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ABSTRACT

The results of observational studies are often disputed because of

nonrandom treatment assignment. For example, patients at greater risk may be

overrepresented in some treatment groups. This paper discusses the central

role of "propensity scores" and "balancing scores" in the analysis of

observational studies. The propensity score is the (estimated) conditional

probability of assignment to a particular treatment given a vector of observed

covariates. Both large and small sample theory show that adjustment for the

scalar propensity score is sufficient to remove bias due to all observed

covariates. Applications include: (1) matched sampling on the univariate

propensity score which is equal percent bias reducing under more general

conditions than required for discriminant matching, (2) multivariate

adjustment by subclassification on balancing scores where the same subclasses

are used to estima te treatment effects for all outcome variables and in all

subpopulations, apd (3) visual representation of multivariate adjustment by a

two-dimensional plot.
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THE CENTRAL ROLE OF THE PROPENSITY SCORE

IN OBSERVATIONAL STUDIES FOR CAUSAL EFFECTS

Paul R. Rosenbaum and Donald B. Rubin

1. DEFINITIONS

An experiment is defined as a comparison of several treatments, any one

of which may be given to or withheld from any of N units (e.g., medical

patients) under study. Inferences about the effects of treatments involve

speculations about the effect one treatment would have had on a unit which, in

fact, received some other treatment. In a series of papers, Rubin (e.g.,

1978) formalized this concept in a way consistent with that traditionally used

in the literature of experimental design (e.g., Fisher (1953) and Kempthorne

(1952)). suppose there are only two treatments 1 and 2. In principle, the

ith of the N units under study has both a response rli that would have

resulted if it had received treatment 1, and a response r 0i that would have

resulted if it had received treatment 2. In this formulation, causal effects

are comparisons of r i and r0i (e.g. r i - r0i or rli/r 0 i). Since each

unit receives only one treatment, either r i or r 0i is observed, but not

both, so comparisons of r i and r0i imply some degree of speculation. In

a sence, estimating the causal effects of treatments is a missing data

problem, since either rli or r0i is missing.

The above formulation contains some implicit assumptions. For example,

the response rt, of unit i to treatment t might depend on the treatment

given to unit j, if tor example, they compete for resources. Such a
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situation complicates not only the analysis, but the definition of the causal

effect as well. Such problems are not considered in this paper. For a fuller

discussion, see Cox (1958, chapter 2) or Rubin (1978, section 2.3).

In this paper, the N units in the study are viewed as a simple random

sample from some population, and the average treatment effect is defined as

E(rI) - E(r 0 ) (1.1)

where E(°) denotes expectation in the population. In large randomized

experiments, the results in the two treatment groups may often be directly

compared because the units in the two treatment groups are likely to be

similar, whereas in nonrandomized experiments, such direct comparisons may be

misleading because units exposed to one treatment generally differ

systematically from the units exposed to the other treatment. Cox (1981, p.

291) has observed that there is a need for further discussion of observational

studies with particular emphasis on bias isolation and removal.

For the ith patient of N patients in the study (i=1,...,N), let zi

be the indicator for treatment assignment, with zi = 1 if unit i is

assigned to the experimental treatment, and zi = 0 if unit i is assigned

to the control treatment. Let xi be a vector of observed pretreatment

measurements or covariates for the ith unit; all of the measurements in x

were made prior to treatment assignment, but x may not include all

covariates used to make treatment assignments.

Suppose each unit can be assigned a scalar "balancing" score b(x) such

that, at each value of the balancing score, the distribution of the observed

covariates x is the same for the treated and control units; that is, suppose

b(x) exists such that, in Dawid's (1978) notation,

zl I b(x)
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Then, at each value of the balancing score, the difference between treatment

and control means on the response r is unconfounded with x, although it

may be confounded with unobserved covariates.

We prove that such a balancing score always exists, and then show that

easily obtained estimates of the balancing score behave like balancing scores;

indeed, in sections 3.3 and 4.2 we find that an estimated balancing score can

produce greater sample balance than population balancing score. Moreover, in

section 4 we see that common methods of adjustment in observational studies --

including covariance adjustment, and discriminant matching (Cochran and Rubin,

1973) -- implicitly adjust for an estimated balancing score.

