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ABSTRACT;     This   paper discusses the  architecture  of    a 

meta-system, which can be used to generate intelligent 

information systemsf( r different domains  of  discourse. 

It  points  cut the kl:ids of knowledge accepted    by    the 

system,  and the way the knowledge    is used to    do non- 

trivial problem solvinr. The  organization  of the system 

makes it  possible    fur it to function in the context of 

an expanding model space.    The   problem solving systems 

in the  meta system cuarnunicate with the model space in 

the  language defined for the domain.    They    have    the 

capability to improve their performance,  based on the 

knowledge gained from this comraunicatinn.    The meta- 

system provides a basis for the definition  of the concept 

of machine understanding in terms  of the  models that the 

machine can build in a domain, and the way it can use 

the models 
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1 .      INTRODUCTION 

The   Meta Description System   (MDS)      is  a system for 

describing know led v-c In a domain tc a computer.    MDS can 

be used to generate Intelligent information systems,  auto- 

matically from descrlptlcns  of knowledpe in a domain    of 

discourse.  The domain cculd be diverse  as for example. 

Medical Diäresis   [Irwin % Srinivasan 1975],       Modelling: 

Psychclorlcal Systems   [Sridharnn, Schmidt & Sridharan 

1976,  1977 3     cr Mana oment   Information System [Srinivasan 

197^]. The major application  of MDS has been so far 

In modelling  psycholu. leal systems.     A brief discussion 

of some  of the features  of MDS appears in Srinivasan 

[1973a,  I976f]. 

This  paper presents informally the  logical basis fcr 

the organization and   .-'peraticn of two  cf the major subsystems 

of  MDS;     Its  MDDEL SPACE,  and  the   problem sclving subsystem 

called,  ASSIMILATOIV"- which is responsible far the consistency 

of models  in the  MODEL SPACE.       The   ASSIMILATOli helps the 

MODEL SPACE assimilate  assertions   about models,     making 

sure that the  laws of a demain are not violated.   It is also 

responsible fcr  prcduclnr, reasons that explain why certain 

assertions are accepted,  ethers are not, and yet others are 

accepted conditionally en certain hypothses. These reasons 

and hypotheses will constitute the systems    own understanding 

* This is  a new terminology.    This subsystem was  being called 
.■mSTATIATOR-CHECKER in  previous  rep-rts. 



-2- 

of the assertions.    They also fcrm the basis for all problem 

solving and IntelUccnt  activity in MDS.    The reasons repre- 

sent chunks  of knowledge that may be used in a problem sol- 

vlnn process to guide search. 

The  organl zatlcn  and operation of the M3DEL SPACE    and 

ASSIMILATOR are central to the  MDS concept of knowledge itself, 

and its  associated nctlcai  of understandinrc. description and 

use of knowledge.    The  objective of this  paper is to present 

an operational view  cf this knowledge  as it pertains to    the 

MDDEL SPACE. 

The  basic mtdelllnr concepts  are  presented in the 

ccntext of a stylized dunain cf discourse:    Transportation 

Systems  and  Problems  like the  MISSIONARIBB &    CANNIBALS 

(M&C), FARMER & SON   (P&S),  etc.     This  is done for  rBda- 

goglcal reasons. 

In Section 1 .1   below we shall give a brief outline  of 

the central concepts in MDS,  and introduce the MDS-paradigm 

for intelligent operation,    We shall also establish the 

terminology used in the  paper. 
> 

Implementation Status  of  MDS 

There are new fewc   partially implemented versions  of  IDS, 

One is  MDS itself, which is implemented in INTERLISP.    Only, 

the so called domain acquisition    part  of is now cperaticnal. 

This accepts definitions  cf domain knowledge in 
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the Mta-Ktoguage  of PUS,  and represents therein the mod«l s^ce 

in    a form suitable fcp ccmpllatlcn and  later use.    jeel  ü'wln, 

John Ng and Tau Hsu participated    in this    implementaticn, 

together with the  author.    The second part of  MDS, namely the 

cede for the domain coinj^iler, which derives fr m  lemain defini- 

tions  procedures  appropriate    for the croatl.,.. and maintenance 

of the model space. Is new  being written. 

The  ether version cf MDS is called  ABOS,  Acti.n Inter pre- 

tfttlon MDS.     This  is ImpleiTEnted  in FUZZY   [Le Paivre  I976].  There 

are differences  between MDS and AD©S in syntax and certain  other 

definitional cenventions.    AIMDS is an interpretive version of  a 

subset of MDS.     It is now  being used fcr modelling  "belief systems". 

1 ,1 l       Central  Concepts  and the   MDS-Paradipi 

1 •'l •1 :      Relational Systems. Description 
Lan^ua/ne  and  Model Spaces. 

The  Model Space,,  ^ *  of a domain is central to the  archi- 

tecture  of  MDS,  and Its uses.    The structures  and processes in the 

model space are derived automatically by MDS from definitions  of 

a Relational System, RT.    RT itself is defined in the meta,language 

of SOS,    RT aisc forms the basis for the definition of the syntax 

and semantics  of an elementary descriptor  lan.^e.  ^    whlch 

-!_--!!l._^L-^e3Cri;e:'    CcncePts      ahd       proMems 

*      We shall through ut use the subscript T, as in Mp, to denote 
the  prctctyplc d.main. Transportation Systems. 
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(hereinafter called entitles)  m the d^am. 

:   vmamm i&xmt. ^ 
Every well-fcrmod relation t« • u relation In 1^ may cccur as a phrase 

fiuaai) tn LT. Ti!US. In cur dcraainj _ may have ^^^ 
U-     (Pl-tUnof.V'    •■(voa„„üttp)..etc.,wherepisa 

PLACE, h say, !, a HufW/ m 1E an Wlw ^ ^ a VHIIC^ 

LT ».y M.0 have, ln ajauicn, =cranand p^aso.  U.e   (^^T 

(P l«atloncf h)(h hclain . m)))   (ffl0VE((/1LL hmm h)(THfflE 

EXISTS   PUCE p)(plcat1(,1Lf h))) etc       _. 

^ " mtre   ITC;'lera •0lV»»g SyStems of  WS.   "mST^TIATE" 
1. « cc^ana to the ASSIMXUKH.     .^„j. ^   ,1GOAL„ are 

COmmandS tC the DEIQ«' "i*". " ^ soax-«^^ ffcblem 
solver  tSrlnlvaSan l976fj , 977c, _ ^^  ^^ ^ ^ 

m=y have aSSSÖÜteä,  «STWTIATE dees not.    -»ow-   ls 

a =™mand tc the THEa!EM fflovm  (TP)  fSrinivasan ,9760 
I977d#«]# 

Sentences m LT may be cf ^ types:    ^^^ 

or ft^cedura!.    The sontontlal ^^ &f ^^^ 

sentences is a variant: rf t-^ . 
Plant of the sentential structure    cf 

the  language of first ord«* i,.^o 
c orasr logto.    Examples of declara- 

tive    sentences  appear in sectirn a x  xn section 2.    These    are used    to 
express the static  laws    of n ^    ., 

 IS. iS^ of a domain:    The  laws of consis- 
tency that  any given state of the w^toi  . 
-  CI   Che model sPace should satisfy, 

3h preparation. 
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Thc  procedural sentences are used tc express the dynamic 

laws:    The laws  of change in the model space.    Every 

procedural sentence win have  at  least  one  occurrence 

of a command phrase.    Examples  of such sentences  occur 

In section 2.5.9. 

The semantics  of LT Is entirely defined  by the 

semantics  of the relations in RT.    For the relations in 

RT their semantics is defined by patterns  of interactions 

that they may have in the mcdel space:    How the consis- 

tency Gf one relation may depend  on the consistency of 

others.    The forms of definitions  of RT,  the rationale 

for their choice,  their interpretations,  and the assump- 

tions on the control structure  of the  ASSIMILATOR that 

they entail,  are all discussed in section 2. 

Representations  in the Mdel Space;  Bundles. 

The structure cf RT is also used by WS to design 

a system of representations    for models  of entities in Mj.. 

These representations are  like the   "frame " representations, 

proposed  by Minsky  [1975].    Each model is  a data-structure 

representing a bundle of interconnected  pieces of infor- 

mation, where each piece has its  own substructure.    Each 

bundle   (mcxiel) may have a name, will have references to 

itself and its definition, and will contain a set of slots. 

Each slot is used fco represent a property of the bundle. 

mmmt,       .     ^mmim 
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Each property represontatlcn win ttmml* 
wxii itself    consist of a set 

of .lot.  :    one each tar the    ^^ty ^ 

^ ValUe' to^-a, mt^OranaforEatfcn., « 

g^tm, .f tmmotim ««, other bundles ln the moäel 
space. 

Each Suoh bundXo Is a natural mlt cf ^^    ^ 

in an inte.aot.cn. wlth aher SUeh «,». ln „. Bodel ^ 

From each bundle  crm mrm      i+.  ^ 

snoae    as .TZLT ^ ' VleW Cf the entlre ^el 
Spa=e. as « pertain, te the .^    A1S0) ^ ^^ ^ 

t» rcua er attention in au WM.Mlng done to the ^ 

•«..    «. we shan See, the bundle atructnre aot ml, 

lntrCdUOeS a  ■WdU1-" ^*«» <"1*.  but .0.0. m a very 

real sense makes lntollifsnt ^„...Ing feasible.    ln 

loractlce. 

The «t .isnlfioont    as^ot  cf WS U thst the bundle 

retresentations a„d an its associated processors   J 

e.tablisbin, and m^„tainine a 00nslstent mcdel ^^ ^ 

compiled autcmatlcaiiv ; v ivrnq f^ 
i-t3   by MDS from schematic definitions of 

the structure and semantics of P        The Ccmn11^ 
nj«    me compiled procedures 

are such that for every event in ^ 
ry event in the mcdel space the system 

cc^ supply the reasons fcr the event    m ^     . 
 — *** event, in the  language LT. 

The nature of this acmrAim*4 
Ws compilatioi process is briefly ÜUtilned 

in section 2.3.2. 
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The  Model Space Lo/gLc 

The model space work» In a three-valuedLlogical system: 

T{Trvm)t   ?(Unl<nown)  and NIL(Paise), T >  ? > Nil, rji = NIL 

and /v?  = ?.    The ability to instantiate Schemas defined in 

RT, update  properties of bundles,  and do model based reason- 

ing and hypothesis generation,  is  primarily due to the use 

of the 5-valued logic.    We shall use the  phrase.   Common- 

sense reasoning, to refer to the moäel based reasoning 

done by the  ASSIMILATICJR.    Examples  of this reasoning process 

are presented in section 2.5.6 through 2.5.8. The deductive 

mechanisms used for this  process  are defined in section 5. 

1 .1 .2      The  Problem Solving Systems  of MDS 

The  ASSIMILATOR is the monitor for the model space. 

All events in the model space are initiated and directed 

by the  A3SIMILATCR.     It recognizes four kinds of commands t 

Instantiator Commands, examples  of which we saw  before; 

Recognition Commands, which are used to identify the class 

membership of a bundlej   Comparison Commands, which are used 

to test for equality of bundles;  and Retrieval Commands 

which are used to identify the  bundle or bundles associated 

with a given name or phrase in LT.    The instantiator 

commands may present  at a time  a set of relations,  all of 

which are to be instantiated in parallel.    The assimilatcr 

is responsible to translate the relations to their associated 

representations,  or modifications to representations, in the 
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mcdel space.    For example, tc  assimilate   "(p locatlcnof h)" 

it might  be necessary tc make several secondary changes m 

the model space,  m .rder to maintain consistency.    Thus-, 

If h was holding m, then the  location of m should also be 

set to p.     Also,  If h was Initially at the  place,  g, then 

~(g Iccatlcncf h) should be made true In the new model 

state.    The  ASSlMILATOR can recognize and Incorporate such 

secondary changes. 

The ASSIMILATOR does not have the domain knowledge  or 

the control structures necessary to plan and execute a 

sequence  of actions  in the model space.    Thus,  it would 

not know  that  h should  have  arrived  at  p using a VEHICLE, 

If BUOhwas She case.     ItJs the  role    of    the DESIGNER    to 

recognize  preccndltions for actions and  plan action sequen- 

ces, that seek to  achieve given goals. Thus, in response 

to   (GOAL(p locatlcnof h)) the DBSIGNEB might construct the 

sequence;    For a vehicle, v, 

(ASSERT (v holdln;i; h)) " 

(ASSERT (p locatlcnof v)) 

(ASSERT ^(v  holding   h)), 

and present to the ASSIMILATOR the corresponding actions 

one by one. The reasons supplied by the ASSIMILATOR for 

the success or failure of the actions may be used by the 

DESIGNER in the  planning process Itself,  to modify a 



-9- 

glven plan.    Thus, for example, the DESIGNER might receive 

the explanation   "^(v  locaticn is  locatlonof h)",  as    the 

roagon for the failure of the assertion   "(v holding h)". 

To correct the error the DESIGNER might choose another 

VEHICLE, Vi, which Is  at the  location  of  h,   or else  have 

v  brought tc where h Is.    Also, the next time the DESIGNER 

makes an assertion like "(v holding h)"    It would already 

make    sure    that v  and h are at the same  locatlnn.      Thus, 

the DESIGNER would have  learnt  an elementary fact  of the 

domain.    The  learned infcrmatlm wculd be summarized as a 

rule In the DESIOTER's     own  local state.    Rules   like this 

will be used by the DBSICUSR not  only to avoid repeating 

mistakes,  but also to make the right choices, wherever 

feasible.    Examples of these  processes are discussed in 

Srinlvasan  [I976f,  1 977c ].    The logical basis that makes 

It  possible to use reasons in this manner is established 

In section 5. 

The DESIGNER will attempt to plan and achieve  only 

goals that  are specified to objects that already exist in 

the model space,  or objects that are explicitly created, 

using the   INSTANTIATE   (or CREATE) commands.    The DESIGNER 

does not have the control structure necessary to direct 

and sequence through a construction process to model 

predicate expressions.    Fcr example,  the DESIGNER cannot 

prove an assertion like; 
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((ALL HUMAN h)   (THERE-EXISTS   PLACE p)(p locationcf h)). 

The THEOREM PROVER   (TP)  IS used  in MDS to prove  assertions 

like the  cne above,  assertions that hold universally true 

In a domain.    The TP uses  Geritzen's Siystem of natural 

deduction.     It uses the model space to discover the cons- 

traints that given assertions Imply.    The method of proof 

Is  like B-.th's Semantic Tableaux method  [Srlnivasan 1976c]. 

The proof is attempted by seeking to build a model for a 

counterexample.    Details  of the TP are  presented in Srlnivasan 

[I977d].    They are briefly discussed in section 5.5.3. 

These  problem sclving systems determine the scope of 

tho system's understanding for a given corpus of domain 

knowledge,     in some sense the concept of domain knowledge 

Itself seems to exist only because  of the existence of 

control structures that can do these various kinds of 

problem solving.    The capability for understanding, exhi- 

bited  by MDS  in the caitext  of those    problon solving 

systons,  forns  the basis  for lan^uapjc raiderstandin^ in MDS. 

In the realm of description languages,  LT, has  the  status 

that "assembly langtiagos" have in progranninj systons. 

Hi'jhor level descripitlon language nay bo djfined and 

processed in MDS using   the  subsysten called,  LINGUIST. 

The fornalisns and processes of tho LINGUIST will be 

ü.  .  
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dosorlbed In a future paper. 

The LMOUIST Is respcnsibie to 'translate sentences 

to phrases, that msmiLATm can understand.    A3 sh„n 

in figure 1. the  LMGUIST can use the DESIGNER and the 

TP to tMs  prcoess.    The hypotheses supplied by    the 

^SIMILATOR «111  be use(1  by the  LmauIST)  ^ ^^^ 

in the ccntext of a discourse.    The reasons for contra- 

dictions in the model space will be used to seek alter- 

nate interpretations. 

The collection of all reasons and hypotheses genera- 

ted during the aasi.Aiation of a sentence Mil represent 

the system's own understanding of the sentence. 

1.1 .3:      The_HPS  - parad-lfyn 

The M«-Paradigm ls shown in figure 1 .    it consists 

of two parts ,    The duj^n definition part and the domain 

Btlüzatlca part.    E; the domain definition part the meta- 

language of MDS is used to define RT and Lj,.    These 

definitions are translated to representations in the model 

spaeo    by the Doaaln Acäulsltlon a^tem   (This part of WS 

is now operational).    These representations of RT and Lj 

are used by the dcffialn compiler to generate code for the 

creation and maintenance of models in the model space. 

(This  part is now being coded). 

In the domam utilization part, sentences in 1^ are 

■MBa^a__.^-__ 
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DEPINITIONS    IN    THE 
META-LANGUACE  OF MDS > 

DCMAIM ACQUISITICN 
TiSTEM 
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PROCESSORS 

OF MDS 

REPRESENTATIONS       OP       LT & RT 

BUNDLE    STRUCTURES:      MODELS 
MODEL    SPACE 

Doman    Dependent    Procedures    for    the 
creation and updating of Models 

JL 

ASSIMILATOR       CONTROL 

ASSIMILATOR 

T 
Reasons & 
Hypotheses 

Phrases    in L, 
T 

^F 

Reasons & 
Hypotheses 

g 
■H 
-P i 
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c 
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DESI  GNER 

vg 
,  TP-STATE UTO-CONTROLlilltf  k TP 

-> 

L-STATE L-CONTROL 
LINGUIST 
 K  

Sentences in    Lp 

Q 

.-• 
Figure 1:        The IXS - paradigm 



.15- 

received by the  LINGUET, which Is responsible to translate 

them to phrases In LT that  ASSIMILATQR can understand.    In 
■ 

doing this translation, the LINGUIST may make use  of the 

DESIGNER and the TP.    Each one  of these  problem solving 

systems has Its  own  local state.    These  local states are 

kept updated by the respective controls  of the problem 

solving systems, wltb infcrmatlcn received from the 

ASSIMILATOR, namely the reasons  and hypotheses gererated 

by the  ASSIMILATOR In response to the  phrases at its Input. 

The  problem solving systems use the Information In their 

respective states to guide their own activities.    This forms 

the basis for learning In MDS.   

The local state c£ a problem solving system may be 

viewed as a model of the system 's  own past activities. 

I Such models may again  be themselves described schemati- 

cally in the met a- Ian; .ua^e of MDS.    Thus in MDS,  one may 

specify how a problem solver should model its own activities 

The modelling Schemas for the DESIGNER'S  problem solving 
■ 

state are discussed In Srinivasan [1977c].    For a given 

problem solver like the DESIGNER its modelling Schemas 

may be domain dependent,  or within a domain it may depend 

on types of problems.    Thus domain knowledge may appear 

in    bundles      in IVDS    at various  levels  of    the    system's 

activities:    At the    level of the    model    space    it      may 

appear as the data-base for a domain.    At the    level    of 

the LINGUIST, it may appear as definitions  of the syntax 
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of Lrp or as decision processes  associated with LINGUIST. 

In each problem solving system the bundles may appear In 

the representation of the problem solving states and In 

the decision processes of the  problem solver. 

The   logical basis for learning and commensense 

reasoning within this  paradigm is established In section 5. 

1 .2.      Relationship to other systems 

I'tS Incorporates In Its organisation many of the 

Important concepts that have  been developed In Al-systems 

over the  last two decades: 

"Means-end analysis" [Newell,  A, et.  al.  I959] Is 

used In model-space updating, and In problem solving by 

DESMERi   "Theorem proving" Is used to establish general 

assertions In the drmainj "Procedural    specifications  of 

knowledge" is used  [Hewitt I972, Wlncgrad 1975] to define 

the dynamic  laws of the domain, the  laws of change In the 

model space j   "pattern-based Invocation" of  procedures is 

used by DESlGNERi   "declarative specifications  of knowledge" 

In first  order logic  is used to describe the static   laws 

of    a domain, the  laws  of consistency that  a model space 

should satlsfyj  inowledge In the model space Is represented 

In   "frame" like  bundles. which behave like molecules in 

Interactions with each other; finally, relational systems 

are used as the basis for defining model spaces and 

^^me—Bmmmm 



-15- 

languag^s.     WS provides the  logical frame work and an 

architecture m which Ghese concepts function together. 

ms dees not seek to define yet another programming 

language  or seek to contribute to programming techniques. 

