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INVESTIGATION OF MODELING CONCEPTS FOR PLUME-AFTERBODY
FLOW INTERACTIONS

Final Technical Report

Sven-Erik Nyberg and Johan Agrell

SUMMARY

A high pressure hot gas supply system has been developed for
the FFA 0.5 x 0.5 m? S5 wind tunnel to allow the study of
aerodynamic interference effects caused by plume induced
separation from propulsive afterbodies. Capable of operating
with a variety of gases covering a wide range of specific
heat ratios, the facility serves to evaluate the merits and
potential of a new plume simulation methodology suggested by
Korst. The program has been carried out in close cooperation
with the Gas Dynamics Laboratory, the University of Illinois
at Urbana-Champaign.

Experimental programs carried out with air and Freon-22 for
the jet simulation confirmed the correctness of the theory.
The accuracy of the modeling extended over wide ranges of
jet-to-ambient pressure ratios straddling the design points.
Limited tests at small angles of attack (~-6° < a < +6°) and
with external disturbances in the vicinity of the base plane
(fins) appear to support the applicability of the modeling
scheme for more complex flow field geometries. Beyond the
ability to correctly model and interpret near wake pressures
and slipstream separation locations, the new methodology
allows experiments to be conducted with diatomic gases (air
or nitrogen, y = 1.4) at much lower stagnation pressures as
would be required for propellants of lower specific heat
ratios.
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NOMENCLATURE

Geometry
Afterbody

D Forebody diameter [m]

L Boattail length [m]

M

N } Pressure tap location index, see Fig. 7

X Axial coordinate [m], see Fig. 6

a Angle of attack [deg.]

B Boattail angle [deg.]

9 Circumferential angle [deg.], see Fig. 7
Nozzle

Ry, Exit or lip radius [m]

oy, Conical divergence angle [deg.]

Tunnel Flow

Po Stagnation pressure [Pa]

Pg, Pe Freestream static pressure [Pa]

Mg Freestream Mach No. [ -]

Nozzle Flow

M, Lip Mach No. [~]*)

Por Nozzle stagnation pressure [Pa]

P, Lip pressure [Pa]

Tor Nozzle stagnation temperature [ °C]

Y Specific heat ratio [~-]

wi, Prandtl-Meyer angle corresponding to Mj, [deg.]

*
)Conical source flow assumed, otherwise nozzle geometry and

lip conditions have to be specified in greater detail, see
Reference [ 21]
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Plume

Mp Surface Mach No. [ -]

Op Initial surface slope [deg. |

Re Initial surface curvature [m]

Te Re/Rp, [ -]

wp Prandtl-Meyer angle corresponding to Mp [deg.]

Wake Conditions

S Separation distance measured from end of boat-
tail [m]
Py, Pg Base pressure [Pa]

Subscripts

M Model

P Prototype
A Air

F Freon




1. INTRODUCTION

The interaction of rocket or jet plumes with the external
flow over a vehicle as well as surrounding equipment or sur-
faces is important to system performance [1].*) In partic-
ular, such interactions are critical in their effects on the
near wake base temperature and pressure, flow over the ve-
hicle itself due to external flow separation, wake flow field
at angle of attack, afterbody fin effectiveness, and launch
equipment performance. Thus, the jet-slipstream interaction
can give rise to undesirable aerodynamic performance by
introducing drag penalties through lower than ambient pres-
sures or, as the ratio of jet stagnation pressure to ambient
pressure increases, plume induced separation [2]. 1In extreme
cases, plume induced separation can result in catastrophic
pitch-up of missiles because of loss of stability of

degradation or control effectiveness [3].

Rocket or jet plumes have been treated in wind tunnel tests
using a variety of methods which include the use of cold or
heated air through geometrically modeled nozzles, small rock-
et motors, radial gas injection and solid surfaces with
simulated plume shape (either calculated or determined from
Schlieren photographs of jet plumes). Shortcomings inherent
in these methods can be traced to failure to account for all,
or part, of such factors as plume deflections, mass entrain-
ment, wake closure, influence of specific heat ratio, viscous
effects, geometry and temperature. It is, of course, not
feasible to take account of all the contributing parameters
simultaneously in a simulation test. While some methods of
plume simulation appear to be more appropriate than others,
i.e., cold gas rather than solid surfaces, only limited com-
parisons have been undertaken between results for simulation

models and for actual prototypes. In addition, documentation

*)

Numbers in square brackets refer to entries in REFERENCES




of the importance of individual factors such as plume ge-
ometry, plume stiffness (i.e. jet surface Mach number), and
wake closure conditions for the various Mach number regimes

' has been lacking.

It is the purpose of this project to undertake, in close co-
operation with the Gas Dynamics Laboratory at University of

Illinois at Urbana-Champaign, the evaluation of modeling

techniques and importance of primary and secondary factors.

