

rived from the near field, mixed mode elasto-dynamic state of stress
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associated with a crack tip propagating at constant velocity. The dynamic

state of crack tip stress field is given by Freund (24] in terms of local

rectangular and polar coordinates of (xy) and (r,O), respectively, and the

mode I and II dynamic stress intensity factors, KI and KII*, respectively.

The second order term of aox, which is acting parallel to the direction of

crack extension, is also included in the above crack tip state of stress so

that crack kinking can be triggered at crack velocities lower than those of

Yoffe [1] and Craggs [11]. The two crack kinking criteria based on this

dynamic crack tip stress are the maximum circumferential stress and the

minimum strain energy density criteria, both of which will predict nearly

identical crack kinking angles in the crack velocity range of c/c1 < 0.2.

Thus for brevity, only the crack kinking criterion based on the maximum

circumferential stress criterion will be discussed in this paper.

The angle, 0c , at which circumferential stress, lee, is maximum, when

evaluated in conjunction with a pure mode I dynamic crack tip state of

stress will yield a transcendental relation between the critical values of e

and r as

r 11(1I 22 1(c ((S2_S 2)_-(,+S2 )cos2e)--l-Fr o snFe 12 1

4S S2
+ 2(l+S2)sin2e fll + - 2 cos2e -f2

1+S2

4S S2
-2 sin2 f22  (2Slsin2e) 22

1 +S2  -- -2

(4SICOS2e)g11-g22) (la)

w[he superscript "dyn" to identify dynamic stress intensity factor will not
be used in this paper, since all quantities refer to dynamic values.
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where

fl, = [f(cl) + g(cl
)]I/2

gll = [f(cl) - g(cl)] 1/ 2  (Ib)

f22 = [f(c 2) + g(c2
)]I/ 2

922 = [f(c 2) -

f(cl) = 2 g(cl) _ cos

(I--C 2in 2)12 (- in2e) 2

c cI  (Ic)

1 cose
f(c2) 2 2 ; g(c2) 2

(I- C- in 206)1 / 2  (l-c: n2e) I1/2

c 2  c 2
c2

1 +S 2

21c c 2 2(id)

S  4S1 S2-(+S) ()

12 2 1 2 (le)

The critical radial distance was postulated to be a unique material

property which was found to be rc = 1.3 mm for Homalite-100 in Reference

(23). Furthermore, by setting 0 = 0 we obtain a chracteristic distance of

r= VJc.clc 2  (2a)

where

,c~c19 c2 ) = B1(c){-(1+s2)(2-3s )

= SS(14+3s2)-16s,(sl-s2)+16(1+s2 ) } (2b)
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and the curving angle ec, for a stationary crack from Equation (la) reduces
to

+ '1024r r ox\ 2
8c=os gl+ - 0 (g- (3)=c Cos - _ _ _

5127r r ox\y- ro( )

and c, cI and c2 are the crack velocity, dilatational and distortional wave

velocities, respectively. It can be easily shown that for zero crack velo-

city or c = 0, Equation (2) reduces to Streit and Finnie's [25) character-

istic radial distance of ro =1287 - for crack kinking of an initial-

ly stationary crack. This crack kinking criterion can also be used to es-

timate the crack branching angle for quasi-static crack branching under

stress corrosion cracking conditions, provided a static counterpart of the

necessary crack branching stress intensity factor can be established. The

dynamic characteristic distance r is always less than the corresponding

static r for crack velocities of 0 <c/ci<0.33 and is insensitive to the

sign of a

The crack kinking criterion thus states that the crack will kink at an

angle of ec when a ro associated with the propagating crack tip reaches a

critical material property of rc . When applied to crack branching, this

crack kinking angle is one half of the included crack branching angle since

the high crack branching stress intensity will result in sufficient energy

release rate to create two kinked cracks simultaneously.
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To recapitulate, then, crack branching will occur when the dynamic

stress intensity factor reaches KIb and the crack will branch at an angle

of ec. In the following, this crack branching criterion will be tested by

re-evaluating previous dynamic experiments in which crack branching was ob-

served. Results of eleven dynamic photoelastic results involving SEN and

wedge-loaded rectangular DCB (WL-ROCB) fracture specimens are reported in

the following.

CRACK BRANCHING IN HOMALITE-100 FRACTURE SPECIMENS

1. Hamalite-100 SEN Specimens

The SEN specimens considered are of 3.2 nmn and 9.5 mm thick Homalite-

100 plates with 254 x 254 m test section loaded in fixed grip configura-

tion. The prescribed boundary conditions included both uniform and line-

arly decreasing displacements along the fixed gripped edges of the speci-

men. At fracture load, the crack propagated from the SEN starter crack

which was saw cut and chiseled. Further details of the test setup and the

test conditions can be found in Reference [26]. Figure 1 shows three

frames out of a 16-frame dynamic photoelastic record of a crack propagating

and branching in a 3.2 mm thick, 254 x 254 mm Homalite-100 plate loaded

under fixed grip linearly varying tension.