MDS is a problem solvinpr system, which   can    generate 

programs from definitions of knowledge in a domain      it 

proposes a view of knc^ledge, and provides a formalism 

for defining knowled-e.     U defining this knowledge a user 

need not concern hlnßelf with possible interactions  between 

components of his definitions, and provide procedures to 

process such interactions.    As we shall see in section 2.5.7. 

MDS itself can derive from the definitions    the procedures 

necessary to anticipate  and prcxess interactions between 

models.    Thus, the definitions themselves are modular.    We 

shall see examples of these definitions in section 2. 

WS makes a clear distinction between the model space 

and its control structures, and the control structures of 

the various  problem solving systems.    The representations 

and processes m the model space are completely independent 

of the  problem Solving systems,   like DESIGNER,  TP and LINGUIST. 

Because of the commonsense reasoning paradigm each problem 

solver is able to get from the model space new canbinations 

of domain knowledge specific to its own needs,    using these 

chunks of knowledge each problem solver may develop   its 



-16- 

cwn specific views  of the model space.    The  ability and 

efficiency of    these    Interactions between the problem 

solvers  and    the    model space    is    limited only    by the 

primitives  -- descriptive relations  -- available In the 

model space. Since the relational system determines the 

description    language    of a domain,    this    Is the same as 

saying that the  problem solving efficiency Is dependent 

on the concepts expressible In the description language. 

Thus, MDS  brings to focus the knowledge representation 

Issue as an Issue of  language design,  and not as an Issue 

of program design or data-structure design. 

Major Innovations in the MDS architecture are: 

(I) the use of relational systems as the  basis 
for the design of model spaces and languages; 

(II) The formalism used to describe knowledge,  and 
the control structures that can use the defined 
knowledge to do useful work; 

(311) The architecture  of the model space In ^-valued 
logic  and the commonsense reasoning paradigm. 

We  present In this  paper,  the  logical foundations of this 

architecture,  and establish the  basis for using IDS to do a 

variety of  problem solving activities,  activities such as 

assimilation,  goal directed  planning and  problem solving, theo- 

rem proving, recognition, understanding, etc. Details of these 

problem solving activities themselves will be discussed in 

future papers , 
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II.     IVDS  MODEL SPACE AND THE ASSIMILATOR 

2.1      IhtrLdi3inti.,p 

3h this chapter m shall introduce the  logic,  architec- 

ture, methods and uses,   and forms of definitions  of the Wfl 

model space. We shau define RT, and discuss interpretations 

given to the various components of the definitions in the mcdel 

space.    We shall pre^nt examples of LT,  and structures and 

processes in ify, that  are implied by RT. 

The definitions  of RT will contain three components; 

structural, sense and t-ran.^formational ,    Por each component 

we shall discuss the definitional forms,  and the rationale for 

the choice of the fcrms shown.    We shall also point out the 

assumptions  on the ASSIMILATOR control that they entail. 

We shall see examples  of commonsese reasoning in the 

mcdel space and the role it  plays in the maintenance of 

consistency.    The  lc;lc  of this reasoning process and the 

associated deductive mechanisms are defined in chapter HI 

2.2    Knowledge Representation; Focus  en nhi^nf.« 
and classes "    ' — 

There are two extremes in knowledge representation: One 

may be called Operator-based and the other object-based.    % 

operator-based representations  objects  are treated as uninter. 

preted formal entities, which may appear as components of a 
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maiel-state.    A model-state Itself is  described In terms  of 

how  one might arrive there,  starting from one or more dis- 

tinguished initial states,  by applying one  or more sequences 

of transformations   (Operators).    Examples  of such representa- 

tions appear in  Algebra,  Group Theory and in certain    game 

playing systems.    They are useful in situations where total 

knowledge is available, and the objects involved show certain 

closure  properties with respect to the operators. 

In WS the bias is  predominantly towards ob.ject-based 

representations.    Here operators and functions are characte- 

rized in terms  of how they affect properties of classes    of 

objects over which they may operate.    The representations 

focus  on interactions between properties of objects.    This 

kind of representativ.u leads naturally to the so called 

"frame systems".    There is no notion of model-state.    The 

model, in fact,  is  likely to be always incomplete.    Object 

based representations have several advantages.    We shall 

discuss them in the last section of this chapter.    It is 

useful to first develop an intuitive understanding for the 

nature of representations in the mcdel space and their impli-, 

cations. 

2 «5.      The Structure of Descriptions 

The constructs discussed  below cover most of modelling 

concepts in WS.    Certain aspects  pertaining to the specifications 

■■ 
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of properties of relatlcns,  relation hierarchies,  and defi- 

nitions  of tuüle and function Schemas,  as well as meta-schemas 

are not discussed.    These are defined in Srinivasan  [;i976e]. 

In what follows, we Bhall use square  brackets,   "[ " and     "]" 

to enclose tuples, chain brackets,     "( " and     "} " to enclose 

sets,  and parentheses,   "(" and   ")" to enclose collections. We 

also use  parentheses bo delimit relational fcrms and express- 

ions in LT.    So also, we use,  at times, the square brackets 

in expressions in the    way  INTERLISP uses  them,  tc indicate 

automatic  closure  of  parentheses in nested expressions.    But 

these should not cause  any confusion. 

2.3 .1 .    Description Schemas and Tempi atn.q 

We shall use descriptive relation na^es  ]dke   "locatlonof", 

"cangoto",   "candrive",   "holding", etc. to describe  properties   ' 

of objects   like  PLACES,  VEHICLES,  HUMMs,  etc.    For each such 

relation name we shall specify the clasees of objects which it 

may relate.    This will define the forms of the  literals that 

may appear in LT.    Thus, we shall say that 

[SI]     (PLACE Locatlonof   ITEMS) 

is a description schema associated with   "locatlonof".  A phrase 

like   "(x locatlonof s)" is said to be dimensicnaliv consistent 

only if x is a PLACE      and s is  an instance  of  ITEMS,  say .. 

(x1  x2...xn). Here,   (x1  x2   ... xj is called a collection, 

also at times, called a list.    We W:L11 say 



-20- 

(x  lücatlonof)   -  (x1  x2   ... x   ), 

or write this as functlcnal, 

(x  Iccatlonof   (:c,   x^   ...  x   )) 

with the Interpretation, 

(2-1) 

(2-2) 

(x Iccatlcnof x^ )  ^   (x Iccatlonof x2) ^ 

...  ^   (x Iccatlonof x  ) (2-5) 

Thus,  by convention, relatlcns distribute over collections. 

We shall caistraln the elements  of   ITEMS to be Instances  of 

HUMAN,   ANIMAL, VEGETABHE or VEHICLE.     A given Instance     of 

ITEMS  may have an arbitrary number of instances of    these , 

elements.     In MDS,  this is specified by the schema: 

[S2];      (ITEMS  elements   (HUMAN  ANIMAL VEGETABLE VEHICLE)), 

where   "elements" is  a distinguished relation of MDS:    This 

relation may appear only with classes that are sets  or 

collections   (lists). ColloetLon and sets in the  model space 

should be contrasted with nodes   like PLACE, HUMAN, etc. Every 

node is  an Individual,   "(x elements)" is dimenslonally In- 

consistent for a node, x. 

For every relation name, r, we shall define  an Inverse, 

r' such that 

((Vx)(Vy)(x r y)   <^    (yr'x)) (2-4) 

In our domain,   "locatloncf" and   "location" are Inverses  of 

each other.    To satisfy   (2-4) we may now define either, 

[S5]     (ITEMS   location  PLACE), 

.^^.  
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or fcr each possible element of  ITEMS  one may define its 

associated schema,  as fellows: 

[S4]j      {Emm location PLACE) 

[35]!        (ANIMAL   location PLACE) 

[S6];        (VEGETABLE location PLACE)  and 

[S7]:       (VEHICLE  location PLACE). 

We shall choose the second alternative.     In MDS, a schema like 

[S4] is interpreted to mean that for every HUMAN, h, there is 

only one     PLACE,   p,     such that   (h location  p).    This    is 

because PLACE is  a node,. Thus, it would be dimensionally in- 

consistent to say   (h location   (p1  p2 ))  or   (h location NIL) 

Another kind of schema definition occurs in the case  of 

the relation name,   "heldby", which is the inverseof   "holding"... 

An object can be  heldby a HUMAN or a VEHICLE.    This may be 

indicated by the Schemas: 

[S8]     (ITEI^  heldby HUMAlKyEHICLE) 

[89]     (VEHICLE holding ITEMS) 

[S10]     (HUMAN holding ITEMS) 

Here the  phrase   "HUMAN\yEHICLE" is  interpreted as   (ONEOF HUMAN 

VEHICLE).   In our domain an object can be heldby only one  object. 

Structural tohemaa like    SI    through    SIC    are declared in 

MDS by using devices called. Templates.    Each template will 

define all the Schemas associated with a given class of objects 

in the domain.    The temp_ates for PLACE and  ITEMS are shown 
below. 
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I-lGre.     "TDN:" is  the   "^mplate DeflnlticnN" command In the 

existing iraplementatl.n of MDS.    The words   W and   "|;L" 

associated re  speotlvöly with PLACE ani   ITEMS,  in the defi- 

nitions  belcw  are fl^s. that indicate special representation 

or into roret at ions  associated with the templates. The flag   "RN " 

TEMPLATfiS  FOR PLACE ANT  ITEMS g 

[TDN:   (PLACE RN) (ice at i en of  ITEMS ) ] 

[ TDN!   (IIEMS $ L) ((he Id by V) HUMAlKy EH ETLE holding) 

(elements  HUMAN VEGETABLE  ANIMAL VEHICLE)] 

defines  PLACE to be  a   Regular node" template.     It is a node, 

and it is regular in the sense that every Instance  of    PLACE 

should have  a n_a^.    Names are used in the  model space and in 

LT to denote  objects   (models)„    A model without  a name    Is 

called  a dummy, model.    The flag   'T$L" associated with ITEMS 

defines items to be  a   "dummy list".    Thus, every instance  of 

ITEMS is a Ust   (oollGction), 'and an instance, say   (x.,   x    ...x  ), 

may not have any name  associated with it.    The  only way of refe- 

rring to such an instance in LT would be via an associated rela- 

tion,  like say   (p looatlcnof), where   (p locatlonof) might be 

equal to   (^   Xg   ... xn). 

The form   "(beldby V)" in the   ITEMS template,  declares 

'heldby" to be a variable relation, in the context of  ITEMS: 

There may be items,   t,  such that   (t  heldby)   = NIL.    This  temp- 

late  also declares   "holding" to be the Inverse of   "heldby".   If 

no inverse is specified,  as        the case  of   "locatlonof" In the 
PLACE template,  then the inverse is  obtained  by deleting 

(concatenating) the suffix  "of" from   (to) the indicated name. 
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Thus,  the inverse  of   'Wtlcnof« «U be   "l^atlcn" 

1-4. wxa«o,     on adaltion.  as we shall 
later See, ttey lmplloltly deflne a repreSentllGn °        U 

for» R+-,*,4V,    JI Mit£SSsS£s£L^ Boheme 
for storing descriptions of Instances of a class in7^~ 
model space.    Thev eia .    ^-p „ 
ref^ t %. CUrSe' deflne  a ^nguage to 
refer to the components  of such descriptions. 

The templates fear the various Qlamm*» * various classes in  our domain are 
shov.n in Table  X.     It is suggested ^ ^ ^^ ^    ^ 

liar with the various classes defined m Table  I. and their 

respective description structures.    SoM of the templates ^    , 

this tabie contain labels.  CC1,  «2. etc.,  associated „1th 

certain relation schoss.    These  labels Indicate the ^esence 

of Oajslsten^ Ocndltlons   (cc's) associated with the «spec- 

tlve sche^.    for an lnstarlce x of ^ ^ ^ ^^ ^ 

(x r y) „in constrain the Instances. y of y, whIoh may 

appear as values of the phrase   (x r) m the model space- 

(X r y)  can te  true If  and  «ly If tte   OC associated „1th 

(x r y) is satisfied by x »d y.    The fo™s. Interpretations. 

uses, and  properties of  rr'q n™ ***,„ ^    too oi   CG s  are discussed In the ensuing 

sections  of this chapter.    The CC's  *.f««- ** x .    j.ne ou s  define the sense of the 

relations in the model space      Their- f^mmm  . ^  .   • 
¥mi9.    ineir forms  and Interpretations, 

In fact,  establish the   bamim r^ *.%, «oxi uno   oasis for the use of WS as a meta- 

system tc generate Intelligent infv™^ ^nigenr Information systems.    W© shall 
enter Into a discussion  if «i »■  nn-** .•   i.     -,    ., «oi* n  ci   cc s  after introducing sone of the 

-^--^r^- 
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TABLE I:    Templates  for the domain  cf 

Transportation Systems 

1. [TDN; {Emm RN)   (type  HTYPE) 

(candrive VEHICLES canbedrlvenby) 

(ccmpatiblewlth  ITEMS  compatlblewlth,   CC1 ) 
(holding  ITEl^  heldby) 

(location  PLACE], 

2. [TDN: (VEHICLE RN)   (capacity  INTEGER) 

(canbedrcvenby HUMANS) 

(holding ITEMS - cc2) 
(location  PLACE) 

(oangoto PLACES canbereachedby)], 

5-       [TDN; (ANIMAL RN)   (type  ATYPE) 

(corapatiblewith  ITEMS   - CC5) 
(location PLACE)]. 

4. [TDN; (VEGETABLE RN)   (location  PLACE) 

(compatiblewith  ITEMS   - CC4)]. 

5. [TDN; (PLACE RN)   (locationof   ITEMS   -  CC5) ] 

6. [TDN: (ITEMS $L) 

((heldby v)  HUMA^KyEHICLE  -  CC6)) 

(elements  HUMAN VEGETABLE ANIMAL VEHICLE) ] 

7 .       [TDN: (HTYPE RN) (typeof HUMANS ) ] 

8.       [TDN: (ATYPE RN)( type of  ANIMALS)] 
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RT and $T;      Regular and Durrniy Tuple Schemas,    These are 

used to define n-ary relations    for    n    >1 . 

:In the examples discussed in this  paper 

only binary relations are used.    We find 

that in most domains binary relations are 

the ones that are used predominantly. 

RP and $P;      Regular and Dummy Function Schemas.    These 

are used tc define functions which may be 

declared as  part  of a relation definition 

schema.    Thus  one may have a schema of the 

form  (X r F) where F is a function template. 

In this case, for an instance x of X, the 

value of   (x r) will be obtained by exe- 

cuting P on arguments which may themselves 

be determined  by x.    For examples  of use  of 

Function Scheme see  Irwin & Srinivasan  fl975]. 

Function Schemas may be used in MDS tc define 

structures similar tc semantic nets. 

TI,l7^,TS,etc :      These are the various Terminal Templates, 

Terminal Hhteger, Terminal Number, Terminal 

String, etc .     In the current implementation 

of MDS   (which is in  INTER LISP),  all INTER LISP 

datatypes are also available as templates in 

MDS,    Also, every datatype used in the implemen- 

tation of MDS itself is available to MTS as a 
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template. Thus,  there are templates for repre- 

senting templates, for representing names,  rela- 

tiens, constraints,  actions, models, sets, etc . 

seme of these are discussed in Appendix H. 

MN,ML,MT,MP,etc.:      These refer to various kinds of meta- 

templates.  An instance of a meta-template is 

itself a template.    Thus, an instance of Meta 

Node   (M) template will be a Node template.   It 

could be a Dunmy Node or a Regular Node.    For 

examples  of uses  of meta-templates see  Irwin & 

Srinivasan  [1975]. 

One may also associate flags with description Schemas cf 

the form  (X r Y).    Those flags fail into the following 

categories'. 

(i) Flags that  define relation properties. 

Properties like transitively, reflexivity, etc. in the 
context of an  [X r] may be declared to the system by using 
relation flags.    These declared properties are used by the 
domain compiler in generating codes associated with [X r]. 

(il)        Flags that define interpretations for 
Functionals 

111    ■■»■■'■ 

In the schema   (X r Z), where  Z is a collection with 

(z elements Y), the normal interpretation given to   (x r 

(y-|  y2...yn)), where x is an instance of X and (y1  y2...yn) 
is an instance of Z, Is 

■MMülüiiwiM 
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ix r  (y1 ...Yn))<=>{x r y1 )-(x r y2K..-(x r yn)...(2.6) 

However, if the flag  "S ' is  associated with [X r] then 

the collection   (y1   y2...y  ) will be Interpreted as  a set. 

Cy-I   y2...yn)# in the context of   (x r):   (X r  ( y1  y2...y  }) 

does not necessarily Imply   (x r yj^) for 1  = 1 ,2,.. .,n.    Thus, 

sets  and collections have different Interpretations in the 

model space.    Similarly,  one may use the relation flag   "B" 

In the context of  [X r]. If   (X r Y) IS true  and Y Is  a tuple- 

template.     In this case. Instances  of Y will be Interpreted 

as Bags In the context of   (x r). 

(ill)      Fla^s that specify storage control 

Normally, for every   (x r).  If   (x r) Is  dimenslonally 

consistent, then the value y such that   (x r)  =y is stored 

In the model space in the form of representation of the 

relation   (x r y).    However,  one may specify by the use  of 

the, so called, dummy flag,  that the value  of   (x r) Is not 

to be stored.    Jh this case, every time   (x r) is requested 

Its value will be computed    using the function,  CC's and 

transformations associated with  [X r].    The symbol     %n Is 

used for the dummy flag.     If ([X r] flag |) and  (X r Y) 

are true, then  ([Y r'] flag |} is Implied, where r' is the 

Inverseof r.    We shall see a use for the dummy flag In 

section 2.5.9. 

Other storage control flags may be defined to specify 

storage of meanings,  and action Interpretations.    There Is 
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also a flag called the iroptpfe flag:-. Tho symbol ".'" :1s used 

for this flag In the ouivent Implementation of M3S , If 

([X r] flag I) la true then,, every time a new instance x of 

X., is created the appropriate value of (x r) should also be 

Instantiated. This may, at times, noocssitate the system to 

prompt a user to supply a value for (x r). Examples of use 

of this flag appear in  Irwin and Srinivasan  [1975]. 

(lv)        Protection Flags 

These may either explicitly indicate tte   protaotlon 

associated with the access and updating of relation values, 

or present conditions under which Buoh aooess is  permlPslbTo, 

A common protection flag la the   ''-"-" flag, which indicates 

that the value of an   (x r) oaraiot  be changed during a problem 

solving process. 

(v) Ccntaxt or Jhte^t^Lon, fifths 

In WS there may exist simultaneously several model 

spaces for a given domain, each associated with a different 

context.    So also for an object, x, there may exist several 

models  of x, each associated with a different context.    One 

may explicitly associate with a description schema, the model 

context, in which the constraints  associated with the schema 

are evaluated. 
■ 

In the current Implementation of MDS there are facilities 

for extending the repertoir of flags used with the tern plater 

* The use  of this feature was suggested by Sridharan. 



-50- 

and relations. Each flag definition may itself be controlled 

by flag templates. The definitions of these flags as per the 

flag templates will enable the dcmaln compiler to incorporate 

these flags into the compiled code. 

For each  (X r Y)   cne may also define in MDS an associated 

action, called the  Anchored Transformation Rule   (ATR). This 

rule will be invoked when necessary during the instantiation 

of an   (x r) for an instance,  x,  of X. We shall see examples 

of the use  of  ATR's in section 2.5.9. 

It should be ncted that   "instance" and   "instanceof " are 

dis anguished relations m MDS, which are associated with every 

template.  Thus for a template, X,  one may have CC «s and ATR's 

associated with [X instance] itself.  These will be invoiced every 

time one  attempts to create a new instance of X. Both the  CG fs 

and the ATR 's may be used during the domain compilation process 

to produce efficient compiled codes for a domain. We shall 

discuss the details cf this compilation process in another report 

and the ijasJc   nnmmands   of thb  AffSlMILATORT 

The representation for an instance of PLACE might be 

TO definition 
of PLACE 

and that  of   ITEMS, 

self-reference Location of e lerne ntof 

To definition L^Z      I  
of  XTHVIS self-reference he Id by e lements elements of 

■ ■ 
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By convention, every data type may appear as the element 

of one or more collecticns. Thus,  we have the   "elementof" 

relation pointer appearing in both the data types above. Since 

ITMS is a collecticn, it  also has a pointer for the   "elements" 

relation.  The first field in every data type will point to the 

representation of the template that is associated with the data 

type. The second field is a pointer to the instance itself. The 

remaining fields correspend to the relations defined in the 

template  associated with the data type. For each relation its 

associated field will pclnt to a, so called,  descriptor unit 

(DBSUNIT).  The DESUNIT will have slots  for the value  of the 

relations,  reasons,  hypetheses, etc.,  as mentioned before in 

the description of bundles,. Each bundle in the model space will 

correspond to the re present atinn of the model of an entity in 

the domain.   A more detailed discussion of these representations 

appear in Srinivasan  [1977c]. 