In order to motivate formally adjustment for a balancing score, we must

consider the sampling distribution of treatment assignments. Let the

conditional probability of assignment to treatment one, given the covariates,

be denoted by

e(x) = p(z = 1 x) (1.2)
n z. 1-z.

where we assume P(z 1,.,z n = e(xi ) (1 -e(xi)) I

1 ~Zn I i=I i-

Although this strict independence assumption is not essential, it simplifies

notation and discussion. The function e(x) is called the propensity score,

that is, the propensity towards exposure to treatment one given the observed

covariates x.

Randomized and nonrandomized trials differ in two distinct ways. First,

in a randomized trial, zi has a distribution determined by a known random

mechanism; therefore, in particular, the propensity score is a known function:

there exists one accepted specification for e(x). In a nonrandomized

experiment, the propensity score function is almost always unknown: there is

not one accepted specification for e(x); however, e(x) may be estimated from
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observed data, perhaps using a model such as a logit model. To a Bayesian,

estimates of these probabilities are posterior predictive probabilities of

assignment to treatment 1 for a unit with vector x of covariates.

The second way randomized trials differ from nonrandomized trials is

that, in a randomized trial, x is known to contain all covariates that are

both used to assign treatments and possibly related to the response (r11,

r0i). More formally, in a randomized trial, treatment assignment zi and

response (r1i, r0i), are known to be conditionally independent given xi'

(rii, r01 z i  x 1 (1.3)

Condition (1.3) is usually not known to hold in a nonrandomized experiment.

Generally, we shall say treatment assignment is strongly ignorable given a

vector of covariates v if

r i, r 01 l zi  v i "
For brevity, when treatment assignment is strongly ignorable given the

observed covariates x (i.e., when (1.3) holds), we shall say simply that

treatment assignment is strongly ignorable. (Note that if treatment

assignment is strongly ignorable, then it is ignorable in Rubin's (1978)

sense, which only requires that the probabilities be evaluated at observed

outcomes; however, the converse is not true since strongly ignorable implies

the relationship among probabilities must hold for all possible values of the

random variables.)

-4-
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2. LARGE SAM4PLE THEORY

This section presents four theorems whose conclusions may be summarized

as follows.

(1) The Propensity score is a balancing score.

(2) Any score which is "finer" than a propensity score is a balancing score.

(3) If treatment assignment is strongly ignorable given x, them it is

strongly ignorable qiven any balancing score.

(4) At any value of a balancing score, the difference between the treatment

and control means is an unbiased estimate of the average treatment effect

at that value of the balancing score if treatment assignment is strongly

ignorable.

The results of this section treat e(x) as known, and are therefore

applicable to large samples. The effects of estimating e(x) in small

samples are considered in section 3.

Theorem 1

Treatment assignment and the observed covariates are conditionally

independent given the propensity score, that is

zllx I #-(x)

The above theorem is a special case of the Theorem 2, and so no separate

proof is given. However, Cochran and Rubin (1973) proved this general result

in the special case of multivariate normal covariates x; the result holds

regardless of the distribution of x.

Theorem 2

Let h (x) he a (possibly vector valued) function of x which is finer

than e(x) in :he same sense that e(x) = f(h Wx) for some function f(l).

Then

z __x I b*(x) .(2.1)



In particular, if b (x) is scalar valued, then (2.1) asserts thtt b (x) is

a balancing score.

Proof: It is sufficient to show

p(z=1 I x) = p(z=1 j b (x))

Recall that, by definition, e(x) = p(z= 1 lx) . Now

p(z=l I b (x) = c)

f p(z= I x) P( Ilb (x) =c)dx
x:b (x)=c

= e(x) *f p(x (x) = c)dx

x:b (x)=c

= e'x)

= p(z=1 j x)

as required. //

Theorem 1 implies that if a subclass of units or a matched treatment-

control pair is homogeneous in e(x), then the treated and control units in

that subclass or matched pair will have the same distribution of x. Theorem

2 implies that if subclasses or matched treatment-control pairs are

homogeneous in both e(x) and certain chosen components of x, it is still

reasonable to expect balance on the other components of x within these

refined subclasses or matched pairs. The practical importance of Theorem 2

beyond Theorem I arises te-caui'se it is sometimes advantageous to subclassify or

match not only for e(x), but for other components of x as well; in

particular, such a refined procedure may be used to obtain estimates of the

average treatment effect in subpopulations defined by components of x,

(e.g., males, females).
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Theorem 3, below, is the key result for showing that if treatment

assignment is strongly ignorable then adjustment for a balancing score b(x)

is sufficient to produce unbiased estimates of the average treatment effect

(1.1).