The project has been going on for three years. During the
first year the design and construction of a facility for the
use of superheated Freon (y = 1.16) at high pressure was car-
ried out, to be used for jet simulation in the FFA 0.5x0.5 m?
S5 wind tunnel. Shake-down testing of the facility was
started and an existing strut-supported axi-symmetric model
was modified for tests with heated Freon [4, 5]. Plume mod-
eling experiments were started during the second year with
! tests at the design Mach number Mp = 2.0, zero angle of
attack and modeling from air as prototype, to Freon, as model
[6, 7]. During the third year the same nozzles were tested
at an off-design free stream Mach number Mg = 3.0 [8]. The

major part of the third year activities, however, was the

study of the plume modeling from a Freon prototype nozzle
(combustion product simulation) to air model nozzles. The in-
vestigation was carried out at the design free stream Mach

2.0 for the angles of attack a« = 0, +3° and +6°,

number Mg

A few tests were also made at zero angle of attack to examine

the effects of aft-mounted control surfaces.

f This final report briefly describes the simulation test fac-
| ility. The analytical basis for the plume modeling method-
ology proposed by Korst [9, 10] is also reviewed. Results of
the plume modeling tests obtained during the second and third

year program with nozzles designed in accordance with this

method are presented and discussed.




Reports and other publications resulting from the work spon-
sored by this Grant are in chronological order References
Mos: 27, 4, 5, 6, 24, 7, 22, 28, 8, 25 and 29.

2. SIMULATION TEST FACILITY

A jet simulation test facility has been designed and con-
structed for use with the FFA 0.25 m? and 1.0 m? wind tunnels
[5, 11]. 1t has been designed for various types of heated
Freon but can in principle also be used in future investiga-
tions for other gases (e.g. Argon) with small changes in the
instrumentation. The unit has been constructed for this re-
search program exclusively with the object of allowing crit-
ical evaluation of the merits and limitations of plume model-

ing techniques, such as outlined in Section 3.

For this purpose, it is essential to have accurate test re-
sults and well controlled operating conditions for both pro-
totype and model. The test conditions should be well known
in terms of the wind tunnel slipstream flow and should allow
for careful control of the modeled propulsive jet, influence
of transonic throat flow, nozzle design methodology, and
working fluid. The design concept draws on the extensive
test program on missile afterbody-jet performance which the
FFA has carried out and reported on over the last ten years
[12,13,14]. This approach provides a wide base of well docu-
mented results to be used as prototypes as well as allowing
the use of a considerable portion of existing wind tunnel
models and supporting equipment. The latter, in addition to
reducing cost, guarantees that such factors as external

boundary layer thickness remain largely unchanged in proto-

type and modeled configurations.
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The selection of the test gas was based on availability,
cost, non-toxicity, having an appropriate ratio of specific
heats and not having serious real gas effects. After an
examination of alternatives Freon-22 was chosen. Cost and
chemical stability - which allows it to be heated to suffic-
iently high temperatures without chemical breakdown - were
major factors in its selection. The latter should allow
expansion up to approximately Mach number 5 without crossing
the condensation line. Fig. 1 shows a simplified pressure-
enthalpy diagram for Freon-22 illustrating the thermodynamic
paths for the heating and nozzle expansion processes. The
ratio of specific heats at nozzle exit and plume expansion
conditions, yp, is in the range of 1.16 to 1.18 which is

appropriate for simulation of combustion type jet products.

The modeled nozzles were designed using the modeling proced-
ures discussed in Section 3 and their mass flow requirements
were based on configurations run with air (prototype) in the
earlier FFA programs [12,13,14]. Shown in Fig. 2 is a sys-
tems performance diagram having the nozzle exit (lip) Mach
number as abscissa, the nozzle mass flow rate as ordinate and
driver pressure level as a parameter. Mapped into this dia-
gram are the operating conditions required for the modeling
scheme. The nozzle configurations in the higher 1lip Mach
number range (greater than approximately 4) require impract-
ically high pressure levels but, fortunately, are physically
unrealistic as models since the nozzle divergence angles are

generally excessive (greater than 40 degrees half angle).

The basic system makes use of the high pressure storage of
the FFA's hypersonic facilities [11] which allows the storage
of 50 m3 of air at a pressure of 25 MPa. This is used in the
simulation system as an essentially constant pressure driver

for the Freon. Fig. 3 is an annotated schematic of the Freon
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system, the test model and the high pressure driver. Details
of component design, construction and operating procedures
are given in Ref. [5] along with a discussion of the tempera-
ture control requirements and the system developed for this

purpose.

The facility consists of two parts: the unheated driver
section and the heated and insulated section containing the
test gas. Referring to the schematic (Fig. 3), the unheated
pressure section and the heated and insulated part are con-
structed in a similar manner using vertical arrays of high-
pressure tubes. The thermodynamic paths followed by the test
gas are shown in Fig. 1 and consist of a constant volume heat-
ing process from points 0 to 1 and the essentially isentropic
expansion through the nozzle from 1 to 2. The system is
designed to provide the maximum supply capacity indicated
(dashed line) in Fig. 2 with the upper limit determined by
choking and the varying pressure line established by the
maximum driving pressure and flow rate-pressure loss charact-
eristics of the entire system. It can be seen in Fig. 2 that
the design points of the selected simulation nozzles fall
within the system operating range while allowing considerable

off-design testing.