At this  point  lot us take note of the basic commands of 

the  ASSIMILATOR.    For eech data-type   (template) there will be 

four associated classes of commands: 

[Cl]: Recognition Commands 
[C2]:  Creation Commands,  and 

[05]:   Comparison Commands. 
[C4]: Retrieval Commands. 

These  are  briefly described below.    Let MACC be the accumulator 
of the Model Space.    We will use the symbol   V to denote the 

Contents of MACC.    We shall refer to @ as the anchor of the 

model space,     it is the current ob.ject of focus in the model 
space. Where convenient we shall    use symbols §v9 @v etc. for 

A        Y 
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pedagogical reasons to Indicate anchors that are Instances of 

X, Y etc. respectively. For all the commands described below, 

the  anchor is one  of the  argument  of the commands. 

[C1 ]t      (DTYPE d)   = T,?,  NIL. 

The result is T If the datatype  of § is d, is     ? if it 

is unknown, else NIL. 

[C2]a.     Instantiate Template 

(IT d m)   = x or NIL. 

The result x is a pc inter tc  the newly created instance 

of  data type,  d, with name,  m,   assigned to  it,  if m is  given. 

x is  put in MACC if the instantiaticn is successful.    Else, 

MACC will contain NIL. 

[C2 ]b.     üistanliatc Relation —— — , 

(IR r y)   or   (IR :.)   = T,   ? or NIL. 

This will attempt tc make   (@ r y)  true -- if y is not given 

it will attempt to find the  appropriate y. The command will 

succeed only if there is no resultant contradiction in the model 

space.    The result of this operation is  put in the MTBST register 

of  the   ASSIMILATOR. 

[C2]   (c)     Instantiate Relation Negative 

(IRN r y)   or   (IRN r)   = T,   ?, NIL. 

This is similar to IR but attempts to make ^(@. r y) true. 

Ccrrespending tc   [C2]   (b)  and  [C2]   (c) one may also have 

commands FR and PRN   (Poroe relation and Force relation, negative). 

a—w^1^ i mi»«  
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These would  attempt to force   (@ r y)  -- or ^{@r y)  -- by 

modifying the model space appropriately,  if necessary. 

[05]   (EQUALS x)   . T,   ?,  NIL 

This checks   (@. ■ x),    The result is stored in MTEST. 

[0^]        Retrieval Commands 

The  above commands may be ccmpiled for each domain, from 

the domain  def initic ns.    For each datatype the domain compiler 

will alsc  produce codes fcr the  access functions,   ((Sr), for 

obtaining the value cf the field associated with the relation 

r in   (S) .   if   (@ r)  is unkmwn,  then the  access functions may 

invoke the cc's  and  ATR associated with   (@ r) to find its 

value,    if   (@ r) is dimension ally inconsistent then the value 

of   (@ r)   = NIL. Similarly,  one may also check the truth value 

of   (@r y) using tho access functions. 

The  ASSIMILATOR structure,   presented above, has the form 

of a machine. The commands are  like      machine commands.    This 

is  deliberate.   As discussed below,  we do visualize a machine 

control,  in which the dc main dependent  processors are micro- 

programmed,  and the basic  ASSIMILATOR control invokes and 

executes them to manage the model space. 

The nature  of  algorithms for some  of these processors,  and 

the associated data organizations are discussed in section 2.5. 

They are  part  of the forms and interpretations of the descrip- 

tion Schemas,  templates, cc 's and ATR 's . 
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2.5.5:     The   Compilation  Process 

We shall assume the availability cf an assembly lan^ua^e 

for the  ASSmiLATOR with Commands of the form: 

(INSTANTIATE   (x r y)  ^(x,   r.,   y1 )   ...   (xn r    y )) 

(x r),   (X r y),   (EQUALS x y),   (PTYPE x d)# ©to . 

The assertions in the   INSTANTIATE command are to be assimi- 

lated in parallel.    The ccrapilatlcn of a command  like this 

would involve  fcur steps: 

STEP  (1):        Determinaticn of all structures IK the model space 

which need be changed in crder to  accept the  given collection of 

assertiens.    This is determined by the structural knowledge cf 

a domain.    For    each assertion,   (x r y),    depending upon    the 

classes of x and y its  associated structures may be directly 

compiled from the templates of x and y,  and the relation flags 

associated with r.     All the structural changes,  derivable from 

the given assertions using the description structures of the 

objects Involved, will be hypothesized to be true in this step. 

STEP  (11):      This step determines  all the consistency conditions 

associated with the hypcthesized structural changes, and 

implied by the  interactions  of the hypotheses  with other 

relations in the model space.    Each one of these conditions 

(or re asms associated with the conditions)  are evaluated for 

appropriate bindings of the free variables.    The hypotheses 

may be accepted only if none of the conditions  evaluate to 

NIL.    This evaluation will also produce the combined reason 

..... .   . 
  ■■-   ■ 
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-• 
for the  acceptance, ccnditicnal acceptances  or rejection cf 

the hypotheses . 

Every one of the consistency conditions Involved In 

such a check may be complied.     Also, the  procedures neces- 

sary to identify relation interactions caused by the hypo- 

theses may be derived    and compiled from domain definitions. 

The details of this checking process are discussed in sections 

2,5.7 through 2.5.9. 

STEP  (ill)       if the checks evaluate  co T or  ? cr NIL then the 

transformations  associated with each asserted   (x r y)  for its 

associated truth value are executed.    This might successfully 

terminate the as-: xmllaticn process,  and return the resultant 

reasons for the  iucoess.    Or, it may terminate the  process 

with the truth value  ? and an associated hypothesis for the 

acceptance  cf the assertions.     Or else, it may produce the 

truth value NIL,  indicating the  presence  of  a contradiction 

in the  assertions,  and go to STEP  (iv).     In this case,   of 

course, the reasons f r the contradictions will also be made 

available . 

All the transformation rules may be compiled fron the 

demain definitions.   If no transfcarnations exist then: this 

step will be skipped. 

STEP  (iv)        This step is used  only if   a contradiction has 

been recognized. The system would then attempt to eliminate the 



mmmmiJW'i!rmix''1*J!*° 

-36- 

reesons for the contradictions  by proposing possible secondary 

changes to the model space. The  analysis used for this  purpose 

may also itself  be compiled.  This  analysis  is  based on the 

reasons for the contradiction,     and certain definitional entities 

called Focus Lists that  are associated with the relations  inv ivcd. 

The details  of this updating process  are discussed in section 

2.5, in the context  of specific  examples.    The access functions for 

(x r)   =  (y  j(x r y)) 
and (x r y)   = T,   ? or NIL 

are compiled from the data-structures, cc's  and ATR's associated 

with each templates.     Also, for each template the EQUALITY checking 

routines for instances  of the template  are compiled from the domain 

definitions. The details  cf this compilation process will be 

discussed in a future repcrt. 

The  ASSIMILATOR itself is thus  a ^re control structure. 

which would invoice the  above mentioned compiled procedures where 

necessary to execute the commands received  by it.    For a given 

domain, with well understood knowledge representation schemes,  all 

these domam dependent  procedures may be compiled into  "micro- 

programs" from given domain definitions.    The control structure 

of the  /DILATOR is  different from the structure of the 

"execution control", we see in all Von Neumann machines,    it 

seems, for intelligent operation both execution control and 

assimilation control are essential.    Details  of the assimila- 

tion control are discussed in [Srinivasan    I977d]. 

J 
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2»2+ CcfiSlBtenoy Ccndlticns  or Sense Definitions 

2.4.1       Tho_ ^ture cf Constraints; Some Examples 

The schema [SI ]  docs net specify all the restrictions 

associated with what can be  at a given PLACE.    Not any combi- 

nation of items may be  at the location of a given  PLACE,     In 

our domain we would like the following to be always true: 

[ (Vx) (Vy) (PLACE instance x) 

((HUMM instance y) V   (VEGETABLE instance y) 

V(ANJMAL instance y) V   (VEHICLE instance y)) 
r > 

((■Vz)(x Iccaticncf  z)(z holding y)  =^> 
(x lecationof y)) 

((Vz)(x locationcf  z)(x lecationof y)  =» 

(SAFE y  z))]   ... (2.7) 

All the  literals in   (2.7) are dimensionally consistent with 

respect to the definitions in Table   I.    The  predicate SAFE 

is as yet unde:. fined.   (2.7) asserts that if y and  z are at 

the same  place x,  then   (SAFE y z) should be true,  and if z 

is holding y,  and z is  at x, then y should also, be at x. The 

definitions  of SÄPE may be  problem dependent.    Par the M&C 

problem one may have,* 

M&C-SAFE 
[(Vx)(Vy)(SAPE x y)    <^> 

((V9) (Vp) (s instanceof  ITEMS ) 

(p instanco  of   PLACE) 

(p lecationof s)  =~> 
(((l!=OF MISSION/BY s)^(4{:0F CANNIBAL s)) 

 VjJJ^pP  MISSIONARY s)   -o)]   ... (2.8) 

* We assume implicit conjunction between parenthesized forms 

iifr-Tr-'f-i ■      ,.,J.^.-l^.^.J.-,ijIJ..^||).. iiiiit'-iiii'riMiiij^^ ,, 
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Hore,   (4{0F x y) is a function that returns the number of items 

of type x in  a collecUui y.    For the  domain P&S,  the definition 

of SAFE might  be : 

F&S-SAFE 

(Vx)(Vy)(SAFE X y)    4=» 
((x compatlblevjith y) V 

((Vp)(p instancecf  PLACE) (p iccationof   (xy))  =» 
((3h){h instance of HUMM) 

(p locationcf h)]         (2.9) 

In this case if x is not ccmpatiblewith y then a HUMM is 

required to be  at the same     PLACE as x and y.    The constraint 

for   (x ccmpatiblewith y) in the case  of HUMANs is shown below: 

[(Vx)(HUMM instance  y)   => 

((Vy)(x compatiblewith y) <=»» 
(((Vt)(x type t)    <^>     (y type t))V 

~(y instance of HUMM]  (2 Jo) 

Similar defini  ' ons for this relation, for other classes 

of objects,  are shewn in Table  III. For a given HUMM, h,   (2.10) 

may be used to find all y such that   (h ccmpatiblewith y) is true: 

(yj (h ccmpatiblewith y)). However, for a given PLACE,   p, 

(2.7) cannot be used to find   (y| (p locationof y)).    But, if 

a candidate y is supplied then   (2.7) may be used to checl: whether 

(p locationof y) could be true for the candidate.    We shall call 

constraints  like   (2.7), declarative constraints   (not to be 

confused with declrative descriptions  of knowledge).  Constraints 
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11 ke   (2 Jo) are called Imjggratlye constraints.   A formal defi- 

nition of these concepts is given In section 2.5.5. 

The forms  of   (2.7)  and  (2 Jo) are not quite satisfactory 

for the purpose  of modelling in terras of object-based repre- 

sentations.    We shall state the constraints in a form,    that 

would facilitate the realization of the  goals discussed in 

the next subsection. 

2.4,2.    What should Sense Definitions  do? 

Objective   [Obi ]: Ensure Model Space  Consistency 

In the three valued logical system,- we shall require of 

the model space  only a week state  of consistency:     It should 

be  at all times contradiction free.    Thus,  the model space 

may contain relations whose truth values  are unknown.    This 

may,  at times, result in the following kinds of situations: 

Consider the chains 

(a) (x r y)-^ (x1  r1   y-, )  ^ . ..  =^ {xn rn yn) 

(b) (u t v) -^ (u-  t- v- )-»,..«► iv^t    r    y  ) iii n    n    n 
■   ' AS 

If the truth value of (xn rn yn) is unknown (?) in the model 

space, then it can accept the assertion (x r y) (u t v) -- we 

assurae iraplicit conjunction. This is because, -v ? = ? 

and accepting (x r y)(u t v) would not cause any contradiction. 

Wo shall., however require that the model space be such that, 

at a later time, if (^ rn yn) is asserted,the latent contra- 

diction should surface. 
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Objectlve  [0b2]:    For each   jg r) find If  possible cne 
of the followlnp;; 

(a) The y    such that   (@ r y) Is true If such a y exists 

In the model space. 

(b) The candidates   (y1   y2...y  ) for one  or more  of which 

(0 r y) may be  true. 

(c) The constraints specific  to @t that characterize 

all y such that   (§ r y) is true. 

Objective   [Ob^]:     Give Reasons 

If   (@ r y)  = T,   ? or NIL then identify   .and express the 

reasons for this in I/p,    This is the most important require- 

ment.    The satisfaction of this objective makes it possible 

to do problem solving In MDS. 

Objective   [0b4];     Anticipate  Interactions 

For each  (@ r y) identify the specific interactions that 

take  place in the model space with other relations that may 

exist in the model space. 

Objective   [0b5]:     Avoid  Combinatorial Explosions 

In seeking to satisfy  [obi ] through  [0b4], and in using 

the  model space to solve problems, it should be  possible to 

specify starategjes and learn rules that contribute to mini- 

mizing combinatorial explosions. 
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We shall present below  the elements cf a system archi- 

tecture In which all the above objectives may be realized. 
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2-5. Representatigis and Uses  of Crast-natpt-.« . 

2'5,1* U5e of Bounded QuantlfieT'R 

The weak definition cf model space consistency makes it 

sufficient to check for each  (x r y) the relevent constraints 

only over the objects and relations that actually exist m the 

model space, at the time   (x r y) is asserted.     It Is not nece- 

ssary to resolve hidden contradictions because  of unknown quan- 

tities.    Thus an quantifications m our constraints win be 

bounded, and general predicate expressions may be reduced to 

conjunctions an^/or disjunctions of propositions, whose truth 

values may be directly tested m the model space. 

Further,  one may notice that variables range only over 

specified classes of  objects in the model space.    Thus in   (2.7), 

x ranges  only over PLACES, and y ranges only over what can 

appear as elements of  mm.    To take advantage of these    " 

categorized variables  we shall modlfy the language of constraints 

indicating explicitly, where feasible, the range of each quanti- 

fied variable.    We shall use 

"( <classname> x)(px...)M 

to denote 

((Vx)( <classname> instance x)  =#.    (Px...))" 
and use 

" ((SOME    <c lassname> x) (px...) ) " 



to denote 

"((3x)   C<classname> instance x)(Px...))", 

where(P x...) is  predicate expression In which x occurs 

free.    Where appropriate we shall also use form, 

"( <ciass1>/^class2>//./<class>    x) " to denote a 

range that extends  over a disjunction of classes, and forms 

"( <ciass> x y)" for   "( <ciass> x)( <class> y)",    and 

"(SOME <class> x y)" for   "(SOME <class> x) (SOME <class> y)" 

2.5.2 The  Use  uf Relation Paths 

We will use   ": " to denote relation concatenation, and 

call phrases   Vj iv2. ..5rn", relation paths.    We shall use 

"(x P1 :r2 y)" to denote   "((x ^ ) r2 y)".     In view  of   (2-6) 

and the convention, 

(x r)  -.   (z   |(x r z)),   ... (2.11) 

It follows that 

(x r.,:^ y) 4^ ((vz)(x r.,   z)^(Zr2y)). (2.12) 

If r2 is the inverse of r2, and in the structural descrip- 

tion both (x r-, ) and(y r2) are constrained to be nodes. or 

collections of equal cardinality then 

(x ^ :r2 y) 4->((Vz)(x ^   z)4->(zr2y))   .. (S.lj) 

For a relation path ^ :r2:.. .rn its inverse path   is 

rn:rn-1 :«'«r2:ri«     Using these conventions we may now 

rewrite   (2.7) and   (2.10) as follows: 
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[ (PLACE p) 

(HUMANE GAT ABLE ANIMA^EHICLE X y) 
((p locatloncf   (x y))   =>>   (SAFE X y)) 

(x heldby: legation :lccationof        x)]     ... (2.14) 

[(HUMAN h)(y)(h compatiblewlth y) ^=>((h type rtypeof y) V 

~(y Instancecf HUMAN)] : ... (2.15) 

2.5.3.        The  Use  cf Deflnltlcnal Anchors 

With every constraint we shall associate a distinguished 

relation name, called the anchor relation cf the constraint. 

The anchor relation cf   (2.14) and   (2 .15) are   "locatloncf" 

and  "ccmpatlblewlth;' respectively.    We shall anchor the 

constraint Itself at  the, so called, definitional anchor, which 

Is a pair [<anchor class> <anchor relatlon>], where the 

<anchor class> is always  a class name.    The definitional 

anchor of   (2.14) is   [PLACE locatloncf] and that of   (2.I5) is 

[HUMAN compatiblewlth]   .    We shall refer to the constraints 

themselves by the phrases  CC[PLACE locatlcnof] and 

CC[HUMAN compatiblewlth]. 

The use of definitional anchors and the assumptions in 

section 2.5.4 on Invocation of CC's,  will enable us to write 

constraints as set c_ai struct Ion expressions, as discussed In 

section 2.5.5. 

2.5.4.        The Use  of  Invocation Anchors 

We shall assume that a CC[X r] for a class X and a 

relation r will be Invoked only In the context of evaluating 
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or checking the truth value of an  ((^ r y), v;here @    is an 

Instance  of X.    We shall can  [^ r] the invocation anchor 

of CC[X r],  andOx Itself,  the anchor.    The Invocation of 

CC[X r] may thus occur under two conditions: 

(a) When executing  (2R r y) or   (IRN r y)   (or (iR r) 

or  (IRN r)), and MACC has an@x, and the truth 

value of   (@x r y)   (or the value of   {@x r)) Is unknown. 

(b) When executing   (IR r-,   z) or  (IRN r-,   z) for some z 

and P1,  and MACC has an (5^ such that   ft« ^l   z^ ls 

dlmenslonally consistent.     In this case  CC[X r] may 

be Invoked at an [f^ r]^     Thus,  assigning z to 

(@Y r-, ) might affect the value of   ||x r).    Therefore, 

CC[X r] should be checked at @x under the hypothesis 

(@Y r1   z). 

In view  of this Invocation protocol we shall use In every 

CO a distinguished free variable called, £, which will always 

get bound to the  anchor of the model space at the time  of 

invocation of the  CC. 

2.5.5.        The use of Set Constructs 

The focus  of attention during the evaluation of a 

CO[X r] at an anchor (S^,  is the set     (s   |   (^ r s)).    To realize 

the objective  [0b2] we shall seek constraints of the form 
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(Sp (S)x s), in which @x and   .s occur free,  and 

(@x r s) ^(SP.^ s)   .. (2J6) 

SP is called the SEI predicate, since one may write, for a 

description schema  (X r y), 

CCfXr]  = {(YS)   |   (SP@s))     ... (2J7) 

The set expression in   (2 .17) may be read as   '4;he collection 

of all instances, s of Y, such that   (SP @ «) is true. "    if y 

is a node, then the ASSBULATOR will expect   (SP@ s) to return 

a unique singleton collection,   (s).    on the other hand, if the 

description schema is   (x r z), where   (z elements Y) is true, 

then the ßSSmiLATOR v.-iii anticipate one or mo^ members, s,' 

tn.the collection.    One may also,  of course,  put constraints on 

the maximum and minimum number of candidates that   (SP @ •) may 

return.    We shall call   s the set variable of the CC. 

As we shall see in the ensuing sections, the ability to 

specify constraints m the for  (2.17) with interpretation  (2.16), 

and the conventions we have adopted on the Invocations  of CC's, 

together will make it possible for us to really the  objectives 

fob., ] through [ob5].    There is, however,  a minor difficulty to 

be overcome:    It is not always  possible to find constraints of 

the form  (2.16).    often one may have only a  (Q @ s) such that 

(@r s) ^  (Q@ S). _ (2J8) 

Si cases  like this we shall write 

CCfXr]  .  ((YS)     |(@r s)(Q@s))       ... (2/,9) 
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Ccnstralnts of this form are given special interpretations In 

the  ASSIMILATOR.    While evaluating  (2.I9) the system would expect 

a candidate, s, to be supplied.  If no candidate is supplied then, 

s  = ? and   ((S)r    s)   = ? is assumed,  and  (Q @ ?) is evaluated. This 

may result in the identification of a collection of candidates 

(y-1  y2...ylc)  - (y |   (SP@y)  ■ ?), for one  or more of which  {Q r   y) 

may be true.    Since   (§ r s)  = ?, in this case the set  predicate 

Itself will evaluate to ?, if   (Q @ y) f NIL. 