Figure 2 shows the dynamic K1 and KII variations obtained from the dy-

namic photoelastic patterns preceding and after crack branching of Figure

1. By extrapolating the dynamic K, associated with two branch cracks, an

after-branching dynamic stress intensity factor, KI - 1.2 MParm and KII =

0.45 MPa/i are obtained. The branching stress intensity factor, i.e.

inediately prior to branching is estimated to be KIb - 2.03 MPavi. Also
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shown in Figure 2 are the variations in the r values as computed from

Equation (2). Note that r0 reached a minimum value of rc = 1.2 mnm at crack

branching.

Figure 3 shows another set of KI, K11 and r0 for two branch cracks in

a similar dynamic photoelastic experiment. By extrapolating the K1 asso-

ciated with the two branch cracks, an after-branching KI = 1.2 MPa-m and

KII = -0.1 MPavii are obtained. Immediately prior to branching, the in-

stantaneous dynamic stress intensity factor reached its maximum value of

2.0 MPaAW and is consistent with the previous results. The estimated

minimum r0 at crack branching was rc = 1.3 mm. Evaluations of four other

SEN tests yielded the branching stress intensity factors of KI = 2.00 and

2.09 RPav%, as shown in Table 1. The rc values ranged from 1.2 to 1.4 mm.

The crack velocities in the above six tests were essentially constant

at about 15 + 5 percent of the dilitational wave velocity, cI = 2400 mps.

Nevertheless, the crack velocity prior to and after crack branching was

very close to the maximum velocity observed in all dynamic fracture tests

involving Homalite-100. This so-called terminal velocity varied from test

to test in a range of 0.15 to 0.20 c1 where the crack always accelerated

slightly just prior to crack branching.

The variations in the characteristic distance, ro , which was computed

from the Equation (2), for the branching cracks in the six tests all

reached a minimum value prior to and at crack branching. This minimum

value, which was obtained by interpolation at crack branching, was an

average of 1.3 m and is consistent with the previously measured rc values

for crack curving [23], and is further evidence that rc is a material pro-

perty. Since minimum r° or rc is derived through aox, this rc value

indicates that aox has a significant effect on crack branching.
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Table 1 also shows the measured and calculated crack branching angles

in the six tests. The crack branching angles, which were computed by Equa-

tion (1), for a known rc , KI and aox are within 10 percent of the measured

values, thus validating the use of this crack kinking criterion.

As an interesting sideline, Figure 4 shows the enlarged view of Test

No. 85 where an isochromatic pattern of a pure mode II crack tip deforma-

tion, i.e. nearly pure shear state of stress, is generated around branched

cracks. The mode II stress intensity factor Kii and remote stress Oox

associated with these isochromatics are listed in Table 2. Figure 5 shows

that within the 49 micro-second interval, the propagating crack turned

about 81 degrees and arrested. The mixed mode stress intensity factors

prior to this severe crack kinking were K1 = 0, K11 = 0.41 mPai and a

0.18 MPa, and predicted a theoretical kinking angle of 84°whichagreed well

with experimentally measured angle. After crack kinking, the crack arrest-
ed and K1 = 0.34 MPa/i, K11  0.08 mPaA and a = 1.4 MPa. These results

show that the crack kinking can also occur under the high K,1 state of

stress.

2. Homalite-100 WL-RDCB Specimen

As mentioned previously, the proposed crack branching criterion should

be applicable to quasi-static crack branching where inertia effects in the

pre-branched crack are negligible or nonexistent. Experimental data of the

former were found in Homalite-100 WL-RDCB specimens where the crack immedi-

ately branched after initiating at a blunt starter crack tip. The neces-

sary condition for branching is satisfied by the high KIQ* due to the blunt

* K is the crack initiation stress intensity factor which is larger than
the fPacture toughness, KIC.

10



crack tip. The crack branching angle, as shown by Equation (3) is a func-

tion of aox/KIQ and is thus a function of the specimen geometry.

The WL-RDCB fractured specimens considered is 76 x 152 x 9.5 mm thick

of the geometry shown in Figure 6. The crack immediately branched and

propagated from a single, edge-notched starter crack of length of 24.3 mm

to 29.30 m with a crack tip blunted by drilled hole of diameter of 2.2 mm

to 5.0 mm. The branched crack paths of six fractured specimens are also

shown in Figure 6.

In all six tests of the WL-RDCB specimens, the crack branched at ini-

tiation forming two or three branches. Table 3 summarizes the experimental

test specimen information along with the measured branching angle in six

WL-RDCB specimens. The angles of deviation of the po~t branched cracks

were measured along the crack path by averaging the measured crack curving

angle on front and back surfaces of the fractured specimen. Included an-

gles for all major branches averaged 53.4 degrees, and is twice the branch-

ing angle in a SEN specimen. This averaged branch angle agrees with the

experimental results of Nakasa and Takei [26] where bending of the SEN

specimens due to cantilever loading resulted in a positive Cox which in

turn caused larger branching angles.

Although reliable data on the crack initiation condition was lacking

for this series of experiments, the crack branching angle can be estimated

from standard finite element analysis. Equation (3) shows ec involves only

the ratio of cox/KIQ and the predetermined rc, and thus the exact applied

loading condition need not be known for estimating the branch angle of an

initially stationary crack. In other words, the crack branching angle in

this WL-RDCB specimen is governed by the specimen geometry only provided

sufficient driving force is provided to branch the crack upon initiation.