The basic design concepts of the system can best be illu-
strated by a brief discussion of the operational procedure:
Prior to a run, the system is charged by the charging pump

to the state where the heated portion contains the correct
amount of Freon to reach the desired pressure and temperature
after being heated at constant volume, that is process 0-1
shown in Fig. 1. The required volume for the system describ-
ed is approximately 0.16 md. The determination of the amount
of Freon charged is facilitated by use of a pump revolution

counter serving for metering purposes.
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The hot and ccld portions are now isolated and charging is
continued until the unheated portion of the system has reach-
ed the pressure prescribed for the run (state 1 in Fig. 1).
Small pressure corrections may be necessary and these can be
made using either the needle valve, the discharge line, or

the charging pump as may be appropriate.

] The heating process is accomplished by heating only a portion
of the tubes, thus producing thermal circulation within the
high temperature tube array. The convection persists until

the desired temperature is reached.

During a run, the cold Freon serves as a cushion between the
air and test gas to prevent mixing of the driver air and hot
test gas. The density relations between the cold Freon cush-
ion and hot gas are such that thermal convection at the in-

terface is inhibited.

An individual run may last as long as the gas temperature
remains constant {(the system is designed for 15 second tests).
A small portion of the cold Freon will be sufficiently heated
by entering and traversing the warm tube array to also serve
as test gas and thus allowing slightly increased run times
over the nominal design value. The latter has been found to
contribute to slow pressure variations during a typical run.
; Fast pressure transducers for measurement of model pressures
affected by the jet stagnation pressure in combination with
synchronized Schlieren photographs allow a range of pressure
conditions to be monitored in a single run as the jet stagna-

tion pressure varies.
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3. A REVIEW OF THE PLUME MODELING METHODOLOGY SUGGESTED
BY KORST ,

Integral and component approaches to near wake solutions,
with their wake closure conditions linked to second law con-
cepts, have led to a basic understanding of the problem and
even to the establishment of relations [15] accounting for
the influence of all pertinent variables. The difficulty of
making specific assessments concerning the wake closure has
led to extensive experimental studies in support of semi-
empirical relations to account for the incomplete realignment

of streamlines during recompression [16].

Experimental programs require proper plume simulation when-
ever the use of prototype propellant is not feasible. The
modeling of plume interactions requires in principle geo-
metrically similar inviscid jet contours and correct pressure
rise-jet boundary deflection characteristics (plume stiff-
ness) as well as mass entrainment along the wake boundaries.
Thus modeling with gaseous plumes is needed and normally

involves dissimilar specific heat ratios.

The importance of generating the correct jet plume geometry
has been stressed in prior efforts to establish modeling laws
between propellant gases having dissimilar specific heat
ratios [17,18,19]. However, the geometrical requirements
were only formulated for the initial deflection angle of the
jet, a condition not stringent enough to cope with plume

induced separation [17].

A second order approximation for dealing with axi-symmetric
centered expansions [20] forms in Korst's method the basis
for geometrical jet plume surface modeling [9]. This ap-
proach allows matching not only initial deflection angle but

also plume radius of curvature (shape), see Fig. 5. It can

= Xl VS R i
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be shown that the accuracy obtained by such a procedure ex-
tends well beyond the range of convergence for the corner

expansion itself [21].

The plume expansion derives its initial conditions from the
flow approaching the end of the nozzle. For the case where
exit conditions can be sufficiently well described, locally,
by conical source flow (Mj,01), sweeping simplifications

in the interpretation of results are possible [21]. The
solutions lead to a direct correspondence of nozzle shapes
producing the same plume boundary geometry with one free
parameter remaining available for satisfying the inviscid
recompression conditions at the end of the separated flow
region. It is thus possible to determine nozzle exit con-
ditions in terms of Mach number at the nozzle lip and the
nozzle divergence angle at the lip which will geometrically
duplicate the jet contour produced by a gas with different
specific heat ratio as it expands from a given nozzle under
specific adjacent conditions (within the present degree of

approximation), that is
6 =0 and R = R (1)

where the geometry and notation are shown in Fig. 5 and sub-
scripts M and P are for model and prototype respectively.
The downstream condition should properly account for the
interaction of the (viscous) wake flow with the inviscid
flow. With only one choice available as a result of the geo-
metric requirements, it is obvious that one has to account
above all, for the proper pressure rise in the external flow
[17]. The recompression mechanism of the dissipative bound-
ary of the jet, as a consequence of its mass entrainment,
will, however, generally not be simultaneously satisfied.
While this effect may be expected to be small for cases in-
volving strongly underexpanded plumes [21], it is possible
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to account for it in principle by introducing mass bleed.
The concept of equivalent mass bleed has been shown [16] to

be useful for both mass and temperature effect simulations.

The effect of plume stiffness has been examined in some
detail [22] in tests carried out at FFA and at Calspan [23].
The results underscore the importance of the selection of
plume flexibility characteristics to the simulation process
particularly at supersonic Mach numbers. Selection of the
pressure rise-deflection characteristics of the plume leads

to the inviscid specifying relations [9]:
2 2 !2 2 2 ;ﬁ
[YM MF,M/(MF,M-I) ] = [vp MF,P/(MF,P"” ] (2)
for weak shock recompression and

2 2
[2vy Mo =Gy 1/ Gy #1) = [2v, Mg = (vp=1)] /(v +1) (3)

*)

when a strong shock occurs.