CC's of the form  (2,19) are the dec larative PC 's  and those 

of the form  (2.1?)  are the imperative CG's.    Using these conven- 

tions we may now rewrite   (2.14) and (2.I5)  as shown in   (2 .20) 

and  (2.21).    These expressions are typical of the declarative 

sentences* in LT  : 

CC[PLACE locationof ]  ■ 
[ (HUMAN/VEJETABL^/^JIMAL/VEHICLE S ) | 
{{§ locationof s)(s he Id by NIL) V 

(s heIdby: location (Q)) 

((y)   (@ locationof y)  =#>   (SAFE (3 y)]     ... (2 .20) 

CC [HUMAN Compatiblewlth]   - 

[(y  |   (Ätype:fcypeof y) V 
^(y Instance of HUMAN)] ... (2.21) 

In   (2.2o) the  phrase   (s heldby NIL) is a functional, 

interpreted as   ((Vz) ~(s heldby z)).    The  phrase   "(§ locationof 

s)" indicates that  an s may be declared to the system.     If 

(s heldby NIL) is true then the  proper s Is  specified by the 

* All CC's are constructed from  dec larative sentences in Lrr. 
However* not all CO 's are declarative CC 's. 



mmm 

-48- 

predicate,  functional,   (s he Id by: location §)4    Notice that 

(2.20) Is more compact than  (2 .14) and Is  oriented more 

towards evaluation at a given anchor, @ ,  or given pair 

[@ •],  The constraint   (2.21) illustrates a case where It 

may be more economical, to store In the model space 

(•|<v($ r s)) than   (s| ((a) r s)). 

In the followln- sections we shall discuss the Inter- 

pretations given to  the  above     CG's in the modelling context 

We shall see how the objectives   [ob., ] through [ob5] may be 

realized.    We shall aisc present examples  of commonsense 

reasoning that is used to supply reasons for the truth 

values in the model space for the various relations. 

2.5.6.    Uses of CC[X r] as a function and a predicate; 

Examples, of Commonsense reasoning. 

One may have two kinds  of Invocations  of  a CC[X r]: 

(a) CC[X r](^) and 

(b) CC[X r](^ so). 

In both cases  0C[X r] Is used as a function with lambda 

variables @ and s, and an attempt Is made to compute 

(s   |   (% r s)).    In the first case   (^ r)  = ? Is Initially 

assumed,  and one of the following may result: 

(1)     (s   (   (^ r s)):    This may happen If CC[X pj&J Is 

Imperative. 



■Hl^H 

-^9- 

(U) (s       ((S^ r s)  , ?  ):    This will be Interpreted 
as a ccllecticn of candidates for  (&„ r). 

(HI)      ?  :     3h this case one may also get a predicate 

expression characterizing   (s   j   fa    r s)) for the 
given @x 

(lv) NIL. 

3h case   (b) also the same four possibilities exist for 

the result.    But m cases   (i) and   (ii) cf the result the 

returned collections rnay include so, thereby indicating the 

truth value of   (% r ,o),    ^ both these ^ invücatlon^ ^ 

set  predicate  of    CC[X r] may be used to explain why  (^ r so)  = 

T.   ? or NIL for a given s^  or why   (^ r)  = (s   j   (SP^ s)).0 

Let us consider a few examples. 

Let us assume the model space for the M&c problem.    Let 

MISSIONARY and CANNIBAL be instances   of HIYPE, types  of HUMMS . 

Let the model space have 

(MISSIONARY typoof   (m.,   BU mj) 
(CANNIBAL typeof     (c1   c    c   ) 

(VEHICLE instance BOAT) 

(HUMAN instance   (a^   m2 m    c1  c    c   )). 

For a missionary, m-, then 

CC [HUMAN compatiblewlth]    ^ )   =  ^   m2 m^ BOAT)..     (2.22) 

as per  (2.21 ).    The reason for this will be 

[(m.,   type:typeof y) V ^(y instanceof HUMAN)] (2.25) 
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where y Is the set variable.    The expression in   (2.25) 

consists of the true  literals of   (2.21 ) for one or more 

items in   (m1  m2 m, BOAT).    In this case,  there are    no 

literals that are false or ? for all the elements in 

(nij  m    is- BOAT).    The reason for   (SL   c an pat i blow it h m2) 

will be 

(m-j  type: type of rn2) ... (2.24) 

In this case the second disjunct of   (2.23) becomes false 

and thus  does not appea.r as part of the reason.    We shall 

call expressions  like   (2.25) and  (2.24) True Residues; 

(2.25) is the true residue of CCfHUMM compatlblewith]   (IT^ ), 

and (2.24) is the true residue of CCfHUMAN compatlblewith] 

(m-   nu).    For a definitional anchor  [X r] we shall denote 

its true residues by phrases  of the form: 

aR(CC[X r]((£)))   or TR(CC[X r]((3 s)). 

A true residue will exist for a CC, for given bindings 

of @ and the set variable, s,  only if the set predicate of 

the  CC evaluates to T.    The true residue will consist  of the 

sub-expressions of the parent expression, that remain after 

deleting all these that evaluated to NIL or ?.    In cases where 

the set variable rang©» ever a collection, we shall delete  only 

those sub-expressions that evaluated to NIL or ? for all possible 

bindings of s.    We shall generally write residue expressions 

indicating explicitly the bindings of the variables.    Thus, for 

(2.25) and  (2.24) we shall write: 
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[ ((HUMAN  @)  = m1 ) 

((HUMAI0EHICI£ y) • (a,   m2 m    BOAT)) 

[^type:typeof y) V ^(y Instance of BOAT)]].. (2.23a) 

[((HUMAN @)  = m1)((HUMAN y)  = rrig ) (@ type rtypeof y) ] 

For a CANNIBAL, c, , the reason for  (m.,  compatlblewith c. )  = 

NIL will be 

['v(m1   typertypeof c1 ) (c1  Instanceof HUMAN) ] (2.25) 

which is chtained by taking the negation of the False Residue 

of CC[HUMAN compatlblewith]   (^  c1 ).    Ih this case, of course, 

CC[HUMAN compatlblewith] ^  e1)  = NIL.    The False Residue will 

consist of the sub-expressions that remain after deleting all 

those that evaluated to T or ?. Of course, the  parent express- 

Ion Itself should evaluate to NIL.    We shall use phrases  of the 

tom PR(CC[X r]((0)) and FR(CC[X P](@ S)) to denote false 

residues of CG 's. 

One may similarly define also IMmcwn Residues.  UR(CC[X r] 

((D)) and UR(CC[X r](@ s)).    These will exist  only when    the 

CO evaluates to  ? and win be obtained by deleting all the sub- 

expressions that evaluate to NIL or T m the set  predicate, for 

given bindings of (0 and s.    Jh the M&C problem, suppose there 

were more that three MISS ION AR IBS.    & this case the model 

space will contain the functional 

(MISSIONARY typeof   (m.,   m2 m     ?)), (2.26) 
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whcre the   ? in the collection indicates that there may be more. 

In MDS, a new element may be added to a collection only if the 

collection contained  ?.    Thus,  one could make it impossible to 

have more than two HTYPEs,  by setting in the model space: 

(HTYPE instance   (MISSIONARY CANNIBAL)). 

In the case (2.26), (2.21 ) will evaluate to T for § • a. 

and y = (m1 m2 m, BOAT). However, for y = ? both literals in 

(2,21) will evaluate to  ?,  producing the unknown residue: 

[[((0 =m1)(y  = ?)   ((Q type: type of y) V ^(y instanceof HUMAN)] 

(2.2?) 

This unknown residue may be viewed as characterizing 

(x  j   (m-j  ccmpatiblewlth x)).  In this case the residue expression 

happens to be identical tc the set  predicate.    But in general, 

the residue exprosslwiis will be subexpressions  of the set  pre- 

dicate.    The residue extraction process is a part  of the common- 

sense reasoning process.     It is defined for both prepositional 

and quantified expressions in chapter 3.    The relationship 

between residues  and reasons is summarized below in Table  II. 

TABLE II:        Residues  and Reasons 

TRUTH VALUE of "   Reason for CC[X r]((p)  or 
CC[X r](@)  or CC[X r]((0s).    The set variable 
CC[X r](©>) is optional below. 

T (TR(CC[X T){§ --) 
? (l)R(CC[X r](0 —) 

NIL 'v(FR(CC[X r](@ —) 

"g*"''^ "■'■ iiriiniNifiilMi 
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m the  problem solvin    process the residues   (reascns) are used 

as the basis for learning and dunaln specific speclaii .ati .n 

Let us new consider a few more examples. 

Table   III shews  all the  OC's used in our domain, and 

Table  IV shows the definitions associated with SAFE.    The 

command   (QSCC: <CC-exp> definitional anchor>  ) is used to 

define  CC's m the current implementation/MDS.    This command 

is  part of the subsystem called QUEST, which is used for 

defining the CC's and transformations m a domain.   Predicates 

like SAFE are called  CC-macros.    They are invoked as macros 

within CC's and transformations.    Each CCMACRO has  a name, 

declared arguments, the maero expression and a context. Thus, 

a CCMACRO like S^E nay have different definitions in different 
contexts.    The definitions  of SAFE in M&S . and P&S contexts 

are shown in Table  IV.    The command QSCCM.- is used to define 

CCMACRO's in MDS . 

Let us now consider some of the possible residues 

asscciated with CC[VEHICLE holding].    This Cc is shown in 

Table  HI, and is reproduced below, for convenience: 

CC [VEHICLE holding]: 

[(HUMAT^EGET ABLE/ANIMAL x)   j 

(©holding x)(o holding: #= : ^: capacity of 0) 

((y)(0 holding y)   ==*>   (SAFE x y)]   ... (2#28) 
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TABLE III:       CaLSlsjency Ccndltlcns of the 

Transportation Domain. 

0011 CC[HUM/\N cornpatlblewlth]. ~ 

[(HUM%/MIMA^EGE.TABL^EHICLE s)   j 
(VtYpettypecf s) V ^{s Instancecf HUMAlO]. 

CC2: CC[VEHICLE hcldlng] 

[ inrnm/mmpsybEGEjimuE s) | 
((p holding s)((p holding:#: ^ :capacityof §) 
((y)(9 holding y)   =»   (SAFE s y))] 

CCJ>: CC[AMIM/i compatlblewlth] 

t(nmj$y/vEGvrmi.?/mmAi/bmicLE s) | 
(G type:typeof s) V  (Q Instance of HUMAN) V 

•w(@ type  HERBIVORE) (s Instancecf VEGETABLE)] 

CCh: CC[VEGETABLE compatlblewlth] 

[ (s   j   (@ compatlblewlth s) V 

(s  Instancecf VEGETABLE)] 

CC5: CC[PLACE locatloncf]. 

[(s   |   (((T) locatlonof s)(sheldby NIL> V 

(s he Id by; loc at 1 on @)) ((y) (€> Ice at^ on cf y) 

**   (SAPß s  y)] 

COS: CC[ITMS heldby] 

(s   (   {g heldby s) ^(s eler|ent;of (p)]. 

The  CC has the form   (2.19) and Is thus a declarative £C: 

It may be used to check a given  {§ holding gj but carpet be 

used to find  (s   (   (@ holding s)).     ^ the second conjunct of 

(2.2 8) the relation name   "#»" occurs in the  path  "holding:# :<: 

capacltyof". This Is used to get the cardinality of   {Q holding) 

In the context cf  #, collections are Interpreted as, sets; 
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Table IV:       COMACROS In the domain, 

[OSCCM:       SAFE   (X Y)   "MAC" 
[(X  location :locationof Y)  =» 

((SOME ITEMS s)(X location-.location of s) 

(((#0F MISSIONARY fl) >   (#OF CANNIBAL s)) V 

((#0F MISSIONARY s) is   O)]]. 

Note:  The third argument of QSCCM: is the context. 

[QSCCM:       SAFE   (X Y)   "FSCS " 
[(X compatlblewith Y) V 

(X  location ».location of Y)  =» 
(((SOME HUMAN h)(X location: location of h)]]. 

(( X1  x2...xn}#=)  = n,  and   ({x1  x2.. .xn ?}4 ) ^ n but still the 

relation  ({x- x2 .. .x..   ?}«|fn) has the truth value  ?. Thus, In 

a comparison like   (fx,,  x2   ?}#=:^2) Its truth value will be  ?. 

So also,   ((x-,  x2   ?}4f=:^4) will be  ?.    But,   ({x1  x2   ?)#=:> 2-) 

will have truth value T. 

Let us assume that Initially (BOAT holding ?) is true in 

the model space. In this case CCfVEHICLE holding] (BOAT) will 

evaluate to ? with the unknown residue: 

[(BOAT holding x)( BOAT holding:   #= :^:capacltyof BOAT) 

((y) (BOAT holding y)   =^(SAFE x y)]   ... (2.29) 

In the above expression we may ignore the literal  "(BOAT 

holding x)".    since it is part  of the declarative nature 

of the CO:    For every assertion   (BOAT holding x) will be 
either true or false by hypothesis .    Let us now assert   (BOAT 

holding x  ).    This will cause the model space entry   (BOAT 
holding   (x    ?)).    The evaluation of CC[YEHICLE holding] (BOAT x0) 



-56- 

will evaluate to ?,  because both   (BOAT holding:^ :^:capatltyof 

BOAT) and   ((y)(BOAT holding y) =» (SAFE xo y))* will evaluate 

to ?,  leading to the unknown residue: 

[(BOAT holding:^ :^:  capacityof BOAT) 

((y)(BOAT holding y)=> (SAFE *Q 7))] ... (2.^0) 

Notice that the set variable x in   (2.29) has been replaced by 
xo in  (2.30).    Thus, all future additions to the BOAT should 
be SAFE with xo. 

Let us  now suppose that   (BOAT capacity 4) is true, and 

when  (BOAT holding x  ) was asserted   (BOAT holding   (x..  x2   ?)) 

was    in the model space.    In this  case, the unknown residue 
will be the same as   (2.29)    for the collection  (xo x^  x2   ?). 

We have assumed that the SAFE predicate is not contradicted 
for xo. 

If the SAFE predicate was  contradicted then for seme 

element x,  in  (x-. Xg),   (SAFE x    x)    would have been NIL.    In 

this case the model space would remain unchanged, and the 

following residue would have been supplied for not accepting 

(BOAT holding xo): 

[ (VEHICLE  Q)   = BOAT) 

(HUM Ar$/ANIMAiy^E GET ABLE y )   =   (x    X..   Xg   ?)) 
(SAFE xo y) ] ... (2.31 ) 

The reason would be. 

In this  case $APE x0 x0)=T and   (SAFE x0 ?)=?,    The bound 
variable y acquires the binding  ? because   (BOAT holding 
(x0 ?)) exists in the model space. 
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[((VEHICLE  (?)= BOAT) 

((SOlvi^/kuMA10ttIIMAV^EGETABLE y)   =  ix0 ^   x2   ?^ 
MSAFExoy))] (2.32) 

which is  the negation of   (2 .^ ).    In a problem solving context, 

reasons  like this may be made use  of to avoid repeating same 

kind  of mistakes.    Also, reasons  explicating true residues may 

be made use  of to make the right choices  based  en  past experience. 

The properties  of residues   (and reasons) that make  them useful in 

a problem solving context are   discussed in chapter III. 

The reasons  obtained from the CC's at a given anchor are 

not sufficient to explain or guide an updating  process.    The 

CC itself may supply only the necessary conditions.    To consider 

the complete updating  process it is  necessary also to analyze 

the way relations interact in the model space.    This is discussed 

in the next    section,  where an example  of cemmensense reasoning 

in the context  of relation interactions is presented.    Again we 

shall see that the form and inter pre tati OB   of CC's  play an 

Important role in identifying and  ccntrolllng the Interactions. 

2 .5 .7 .      Interaction Between Relations; Their Recognition 
and Control 

2.5.7.1     DONLISTS and DETLISTS 

Definition 1 :    Depends  on 
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([a. r] dependsun  [Oy t]) if there exist a z   (z  could 

be  ? or NIL) such that   (0Y t z)  or   (z  t,0Y)(or ^{QY t z)  or 

»w( a t1 0Y))  occurs in a true,  false  or unknown residue  of 

CC[X r]^)  or  CC[X r](^c so)  for seme so. 

In this case we shall say that   [Y t] is an element  of 

DONLIST [X r]. 

Definition 2   :    Determines 

([(V t] determines   [0X r]) if   ([0X r] depends on 

[Q    t]>.  In this case, we shall say that   [X r] is an 

element  of DETLIST  [Y t ]. 

Notice that   [X r]   e DETLIST  [Y t] does not necessarily 

mean that for any given oY and    0X   ([0X r] dependscn     [GY t]). 

It  only implies that there exist 0X 
and   0Y such that   ([j^x r] 

dependscn     [0Y t]).    We  have the following formulas: 

(([^ r] dependson  [CY t]) «=> {[QY t] determines   [Q^ r])) 

(([X r]  elementof DETLIST[Y t]) ^> ([Y t] element of DONLIST[X r]). 

(([Y t] elementof DONLESTfX r]) #»> ((SOME X (^) (SOME Y ©^) 

([(^ r] dependson [©    t]))) 
(([X r] elementof DETLIST[Y t ]) ^=> 

((SOME X Gx)(S0ME Y ©y)([@y t] determines  [Q, r]))) 

The DONLISTs and DETLISTs  for the definition anchors may 

be obtained by analyzing the forms  of CO's in a dctnain.    These 

may be used in a variety of ways  to identify, anticipate,  control 

and respond to situations that arise in updating processes.    We 

shall present below an example  of the kind of analysis that may 
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be dene  to construct DETLISTfe . 

We shall also Introduce the  concept  of definitional filters 
that are used to direct search for all 0X such t£t  [Q    r]~ 
dependsTrOy t] for a Siven QY,    We shall discuss ways  of using 
filters to minimize search and checking during updating 
processes. 

2 .5 .7 .2 :     The Dimensionality of a CC and its 
Dependency  Graph 

Let us  consider again CCfPLACE locaticnof] shown in   (2.20). 

One may construct for this CC a, so called, dependency graph as 

shown in figure 4.    The arcs in this graph represent the relation 

names that appear in the CC, with the associated negation signs, 

if any. The nodes    represent class names  that are used in the CC 

either explioitlv or implicitly. 

Q 

/location 
/ 

5« 1 
HUMAN/ 

VEHICLE 

he Id by JL 

location of 

HUM AI0-E GET ABL^/ 
ANIMAL/VEHICLE y 

JI 
DEPÄPI yTPH  0F 

T 

HUMAl/l^EGETABLE/ 
ANIMAL/VEHICLE 

JL 

k 

oheldby \    This  corresponds to 
/     "(s  he Id by NIL)" 

HUMAI^J/VEIDICLE 

Fig 4:    Dependency Graph of CC PLACE locaticnof. 
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Por example,  the expresslun 

"((Vy)(0 locatlancf    y)  =»   (SAFE s y))" 

teat occurs in   (2.20) uses the class disjunction 

(H^A^EGETABL^ANIM/V^EHTCLE y) explicitly,  because there 

exists a bound variable y,  that represents the instances  of 

these classes that are used in an evaluatiai of the CC. This 

expression is represented in figure 4 by ncdes 1, 2, 5 and 4, 

and the arcs   "locatlonof" and   "<->", where   "< - ->" represents 

connections to the dependency graph of   (SAFE s y). 