Theorem 3

If treatment assignment is strongly ignorable given x, then it is

strongly ignorable given the balancing score b(x); that is,

(r1 , r0) II z I
implies

(r, r) II z I b(x)

Proof: By assumption

p(r i, r0 , z, x) =p(r, r0 I)p(z I)P(X)

which equals

p(rI, r0  x)p(z I b(x))p(x)

since b(x) is a balancing score. Then

p(r1 , ro, z I b(x) = c)

f p(r, r )p(z b(x) c)p(x)dx
1 0 ~~

x:b(x)=c

= p(z I b(x) = c) f p(r1 , r0  x)p(x)dx
x:b(x)=c

= p(z I b(x) = c)p(r I, r0  b(x) = c)

as required. //

We are now ready to relate balancing scores and ignorable treatment

assignment to the estimation of treatment effects.
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The response rt to treatment t is observed only if the unit receives

treatment t (i.e., z = t). Thus, if a randomly selected treated unit

(z = 1) is compared to a randomly selected control unit (z = 0), the

expected difference in response is

E(rI I z = 1) - E(r0 I z = 0) * (2.2)

Expression (2.2) does not equal (1.1) in general because the available samples

are not from the marginal distribution of rt, but rather from the

conditional distribution of rt given z = t. In other words, in general,

randomly selected units cannot act as controls for one another; i.e. the

expected difference in their responses does not generally equal the average

treatment effect.

Suppose a specific value of the vector of covariates x is randomly

sampled from the entire population of units--both treated and control units

together--and then a treated unit and a control unit are found both having

this value for the vector of covariates. In this two step sampling process,

the expected difference in response is

Ex[E(r 1  , z = 1) - E(r 0 j x, z = 0)) , (2.3)

where E denotes expectation with respect to the distribution of x in thex

entire population of units. If treatment assignment is strongly ignorable,

that is if (1.3) holds, then (2.3) equals

E (E(rI  E(r0 I x)]

which does equal the average treatment effect (1.1). In other words, with

strongly ignorable treatment assignment, two units with the same x but

different treatments can act as controls for one another; i.e., the expected

difference in their responses equals the average treatment effect. This

formal observation is due to Rubin (1977), although it is implicit in earlier

discussions of experimental design (e.g., Cox, 1958, Chapter 2).
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Now suppose a value ot a balancing score b(x) is sampled from the

entire population of units and then a treated unit and a control unit are

sampled from all patients having this value of b(x), but perhaps different

values of x. Given strongly ignorable treatment assignment, it follows from

Theorem 3 that

E(r I b(x), z = 1) - E(r 0  b(x), z = 0)

E(r] I b(x)) - E(r 0 I b(x))

from which it follows that

Eb(x)[E(rl I b(x), z = 1) - E(r0 I b(x), z = 0)]

= b(x) [E(r1 b(x)) - E(r0  I b(x))] (2.4)

= E(r - r0 )

where Eb(x) denotes expectation with respect to the distribution of b(x)

in the entire population. In words, under strongly ignorable treatment

assignment, units with the same value of the balancing score b(x) but

different treatments can act as controls for each other, in the sense that the

expected difference in their responses equals the average treatment effect.

The above argument has established the following theorem.

Theorem 4.

Suppose treatment assignment is strongly ignorable. Suppose further that

a group of patients is sampled using x such that (1) b(x) is constant for

all patients in the group, and (2) at least one patient received each

treatment. Then, for these patients, the expected difference in treatment

means equals the average treatment effect at that value of b(x); that is,

E(r I  b(x), z = 1) - E(r 0 b(x), z = 0)

E(r I  - r0  1 b(x))
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3. PRACTICAL ISSUES IN THE USE OF BALANCING SCORES

In practice, homogeneous subclasses and exact matches on balancing scores

are difficult to obtain, and moreover the balancing scores must be estimated

from the data. This section considers three practical issues: the effects of

imperfect control for balancing scores; models for the propensity score

e(x); the effects in small samples of using an estimated balancing score.

3.1 Consequences of Imperfect Control for Balancing Scores

Since it is generally difficult in practice to find treated and control

units for comparison with exactly the same value of the propensity score,

units with similar but not identical values of the propensity score may be

required. Theorem 5 below shows that if e(x) is a close approximation to

e(x) then subclassification on e(x) almost balances x. For example,

e(x) might be a continuous function of continuous x, whereas e(x) might

be a discrete approximation to e(x) used to define a few subclasses within

which e(x) is constant.