It is now necessary to identify the type of separation phen-

omenon to be investigated in order to establish design cri-

teria for proper modeling. For a known pressure distribution

over the prototype afterbody due to the non-separated slip-
stream, one can estimate the pressure rise due to separation
by using information on free interactions [16] or slight
modifications thereof due to local pressure gradients and/or
surface slope discontinuities [14]. The resulting plateau
pressure determines the jet surface Mach number M so that

F,P

the prototype conditions (nozzle flow, ML P eL p especially
’ ’

*
It should be noted that the concept of weak or strong shock
design as used in this repeort has been redefined based on
weak shock conditions only. Thus pressure rises can be
treated on a consistent basis, see Reference {29] for
details.

o = e L o

[ 2
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for conical source flow) are all given and the model nozzle
L,M’ eL,M as well as the model jet surface

Mach number M. . (Eqs. (2) or (3)) are determined [9]. Thus,
’

for this "design point", Eqs. (1) and either (2) or (3) are

exit conditions M

satisfied.

In the vicinity of the design point, only the more stringent
condition of plume slope matching is retained. This can be

expressed in the form
0 =8 (4)

and
w =8 -8 + w - w + w (5)

Since the nozzle flows - and therefore eL’M, eL,P' wL,M' wL,P
remain identical for design and off-design operation then
one may expect that the wake pressure ratios will still be

closely modeled

(Pb/pE)P = (Pb/PE)M = £(Por,m/Pog) (6)

Thus, one finds the pressure ratio for the prototype flow

from the Prandtl-Meyer relation

Mg p = £(ypoug o) (7)

F,P F,P

and the identity

Por,p/Pog = (901,9/Pb) *(Py/Pg) +(PE/Pqg) (8)




17

Thus, for each model flow experiment series for which the

relations

(Pb/PE)M = £[Mg. (Por w/Pog) vyl (9)

has been established, the corresponding operating condition
of the prototype flow can be determined.

4. EXPERIMENTAL EQUIPMENT

4.1 Wind tunnel models

A strut supported wind tunnel model, as shown in Fig. 6,
earlier used for the study of plume interference effects with
air as the propellant gas [12], was modified to allow high
mass flow of heated high pressure Freon to be introduced into
the model with acceptably low pressure losses. The model is
composed of a 14 degree half-angle nose cone, a cylindrical
center body of 50 mm diameter and a set of interchangeable
afterbodies. The overall model length is 9.5 diameters.

The basic afterbody configuration is an 8 degree boattail
with L/D =1 [12,13]. The rear part of model body, the boat-
tail and the base region are all instrumented with pressure
taps (Fig. 7). The individual pressures are recorded from a
series of rapid response transducers. Combined with Schlier-
en photographs (and in some cases oil-flow photographs), this
allows the accurate determination of the external flow-jet
interference pattern, in particular the plume induced separa-
tion on the afterbody. A set of four stabilizing or control
surfaces can be attached to the afterbody as shown in Fig. 6.
In this test the fins were fixed at zero incidence positioned

circumferentially at ¢ = +t45° and *135°,

R R P P

B imse a1
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The first series of plume modeling tests was carried out with
airfprototype to Freon,mode1 nozzles. Based on the earlier
series of experiments conducted with air nozzles [12,13,14]
calculations were carried out according to the methodology of
Section 3 to select the best suited prototype configuration
for the initial Freon 22 modeling tests. The results mapped
into the Freon facility performance diagram are shown in

Fig. 2. Based on these calculations, the air nozzie with a
nominal exit Mach number of 2.5 and a conical wall angle of
10° was selected as the prototype (see Fig. 8a). Design
conditions were chosen to allow for both design and off-

design experimentation with the Freon nozzles for weak shock

modeling (M = 3.9, © = 19.76°, see Fig. 8b, correspond-
L,M L,M

ing to pL/PElP = 6.1) and for strong shock modeling (ML,M =

3.19, eL'M = 14.19°, see Fig. 8c, corresponding to pL/PElP =

9.2). Operating ranges for these model tests are also shown

in Fig. 2.

A second series of plume modeling tests was carried out with
FreOnlprototype to airlmodel nozzles. As the specific heat
ratio for Freon 22 is y = 1.16, which is appropriate for
simulation of combustion type jet products, this modeling is
relevant for typical plume simulation in wind tunnels. The
geometry of the prototype was chosen to be as realistic as
possible, e.g. to have a shape similar to a typical rocket

nozzle (see Fig. 9a, = 2.60, o = 15°, and pL/P =

Mp,p L,P E|P
3.48). The calculated data of the model air nozzles are
ML,M = 1.41, eL,M = 3.07° and pL/PElM = 6.03 for weak shock

modeling and ML,M = 2,03, eL,M = 10.47° and pL/PElM = 5.07
for strong shock modeling. Unfortunately the calculated air
nozzles could not be accommodated in the existing afterbody
due to the large throat areas. It was therefore necessary to
construct two new afterbodies with integrated nozzles, see
Fig. 9o and ¢. Each afterbody was provided with the pressure
tubing needed for measurement of the surface pressure distri-

bution at angle of attack.
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4.2 Strut interference tests

Fig. 6 shows both the original configuration and the modified
version of the model support strut. The modified strut sec-
tion is thicker and has larger chord due to the additional
Freon piping and its fairing, which increase the interference
of the strut on the model afterbody flow field. During the
facility calibration tests the strut interference was de-
termined for the zero angle of attack case with air as pro-
pellant. The axial pressure distribution along the generator
opposite to the strut was measured and was compared with
earlier measurements with the original strut. While the
earlier strut configuration produced negligible interference
effects as has been confirmed by comparison with sting mount-
ed runs [24], the new, enlarged fairing led to small but
measurable differences in afterbody pressure distributions

[7] as shown in Fig. 10.