In the case  of the expression 

"(s  heldby.-location 0)" 

which also occurs  m   (2.2)    the   (HUMMWEHTCLE y/such that 

((s heldby y)   .»   (y location G)) is said to be implicitly used 

in the CC.    The CC has no bound variable corresponding to the y 

above.    Thus, node 5 appears m figure 4 without an associated 

variable, 

The classnames used implicitly in a CC may be determined 

fron the relation paths used in the  CC and the description 

structures defined for the dcmam.    We shall call the analysis 

used to identify tho implicit and explicit class names in a CC, 

the_dimensional analysis.    For a    functional like 1 

"{■ heldby :location o)" we shall represent its dimension as 
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[((HUMAl^EGETA^L^/ANIMAI^EHICLE s)  heldby) 

((HUM%4EHICLE)  locaticn)   (PLACE c)]     ... (2.35) 

This dlmenslcn Is  consistent with the descriptiai Schemas 

denned for the dcmain.    A cc itself is said to be dimen- 

sicnaily consistent if all its literals and functionals are 

dimensionally coisistent.    The analysis  of dimensional 

ccnsistency may also be used to find missing relation names 

in relation paths, missing ranges  of variables,  and also 

errors    in a CC.    The dimensional consistency checking sub- 

system of the current implementation of MDS was written by 

Joel Irwin. 

The dependency graph of a CC portrays its dimensionality. 

It may be used to coistruct DONLISTs, DETLISTs and definitional 

filters.    This is discussed in the next secticn. 

2.5.7.5.       Construction  of DQNLlSlte  & DETLISlte 

Let us  for a moment ignore the implications  of the 

"(SAFE s y)" predicate- in figure 4.    The general rules  for 

constructing DON and DET lists  from a dependency graph is 

given below: 

DONLIST - mJT.K 

[Y t]  e DONLIST[X r] if the clajss Y  occurs in a node in 

in the dependency, grajDh of CC[X r], and the arc with label 

t or ^t (t '  or ^t') eraanates     (impinges)  on the node Y in 

the dependency graph CC[X r].    t' is the inverse of t. 
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In this case  [X r]  c DETLISTfY t]. 

Prom figure 4  c^e thus  cbtams that there may exist a 

PLACE,   p,  a raATVEIIICLE,  hf  a HUM/^EGETABL^ANIMA^EHICLE 

x,  etc. such that 

([p locatloiof j dependaon 

(fh holdinr J [p locatlcnof ] 
[x locatlai]    etc.   ...     )) ^^ 

The symbol h In   (206) denotes the Implicit use of HUM/^ 

VEHICLE in   "(s  heldby.locatlcn C)".    expanding the disjunction 

of classes  over which the variables m   (2.36) range, we get by 

the DONLIST rule that 

DONLrSTfPLACE  l.catlcnof]   = 

{[HUMAN hcldlng'][VEHICLE holding] 

[HUMAN locatlcn][VEHICLE location] 
[PLACE 1,cation^ etc.) ^„x 

Thus we get 

[PLACE locatloncf ]   e DETLIST[HUMAN holding] 

DETLIST[HUMAN location] 

■DETLIST[VEHICLE holding] 
etc- (2.58) 

This implies that, when   (h holding x) is asserted   (by using an 

IR    Command, say) f,r a HUMM,  h, then CC[PLACE locatlonof] 

should be checked for all places  p such ttet   ([h holding] 

determines   [p location of]).    During this  checking one may, for 

example, discover that   (h location)  = p and   (x location)  - g 

are not the same.    Thus   (h holding x) cannot be accepted by 
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the model space without violating CCfPLACE lecaticnof]. The 

reason for this violation would be: 

[ (x heldby:lccation pMp  location of x) V 
A^X heldby:locatitiiof g) v(x heldby NIL) 

(g locaticnof x)] ... (2.39) 

This reaso. is true under the hypothesis (h holding x). We 

shall discuss in the next section the conmonsense; x'eascning 

process that may be used to identify treasons  like   (2.39) 

Wo shall also consider efficient ways  for directly 

identifying for a given  [h holding]  all the  PLACES,   p,  such 

that   ([p locationcf] depends  en   [h holding]). 

2 .5.7.4:      Definitional Filters 

For a given  [X r]   e DETLIST[Y t] and given Gy our problem 

is to find 

(Oxld&x r] dependscn[0Y t])). 

This search may,  of ccurse,  be confined to only the instances 

of X.    Still it may be  large search.    In practice it is 

necessary to have a better control over this search, and 

where feasible eliminate the search altogether. 

The  Problem oji devising schemes to efficiently control 

and direct this search is. the so called   "Frame Problem".    The 

solution of this  problem is not only domain dependent,  b^t 

■ 

. : :  
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within a da.am It Is dependent en the particular, oolleotlcns 

Of objects that exist m the motol space,    it is not thus 

possible to specify a genera! solution to the   "frame problem". 

One may only specify schemes where in the problem may be Kept 

under octroi, and unforeseen combinatcrial explc^s are 

avoided.    The forms  of CC and their invocati« centre! make 

it possible-tc state sengral schemes to keep the  "frame problem" 

under check.    What is «„,. ^ nay have ^ ltself ^^ ^ 

necessary centre! structures from an analysis of the cc.s  cf 

the domain. 

We shall discuss  two ways  of c^trolllng search m a 

frame Interaction; 

(a) One is  by the Definitional Filters which are 

can pi led  by MDS, and 

(b) the other is by the use of representational faci- 

lities in the model space which a user may use to 

create appropriate representations for a domain. 

Part   (a) ls discussed below and part   (b) is discussed in 

action 2.5.9.    No^aliy, When an   (x r y) is asserted,    in order 

to accept it. it may be necessary to mako certain secondary 

changes m the model s^ce.    TMs may, ln gen]Eral reSult ^ a 

chain of updating „ocesses.    It is essentlal to have facllltles f cr 

strolling this ^.cess.    Devices called Focus Lists are used 

in WS to control these.    These    are discussed in section 2 5 8 
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Deflnlclonal Fl Iters 

A definitional filter DF[X r][Yt] is used to compute 

a set s£[0Y t] such  chat 

[0X] DsJ[GY t] J [0x|([ex r] dependscn[0Y t])).       (2.39) 

where  f^]  is  the sot  of all instances  of X,    A DP filters 

out of  [Qy.]  all x such that   [x rfj does not depend  on [Qy t]. 

The DP may be stated as 

DP[X r][Y t]   «  ((X x)|DPP   (0y s x)) (2.4o) 

where Oy* s anä x are the free variables  of the Definitional 

Filter Predicate, DPP.    The DP is anchored at  [Y t].    Thus, 

Qy is the anchor variable of the DPj x is its set variable; 

and s is  the, so called,  change variable t   (Cy t s) is the 

change that is being attempted at   (t?y t].    Using such a DP, 

for a given Oy and F>,  one may compute all the affected Qy.. 

The dependency grapl   of CC[X r] may be used to construct 

DP[X r][Y t],  if  [X r]  is in DETLlSTfY t].    The  ccnstructicn 

of these filters is  based on the following observation. 

Let us assume that dependency graphs are always  connected 

graphs.    Consider the graph in figure 4.    If  [0 locaticnof  ] 

depends  en some  [QY t]  for a Y and t in the graph, then there 

will be a path w, from 0 to Gy in the graph.    Q    Itself may, 

therefore,  be reached from 0Y via the inverse  path w'.    Suppose, 

Oy  = h for a HUMAN,  h,   and 0 is  a  PLACE,  p.    Let   [p locaticnof] 
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depend en  [h h^ldine].    The paths in figure k that might lead 

to h from p are   (again we Ignore   (SAFE s y)): 

[(p locatlcncf h) V   (p locatlcnof s) ^(s heldby h) V 
(p locatlcnof s) (s  heldby h)] 

Thus  p itself should be reachable from h via cne  of the paths 

in the disjunction 

[(h location p) V ^(h holding s)(s  locaticn  p) V 
(h holding s)(s  location p)] ,,, (2.41) 

Thus, at a given h, if   (h holding  S) was the change at   (h hold- 

ing; then the  places affected by    it will be a subset  of 

(p|(h locaticn  p) v ^(h holding s) (s  locaticn  p) V 

(h holding s)(s  location p)) ... (2.42) 

Wc may now write 

DF[ PLACE locatlcnof J[ HUM AN holding]   = 

[(PLACE p)|(0 location p) V ^(o holding s) (s  location p) 

V(e) holding    s)(s  locaticn p)]     ... (2.43) 

where Q Is a HUVIAN, and s is the change variable.    This DF will 

be anchored at  [HIM holding].    Thus, if  (h holding x) was newly 

asserted, then the system would evaluate the above DF for   (§-h) 

and   (B*c},  and find that it had to check CC[PLACE locatlcnof] 

at the places  p = (h locaticn) and g . («  location), under the 

hypothesis   (h holding x).    At both these places,  p and g, a 

^^^^^HnHMWH*M«H_M 
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ccntradictlon will bo encountered for the following reasons. 

We have the assumpticns   (h holding x),   (h location   )  ■ p 

and   (x location)  = g.    For the discussion below, we shall also 

assume that the SAFE predicate is true, and altogether ignore 

this  predicate in the residues and reasons. At the PLACE,  p,* 

CC[PLACE locatlcncf ]   (p x)   = T      and 

TR(CC[PLACE looatlcnof]   (p x))  =  (x heldby:location  p) 

By   (2.16) it, therefore, follows that   (p locationof x) should 

be true in the model space.     This contradicts the assumpticn, 

(g looatlcnof x).    The reason for this  contradiction will be 

the negation of the false residue  of 

(p locationof x) <^>CC[PLACE locationof ] (p x). 

The false residue  of a form   (u ^   v) is the same as the false 

residue of the form  (uv v ^u^v).    In the above case u is 

false and v is true.    We have the following residue equation.** 

PR(uv V ^u ^v)   = PR(uv) V FRUuvv)   = PR(U) v PR(^v) 

since u is false and v is true.    However, PR(^v)  = oTR(v). 

Thus,, we get,that the reason for the contradiction is 

Please check with CC[PLACE locationof] shown in   (2 .20). 

These are discussed in chapter III. 
*-.;: 
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[A](^PR(u)-TR(v)) = ^(p locatlcncf x)(x heldbytlocaticn p) 

In the  case  of the  PLACE,  g,  CCfPLACE locatlonof ] (g) will evalua. 

te to NIL and false residue will be: 

PR(CC[PLACE loGatlcnof](g x))  = 

[(x heldby MIL) V   (x heldby:location g)]. 

and   (g locatlonof x) is true.    Thus, In this  case the reason 

for the contradlctioii will be 

[B].   [(g locatlcncf x)  ^(x heldby:locatlonof g) 
~(x heldby Nil ) ]. 

The resultant reascn will be the disjunction of [A] and  [B], 

namely the expresslcn in   (2.39).    To accept the assertion 

(h holding x) this reason should "how be mode to disappear. 

That is, it should bo made to evaluate to NIL or ?    in the 

model space.    In general,  it is necessary to use a 

"means-end analysis" scheme to realize this  objective.    We 

shall  present in the n^xt section a simple way of doing this, 

that works for most  of the cases arising in the model space. 

Devices called. Focus Lists   (PL's) are used in the model 

space for this  purpose.    We shall conclude this section with 

a summary of the  properties  and conventions associated with 

interaction checks   (frame checks ) in the model space. 

Prame Checking in the Mcdel Space 

The DP's are used to identify interactiens that are not 
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dlrectly implied by the descripticn structures in a domain. 

The interacticns directly implied by the description struc- 

tures in a domain are illustrated by the following example. 

Suppose   (h holding x) was newly asserted,  for an ANIMAL, 

x,  and at the time this assertion was made   (m holding x) 

was true in the model space.    In our domain we have the schema 

[S8]   (ITBMB  he Id by HUMANWEHICLE) 

and thus  only one HUMAN may hold an object.*    Therefore,  the 

assimilator will postulate automatically all the following 

relations: 

[(h holding x)   (x heldby h) ^(m holding x) ^(x heldby m)] 

(2.44) 

The asserticns for   "holding" and   "heldby" appear together in 

(2.44) because of the assumpticn   (2.4), which is a part of the 

built in structure  of the model space.    The negated asserticns 

appear because of the schema  [S8].    This knowledge will be a 

part of the domain dependent  processors compiled for the domain. 

To check for the consistency of  (2.44) the following CC's should 

be checked: 

CC[ ANIMAL heldby] (x) (2.45a) 

CC [HUMAN holding ](h) (2.45b) 

CC [HUMAN  holding ](m), (2.45c) 
CC[X r]((nx), {2'A5d) 

*It Is also true that while a VEHICLE is holding something nothing 
else may hold the same object.  A description scheme where more than 
one person or vehicle may hold an object is  presented in Appendix I, 
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for every  [X r] such that Qx Is a member of one  or more of 

the following sets: 
■ 

DF[X r][ANIMAL heldby](x h) 

DP[X r][ANIMAL h ldby](x m) 

DF[X r][HUMAI^ holding] (« x) 

DF[X r] [HUMAN holding ](h x) ... <2.46) 

For each DF above the argument  pair is   (<anchürXchange>). 

The assertions in   (2 Jf4) may be accepted  cnly If none of the 

CC's above  produce a contradiction. 

In our domain the CG's   (2.45a) through   (2.45c) do not 

exist.    Where a CC does not exist for an anchor  [X r] we shall 

assume that the CC is   (y | (0X r y)), 1 .e. any declared y Is 

acceptable.    Thus, the cnly checks in the case of   (h holding x) 

will be   those resulting from the interactions, namely those 

implied by   (2.45d) and the DF's in   (2.46). 

In general, fcr any   ((^ r y) the interaction between r 

and its inverse, and r and itself,  is  part  of the structural 

knowledge built into a domain.    We shall therefore Ignore all 

definitional filters  of the forms: 

DF[X r][X r] and DF[X r][Y r'] 

for all Y for which   (X r Y) is true --i.e.  the scheme   (X r Y) 

exists»    We thus havfe the following lemma characterizing the 

conditions  for the existence of DF's: 
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LEMMA 2 .1 I* 

[(EXIST DP[X r][Y t|) ^=>   (EXISTS  CC[X r]J 

([Y t] e lenient of DONLIST[X r]) 
^([Y t]  » [X r])   (^(X r Y) V a,(t Inverseof r))] 

Frame Filters 

Besldes definitional filters, Dpfx r][Y t],  cane may 

also have in MDS  the so called  framt; filters   (FF'S), FFfX rjfY t]. 

to PF[X r][Y t]  may exist   only if DFfX r][Y t]  exists,  and if 

the FP exists then the subset 

Sx[Cy  t]   m  (DPfX  rJTY t](QY s)nFF[X  r][Y  t ] (0Y s)) 

(2.^9) 

Frame filters may be problem dependent and may be assigned to 

an anchor during a problem solving  process.    It may also be 

defined at the time  of domain definition.    Examples  of use of 

frame filters are not discussed in this  paper. 

The subsystem for building dependency graphs and defini- 

tional filters was built by John Ng, in the current implementa- 

tion  of MDS. 

The Unary predicate EXISTS is used here with the 
obvious connotation. 
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2.5.8.       Focus Lists  and the np^t.i^ f^g^g 

Whereas DF's and PF's are used to Identify and select 

primary interactions,  one may think of Focus Lists as  ccntro- 

lling secondary changes,  induced by an assertion   (x r y). 

With each  [X r] one may associate two kinds  of focus.lists: 

The BPSitive focus, list,  PFLpc r],  and the negative focus  list, 

NFL[X r]. From among all  [^ t] such that   (^ r] dependscn 

[QY t]),  the NFL[X r] is used to select those that should remain 

VVtm* in tte-Uü&UzK ffi^es^.    Thus, NFL[X r] characterizes 

the  stable relativs on which [ox r] may dependai.    If there is 

an inconsistency    at  [Gx r] thm none of the stable relations 

may be changed in order to resolve the inconsistency.    Similarly, 

PFL[X r] characteri2eB an the unstable relations  en which 

[Gx r] may depend an.    Thus,  to resolve an inconsistency at an 

[% r],  one or more of the unstable relations    may be changed. 

An element of PFL[X r] is  of the form PFLfY t]rx r].    So 

also, an element of NPLfX r] is  of the f orm NFLfY t jfX r].    In 

both cases,   [y t],  should belong to DQNLISTfX r]. Each PPLfX r] 

(NPLfX r]) is anchored at   [X r].    Notice the'duality between 

DP's and PL's   (FOCUS Lists);    A DP is  of the form DPfx rJfl t] 

where  [X r]  e DETLISTfY t],  where as an PL is  of the form 

FLfY  t]fX r]. 

Each   element cf    an PL is itself again a set 

construction expression of the form. 
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PFL[Y t][X r]  -  ([y z]   |   (^ r] depe^^  fy t]) 

(y t Z)(PFLPOV y B» 

NFLfY tKX r]  -  ([y z]   |   (^ r] dependson  fy tj) 

(y t  z)(NPLP n    y z)) 

Clcarl3r, 

PFLfY t][X r](Ox)   n NPLfY t]fX r](Ox)  = NIL (2.50) 

Wo shall usually assume the ccnjuncts   "(rOx r] dependscnfy t]) 

(y t  z)" and simply write  PPL and NFL expressions  as 

PFL[Y tKXr]   =  (f  y  z]   )   (PFLPGX y z)) (2.51 ) 

NFL[Y tJfX r]  ^  ([  y  z]   (   {WL* Qy, y z)) (2.52) 

Also, when PFLP or NPLP is vaccuous .. i.e. always T - then we 

shall simply say that  [Y t ]: itself is a member of PFLfX r] cr 

m?L[X v].    Thus, if   [Y t] is a member of NPL[X r] then for an 

[% r] all   (o^.t) 8U0h thatd^r] de^ndson  [^ t]) are stable. 

So also, if     fy t] 18 a member of  PPL[X r] then all   (^ t) such 

that   ([^ r] dependsui  ^Y tj)  are unstable. 

In our domain we may have for example, 

NFL [PLACE location of]   ■ 

([HUMAN holding][VEHICLE holding]). (2.53) 

indicating that when   (opiACE locatlonof) changes then the perti- 

nent   "holding" and   ^holdby" relations should romam stable.  Also, 
we may have 
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PFL[PLACE Iccaticnof]   = 

([HUMAN   lvcat!en][VEGETABLE location] 
[ANIMAL location][VEHICLE location]) (2.5^) 

Thus, If there Is an inconsistency at an  (©tr^jj locatlonof) 

then cne may attempt to resolve It by changing the location 

of  a HUMAN,  ANIMAL,  VEGETABLE or VEHICLE.    Lot us  consider an 

example. 

Suppose a HUMAN, h, is holding an ANIMAL, x, and h changes 

location from p to g« Let us assume that initially the follcwing 

is true: 

[(h location p)(x location p){p locatlonof (h x)) 

(h holding x}(jt heldby h)^ (2.55) 

To move the HUMAN from p to g the following should be made true 

in the model space   (this is  obtained directly from the description 

s true ture s inv oIv ed); 

[ (h location g) (g locatlonof h) 
^(h location p) ^(p locatlonof h)] (2.56) 

To accept these the following checks should be done: 

CC[PLACE  locatlcnof ](p) 

CC[PLACE locatlonof ](g) (2.57) 

and for every Q , such that Q    ±s a member  of  one or more of 
7v -A. 

the following sets. 

  1111 
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DF[X r][PLACE  locatlonof ] (p h) 

DF[X r][PLACE  iLcatlcxicf ] (g h) 

DFfX r][HUM/\ri  lccaticn](h p) 

DF[X r][HUM/iIJ  lccatlcn](h g) (2.58) 

one has  to check 

If we again ignored the SAFE predicate, as we shall see below, 

none of the above DF's would exist.    In Table  III one may notice 

that   "locaticn" and  "locationof" occur only in CCfPLACE locaticncf] 

and in CC[VEHICLE holding].     In the latter, it occurs via the 

SAFE predicate.     If wo igiored SAFE  — assuming it to be always 

true -- thön the only source of interaction with  "locaticn" and 

"locationof" is CC[PLACE locationof].    Thus, m   (2.58), r would 

be either   "locaticn" or   "locaticncf" and X would be HUMAl^/ 

VEGETABL^NIM AT/VEHICLE.    By  lemma 1, such DF's cannot exist. 

Thus, in this case wo have no relation interactlcns to check. 

The cnly CC's to chock are those in   (2.57).    Let us suppose that 

TR(CC[PLACE locaticncf ](p h))  = 
((h heldby NIL) 

((V y){p locationof y)   =»   (SAFE h y)] (2.6o) 

and. 

TR(CC[PLACE locationof ](p))   = 

[(0= P)(s   =  (x   ...   ?)) 