11
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However, for a running crack, the dynamic crack branching angle, Oc , in-

volves not only aox/Kl, ro but also the crack velocity as given in Equation

(1). With a unit vertical wedge loading displacement applied to the

specimen, K, and cox were calculated by least square fitting the following

plane stress crack tip displacement field of three to four sets of nodal

displacements on the crack surface.

u ox r( 1 (4a)

Ux 2

Uy "I "r( TT (4b)

G and v in Equation (4) are shear modulus and Poisson's ratio, respective-

ly. An average KiQ/aox = 0.223 (vii) was obtained from the finite element

analysis using Equation (4) and a half branch angle of 
0c = 260 was

obtained using Equation (3). This value is in good agreement with the

averaged branch angle of 54 degrees shown in Table 3. Figure 7 shows two

frames out of 16-frame dynamic photoelastic record of a branched cracks in

a WL-RDCB specimen of 9.5 mm thick, Homalite-100 plate. Experimental

details of this series of tests can be found in Reference [28J. Figure 8

shows the dynamic fracture parameters KI, and aox obtained from the dynamic

photoelastic pattern of the three branched cracks shown in Figure 7. KII

which oscillated between + 0.3 MPaAff was not plotted in order to avoid

cluttering of Figure 7. The decreasing stress intensity factor as well as

the fluctuations in cox (and KII) along the post branching curved cracks

are noted. Crack No. 2 arrested at KI = 0.4 MPa/M. This arrest stress

intensity factor is close to arrest stress intensity factor for

Homalite-100 determined by Dally [29.
12



DISCUSSIONS

Table 1 shows that at the onset of branching, the instantaneous dyna-

mic stress intensity factor reached an average maximum of 2.04 MPar irre-

spective of specimen thickness and loading condition and the initial crack

geometry. This branching stress intensity factor, K1b, is approximately

4.85 times the fracture toughness and is in agreement with that of Dally

[29]. Figures 2 and 3 show that while the K1 hovers about KIb, crack

branching will not occur prior to the precipitous drop in ro . At the onset

of branching, the characteristic r0 value reaches its average minimum,

rc = 1.3 mm for this material. These results show that KIb is a necessary

condition for crack branching. The sufficiency condition involves the

characteristic distance ro, which is a function of the crack velocity, KI

and a.ox The ratio of KI values prior to and after crack branching is an

average of 2.2. Although this value is consistent with the postulate that

crack branching occurs to dissipate fracture energy along two propagating

cracks, it is higher than the expected /2 value.

It is also interesting to note that K1I = 0 prior to crack branching

increases a small amount immediately after crack branching consistent with

the postulated directional stability model [23]. Irrespective of the crack

geometry and specimen thickness, crack branched when it reached KI = KIb

and ro = rc, regardless of crack traveling length.

Of a total of 31 dynamic fracture tests involving WL-RDCB, 14 cracks

curved and 6 branched at initiation. These results imply that crack

branching in WL-RDCB specimens is observed only in few cases and is attri-

buted to the fact that the crack propagates in a decreasing KI field, a

situation which does not promote crack branching beyond the initiation of

crack extension.
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The crack branching angles of Kobayashi [8], Kalthoff [21] and

Christie [22) all converged to about 25-28 degrees. This agreement is not

surprising since the loading conditions and the specimen geometries are

quite similar in all three cases and resulted in negative a ox value which

reduces the fracture angle.

CONCLUSIONS

1. A necessary and sufficient condition for dynamic crack branching is a

crack branching stress intensity factor, Klb, accompanied by minimum

characteristic distance ro = rc-

2. The crack instability model based on the above successfully predicted

crack branching angles in Homalite-100 SEN and WL-RDCB specimens.
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Table 2

K 11  and a0ox of Arrested Branch

Cracks in Figure 4

(a) Inner Branch Crack

14th Frame 15th Frame

K 11 0.4 MParrmI 0.44 MPa,15

a0.32 MPa -0.04 MPa
ox

(b) Outer Branch Crack

15th Frame 16th Frame

K11  0.44 M~AEi 0.41 MPaSi

a0.08 !4Pa 0.18 MPa
ox



Table 3

SUMMARY OF CRACK BRANCHING ANGLE DISTRIBUTION IN A WEDGE LOADED RECTANGULAR

DOUBLE CANTILEVER BEAM SPECIMEN

Test No. Specimen Thickness Dia. of Blunt Notch Measured Calculated 1st
h p Branch Angle Branch Angle

mm mm 1st Branching
ec  ec

L6B-120573 9.5 2.2 52 52
LlOB-052473 9.5 2.2 52 52
L14B 9.5 5.0 55 52
L19B-013074 9.5 4.0 54 52
L27B-022474 9.5 2.4 54 52

Average S .4
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FIGURE 2. DYNAMIC STRESS INTENSITY FACTORS AND ro OF BRANCHED
CRACKS. SPECIMEN NO. B8.
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