The small difference noted for the pressure distribution due
to the modified strut required that the air prototype tests
be repeated over the range reported in earlier publications
to ensure that strut effects did not introduce unanticipated
changes. The results from the current air tests are shown in
Fig. 11 and the results from the earlier tests are also shown

for comparison.

When the second series of plume modeling tests started and
pressures at different circumferential body angles were meas-
ured, it was revealed that quite appreciable strut interfer-
ence affected the pressure distributions on the side of the
model, During these tests the pressure measurements were
made in a quadrant on the opposite side to the supporting
strut. 1In the angle of attack tests the wind and lee sides

were accounted for by testing at negative and positive angles

v TS WY g A o

PV, [OUSVG—
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of attack respectively. Some results of the interference
measurements are shown in Fig. 12 [25]. Also shown in the
figure are the experimental data corrected for the theoretic-
ally determined primary non-viscous influence of the strut,
as calculated by small disturbance potential flow theory [26].
From the a = 0 case, where the unaffected pressure should be
constant around the model, the conclusion can be drawn that
not only the effects from the non-viscous strut flow field
are present, but also effects induced by this flow field on
the model boundary layer. This is demonstrated in Fig. 13,
where o0il flow pictures at zero angle of attack are shown.
For the original strut configuration the boundary layer flow
is nearly parallel to the axis and the separation line is
straight except right behind the strut. For the modified
model, however, the strut induced boundary layer flow tends
to thicken the boundary layer at the model side (¢ = 90°) and

the separation line is curved.

A number of modifications to the geometry of the strut trail-
ing edge were tested. The interference could be appreciably
decreased, but unfortunately it turned out that the best
configuration for the a = 0 case had an interference, which
varied strongly with angle of attack. As determination of
the angle of attack effects on the plume-simulation is one
important objective, it was preferred to use the strut with-
out further modifications and accept an appreciable interfer-
ence from a strut, for which there is evidence that the in-
terference does not vary much with angle of attack within the
range investigated. It is, however, recommended that, in any
future extension of this work to higher angles of attack, a

more slender strut be used.

PPy — -
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5. PLUME MODELING EXPERIMENTS

5.1 Test conditions

The tests were carried out in the 0.5x0.5 m? S5 wind tunnel,
which operates at atmospheric stagnation pressure [11]. The
major part of the tests was accomplished at ME = 2.0 and a
corresponding Reynolds number based on the model length Re =
6x10% extended by a few tests at Mg = 3.0 and Re = 4x106.
The nozzle stagnation pressures were varied over a wide
range; the nozzle stagnation temperatures were -20° - +20°C

for air and 200-250°C for Freon.

5.2 Modeling from air to Freon

Base pressure ratios obtained for the two model cases, i.e.
weak shock modeling (nozzle, Fig. 8b) and strong shock model-
ing (nozzle, Fig. 8c¢), are most appropriately interpreted in
comparison to the prototype. Consequently the test results
presented below are compared on the basis of the correspond-
ing prototype (air) or model (Freon) pressure ratios as de-
termined by the methods of Section 3, Eqs. (4) to (9).

g = 2.0 [7] and at M = 3.0

[8] are presented in Tables 1-9, APPENDIX 1. A sample of the

The model pressures recorded at M

agreement achieved between the prototype air plume and model
Freon plume shapes is shown in Fig. 14. The Schlieren photos,
Figs. l4a,b, are seen to be nearly identical. A direct com-
parison of the essential features of the two flow fields from
photo overlays (Fig. 1l4c) shows the agreement is also satis-
factory for slipstream and plume geometries for the entire

near wake region.
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Shown in Figs 15 and 16 is the base pressure ratio PB/PE
versus the Freon jet stagnation pressure POI as measured in
the settling chamber of the nozzle. For the weak shock
modeling nozzle, the plume surface Mach numbers are in some
cases at the higher stagnation pressures so high that, com-
bined with the temperature loss in the model and its support,
condensation has been found to occur in some tests and those

points are flagged in Fig. 15.

Transformation of the air prototype results into the Freon
model plane are shown for comparison. The base pressure
results are also presented with the Freon model results
transformed into the air model plane, versus stagnation pres-
sure in Fig. 17 and versus lip pressure in Fig. 18 and the
design points are identified. The agreement between proto-
type and model experiments for base pressures is satisfactory
not only for the design point but also for a rather wide

range of off-design conditions.