((s heldby NIL)v(s heldby:locaticn G)) 
((V y)(0 Iccaticnof y)  =#   (SAFE s y))] (2.61) 
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The residue   {2.60) will evaluate to T under hypothesis   (2.56), 

but   (2.61) will evaluate to NIL,  because for   (s=x ), and   (G=p J 

the expression  ((« heldby NIL)v(s heldbyilocatlcn p)) will be 

NIL.    This now contradicts   (2.16), namely  (P Iccatlcnof x) «=> 

CCrPLACE lc«atlunof](P x)  producing the reason 

Mx heldby NJ.L)(p locatlonof x) 
^(x heldby:location p)J.. (2.62) 

in the case of CC[PLACE locatlonof ] (g) we have the   .opposite 

situation: 

CC PLACEflevr.ticncf ]is x)  = T but   (g locatlcnof x) Is 

false,  because x is still at p m the model space.    This will 

produce the reason: 

[(x heldby location g) ^(g locatlonof x)] (2.63) 

The combined reason for failure at the definitional anchor 

[PLACE Icoatloicf] v.lll be the disjunction of   (2,62) and  (2.63): 

Let   (R x p g)  denote this disjunction: 

(R x p g)  = 

Mx heldby NIL)(p locatlonof x) 
~(x heldby:location g) V 

(x heldby: location g) ^(g  locatlonof x)] (2.64) 

To eliminate this cause for failure we shall try to make 

(R x p g)  = ?. To dc this one or more relations m   (2.64) should 

be set to  ?.    The values of the relations Implied by 

NPL[PLACE locatlonof] cannot be changed.    Thus ncne of the 
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"holdlng" er   "heldby" relations may be changed   (Please see NFL 

In   (2.53)).    So alsc, none of the relations in the hypothesis 

(2.56) may be ohaoged.    Deleting from   (2.64) all the   "holding" 

("heldby") relations,  and the relations  of the hypothesis we 

have  left 

[(p location of x) V ^(g location of x)] (2.65) 

as the  enly candidates for change.    Indeed,  both these relation 

values may be changed since they both belong to PPL[ PLACE location of i- 

Lot us set 

[(p locatlcnof x)  = (g 1-ocatlonof x)  = 
(x  location)  = ?] (2.66) 

in the model space.    Then, under the combined hypothesis   (2.56) 

and   (2.66) the raasuis for the contradiction disappear.    Also, 

in this  case,  the evaluation cf CC[PLACE  loeatiencf ] (g) will 

automatically set   (x location)  = g and   (g lecaticnof)  =  (h x..?). 

This will complete the process  of assimilating the assertion 

(h location g). 

Ha general, in the model space, we shall always attempt 

to eliminate the reasons for a centradiction by forcing it to 

evaluate to ?. 

The focus  list should be made more selective than the 

ones shewn In   (2.53) and  (2.54).    It is quite possible that not 

all  "holding" relations should remain stable.    Thus, for example. 

mmmmma^mm 
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h may be holding mere- than one object, some may be FDCED  objects 

-- where FKED is,  say a type of object -- and  others may be 

MOVABLE objects,    one may then have the rule that FIXED objects 

cannot change  locations,  only MOVABLE ones  can.    This rule may 

be captured by the f-Hewing FL expressions: 

NFL[HUMAN heIcling ] [PLACE locationof]   = 

^HUMAN   z]   I   ^Z  type FIXED)) (2-67) 

Only for objects z that are not FIXED should (0HUMAN holding 2) 

remain stable.    Similarly, 

PFL[HUMAN holding][PLACE locationof]   = 

(tfymm z] I {z type FIXED)) (2-68) 

For FIXED.objects (@HmjMj holding z) may be changed. Thus, when 

z moves, -z would let go his hold on FIXED objects and take with 

him only the MOVABLE ones . 

Focus  list conditions  like this may be defined at domain 

definition time  or at problem solving time.    The DF, FF and FL 

mechanisms  provide a practically unlimited and continuous control 

of frame interactions,  and secondary updating.    The focus  lists 

not only provide guidance for secondary updating, but also 

provide a formalism to describe updating criteria. Thus, strate- 

gies  learnt in an updating process may be summarized as focus 

lists, for future use. 
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The fccus  list mechanism will be automatically invoked 

In an updating process to dc means-end analysis,  when necessary, 

unless it is blocked  off by the, so called,  fjIter switch, which 

can be associated at some time with invocation anchors,   [Q    r]. 

If for an    [X r] there are no focus  lists then it is assumed 

that all the relations are stable in the context of every  [Q    r]. 

Thus, if the filter switch is  en for an  [Q    r],  or if there are 

no focus  lists for an  [X r], then the means-end analysis step 

will be skipped.    The command PR,   (Force Relation) is used     to 

force the invocation of the means-end analysis  processes  during 

updating. 

In the next section we shall discuss sane representa- 

tional shifts in the rncdel space that would enable the system to 

completely avoid the search for frame interactions and secondary 

updating,  in cases where locations  of objects change.  In effect 

in the new representations, the objects carried by a HUMAN/VEHICLE 

will implicitly move with the HUM AN,/VEHICLE.     This shift  in 

representation is achieved by the use of anchored transformation 

rules and the dummy storage flag   (which was discussed in section 

2.5.2, item   (ill)). 
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2.5.9.      Anchored  Tr^nsformatlcsn Rules 

The  Anchored Transformation Rule, ATR[X r] has the 

general form: 

[(NIL   <N3L-aotlcn>) 
(  ?      <?-actions >) 
( T      <T-actlans  >) (2.69) 

where NIL,   ? and T are the possible outcomes  of all the consis- 

tency and interactions check at an  [QX r].    If the checks result 

in NIL then the <NIL-acticns> will be executed.    Hopefully,  these 

actions will remove the cause  of the contradiction.    If the checks 

evaluate to ? then the <?-action> will be executed.    These may 

find some  or all of the unknown values in an updating process . 

The <T-acticns> when executed may cause the   "side effects 

necessary in the dcmaln when  (0X r) is updated.     In this section 

we shall discuss two kinds of uses  of ATR's.    One is a prescrip- • 

tion for the kind of updating that was discussed in the previous 

section.    The other is  a shift in representation that eliminates 

the need for secondary updates. 

Each ATR may,  by convention, use implicitly the following 

arguments : 

1) (3     :  the anchor 
11) s     : the change at   (0X r) 

ill) OLDVAL   :  Old value  of   (©* r) 
iv) NB/WAL  : New value  of   (Q^ r),  and 
v) REASONS:  The reasons  obtained fron1 all the checks. 
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Let us associate with  [PLACE lecaticnof ]  the following  ATO: 

ATR[ PLACE looatlOiOf]   - 
{NIL   ((X   |    (s  holding x)  *.{* type FIXED)) 

(ASSERT   (x locaticn   ?))) 

((x   |    (s  holding x)(x type FKED)) 
(ASSERT ^(s holding x)]. (2.70) 

The first compoient  cf <NIL-action> asserts   (x location)  = ? for 

all x that in effect satisfy   (2.6?).    The second component asserts 

.(s holding x) for all x that satisfy   (2.68).    The command phrases 

follow the syntax: 

<command phrase>   ::   = <action>   |  <canmandphrase>   ... | 

,..<command phrase>   |   (<bindingcondition> 
<c ommandphrase>) 

The binding condition is used to bind variables which participate 

in the <action>.    The action itself will be executed  oily if  the 

<binding ccndition> is successful,    m  (2.70) the binding 

conditions are set expressions.    In cases  like this the indicated 

action is performed on all the elements  of the set. 

The above ATR gives a prescription for using the focus   list 

predicates associated with [PLACE locationof].    This may result in 

avoiding some search and decision at the updating time, at the       | 

expense of flexibility.    The use of Am's to change representa-      j 

tiens in the model space is shown be lew : 

Let us associate with [HUMAN holding]  and  [VEHICLE holding] 

rtTiiii niili 
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tho following  ATR,  and modify ATR[PLACE locatlonof]  as  shewn in 

(2.75).    These  ATR's and their operations are discussed below: 

ATR[HUMAN holding]   = ATR[VEHICLE holding]   = 

[(T  ?) 
(((SOME PLAGE p)(0 location p)) 
((y   I   (y clement of NEWVAL) ^(y element of C^VAL)) 

(ASSERT   ([y  location] flag |)(y  location  ?) 

([p^ccaticnof ] flag$))) 

((y  I    (y elementof  OIDVAL) ~(y elementof NEWVAL)) 
(ASSERT   (y  location  p) ~([y  locaticn]  f^ag $)) 

(((     Vz )   (p location of  z)  =-?=>( z holding NIL)) 
(ASSERT a.([p .lecationof] flag $)] (2.72) 

ATR [PLACE locaticnof ]   = 

[((T ?)(((Vy)(y elementof NEWVAL)   #•   (y holding NIL)) 
(ASSERT ^([® locaticnof] flag |)) 

(((a elementof NEWVAL) ^(s holding NIL)) 
(ASSERT   ([#. location of] flag $)))) 

(NIL   ((x   I    (s  holding  x)(s  elementof NEWVAL) 

(x type FIXED)) 

(ASSERT ^(S  holding x)) (2.75) 

Also,   let us  associate with  [Y  location] for Y • HUMAN, VEHICLE, 

VEGETABLE,   ANIMAL,   the following  CC: 

CC [HUMAN location]   = CC [VEGETABLE location]   • 
CC[ ANIMAL  location     = CC [VEHICLE location]   = 

[(PLACE p)   j   (0 locaticn p)(o heldby NIL) V 

(§ heldby:lecation p)] (2.7^) 

The ATR in   (2.72)  does the following: 
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Por all y such that P has just  gotten hold  of "the y — i.e., 

(y elementof NWA]-.) ^(y elementof OLDVAL)  - the dummy flag, 

I«  is asserted for the invocation anchor [y location] .     Also 

(y location)  = ? is set,  and for the PLACE,  p, such that 

(€> location p),   (fp locationof]   flag |) is asserted.  As discussed 

in section  (2.3.2), item   (iii),  the $ flag has the following 

interpretation: HVery time   (y location) is called for, its value 

will be computed using the CC anchor ATR associated with 

[y location],    ih our case,  this would c^use the CC in   (2.74) 

to be evaluated,  and   (© heldby:location) to be returned,    m the 

case of  [p location^,  the value of   (p locationof) may be, 

(*-,   x2   ...  ?), where the  ? indicates the presence of possibly 

more elements in the collection.    The CC associated with 

[p locationof] will be evaluated to find these addltlcnal ele- 

ments, namely the elements that are being held by ^, ^   ... 

The second part of the  ?-T-actions in   (2.72) takes care 

of the case when an object is just let go off by 0 --i.e. 

-(y elementof NEWML) (y elementof OLDVAL).    For all these y, 

(y location p) is asserted.    That is, y is pUt at the place at 

which Q is located.    The $  flag on  [y location] is removed, and 

if none of the objects at p is holding anything then the  $ flag 

at  [p locationof] is also removed.    This sets the representation 
back to old form. 

The  ATR[PLACE locationof ] keeps track of moving the 

flag as an object at a PLACE,  that is holding something, moves 
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to another place.     If x is at  p,  and   (x holding m) is true, tten 

by   (2.72),   ([p looatloncf] flag $) will be true. Now,  if  x moves 

to g,  then  ([g locatiuncf ] flag |) is asserted,  and if p does net 

have any more objects that hold something then ~([p locationcf ] 

flag  $) is asserted. 

The selective association of these | flags now completely 

eliminates the need for secondary updating in the model space, as 

locations  change.    Thus,  a VEHICLE may be holding a hundred 

passengers.    But as it moves,  the only secondary change in the 

model space will be the movement of the $ flag associated with 

[p Iccaticncf].    The lecations of the passengers themselves need 

not  be changed. 

In the example we discussed, fortunately,  there was no 

propagation of secondary changes in the updating process. The 

propagation characteristics at an  [X r] are governed by the, so 

called  CLOSURE([X r]), 

CLOSURE([X r])   = 

(DONLl.ST[x r]  Ü DETLIST[X r] U 

(CLOSURE(DONLISTfX r] y DETLIST[X r])) (2.75) 

where the closure cf an union is the union of the closures  of its 

elements.    In the case cf  [PLACE locationof]  , we had 

CLOSURE ([PLACE lecationof])   = DQMLIST[ PLACE locationof], 

(2.76) 

This was the reason, why we had no propagation of secondary changes. 

■ ■ MMMHBB 
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One may define the depth of an  [X r] to be the number of 

applications of the CLOSURE operator in equation   (2.75).    For 

[PLACE locationcf ], its depth is  1 .     in general, the defini- 

tional filters and the focus  lists may be ordered at an  [X r] 

in increasing order of the depth of  [Y t],  for  [Y t]  e DETLIST 

[X r],  and  [Y t]  e DONLISTfX r].    In an updating process,   one 

may choose the secondary changes, in increasing order  of their 

depths,   preferring those with smaller depths over those with 

larger depths. 

CLOSURE[X r] may be computed from domain definitions. One 

may also,  of course,  compute a CL0SURE[0X r] for an instance 

[§£ r]  of  [X r], at   "run time" by using the definitiimai filters. 

This completes the discussion of the basic modelling 

concepts in MDS.    We shall conclude this section with a review   of 

what we have done so  far. 

■■■ 
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2. 6; Object Based Representations!  aiKUtt • 

We have proposed a way of defining relational systemG?R, 

and using them for two purposes:  Che is to define the syntax 

and semantics  of elementary description languages. L, that  are 

based  en R.    The other is to define the structures and processes 

of model spaces. M. 

The bundle structures are  obtained by viewing the rela- 

tional Schemas and their consistency from the  point of view  of 

classes, X,  that naturally occur in the domain: what relations 

may occur with X,  and en what classes, Y,  do the relations  of X 

depend on.    The bundle of an entity, x, is a representation in 

the model space,  of the description of x in the language  L.  it 

is  a model of x net .nly in the sense that It is  a representation 

of x,  but alsc. In the sense that it satisfies within the ^-valned 

bMafillJMaJtejyj^thg proiperties of logical consistency, that 

instances   of the class X should themselves satisfyf  in  tea 

relational system R. 

Slots in the bundle not only have values,  but also the 

reasons and hypotheses associated with the values.    Where a 

value is unknown, it may be characterized by      cendttiens, 

expressed in L.    Most importantly,  all the potential interactions 

of a bundle with other bundles m the model space may be derived 

economically using the DF and PP filter schemes.    The depth of 

such interactions may be controlled at problem solving time by 

the use of frame filters,  and the filters switch. 
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The schematic definition of the properties  of a class X 

in R, is  alsc  the definition of the  bundle scheme, used to 

represent members  of class X.    What makes these schematic  defi- 

nitions useful and interesting is that they are instantiable. 

Thus,  the burjdle paradign,  which is  essentially a descrlptlcn 

paradigm may also be used as a programming paradigm:    What is 

described  as a Jaailft schema may also be instantiated in the 

model space.    Of course, it is assumed that the schema defini- 

tions themselves are consistent. 

To instantiate, X,  one may first create a new instance 

cf the data-type that is associated with X, if the  CC[X Instance] 

and ATR[X instance] associated with X, admit of such an instance. 

BUtially,  all the slots of ©x will contain,   ?, indicating that 

their values are all unknown.    The slots may be filled by issuing 

(INSTANTIATE  (^ r)) ccmmands  for each relativ r, that is  asso- 

ciated with §x.    If CC[X r] is imperative,  then this may succeed 

in finding the   (y  j   (C^ r y)),  or characterizing this value by 

a ccnditim.    othemse, it may find the candidates for   (O. r). 

The choices  of y for   ((^ r y) would then have   .to be made by the 

DESIGNER,  TP or a user,  depending on the context of creation of 

©X- 

Modification   *c  the model space are dene by the  INSTANTIATE, 

FORCE and DELETE commands.     The  problem solving systems  or  a user 

that issue these ccmmands need not,  however,  be too danain specific. 

The  ASSIMILATOR can use the domain knowledge to understand 
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the consequences of a given assertion,  and where there is an 

inconsistency,  provide the reasons for it.    This frees the 

programmer  or the problem solver from  a whole class  of  details 

of the donain characteristics, namely all those that pertain 

to the consistency of the model space.     Thus programs can be 

vague  or may even contain errors.    The system can respond intelli. 

gently to unexpected situations.    We shall refer to this  kind of 

programming  as  Knowledge Based  Programming    Srinivasan fl 973b, 

1977c],  a programming methodology in which a user or a system 

need not be aware of all the relevant domain laws.    The paradigm 

for knowledge based programming is illustrated in figure 3.  The 

program control uses the reasons and hypotheses supplied  by the 

ASSIMILATOR to decide on the next step in program execution. 

Also, these reasons and hypotheses are used to update the program 

execution state.    It should be noted that in this paradigm the 

VA 
1 
GUE SPECIFICATION 
DP  PROGRAM 

r 

4 PR OHR AM 
CONTROL 

FROCK AM 
EXECUTION 
STATE 1 - 

Hypotheses 
Reasons    -""L^ , \ 

Next cc mmand 

ASSIMILATOR 

1 

i 
MODAL SPACE 

Fig.  3:     Paradigm for Knowledge Based  Programming 
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"next command" generated by the program control, may not  be 

present m the vague specification of the program.    It may be 

one that is generated by the control. 

The  organization of the program control and the program 

execution, state is  a characteristic  of the  kind of problem 

solving that is  done  by the program, to decide en the next 

command.    In MDS we distinguish between three general    Schemas 

for doing this:    The goal directed schema of DESIGNER, the model 

construction schema of THEOREM PROVER,  and the understanding 

schema of LINGUIST.    Thus, in the MDS  paradigm,  an intelligent 

machine will have fur execution controls,  with associated data 

organizations:    Those of ASSIMILATOR, DESIGNER,  TP and the 

LDJGUIST. 

This  kind of use of model space is made possible  largely 

because  of the choice of object-based representations, as the 

basis    for      defining   relational      systems,  and      the use  of 

anchored PC's for constraint specification,    in this schema the 

CC's are used both as functions and as  predicates. The advantages 

of object-based representations,  as contrasted with operator- 

based representations,  are summarized below: 

(a) Local Isclation;    The effects  of an inconsistency at 

a definition anchor is  localized to itself,  and other relations 

that interact with it.    The interactiens themselves are predict- 

able and smoothly c ntrcliable, using filters and focus  lists. 

Errors can be characterized in terms of the static properties of 
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of the model space.     In cperator-based representations, errcr 

propogatlon characteristics canrct cften be easily stated in 

terms  of the static  prcperties of a model space.    They may be 

characterized  oily in terms of  operator sequences,  or a grammar. 

These are not convenient entities with which one may reason. 

(b) Immediacy and Focus ;    The items that participate 

in a predicate,  functicn or a problem solving process can 

provide immediate access to all properties, confcraints, trans- 

formatins,  and combinations of reasons,  that might be relevant 

to the context of their use.     In  cperator-based reoresentat-t mRr 

the interactions amcng items will depend on the opsrator sequence 

involved,   and combinations of properties relevant tc a task may 

only be indirectly obtained via the effects  produced by the 

operator sequences. 

(c) Flexibility;    This is  partly a consequence of   (a) 

above.    Changes and extensicns to  definitions  of classes in a 

domain may be introduced more gracefully in ob.ject-based Schemas, 

than in operator-based cnes.    Changes and extensions in an opera- 

tor-based scheme may call for a change of the entire system. 

(d) Incompleteness;    In object-based schemes. Incomplete 

data result in partitioning of properties into known and unknown 

categories, where the 3-values  logical system may be uniformly 

used to characterize a modal space.     In operator-based schemes, 

unless the operators are defined a priori to account for every 

—— 
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possible ccmblnaticn of unknowns, it is not possible to 

characterize    conveniently the state  of  a model space.  Unknowns 

in operator-based systems will result in   "non-determinism", 

which may contribute fet combinatorial explosions. 

In the next chapter we shall present the basis for 

commons ens e reasoning and briefly discuss algorithms for 

CC-evaluation,  and residue extraction. 
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111     Residues,  Commonsense Reasoning and CC-evaluations 

In this chapter we shall define the syntax of  CC's,  define 

the   g-calculus  that is used to compute residues and prove the 

properties of residues that make them useful for commonsense 

reasoning.    The CC-evaluatlon process and associated representa- 

tions are discussed in section 5.4.    Some  of the representation 

schemes in the MDS model space,  that facliitate CC-evaluatlon 

are discussed in Appendix II. 