Theorem 5

Suppose 1e(x) - e(x)I < C for all x. Then

Ip(z, xle(x)) - p(zle(x))p(xje(x))I < 2C for all x

Proof: Since

Ip(AIB,C) - p(AIC)i

> Ip(AIB,C) - p(AIC)I p(BIC)

= Ip(A,BIC) - p(AIC) p(BIC)l

it is sufficient to show that

Ip(z=1ll) - p(z=1lf(x))t < 2C

Now, pick an x, and let c be the value of e(x). Then

lp(z=t1 ) - p(z=1l;(X) = c)l

= Ie(W9 - _ I p(z=1Ij)p(vlj(v) = c)dvl
v:e(v)=c
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Ie(x) e(x) + f Ie(v) - e(v)]p(vle(v) =c)dvl

v:e(v)=c

< 2e as required. /

3.2 The Form of the Propensity Score Under Various Models

Often the propensity scores e(x) must be estimated from available

data. Therefore, it is convenient to note that the propensity score has

familiar forms under certain familiar models; in particular, the propensity

score can often be modelled using an appropriate logit model (Cox (1970)) or

discriminant score.

Clearly,
p(z = 1)p(x I z = 1)

e~x)= pz =I Ix) =
e(x) p(z = - p(z = 1)p(x I z = 1) + p(z = 2)p(x I z = 0)

Elementary manipulations establish the following facts.

1. It p(x I z = t) = N (t' E) then e(x) is a monotone function of
-p 

the linear discriminant xT E -(I -1 2 ). Therefore, stratification or

matching on e(x) includes discriminant matching as a special case. This

method was first proposed by Cochran and Rubin (1973), and was studied further

in Rubin (1976, 1979, 1980).

2. If p(x I z = t) is a polynomial exponential family distribution,

i.e., if

P(XI z = t) = h(x)exp(Pt(x))

where P (x) is a polynomial in x of degree k, say, then e(x) obeys a

polynomial logit model

e(x)(z=)
log -e(x) = lg P (x) - P Wxe -e(x) = lge 1 1 -p(z 1) 1 - 2-

P(z = 1)
-1p(z = )

-11-



where Q(x) is a degree k polynomial in x.

This polynomial exponential family includes the linear exponential family

(resulting in a linear logit model for e(x)), the quadratic exponential

family described in Dempster (1971), and the binary data model described in

Cox (1975).

3.3 Small Sample Theory for Discrete x

This section demonstrates that subclassification on a sample estimate

Ae(x) of the propensity score e(x) produces sample balance, that is balance

in terms of the sample or empirical distributions. Although the theorems of

this section are formally correct without any assumption about x, they are

of practical value only when x is discrete.

The observed treatment assignments and covariates are zj' xi,

i = 1,...,n. For conditions A, B, C, ... , let #(A, B, C, ...) be the

number of vectors (z., xi) which satisfy all of A and B and C and

For example, #(z=1, x = (1,0)) is the number of vectors (zi, !i )

such that z. = 1, x = (1,0). Define the sample conditional proportion
1-i

p(AIB) by

prop(AIB) #(A,B) if #(B) lk 0=#(a)

and leave prop(AIB) undefined if #(B) 0.

Estimate e(x) by *(a) = prop(z=1 I x = a). If e(a) = 0 or 1 then

all units with x = a received the same treatment. Theorem 1', which

Aparallels theorem 1, shows that at all intermediate values of e(a), that is

AA

for e(a) G (0,1), there is balance.

Theorem 1'. Suppose e(a) Q (0,I). Then

prop(zb, x = a ^e(x) = ^e(a))

prop(z-b ^(x) ^a)) pra)(x-a e~(x) =(-))

-12-



Proof: Since if #(B,C) 0, then

Iprop(AIB,C) - prop(AIB)l prop(BIC)

I#(A,B,C) #(A,B)I #(B,C)
#(B,C) #(B) #(B)

= #(A,B,C) #(A,B)#(B,C)
#(B) #(B)#(B) I

= Iprop(A,CIB) - prop(AIB)prop(CIB)l

it is sufficient to show

prop(z=11x=a) = prop(z=lex) =(a))

Now,

prop(z=lI¢x) = c) =A prop(z=lIx=d)prop(x=d(x) = e(d))
d: e(d)=c

= prop(z=lIx=d) A prop(x=d() =(d))
-- d : (d)=c

= prop(z=l-x=d)

as desired. //

Similar theorems and proofs about sample balance parallel theorems 2 and

A* A5. In particular, in parallel with theorem 5, if e (x) is close to e(x)

for all x, then there is nearly sample balance at each value of e _(x). For

example e*(x) might result from a logit model which closely fits the sample

data.