Also shown are a few results for the Freon nozzles run with
air to illustrate the shortcomings of retaining nozzle simil-
arity. Slope modeling of these results gives reasonable
correspondence to the prototype data but at effectively much
lower pressure ratios. At these conditions, with essentially
no separation, the radius of curvature is less important. In
contrast to the proposed technique based on distorted nozzle
geometries, very high stagnation pressures would be required
for modeling with gases of higher than prototype specific
heat ratios. This in turn would restrict experimentation to
lower than ambient base pressures in accordance with the

limitations anticipated and stated in Reference [17].

The separation locations S/D for the air (prototype) and

Freon (model) nozzles are shown as a function of lip pressure
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in Fig. 19. For the separation location the weak shock
nozzle provides the best correlation, particularly near the

design pressure ratio.

Some tests at off-design free stream Mach number conditions
were undertaken to gain insight into the range of applicabil-
ity of the plume deflection angle-radius of curvature (shape)
model method. Thus while the nozzles were designed for ME =
2.0 free stream condition tests were also run at ME = 3.0.
Fig. 20 shows the base pressure, which can be seen to be
satisfactory particularly in the lower base pressure regime.
The more sensitive separation distance as, however, shows

poorer correlation (Fig. 21).

5.3 Modeling from Freon to Air

5.31 Zero angle of attack tests

Base pressure ratios measured for the Freon (prototype) and
the air (model) nozzles versus the jet stagnation pressure
POI as measured in the settling chamber of the nozzle are
shown in Fig. 22. A detailed study of the internal flow in
the low Mach number air nozzle (see Fig. 8b) revealed that
the baffle upstream of the nozzle had at this Mach number not
been sufficiently effective in smoothing out the stagnation
pressure distribution and that the stagnation pressure meas-
ured by the installed probe was not representative of the
average stagnation pressure over the nozzle exit area. The
stagnation pressure results presented in this report have
been corrected correspondingly. It was also established that
the exit plane Mach number distribution was distorted. The

average Mach number over the exit area was however M = 1.41,
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which is equal to the design Mach number. This Mach number
has been used when the air jet results have been transformed

into the Freon plane.

Base pressure ratios PB/PE with the air (model) results
transformed into the Freon (prototype) plane versus stagha-

tion pressure P are shown in Fig. 23, The agreement is

o1 |p
as good as it was in the tests modeling from air to Freon.
Also shown are a few results for the Freon nozzle run with
air which as in the first test series were run to illustrate

the shortcomings of retaining nozzle similarity only.

The separation locations S/D as determined from Schlieren
photographs for the Freon (prototype) and air (model) nozzles
are shown versus lip pressure in Fig. 24. The agreement is
satisfactory for the design point and for a rather wide range

of off-design conditions. It should be pointed out, however,
that at the design condition the prototype operates with a
rather limited afterbody separation and that therefore this

might not be a severe test case.

5.32 Effects of small angles of attack

Base pressure ratios PB/PE versus stagnation rressure POIIP
at different circumferential angles ¥ and angles of attack
« are presented for Freon (prototype) in Fig. 25 and for air
{model) rozzles in Figs 26 and 27. The effect of angle of
attack on the base pressure evaluated as the pressure dif-
ference A(P,/P.) = (PL/P.) ~ (Pb/PE)a=0 at the stagnation

pressure P = 0.75 MPa 1is shown versus angle of attack in

01 lP

.




25

Fig. 28 for the three nozzles. It can be seen that the
effect of angle of attack obtained with the Freon (prototype)

nozzle is simulated satisfactorily with the air (model)

nozzles.

Shown in Fig. 29 is the separation location S/D at the cir-
cumferential angle of ¢ = 0O versus jet stagnation pressure
POIJP for the Freon (prototype) and air (model) nozzles at
different angles of attack. A comparison of the separation
location S/D for three nozzles at the design pressure POIJP =
1.0 MPa is presented in Fig. 30. It can be seen that the
agreement is reasonably good within the angle of attack range

investigated.

5.33 Effects of fins at zero angle of attack

Shown in Fig. 31 is the base pressure ratio PB/PE for Freon
(prototype) and air (model) nozzles versus jet stagnation

pressure P with and without fins at zero angle of attack.

The four fgis are at ¢ = #45° and ¥ = +135°. The base
pressure shown is measured at ¢ = 0. It can be seen that
the effect of the fins is small but noticable for this
configuration. The effect of the fins obtained with the
Freon (prototype) is satisfactorily simulated by the air
(model) nozzles, both the magnitude of the deviation and the
cross-over base pressure. An oil flow picture showing the
disturbance of the afterbody boundary layer flow induced by

the fins is shown in Fig. 32.