The methods discussed in this section are not unique in 

any sense.    They are included here  only to make the definitions 

precise and to point  out the feasibility of using the commonsense 

reasoning paradigm.    In a subsequent paper we shall discuss the 

complexity of CC ©valuation processes, in the context  of the MDS 

model space. 

5.1 l Syntax of Consistency Conditions 

<CC>    * <set-exp> 

<set-exp> -►     (<set-var>  "j"<P>) 
<set-var> ->      <var>   | <tuple>  I 

(<scope>Lj<var>) 
(<sc ope> LJ <tuple>) 

<scope>      ->      <class>  |  <class>//'<scope> 

<class>\ <scope>  |   x 

<class> is used to denote the name of a class in a domain.    It 

is also the name of template that defines the class. The symbol 

'W is used for blank,    A is used for null string. It is also 
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later used for  denoting null sets 

<7ar> -> x   |   y   |   x<1>   |   y<1> 

<1> > 0   | 1  | 2 |   &* 
<v> ■*> <var>  |  <tuple>   |  <fn-call> 

<tuple> -> [<segment>] 
<p-arg> ->    <var >  |(.<v> ^j<r>)| CCv> u <v>) 

<^€3mev\t> ■♦ <|f>arq> ( <s.e.3»wev»b>»-j ^p-^T-^ 
<r> -» <relname>  |  <relnanie>:<r> 

<relname> is used to denote a relation name In the domain. 

<fn-call>      ->  (<fn-name>LJ<args>) 

<fn-name> denotes the name of a function defined by using 

the function template schema. Functions appearing in a CC are 

required not to change the model space  during  CC evaluation. 

<args>        ->    <segment>   |   <set-exp>   j 
<args>JLiJ<args> 

<quantifier>->  (<scope>|_j<b-vars>) | 
(<q-type>LiJ<scope>LLl<b-vars>) | 

(SOME LJ <sc ope> LJ <var> U <1> !_] <i> ) 

<q-type>        ■#•    AHL | SOME | THE 

In our discussions in this chapter we will use   "(Vx)" 

and  "(3x)" as the symbols for quantification.    This is  dene 

only for convenience.    All quantifiers in  CC's are required to 

be as specified by <quantifier>.     In the existential quantifi- 

cation,   "(SOME  ... <i> <i>)" the integers are used to indicate 

lewer and upper bounds on the number of solutions. 
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<b-vars> 

<P> 
<var>  |  <var> U<b-vars> 

(<P-arg>Li <T>LI<p-^g>)   ( 
(<tuple-name> LJ<segment>) 
-v   <P> 

<P> is the elementary predicate.    We shall use symbols 

P,  Q,  Pi,  Qi, etc.  to denote these.    Notice that <p> can appear 

with or without negation.    The <tuple-name> denotes the name  of 

a tußle template.    Tuple templates are used in MDS to define 

n-ary relations for n > 1 , 

<&-seg> -> 

<&-exp> -> 

<V-seg> -» 

<V-exp> + 
<^ -exp> -> 

«=$> -exp> -> 

<'^exp> -> 

<q-seg> -> 

<fy>   |  <P> - <&-seg> 
(0-seg>)   |   <p> j 

<P> <&-exp> 

<P>   |   <R> V <V-seg> 
(<V-seg>) 
(<p> ^ <p)) 

(<'P> <=» <p>) 

-<|ö>   I    (^<P>) 
<quantifier> <F>>   I 

<quantifler> <q-seg> 

We shall use the symbol <q> to denote    a quantifier, 

<L-exp>      ^      <p>   |  <&.exp>  j  <v-exp> j 

< ^ -6xp> («=»-exp) (<^exp> 
<P> ->      <L-exp>   |   (<q-seg>). 

The following special symbols are used, whenever 

convenient 

ta* mm 
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-> v I 
n     ♦ x 

<P> x       4. <P> 

A   <P> -> <p> 

? T j U | F 

ThUS  9 Mil denote «.  » anä „,. ? ^ used througha,t 

«. the evaluatlon faction, and a Is used to denote a substltu. 

tlon list of the form 

a - f(x a)(y ;:)     .__] 

indicating substitution of a for x, b for y. etc.  MP   Is the 

predicate expression P „Uh substitution a.    ,[ojp ls the truth 

value of MP.    By convention^ . t. vl «m denote T.  , or H1L. 

consistency c.ndltl.ns are represented m the model space 

in their mini-scope, forms.    TMs form ls deflne(J ^ ^ ^ 

sectlcn, and rules ftl. convert^ an arbitral  P to Its mini- 

scope form are presented. 

3.2 The_m.nl-Soope Form 

Let <v> denote a string of universal <quantlflers>, and 

<3>, a string of existential <quantlfiers>.    Let PX be a predi- 

cate expression m which x occurs free, and PX be cne m which 

x does not occur free.    Then,  the definitio. of the Mini-Scope 

Form  (MSP) may be stated as follows: 

(Ft )       P is in MSF 

(P2)      If P ?.nd Q are in MSF then so are   (P v Q)    PO 

in),  (P^Q) andP^Q. ^ ^  ^ 
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(F3)     If  P is In MSF then   ((Vx)p) is  In MSP  only if x 

cccurs free in  P,  and P is not  cf the form P-jPg* 

(P1   - P2) 

(F4)    If  P la in MSF then   ((3x)p) Is  in MSF  oily if x 

occurs free in  P,  and P is not  of the form 

(P1 v  P2). 

The following rules may be used to cenvert an arbitrary 

P to its MSF. The prepositional rules given below  are to be 

applied first.    The rules are  applied until no more rules can 

bo used. 

(A)       Proposltjuial Rules 

i) % <vP        -> P 

ii) (P=£> Q) -> ('vPVQ) 

iii) (P <^ Q)-> (PQ V ~P -vÄ) 

iv) 'v(pQ)      -> ( ^p V 'vÄ) 

v) 'v(PVQ)    ->        -JP -vQ 

(B) Quantificaticnal Rules 

i) a.((Vx)p) ■►  ((3XKP) 

ii) -((3X)P) ->  ((¥x)^P) 

iii) ((Vx)   Px* P 

iv) ((3x)   Px)->P 

Here Px indicates that x does not  occur free in P. 

v)       (<V>PQ ->  (<V>P)(<¥>Q) 

vi)       (<3>(PVQ))  ■»   ((<3>P) V   (<3>Q)) 
viii)     ((¥x) <¥>   (Px V Qx)) ^ 

(<V>   (((Vx)P) V Q) 

mumm 
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viii)     ((¥x)<V>   {Px V Qx)    * 

(<V.>   (p v   ((Vx)Q))) 
ix)     ((3x)<3>  Px Qx -*   «3>   ((HX)P)Q) 

x)     ((3:c )<:,)> Px Qx   ■♦ 
(«3>  P   ((3x)Q)). 

We shall assurno that the variables in a predicate 

expression are all distinct,     m the current irnplementation 

of MDS,  the program for transforming CC's  to their MSP was 

written by Tau Hsu. 

In the next soction the residues are defined and the 

^calculus that is used for residue extraction is  introduced. 

3.3     Residues ana  partitions . 

We shall first  define residues for propositicnal express- 

ions.     As mentioned befcre,   let a be a substitution  list  of the 

form: 

a = [ (x a)(y b)   ...   ] ^j * 

If x is in a,  then we shall let 

[a]((Vx)P)   . [a]((3x)p)   = [a]P. (3>2) 

If x is free in P and x does not  occur in a then    we 

shall assign x = ? in P.      AISC we havej 

(a)    cp(x r  ?)   = ? fcr all x for which  (x r) is  dimen- 

sionally Consistent. 
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(b)      Per ö tuple name R, 

9 (R f^-!   ^   ...   ?   ...  a   )  = T if 

o((Vx)(na1   a2   ...x...a  ))   ■ T 

= NIL If 

..p((Vx)(R a1   a2...x...an))   = NIL 

cine       ■ ? 

(c)      cp(? r)   = cp(r  ?)  = ? 

where    r    is  a relation  path 

For a function, f,  if  cne  or more  of its arguments is unknown 

then its value is   ?,  unless  the function itself returns another 

value.    Thus, in the ji-valued logical system cp[a]P is always 

well defined. 

We shall require that  expressions  of  the form,   (cpP  = ?), 

flo not  occur in CC's.    This is consistent with our view  that 

in a domain itself,  taere is no concept  of a relation having 

value,   ?:    Every relation is NIL or T in seme model space. How- 

ever,  there may exist  P, for which it may be impossible  to cons- 

truct the model space in which P = T or NIL.     In MDS, such pre- 

dicates may have value   ?, and computations attempting to assign 

a T or NIL value to them, may never terminate.    This view is 

consistent with semi-decidability cf sentences in first  order 

legic. 
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3.3.1    Reslduos and Par-t1tl^g  „f  Pronr,^ t1 rr,c 

We Shan «Mum. that an prcpcalticns are m nim-accpe 

fo». i.e. negattona ap^ cnly ln the elementary forms pj ^ 

« ana v are the  „ly c.nnoctlves.    We shaU ocnslder below>   ^ 

groimdlng substitutions    1   P       P v^o xoutions, i.e.,  p has no variables in It. 

Deflnltlcn ':L.U      Residues   of Elementary fa^, 

(^fajp=p)     if cpfajp^cpr,     elsex.    ... (3.4) 

TRfoJ^p    ■    ^Rfa]p 
PR[a]~p   =    ^TR[a]p 

Definition ..P:    Rosi.duos_o£_Ccn,1 unctions ana,Dls,unctj Gns 

Let «   be  - cr V.    Then 

Lo.mma 3.1 

(9fa]P\cp5)   ^>   (5Rfö]p  . x) (3 7) 

Lernma 3.2 

Proofe  of these lomHas are by Induction on the structure 

of P:  P is a <n> cr P t«  /s   «. n \ W or 1  la   (^  v P2 v   ... vpk)  or ^   P2   ...  p^. 

 Ill Hi ll I j^JlJ^i^ji -SI—IIB^—^—^^l—M——^^»^» 
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We shall hereafter indicate explicitly the bindings 

associated with a residue,  by writing the residue in the 

f cvm 

[a](?R[a]P). 

3.5 .2        Resl.dues_ and Partitions  (f 
Predicate Expressi ons 

5.3.2.1     Substitution Rqnpfis.  Their 

Partitions and Sointicns  of p 

A substitution range is a list of the form 

ft-   (a1   a2   ...  an) 

where each 

a1   = [{x,   (41   a^   ...))(X2(^   a^...)) 

•"   (xm  (am1   knß   •••   )>]#... (3.10) 

(3.9) 

in which a^    are constants.    For 1   - 1  ? « ^ ,, 0^ *    r(Jr 1   - »#«#..«#11, we shall say- 
that 

(Hange %x.)==(all   ^   ...) ^^ 

Definition 3^;       („ J £) and   (a e a). 

(i) (a e a1) if a and cc1 have the same variables,  and for 

each x in a, 

(Range  a x) C (Range ^ x). 
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(11)       (a e a)    If there exists an 1 such that   (&■  memborcf a) 

find    a e a  . 

(ill)     (a 3 ß.)   er     (p_C a) If 

((V5)(5  t i) +     (6  e a)) (3.12) 

In the ccntext of predicate expresslais, we shall at 

times distinguish between three kinds  of substitution ranges. 

1)    Range  of Universais: QL-CP) 

QLjCP)    is  of the firm 

^(P)   =  ([(x(a1a2...))(y(b1b2...)) ]) (3.13) 

and It specifies the range  of values  for the universally 

quantified variables of p. 

(11)    Free Range:  flu(P) 

gu is  of the form  (5.9), and It specifies the range  of 

values fcr the free variables  cf  P.     If P has no free variables, 

then ^(P)   ■    X. 

(ill)    Solutlcn Range:  ^(P ^) 

a is of the form Ö.13) and it specifies the solution for 

the existentlally quantified variables of P, for the given 

free range gu. 
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Slnce we have QMUBftd that all variables m P arc 

distinct clearly, ^ ^ and ^ will not have any common 

variables.    By  definition,  let us set 

[XJP  = P    and     (A   e x) 

We shall  ofLcn use aX cr aX to dencte a substituticn 

range m which x is  the  only variable.    We shall use ^(P ^) 

to denote the  ^-solu^n  of P for the free range ^  A^c, we 

shall generally Use oxpressicn of the fcrms: 

(f^Jf^JC^JP) 

with the interpretaticn 

(Va)(a  c  eaf)(Vp)(ße 4^)   ^ 

((36)(5  e ^aß)(cp[a][ß][5]P = ^) (3Jif) 

irrespective  of, whether th0 variables m ^ are universaily 

quantified,  and these m ^ are existentiaiiy quantified.  But, 

always  c^ and ^ are used to specify ranges for the bound 

variables  of P. 

We will consider residues  of predicates,  P,  only in the 

context  of a given af.    We shall make use  of the fact that  P 

is in mini-scope  form,  and define the residues  enly for 

expressicsof the f or. ((Vx) (P^P.v .. .vPk)) and  ((3x) (^ P2 .. .PJ), 

ameng quantified expressions. 
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Every predlctito expresslcn p,  may be reduced to Its 

equivalent prepositional form in the model space, since P 

is evaluated  enly ever the models that exist in the model 

space.    Thus, residues of P are equivalent to residues of 

their asscciated propvsitiaiai forms.    But,  prepositional 

residues  of this kind are likely to be very large expressions. 

They are hard to generalize.    They cannot easily be used in 

new situations, when the bindings  of the variables change. 

The expressive pwer of the sentential fcrms of P is completely 

lest in the prepositional residues.    We shall discuss below a 

way of extracting the residues in which the sentential forms  of 

P are not lost.    We snail express the residues in terms  of 

expressions  of the forms: 

5R(P)  = [<scope of bindings for variables in Q>]Q. 

where Q would be a subexpressicn of the parent expression P, 

and the  bindings specify the context for Q.    If the model 

space changes and the bindings change, then Q may be easily 

re-evaluated in the context of the new  bindings.    Since Q is, 
in general, a sub-cxpressicn of p, the re-evaiuaticn of Q will 

always be a simpler task, than the re-evaluation of p. 

5.3.2.2.    g-Solutions  of  P 

Definition 3A1       Partitions  Induced by P 

Every predicate expression,   P, induces a partition of the 

HHUBBg 
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range  of its free variables,  af (P) Into three parts 

?af (P) for   ? = T,U and P: 

?a<P)   - (o  |   (a G Sf (P))((p[a]P  =    9%) (5J5) 

Also, If 2 is the  only bound variable of P, then we shall say 
that, 

5z(P a)  = (u  j   falanU lO ]P=(pC )) (3#16) 

and 

2(P a)   = fTz(P a)  U2(P a) PZ(p «)] (3.17) 

If P is an elementary predicate, p, then z(p a) may be 

computed using the model space.    Por binary relations, the 

storage of relation values m terms of collections   (See 

Appendix  II), facillbates the direct retrieval of 2(p a) from 

the model space.    For n-ary relations, n > 2, the partition 

ss(p a) will be computed when called for. 

We shall present the residue definitions m such a manner, 

that it makes apparent its conputation.    Besides computing 

residues, we shall also compute the, so called, partitions  of 

P for a given af.    An example of a partition of P is presented 
below : 

definition 

Suppose cp^jp = ? and P ■= ((Vz)^ ).    Then by 

tiun 
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((3a) (a € af)(r.[a]P  = ?)) 

'-(3ß)(ß e af)(«[P]p =NIL) ... k.ril 

Thus,  ln this case Fg, (P)  . x.     However,   Taf (P) may exlst. 

%(P) would,  of course, exist.    The true reside win have 
the form 

»f«^-ei*,.(pm^K^j« ... (3.19) 

for some sub-express!.« Q of p.    Por eaoh a ^ ^ (p) ^ 

universally quantified variable,  z, may have lts range  ^^ 

tloned Into two parts: 

MPa)   = (^   b2   ... bm  ?)      and 

^(Pa)  =  (^   ^   ...an   ), 

such that for £  = u    and    T 

(u • C«{Pa»  ^  (cpfajnz.u)]    .^j (3<2o) 

Ln this case, we shall say that 

U%(p)   -  ([a   (2  U2(P a))]   1 

(a « %(P))(U2(P a)\x)l (3>21) 

Also,     uT£f(P)   =  ([a   (2 Tz(Pa))   | 

(a f UO^PJHTZCP a)\x)] (^-^ 

and the true  parti tiai of p. 
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This is the part  of   p M4«.>, ^ 
evaluates    . ' ^ ltS ass^ated hindlngs,    that 
evaluated to true, when P itspif -     , 

»n f itself evaluated to  ? for g-. 

True  part  of  a p may alst- ^«^    w 
2h fcM. Where ^%JP * NIL. Ll thls case  caie may alsc  have the „nw, 

when P is a  n. Hnl3^ ^^ Cf P- ^^ 
-nFlsa proposition,  cne may have a true  na.t   I    , 

Dart) r-p  D      u ^^   unknown 

raay evaluate t0 ? f» - a. but scre   fop     
,p--^ 

be such that ,faJp   = T_ f ^   1 < K k   n^y 

^ Shal1 toOUGta* - »- =c„venUo„ that 

aUAjp - nstxjp . x 
(3.25) 

A^c, m binding specifications „e -hal!      4* . 

an tte ,    .        **""«•« vartableS, ir the range 

-U the instances m t;ie socpe cf 

this „e shall usuau,:  say     Xhe ^'    * 0aSeS  llte 

& the subseetlcn  bei™ „e def1no ffc 
" aeime the, so called     r 

calculus that 1, used tc oc 
1IM' t 

- P -n ^ ran, :os a / "   e iTT^ "^   ^"^ 
« the stnuctu«  cf p,       %' ""^ "  ^^ ******'» 

(1)      P is a p   )r a    ^ 
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(li)     P -  (^       P2  *...*   Pk),  k^1,  -   =.  or V. 

or       (ill)    P = ((Vy)^  v  P2 v...v  Pk))      ur 

((3y) P1P2... p ), k > 1, 

whore  P1,  i   < 1 ^ k are general predicate expressions in mlnl- 

scope form. 

Definition 3.ij;       Truth Value   of  [af ]P. 

((cpfo^jP =T)    ^   ((Va)(a e %)  ^   (cp[a]P = Tj) (3.26) 

((cpIOfJP  = ?)  ^>    ((3a)(a  e af)(cp[a]P  - ?)) 

~((3ß)(ß   e QLf)((p[ß]P «NIL)) (5.27) 

(cpfo^JP -NIL) ♦^((3a)(a 6 af)(cp[a]P =NIL)) (3.28) 

3h what follows we shall consider all propositions and 

predicate expressions  U  be   (n-i2)-ary predicates for n ^ 0: 

Elementary forms   (P ^ .. .xn y 2),   propositions   (M ^ .. .xn y z) 

(M^g..^),   (N x^,.xn y z),   ÖJ1   V N2 V...V Nk),  etc.    We shall 

throughout  assume that the solutions 

SjJf(2)   ■  ([x1 ...xn y z]   | 

(9 (Z Xj   Xg., .xn y  2)   = cpf:) (3.29) 

is available to us for a general expression Z.     Jh section 

3.5    we shall briefly cutline a procedure for obtaining £ßf (z) 

for a proposition Z, using the relation values stored in the 

model space. 
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3 .5 .3 : Elementary Form 

P = (p x1   ... x    y z)      or 

~(p x1   ... xn y z) (3.30) 

^pf(P) may be  obtained from the  model space.    Fcr a given 

a,   ^2(P a)  may be  directly retrieved from the model space,  as 

also the  partition    z (p a)   (see equations   (3.16) and  (3.1?)): 

The  partitions  of  P, 

nS[%]f = [^f(P)]P (3.31) 

where 

f:ßf(P)   -  ([a   (z   tlziP a))]|    (a  €  %) 

(?2(P a)\x)) (3.31a) 

W_ßf (P)]P = UPJ. (P)]P    Ife'-S    else    x. (3.32) 

We shall heroafcor uniformly use the symbol p to denote 

a binding for   [x-, ...::n y z]    end the  symbol,  a,  for a binding 

of the  prefix [x1 .. .:cn y].    Per any proposition,  Z, we shall 

hereafter use the solutions  defined below: 

(A) ^(Z)   .  (a|(^(Za)\x)) (3.33) 

(B) WfäiZ)   =  (a|(a  c  ^^.(Z))   (Tz(Za)\x)) (3.34) 

(C) UPc^Z)   =  (Uaf(Z)   UFaf(Z)) (3.35) 

(D) FU%(Z)   =  (a((a  g Faf(Z)) 

(Uz(Z a)\x)) (3.36) 
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Note that  an a can bo m all of the solutions  ^f (z). 