-13-



4. THREE APPLICATIONS OF PROPENSITY SCORES TO

OBSERVATIONAL GROUPS

The general results that we have presented suggest that, in practice,

adjustment f or the propensity score should be an important component of

analysis of observational studies, because evidence of residual bias in the

propensity score is evidence of potential bias in estimated treatment

effects. we conclude with three examples of how propensity scores can be

explicitly used to adjust for confounding variables in observational

studies. The examples involve the three standard techniques for adjustment in

observational studies noted by Cochran (e.g., 1965) and summarized by Rubin

(1981), namely, matched sampling, subclassification, and covariance

adjustment.

4.1 The Use of Propensity Scores to Construct Matched Samples

from Treatment Groups

Matching is a method of sampling from a large reservoir of potential

controls to produce a control group of modest size in which the distribution

of covariates is similar to the distribution in the treated group. Some

sampling of the control reservoir is often required to control costs

associated with measuring the response, for example, costs associated with

extensive follow-up of patients in clinical studies.

Although -there exist model-based alternatives to matched sampling (e.g.

covariance adjustment on random samples), there are several reasons why

matching is appealing.

1. Matched treatment and control pairs allow relatively unsophisticated

researchers to immediately appreciate the equivalence of treatment and control

groups, as well as to perform simple natched pair analyses which adjust for

-14-



confounding variables. This issue is discussed in greater detail below in

subsection 4.2 on balanced subclassification.

2. Even it the model underlying a statistical adjustment is correct, the

variance of the estimate of the average treatment effect (1.1) will be less in

matched samples than in random samples since the distribution of x in

treated and control groups is more similar in matched than in random

samples. To verify this, inspect the formula for the variance of the

covariance adjusted estimate (e.g. Snedecor and Cochran, 1978, p. 368), and

note that the variance decreases as the difference between treatment and

control means on x decreases.

3. Model based adjustment on matched samples is usually to be more robust to

departures from the assumed form of the underlying model than model-based

adjustment on random samples (cf. Rubin, 1973b, 1979), primarily because of

the more limited reliance on the model and its extrapolation.

4. in studies with limited resources but large control resevoirs and many

confounding variables, the confounding variables can often be controlled by

multivariate matching, but the small sample sizes in the final groups do not

allow control of all variables by model-based methods.

A multivariate matching method is said (Rubin, 1976a,b) to be equal

percent bias reducing (EPBR) if the bias in each coordinate of x is reduced

by the same percentage. Matching methods which are not EPBR have the

potentially undesirable property that they increase the bias for some linear

functions of x. If matched sampling is performed before the reponse (r1,

r 2 ) can be measured, and if all that is suspected about the relation between

(r1 , t~ and x is that it is approximately linear, then EPBR matching

methods are reasonable in that they lead to differences in mean response in

matched samples that should be less biased than in random samples.

-15-



In section 2 we observed that discriminant matching is equivalent to

matching on the propensity score if the covariates x have a multivariate

normal distribution. Assuming multivariate normality, Rubin (1976a) showed

that matching on the population or sample discriminant is EPBR. We now show

that matching on the population propensity score is EPBR under weaker

distributional assumptions. It is assumed that the matching algorithm matches

each treated (z = 1) unit with a control (z - 0) unit drawn from a resevoir

of control units on the basis of the propensity score.

For convenience write e for the propensity score e(x). The initial

bias in x is

b = E(x I z = 1)- E(x I z = 0)

Suppose we have a random sample of treated (z=1) units and a large reservoir

of randomly sampled control units, and suppose each treated unit is matched

with a control unit from the reservoir. Then the expected bias in matched

samples is

b = E(xz 1) - EM(,Iz-o)

where the subscript m indicates the distribution in matched samples. Thus

the reduction in bias of x due to matching is

(4.1) b - b - Em(xlz=O) - E(xz=O)

Theorem 6.

For any matching method that uses e alone to match each treated unit

(z=1) with a control unit (z=2), the reduction in bias is

(4.2) b - bm = f E(xle)(pm(elz=O) - p(elz=O)]de

Proof: From (4.1) we have

(4.3) b-b =fEm(xlz=0,e)p (ez=0) - E(xlz=O,e)p(elz=0)lde

For any matching method satisfying the condition of the theorem,

(4.4) E (xjz=0,e) = E(xlz=o,e)

-16-



because any matching method using e alone to match units alters the marginal

distribution of e in the control group (z=2), but does not alter the

conditional distribution of x given e in the control group.