Dkt ottt

g

26

5.4 Plume modeling experience

The modeling methodology [9, 21] examined during this study
has been shown to correlate wind tunnel tests successfully
for propulsive nozzles using either low or high specific heat
ratio prototype gases and with the converse model gas. The
utilization of a wide base of experimental data using cold
air as the propulsive gas gathered over many years made the
initial modeling from air (prototype) to Freon (model) the
lagical test sequence. Completion of the test program with
modeling from a low gamma (Freon with y = 1.16) to high gamma
(air, vy = 1.40), the normal wind tunnel problem, provided a
broader base of support for the wider validity of the method-
ology. Modeling from low to high gamma values, however,
introduces difficulties particularly for wind tunnel testing
in that modeling leads to nozzles that have lower exit Mach
numbers and smaller exit angles than the prototype. The
design point operating pressure ratio is also smaller but
this is advantageous since it reduces the need for high pres-
sure instrumentation and equipment. For prototypes with low
supersonic Mach number exit values, M < 2.50 and exit angles
of less than approximately 15 degrees and combustion gas

(y ~ 1.16 to 1.18) to air modeling, the model nozzles for
base pressure simulation have exit Mach numbers near unity
and exit angles near zero degrees. These types of nozzles
raise a number of severe problems for wind tunnel testing due
to the large throat sizes in relation to exit area which when
combined with internal model instrumentation and construction
requirements may make them practically impossible to be util-
ized. Further, the internal model propulsion gas flow field
coupled with the large throat may also lead to unsatisfactory
exit plane Mach number distributions and poor quality of the
plume compared to the prototype. See, e.g., the difficulties

described in Section 5.31.
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Fortunately, however, off-design operating conditions have
been shown to provide excellent results due to the closeness
of the plume curvature (relaxed constraint) if initial slope
correlation is retained. Selection of a higher prototype
design point pressure ratio leads to increased model exit
Mach number and exit angle, which coupled with the range of
applicability of the modeling results on either side of the
design point using slope correction can allow for satis-
factory testing even for apparently difficult prototype con-
ditions. 1In severe conditions, actual prototype geometries
and Freon or other suitable gases may be required rather than
modeling. Consequently, the Freon hot gas facility retains

importance beyond the current studies.

6. CONCLUSIONS

The hot gas facility and the test program reported on in this
and previous reports have provided a capability and a solid
data base on which to evaluate jet plume modeling. A careful
analysis of the system performance and experimental results
obtained allows the formulation of the following conclusions

and recommendations.

1. The hot gas facility constructed to determine the
validity of propulsive nozzle modeling successfully

meets its design objectives.

2. While allowing testing with Freon as a combustion pro-
duct simulant, y = 1.16, the hot gas facility retains
its usefulness in being able to test with a variety of
gases over a wide range of pressure ratios and is thus

an extremely flexible research and development tool.

3. The modeling methodology concept of similar plumes as

determined by radius of curvature and initial slope

with proper consideration of plume pliability at the
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design condition for prototype and modeled nozzles
successfully correlates both base pressures and flow

separation in the vicinity of the base.

Design point conditions can be selected to represent
conditions from the base pressure to large exiernal
flow field separation depending on their relation to

the vehicle operating conditions.

It is possible to relax the radius of curvature con-
straint while relating initial expansion angle and
still successfully model and correlate results in the

vicinity of the design point.

Tests carried out using prototype and modeled nozzles
designed for a free stream of Mach number 2.0 showed
excellent agreement for base pressure and extent of
afterbody separation for both airlprototype to

Freon! and Freonl to air

model model | prototype

The Mach number 2.0 tests showed that the modeled
results were good over a range of pressure ratios

extending on either side of the design condition.

Limited tests at small angles of attack (-6°< a« < +6°)
and with external disturbances in the vicinity of the
base plane (fins) appear to support the modeling scheme

for more complex flow field geometries.

Tests at Mach number 3.0 using the same nozzles design-
ed for and tested at Mach number 2.0 show that reten-
tion of the initial expansion angle matching produces
acceptable results for base pressure but poor correla-
tion of separation distance. The latter may be ex-
plained by the increasing importance of plume curvature

for large separated regions.

When modeling from low specific heat ratio prototypes
to high specific heat ratio models, it may be necessary

to place restrictions on the practicality of the model
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nozzles for testing due to the low lip Mach number and
small exit angles required. This is particularly true
for prototype nozzles with low supersonic exit Mach
numbers and/or small exit angles. However, the exist-
ence of a wide range of applicability of the modeled
nozzles throuch initial plume slope retentions allows,
to some degree, this difficulty to be circumvented
through the use of nozzles designed for higher operat-

ing pressure ratios.

11. Tests with complex and inter-related flow fields such
as occur at larger angles of attack (vortex generation
and separation) and with control surfaces (multi-dimen-
sional flow separation geometries) should be carried
out to determine the range and validity of the modeling
methodology into the regimes where wind tunnel testing
is the only available tool for examining vehicle per-

formance characteristics.
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Figure 4. Flow configuration for plume induced separation
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b) Weak shock modeling. M =3.90; 6 =19°79.
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Figure 9. Nozzles modeling from Freon to air (a) Prototype nozzle

(Freon 22, Ap=1.16). (b,c) Model nozzles (Air, Ay=1.4)
(Dimensions are in millimeters)
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a) Run 35261 Air My =2.5; O =10: P /Pp=6.0.

b) Run 35352 Freon 22 M; =3.90; O, =19.76; Por =13.10 MPa.
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-——= 135352

c) Flow field overlay:

Figure 14. Comparison of plume shape from Schlieren photos.
ME=2'O; a=0. (Weak shock modeling)
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Figure 15. Base pressure PB/Pg versus jet stagnation pressure
3 Por for Freon nozzle (Weak shock modeling, Model
nozzle Figure 8b).
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Figure 16. Base pressure Pp/PE versus jet stagnation pressure

Pg1 for Freon nozzle (Strong shock modeling, Model
nozzle Figure 8¢),
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Design Condition Weak Shock
Modeling, Nozzle of Fig.8b

Design Condition Strong Shock
Modeling, Nozzle of Fig.8c
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Prototype Stagnation Pressure, Py|p (MPa)

Figure 17. Base pressure ratio for Air (prototype) and Freon (model)
tests versus prototype (Air) Nozzle stagnation pressure.
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Figure 18, Base pressure versus lip pressure. Comparison
of air prototype with Freon models.
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Figure 19. Separation location vs lip pressure for air (prototype)
and Freon (model) Nozzles.
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Figure 20. Rase pressure versus jet stagnation pressure.
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Figure 21. Separation location versus jet stagnation pressure.
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- Figure 22. Base pressure ratio for Freon (prototype) and Air (model)
tests versus nozzle stagnation pressure.
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Mg =20

O Freon prototype
O Air weak shock

modeling
A Air strong shock
modeling
0.6 - T o
Freon nozzle
Design with alr
__¢ point
T T T T ¥ T ) T
5 6 7 8 9 10 1R 1.2
Poilp  MPa
Eigure 23. Base pressure ratio for Freon (prototype) and Air (model)
tests versus nozzle stagnation pressure in prototype plane.
0.40 S
S
D
0.20 -
Design point
T T T 1 1
1 2 3 3 S PL/PElp
Figure 24.

Separation location vs lip pressure for Freon (prototype)
and Air (model) nozzles.
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Figure 25. Base pressure ratio Pg/Pg for Freon (prototype) versus
stagnation pressure Ppy; at different circumferential
angles ¢ and angles of attack a.
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Figure 26. Base pressure ratio Pg/Pp for Air (model, weak shock mo-
deling) versus stagnation pressure Por|p in prototype plane
at different circumferential angles ¢ and angles of attack a.
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A(Pg/Pg) = (Pg/Pg)q - (Pg/PE)g=0 versus angle of attack at
stagnation pressure Por|p=0.75 MPa and Mg=2.0.

, Mg = 2.0
o
0.6‘] <V> :: :ge} windward
! oa= 0
: 2 :: g.} leewar
1.2
1.01
0.87
s T A T T
cs 1.0 1.5 20 25 Pylp  MPa
Por= 1.0 1.0 10 1.0
for 9= O 30° 60° 90°
Figure 27. Base pressure ratio Pg/Pgp for Air (model, strong shock
modeling) versus stagnatiou pressure P01|p in prototype
plane at different circumferential angles ¢ and angles
of attack a.
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Figure 28, Effect on base pressure ratio of angle of attack
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Figure 29. Separation location §S,D versus jet stagnation pressure

for Freon (prototype) and Air (model) nozzles.
ME=2.0; ¢=0.

0.4 &

——— Freon (prototype)
——=— Air {model, weak shock] |
—.— Air [model, strong shock)

Figure 30. Separation location S$/D at ¢ =0 and at design pressure

Por|p=1.0 MPa versus angle of attack for Freon (prototype)
and Air (model) nozzles. Mg=2.0
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fa
PE ‘pzo
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107 O Freon prototype
O Air weak shock modeling
0.84 A Air strong shock modeling

without fins

{ —— with - -
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T T 1

03 1.0 Po MPa 1.5

Figure 31. Base pressure ratio Pg/Pg for Freon (prototype) and
Air (model) nozzles versus jet stagnation pressure Pgp
with and without fins.

Figure 32. O0il flow pictures of the boundary layer flow with and
without fins., Mg=2.0; a=0; Air nozzle (strong shock
modeling) Ppp=0.5 MPa
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APPENDIX 1. TABLES OF BASIC TEST DATA,
MODELING FROM AIR TO FREON

Table ME ML @L Test gas
1 2.0 2.5 10 Air
2 2.0 2.5 20 Air
3 2.0 3.90 19.76 Freon
4 2.0 3.90 19.76 Air
5 2 3.19 14.19 Freon
6 2.0 3.19 14.19 Air
7 3.0 2.5 10 Air
8 3.0 3.90 19.76 Freon
9 3.0 3.19 14.19 Freon
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APPENDIX 2. TABLES OF BASIC TEST DATA,
MODELING FROM FREON TO AIR
: _
Run Nozzle Test Gas Angle of With 1
No M, 01, Attack a Fins !
S R U S——
5504 2.6 15 |  Air 0 3 No |
5507 Freon i |
| 5508 | ,
5510 ! Yes
5511 ; | |
5514 | -3 No
5517 J . -6 { |
5520 +3 ’
5523 | +6 1 ‘
5538 2.03 10.5 Air 0 l Yes
5540
5541 No
5542
5544 -3
5547 -6
5548 +3
5550 +6
5562 1.41 3.07 0 Yes
5563 l
5564 No
5565 \
5569 -3
5571 -6
5573 +3
5575 L T +G

A
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