However, by Theorem 1,

(4.5) E(x1z=O,e) = E(xle)

Substitution of (4.4) and (4.5) into equation (4.3) yields the result (4.2). //

Corollary: If E(xle) = a + Oe for some vectors a and 0, then matching

on the propensity score e alone is EPBR.

Proof: The percent reduction in bias for the th coordinate of x is, from

equation (4.2),

[E m (e I z = 0) - E(e z = 0)]

S[E(e I z = 1) - E(e z = 0)]

which is independent of i, as required. //

Rubin's (1979) simulation study examines the small sample properties of

discriminant matching in the case of normal covariates with possibly different

covariances in the treatment groups, so the study includes situations where

the true propensity score is a quadratic function of x, but the discriminant

score is a linear function of x. Table 1 presents previously unpublished

results from Rubin's (1979) study for situations in which the propensity score

is a monotone function of the linear discriminant, so propensity matching and

discriminant matching are effectively the same. The covariates x are

bivariate normal with common covariance matrix I and bias B along the

standardized population discriminant. In the simulation, fifty treated units

are matched using nearest available matching (Cochran and Rubin (1973)) on the

sample discriminant with 50 control units drawn from a resevoir of 50R

potential control units, for R = 2,3,4; details are found in Rubin (1979).
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Assuming parallel linear response surfaces, table 1 shows that even in

the absence of additional adjustments, propensity (discriminant) matching

alone can remove most of the bias if the resevoir is relatively large.

Moreover, table 1 shows that the population and sample propensity scores are

about equally effective in removing bias, so no substantial loss is incurred

by having to estimate the propensity score. It should be noted that the

conditions underlying table I differ from the conditions underlying theorem 1

in as much as nearest available matching provides only a partial adjustment

for the propensity score since exact matches are not generally obtained.

Propensity matching should prove especially effective relative to

Mahalanobis metric matching (Cochran and Rubin (1973), Rubin (1976a,b, 1979,

1980)) in situations where markedly nonapherically distributed x make the

use of a quadratic metric unnatural as a measure of distance between treated

and control units. For example, we have found in practice that if x

contains one coordinate representing a rare binary event, then fMahalanobis

metric matching may try too hard to exactly match that coordinate, thereby

reducing the quality of matches on the other coordinates of x. Propensity

matching can effectively balance rare binary variables for which it is not

possible to adequately match treated and control units on an individual basis.



Table 1.

Percent Reduction in Bias Due to Matched Sampling

Bast-e' on the Sample and Population Propensity Scores*

Initial Bias (B)

.25 .50 .75 1.00

Ratio of Size of Propensity
Control Resevoir Score Used
to Size of Treatment for Matching
Group

2 Sample 92 85 77 67

Population 92 87 78 69

3 Sample 101 96 91 83

Population 96 95 91 84

4 Sample 97 98 95 90

Population 98 97 94 89

Assuming bivariate normal covariates with common cotr i,> .,|.ttri#
parallel lirnear responhse surfaces, sample size of 50 in treated ind control
groups. Estimated percent reduction in bias from Rubin's (1979) study. The
lartjest estimated standard error for this table is less than .03.
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4.2 Subclassification on Propensity Scores

A second major method of adjustment for confounding variables is

subclassification, in which experimental and control units are divided on the

basis of x into subclasses or strata (Cochran (1965, 1968), Cochran and

Rubin (1973)). Direct adjustnent with subclass total weights can be applied

to the subclass differences in response to estimate the average treatment

effect (1.1) whenever treatment assignment is strongly ignorable (theorem 4)

without modelling assumptions such as parallel linear response surfaces.

As a method of multivariate adjustment, subclassification has the

advantage that it involves direct comparisons of ostensibly comparable groups

of patients within each subclasses and therefore can be both understandable

and pursuasive to an audience with limited statistical training. The

comparability of patients within strata can be verified by the simplest

methods, such as bar charts of means. Since the results of observational

studies are often disputed, and since such disputes are not always confined to

statistically sophisticated participants and audiences, correct results should

be presented in a manner which is both persuasive and understandable to the

study's audience. Cox (1981, p. 291) emphasizes the importance of presenting

results in ways that are "vivid, simple, and accurate." of course, it should

be stressed that balance on observed covariates x does not imply balance on

unobserved covariates.

A major problem with subclassification, noted by Cochran (1965), is that

as the number of confounding variables increases, the number of subclasses

grows dramatically, so that even with only two categories per variable,

yielding 2P subclasses for p variables, most subclasses will not have both

treatment dnd control units. Subclassification on the propensity score is a

natural way to obviate this problem.

-20-



We now use an estimate of the propensity score to subclassify patients in

an actual observational study of therapies for coronary artery disease. The

treatments are coronary artery bypass surgery (z = 1) and drug therapy (z = 0).

The covariates x are clinical, hemodynamic, and demographic measurements on

each patient made prir to treatment assignment. Even though the covariates

have quite different distributions in the two treatment groups, within each of

the five subclasses, the surgical and drug patients will be seen to have

similar sample distributions of x.

The propensity score was estimated using a logit model for z given x.

Covariates and interactions among covariates were selected for the model using

a stepwise procedure. Based on Cochran's (1968) observation that

subclassification with five subclasses is sufficient to remove at least 90% of

the bias for many continuous distributions, five subclasses of equal size were

constructed at the quintiles of sample distribution of the propensity score,

each containing 303 patients. Beginning with the subclass with the highest

propensity scores, the five subclasses contained 234 surgical patients, 164

surgical patients, 98 surgical patients, 68 surgical patients and 26 surgical

patients, repectively.

For each of the 74 covariates, table 2 summarizes the balance before and

after subclassification. The column labeled "2-Sample" in table 2 contains F-

statistics, that is the square of the usual two-sample t-statistics for

comparing the surgical group and drug group means of each variable prior to

subclassification. The last two columns of table 2 contain F-statistics for

the main effect of treatment and for the interaction in a 2 x 5, treatments

by subclasses analysis of variance, performed for each covariate. It is

-21-



Table 2a

F-TESTS OF BALANCE BEFORE AND AFTER STRATIFICATION

2-Way Anova
Main

Variable 2-Sample Effect Interaction

1 4.4 0.0 0.7
2 18.1 0.0 0.7
3 6.8 0.0 1.4
4 25.0 0.2 0.8
5 5.3 1.0 0.9
6 7.3 2.2 1.2
7 26.0 0.2 0.3
8 10.9 1.6 0.5
9 11.6 1.2 1.0
10 6.8 0.1 1.2
11 38.4 0.4 1.4
12 9.0 0.1 2.9*
13 6.8 0.0 0.8
14 7.3 0.1 0.4
15 4.4 0.0 0.2
16 23.0 0.0 0.6
17 10.2 0.3 1.1
18 31.4 0.1 2.2
19 4.8 0.1 0.7
20 6.2 0.1 0.9
21 20.2 0.2 1.3
22 7.8 0.5 0.9
23 10.2 0.6 0.8
24 4.8 0.2 0.0
25 6.8 0.0 1.3
26 25.0 0.2 0.0
27 10.9 0.2 C.3
28 10.9 0.2 0.2
29 4.0 0.0 1.3
30 5.8 0.1 0.1
31 8.4 0.3 0.5
32 13.0 0.1 0.2
33 13.0 2.1 0.4
34 16.0 0.1 1.4
35 24.0 0.3 0.1
36 16.0 1.0 0.2
37 9.6 0.7 0.4
38 10.9 0.7 0.2
39 4.0 0.2 0.8
40 14.4 0.1 0.4
41 7.8 0.7 0.8
42 51.8 0.4 0.9
43 14.4 0.1 0.4
44 9.6 1.0 1.3
45 29.2 0.3 0.4
46 4.3 0.5 0.8
47 18.5 0.3 2.2
48 7.8 0.4 0.5
49 15.2 0.4 0.2
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Table 2b

F-TESTS OF BALANCE BEFORE AND AFTER STRATIFICATION

2-Way Anova
Main

Variable 2-Sample Effect Interaction

50 5.8 0.0 0.8
51 19.4 0.0 0.3
52 5.8 2.3 1.4
53 13.0 3.6 2.0
54 6.2 0.6 0.8
55 8.4 0.9 0.9
56 16.0 1.1 0.4
57 5.8 1.6 0.8
58 6.8 0.2 2.4
59 4.8 0.5 0.9
60 14.4 0.2 0.6
61 7.8 0.0 1.1
62 22.1 0.3 0.2
63 6.2 1.0 1.2
64 11.6 0.2 0.3
65 18.5 0.3 0.2
66 43.6 0.1 1.4
67 31.4 0.0 1.0
68 18.5 0.0 0.7
69 13.0 0.8 2.3
70 10.9 0.0 2.1
71 10.9 0.0 2.4
72 11.6 0.4 1.4
73 16.8 0.0 1.2
74 7.8 3.1 0.5
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easily seen that there is considerable imbalance prior to subclassification,

and yet within subclasses there is greater balance than would have been

expected if treatments had been assigned at random within each subclass.

Subclassification on the propensity score is not the same as any of the

several methods proposed by Miettinen (1976): the propensity score is not

generally a "confounder" score. (For example, one of Miettinen's confounder

scores is p(z=lIrz=1,5) p(z=jlx) = e(x).)

4.3 Propensity Scores and Covariance Adjustment

The third standard method of adjustment in observational studies is

covariance adjustment. The point estimate of the treatment effect obtained

from analysis of covariance adjustment for multivariate x is, in fact, equal

to the estimate obtained from univariate covariance adjustment for the sample

linear discriminant based on x, whenever the same sample covariance matrix

is used for both the covariance adjustment and the discriminant analysis.

This fact is most easily demonstrated by linearly transforming x to (d,v)

where d is the sample discriminant, and v is orthogonal to the sample

discriminant and thus has the same sample mean in both groups. Since

covariance adjustment is effectively adjustment for the linear discriminant,

plots of the responses r1i and r0 i or residuals rki rki (where ^-i riki

is the value of rki predicted from the regression model used in the

covariance adjustment) vs the linear discriminant are useful in identifying

nonlinear or nonparallel response surfaces, as well as extrapolations, which

might distort the estimate of the average treatment effect. Furthermore, such

a plot is a bivariate display of multivariate adjustment, and as such might be

useful for general presentation.
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Generally, plots of responses and residuals from covariance analysis

against the propensity score e(x) are more appropriate then against the

discriminant, unless of course the covariates are multivariate normal with

common covariance matrix in which case the propensity score is a monotone

function of the discriminant. The reason is that if treatment assignment is

strongly ignorable, at each e(x) the expected difference in response

E(rI I z=1, e(x)) - E(r0 I z = 2, e(x)) equals the average treatment effect

at e(x), namely E(r~le(x)) - E(r0Ie(x)). This property holds for the

propensity score e(x) and for any balancing score b(x), but does not

generally hold for other functions of x; generally, plots against other

functions of x are still confounded by x. Consequently, a plot of the

responses r1 , r2 or residuals against e(x) can reveal particularly

important nonparallelism, nonlinearity, or extrapolations in the response

surfaces. Since the purpose of such a plot is to reveal departures from

assumptions, some enhancement to accentuate trends in the plot will often be

necessary using, perhaps, techniques such as described by Cleveland and

Kleiner (1975).

Cases where covariance adjustment has been seen to perform quite poorly

are precisely those cases in which the linear discriminant is not a monotone

function of the propensity score, so that covariance adjustment is implicitly

adjusting for a poor approximation to the propensity score. In the case of

univariate x, the linear discriminant is a linear function of x, whereas

the propenisty score may not be a monotone function of x if the variances

of x in the treated and control groups are unequal. (Intuitively, if the

variance of x in the control group is much larger than the variance in the

treated group, then individuals with the largest and smallest x values

usually come trom the control group.) Rubin (1973b, tables 4 and 6, with
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r=, and T as the estimator) has shown that uniw riate covariancep

adjustment will either increase the bias by up to 304% or overcorrect for bias

by 298% for certain exponential response surfaces if the variances of x in

the treated and control groups differ by a 2:1 ratio. Unequal variances of

covariates are not uncommon in observational studies, since the subset of

units which receives a new treatment is often more homogeneous than the

general population. For example, in the observational half of the Salk

Vaccine trial, the parents of second graders who volunteered for vaccination

had higher and therefore less variable educational achievement (x) than

parents of control children, that is parents of all first and third graders

(Meier (1972)).

In the case of multivariate normal x, Rubin (1979, table 2) has shown

that covariance adjustment can increase the expected squared bias by as much

as 55% if the covariance matrices in the treated and control groups are

unequal; that is, if the discriminant is not a monotone function of the

propensity score. In contrast, when the covariance matrices are equal, so the

discriminant is a monotone function of the propensity score, covariance

adjustment removes between 84% and 100% of the expected squared bias in the

cases considered by Rubin (1979, table 2).
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