(E) 5pf(2)  =(.(b(2  .2(z a))]j{a e ^(z))] 

(P) lFTßf(Z)   .(fo   (Z  Tz(z a))((a  e  UFTaf(z))] 

(0) ^(2)  = ([a   (z  U2(z a))|(a eP^fz))] 

(3.37) 

(3.38) 

(3.39) 

All the above soluticns may be ccmputed if ^f (Z) is ^^^ 

3.3.^: Pil^.Pcsi 11 enal Fcrms 

N  =  (^   V N2 V  ... VNk)       and 

M = ^ Hg   ... Mk  f    with arguments 

Cä|   X2...xn y z]. 

We have the fcllcwlng definitions: 

(a) T2(N a)   =    U    Tz (N,   a) 
i=1 * 

(b) Uz(N a)   =:Ly1   Uz (^  a)   . Tz (N a) 

(c) P2(N a)   =    n    P2(N4   a) i=1        ^ i   "/ 

(d) T2(M a)   =    n    Tziw    a) i=1        ^ i   "/ 

. k 
(e) U2(M a)   =1U1   U2 (r^   L)   . P2 (M a) 

k 
(f)       P2(M a)   =    U    P2(M    a) 

(3.40) 

lllllilM 
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Kn.winß the solutions  m   (jAo) for each a £ ^    ^ 

^y then compute   all   one  solutions   (A) through  (G)  given In 

the  previous sectiui 

Definition^:    Rogues   of Propcsltinn. w<^ ^^   ^   rir 
ej-:pressicns. 

» P - {P1   *   P2 * ..,*  Pk), where #   » . ^ v#  and each 

P^ is a mini-scope expression,  then let 

^f(P) - (5%(P) n ^(P^) bM) 

Then    ^[^JP^  ^^   (^(P))^)) (5Jfö) 

K"  S4(P)  = A then Its associated P1 nill get  dropped off the 

residue expression. 

Definition 1.7;     PartitUns  of  ^.pi^^.^ 

Again P  =  (^   .   p2  .      _*  p^) 

uPT4(p) ■ (^(P^ n IF%(P)) (3!^) 

^(P)   - (uc^) nF%(p)) (3<44) 

nur^jp . (^ (iBru^(P)]Pi .nufPTai(P)]Pi))  (^46) 

Using the solutions in   (3.4o), and definitions 3.6 and 

3.7,  the residues and partitions  of P may be computed.    Even 

«• 
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though the sclutlcn In   (3.^0) are ttm/bmA  «»i« ^ \^.-rvj  art  fat area only fcr proposi- 

tions,  they apply equally well for forms  like 

?  = (?!*   P2  *...*   Pk) 

The  only requirement is that   [^ ...^ y z]  bo the free 

variables  of  P. 

3.3.5:        Millsp>pe expressions 

3.3.5.1 J     Unly&rsai Quantifier 

P  -  ((Vz)Q) 

Q = (S v Q2 v ... v Qk),      k>^t 

-here  P has   (n+1 ) free variables ^ .. ^ $ and each (^(n^) 

free variables   [^...^ y 2].    v/e have the following. 

Taf(P)   =  (a   j    (Tz(Q a)   . Sp(a))3 ^gj 

kliere Sp(z)    is the range  of values  of z m the scope  of z, 

in P. 

We have here integrated out the variable    z. 

Uaf(P)   = (a   j    (jZ(Qa)V)) (5.50) 

Ußf(P)  ■ [^(^[Ua^P)] (^51) 

«here  Ua2(P)  = [ (z   (u   ,   ((3 a)(u  6 Uz (Q a)] ' 
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Paf(P)   =  (a   |(PZ(Q a)\x)) (3^3) 

Pßf(P)   = CF%(P)3[Pa
Z(i>)   ]       • b^) 

PaZ(P)   =  [(z   (u   j    ((3a)(u   e P? (Q «)))] (3^3) 

Deflnltlcn ^.8;      Residues  of Quantified Express j ens 

fcr  Universal Quantifiers 

]h;thls case, nan»  of a e ^ will contain the variable 

z.    We shall extend each a tc Include z, as follows: 

Let Tz^P a)  =Tz(Q:L  «) (3.56) 

and      fcr ^  = U    and      P 

^zi(P a)   =  (i;z(Q a)  n ^i\  a)) (5.57) 

^f(P)     -  ([a  (z  ^z^P a))]   j 

(a  c Saf(P))(  z^P a)\x)) (3.58) 
Then, 

mOflP - ((Vz)    V    (^[^(P)^)) (3.59) 

Definition ^S.Q;    Pf-ti-tltlon  of  p 

P =  ((Vz)(Q1  V Q2 V   ... v Qk)) 

lh this case  bPT4(P) and P^^P) are  again as in  (3.45) 

and  (5.44), with tha  exception that   "ef (Pj) " for S  = T and    u, 

respectively,  should bo  replaced  by   "^a   ((3z)Q   )". 

ma—mmmmt 
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IIT 

UIJäJCP)   = ([«   (z  Tz1iP a))]| 

(a e UFT 4(p))(T2i(P a) j=x) (5.6I) 

Pu 4(p) != ^a (z Uzi(p «))]| 

(a  G Fy o^(P))(Uz1(P a)   =f X) (5.62) 

k 
[af]P  =  ( V     (3z)(ra[T4(P)]QjL -   TRCIF^CP)^))   (3.63) 

k 
nuraf]P  =  ( V     i3z)im[U^(P)-\öu±  -  UR[PUÜJ(P)]Q1))     (3.64) 

In this mode of computing residues and partitions the 

bindings specifyin:    bhs  ^-solutions for each subexpression Of 

P is  passed  on to t   e  subexpression,   past the  quantifier.   Ulti- 

mately when the subexpression becomes an expression in ele- 

mentary form,  its residues and partitions will be computed 

as per equations   (3.^1)  and  (3.52).    At a higher level, a 

subexpression, Q^  nay get dropped  off  a residue,  or parti- 

tion expression,  if lbs  associated  binding is empty. 

3 .3 .5 .2 :    Existential Quantifier 

P  =  ((3z)(Q1Q2...Qk)),  k> 1, 

Q ■ Q^... Qk 

where  p has   (n+1 ) free variables   [x-, ..^ y]  and each ^ has 

(n42) free variables   [x  ,. .xn y z].    We have the  following: 

  .-.    —.  mmBBT& 
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*%,(?)   -  (a   |(Tz(Q a)   j= x)) 

T£.f (P)   - [Taf (P)][Tcr(P)] 

TaZ(P)   =  [(z   (u | ((3a)(u  c Tz (Q a)] 

%(?)   =  (a   j(Tz(Qa)  =x)(Uz(Qc:) j=  X) 

Ufi.f(P)   = [Uaf (P)][Ucr(P)] 

Uaz(P)  = [(z(u j ((3a)(a e U^CP)) 

(u  t  Uz(Q a)] 

Füf (P)   =  (a   |    (a |r Ta...(P))(a  jr  U^ (p)] 

Pfi.f (P)   = Pa^. (P) 

Definition 3.10; Residue  of  an Existentiaiiy 
Si!P.^PlPled Expression 

Pz1!? a)   = Fz(Q1  a) 

and for  g • U and T 

^zi(P a)   =     Uz(Q a)   n ^-z (Q1  a) 

?4(P)   =  ([a   (z  ^(P n))]   | 

(a  « ^af(P))(5z:L(p a) \x)] 

k 
5R[%]P = ((3a)   A    (eRfSflJ(P)]<L)) 

1=1 i 1 

Again, If  5^ (P)  -   x then the corresponding Q1  will 

t ho re s 1 due ex pre s s 5. on . 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

(     (3.73) 

(3.7^) 

(3.75) 

(3.76) 

drop off 

^^^..:.^.^^^.^.,^.^^:^.^^.^^ 
aü  -■   :-.^     ,..^,„..-^M:.,....       , 
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Deflnltlon ^.11 ;       Partitions  of Exlstenti any 

Quantified Expressions 

Q = ((32)Q1Q2...Qk),  k > 1, 

W^CQ) - (UPaf (Q) n Taf{Q1)) ... (3#77) 

»O^CQ) = (Fg^ (Q) n u^ (Q^) (3#78) 

^T%(Q)   -  ([a TZ(Q1  a)]   ( 

(a  €  IFT4(Q)) 

(TZ(^  a)  f.X)3 (3.79) 

^üftJC^J  - ([a Uz(Q.   a)]   j 

(a  e FIJoJf
i(Q))(Uz(Q:l  a)   ^x)] (3#8o) 

k 
nT[af]Q = ((32)    A    (mflF^CQ)]^)) ^^ j 

nu[af]Q  =  (Oz) ^A     (URrF^CQ)}^)) (?#&) 

3.4..     Corn^utation of Residues  an^ partlclnn^An Q^g^g 

As  presented above,  the residue and partition computa- 

tlons require for each  P,   ^f (P),  to ^ knoWn#    Slnce  p ^ 

in mini-scope form,  thl. would ultimately reduce^knowlng 

e^f for the  propositions contained by the various mlnlscope 

subexpressions  of p.    We shall review  below  the evaluation 

algorithm implied by the definitions given in the  previous 

section,  and briefly outline the method for the computation 
Gf iigin) for a proposition,  M. 

- 
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3.^.1.    The_Ey_aiuatlon  AIporlthm 

3.4,1,1,    Sin; ,lp,. Universal Quantifier 

P  =  ((¥2)1^),  M  =   (M^ l^V..^),   lc> 1, 

Each Mi is  a propcslLicnal expression, which win contain z 

as one  of its variaoles.    We have the following solutions  of R, 

(MD;   ^{M1  a)     -  (u   |(cp[a][(Z u)^   =cp^)) 

(M2):  TZ(M a)       =    U    Tz (M,   a) 
1=1 * 

im)t   Uz(M a)       =(   U    Uz(Mi  a))   - Tz (M a) 

(M4)j Pz(M    a)     =    n    Fz(M,   a) 
1=1 1 

(M5):   SfipCM) =    (a   j    (?z(Ma)   |.x)) 

(M6):   UPaf(M)       =     (Uaf(M)   UFaf(M)) 

(M7):   IFT%(H)     -     (lFaf(M) nTaf(M)) 

(M8):Puaf(M)       -     (Faf (M)   n Uaf (M))     ' 

im)t ^(M)     - [(z(u | ((3a)(a€^(M)) 

(u  e 5z(M a)] 

(MIO),   UP^CM)     =    r(2(u   |    ((3a)(a  e  up^^^ 

(u  t Tz(M a)] 

(MID.-P^CM)     =   r(z(u |  ((3a)(a ePu%(M)) 

(u  t  Uz(M a)] 



■ ■SS 

»117- 

The  above solirclcns may be used tc o 

cf P, as  defined below : 
btaln the  ^-solutions 

&h     Taf(P)   =(a|    (T2(Ma)   =SF(2)))CT%(M) 

where ^(z) is the  local range  of z m p. 

(K)--    Uc^CP)  - (a |(af Uaf(M))(p2(Mu)  =X))CU^(M) 

(*5)l    Faf(p)   =Faf(M). 

C^)«     UFT%1(P)   . IF^fM) 

(P5):    P^fP)   =PU%(M) 

(P6}:     ^(P)   =^2   (u   |   ((3a)(ae^f(P)) 

(u  t ^z(M a)] 

We may write 

(p9):    ^f(P)  -[«%(P)]f5%{P)3 

with the interpretation 

(^Ha«5%(P))  ^((36)(5e?as(p))((p[a][5]p 

We have the following identities: 

= 90) 
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(1)       Taf(p)   U ll^o^p)   =Ta:f(M) 

(11)       Uaf (P)   U P^CF)     = U^ (M) 

(ill) TaglP)   -%(«) 

To compute the residues and partitions  of P,  the solutions of 

P are redistributed arncng M. ,  for 1   ^ i ^ k,  as follows: 

(PlO):     5fii(P) (5%(P) n Sgf(M1)) 

(P11):     lFTaJ:(P)   =  iWtftfi?)   DTg^iM^) 

(P12)|    Fu4(?)     = (F^CP)  n Uaf (Mi)) 

(Pl5)l     ^(P)       - [(z   (u   I    ((3a)(a  £  g4(P)) 

(u  c  5z(Mi  a)] 

Similarly UPT^(p) andFua^(P) are also defined. Using 

these remstributed solutions, the residues and partitions of 

P may be computed as shewn  below: 

(PU):     SR[?af (P)]P  = ((Vz)    V     (SR[5QJ (P) ][^ (p) ^i)) 

(P15):     nT[af (P)^   =  (TR[TaJ(P)][Tc^(P)]M1 - 

ro[UPTaJ(P)][IJPT^(p)]M1). 

k 
(P16):     ITr[af]P      =  (    V     ((3z) ^[0^^)) 

im>t    UViOf]^      -  (UR[UaJ(p)][Ua^(p)]M1  - 

UR[F
U%(P)][FU4(P)]M1) 
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(P18)   matw   . (^ (te) mjf^(P)]MI)) 

If Sap(P) = X for a given 1. then the corresponding M 

«11 *op 0« the ro,tdUe expreSSltn.    So a1So. it  „A^ 

«■ F^{P) 1.    X then the oorreeponcttng M, will *op off the 

the partition expressione, nr a„d m. r.speetlvoly.    Let us 

n« eonslder the soluciene for expreSsionS with a single 

existential quantifier. 

5.♦.1.2.    gin, aejixistentlal Q,imnt.<Qgg 

Q   =('32)N),  li   -  (N,   N2   ...Nk),     kssn 

Eaoh Nl is a propositional expressi«, with z as one of its 

free variables,    «e hW, then the following solutions: 

(N2).-    TZ(N a)       .    n    TzCN,  a) 
1=1 * 

to):    ^a)      ={^     »(N, ,)) . Psö( a) 

(»*)l    Fz(N a)       =    u      p2(N4   0) 
1=1 i 

(N5):     5ar{M) =  („  |    fe(Na)   fx)) 

m, ^(u)    =[(z (u| ((3a)(a6i;VN)) 

(u € ?z(N a)] 

using these, the foilowlng solutlnns for Q may he ohtalnea: 
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where 

(Q1):      Taf(C)  -^(N) 

(02):       Uo^Q)   .  (a  |(T2(N a)   mX)ia  e  u^m) 

(Q3):      Paf(Q)   -  (a | Fz (N a)     =   SQ(z))) 

m*      .^(Q)   =    (ziu   |    ((3a) (a  e  5Sf(Q)) 

(u  e Sz(N a)] 

(Q5):       lFTaf(Q)  =Fu%(Q)   =UFTa6(Q)   =Pufle(Q)  =x 

However, we  will have the following solutions for each ILi 

(^)l       UPT4(Q)   =  (UFaf (Q)  fl Taf (N^) 

UFaf (Q)   =  (Uaf(Q)   U Fc^ (Q)) 

(Q7):       Fuo|(Q)   .   (Paf(Q)   n Uaf (^ )) 

mt   IFT4(Q) = f^ (u ( ((3a)(a f ^(Q)) 

(u e Tz(N;L  a  ) 

(09):      FU^(Q)     =    (Z   (u   ,   ((3o)(a  ePij^(Q)) 

(u e WB(M      a)] 
1       ' 

(010):       ^(Q)   =    Saf(Q.) 

(OH):       C4(Q)   "    ^(0) ^gv-/ ^i=ife 

USing these,  the residues and partitions may be written 
as follows: 

»18).    5R[5af (Q)]Q = ((3z) ^   m^Wm^W^)) 

(si?): matVt • cni^wn^id)^) 

J 
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^)i  mogn ■ ((Hz) S (nT[%]N1)), 

(Q16):  nu[af]Q = ((32) ^  (UR[a,]N.)) 
i =1    • i  1 

> 

If P in 3A. 1.1 and 0 above have several quantifiers, then 

the redistribution of the bindings to K±  (K^) will take place 

only after all the quantifier checks are completed. The organi- 

zation of the binding for this case is presented in the next 

section, below, 

3.^.1.3s  General Predicate Expressions 

Case (a):     p = ((Vz)Q), Q = (Q^V. ..VQk), k ^ 1, or 

Case (b):     Q = ((3z)p), p = P1P2...pk, k> 1, 

where each Pi (and Q^,) is itself a quantified expression with 

z as one of its free variables. After completing all the quanti- 

fier checks for each P^^ (C^), we will have the solution, in the 

following form; 

where Z±  is a pjL or a Qi, for 1 ^ i ^ k. Sgs(Zi) will contain 

the solutions for the quantified variables, that are local to 

Z±,    It may be noticed that this form is the same one, shown in 

(P9). Using ee^-CZj^), the solution for case (a) and (b) above 

may now be obtained. 

"'—'—" —  , .  i 
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For case   (a)  one should use formulas   (Ml) through   (M9) 

and  (P1) through   (P18),  after  doing the following substitutions: 

Replace   (Ml )  by, 

("'')= tz^ a) . (U |  (ta (zu)] . eef(v)) 

mo substitute t^ou^out « for « and ^ for ^.    fc formulas 

(PI3) through  (P10) the .oluticn,  ?sJ(p, wlll contaln nct only 

the bl„dlngs speolflod for ^  but  ^^ ^  ^^^^ ^  ^  ^ 

«h«.« in   (Z1)  aheve,  Ur ^    That ls, ^ ^^^^^ 

•Peolfy binding rangoa „ct only for z. but aise for ail the 

leoal variables of Q,..    To inaieate this.     <£if}mb, 

respeeified as follows:      ' 

?2s(p) - (6U  |   ((fcHa , 5jJ(p)) 

«ho» 6U specifies the bindings for z and aix the other loea! 

variables of ^.    Similar =«siderations apply alSo fc,r other 

as solutions of p. 

Similarly,  for case   (b) the  srlni-i „c     .     u yuj tne sciutluns may be obtained, 
**„ by using ,Ef (Zi) tor_Zi. Pi> and the ^^^ 

0«) »d  („ ) throush  (Q16). tft,r the f&lli:wing ^^ 

Replace   (N1)   by 

Ön^.tKP.a) -(«I  (ta (. u)] , ^ (ptm 

*d substitute throughcvrt.  P for W and P,  for H  . 
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As in case (a), ?a|(Q) will bo specified by 

5QJ(Q) - (6U | ((3a)(a e ^(Q)) 

(cp[a][6u]pi = (pjr) 

where 6^ specifies the binding ranges for z and all other 

local variables of P^ Again, similar considerations amly 

also to other as solutions of Q. 

The evaluation algorithm implied by the above definitions 

may now be summarized as consisting of three steps: 

Step 1: Finding solutions for propositions like M,!'},!«^ 

and JLj that occur within mini-scope expressions. 

Step 2: Doing quantification check for the mini-scope 

expressions,    proceeding outwards* 

Step 3; After completing all quantification checks, re- 

distributing the solutions of the mini-scope expressions, among 

their prepositional components. These redistributed bindings 

are used for calculating the appropriate residues and partitions 

of P.  These residues and partitions will be computed, of course, 

only after evaluating an entire predicate expression. In the 

case of CC's, this will amoimt to the evaluation of the set 

predicate, SP, of the CC. 

The algorithm used for step (1) above, is briefly outlined 

be lev/- 
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3,^,2.  ffor.iputation of Solutions for Propositlonal 

oyprossions 

For each elementary form (p x^...^) or ^(p x^..^), for 

n ^ 2, one may easily obtain from the model space the solutions 

xi(P a), for given *. and i, 1 < i < n« The availability of the 

anchor, @, in CC makes it possible to assign to each elementary 

form in a CC a free range o(, and thus determine for each preposi- 

tional form in a CC, its associated free range and solutions. 

The scheme for doing this is briefly outlined below. 

The elementary forms in a CC are ordered in a level tree, 

as shown in figure 3.  All binary relational forms in which § 

ocCars appear at the top of the tree.  \t level 1 we have the 

anchor @.  A.t level 2 we have all variables, x, for Which forms 

ii(@ r x)" or "(x r @)n occur in the CC. At the third level, 

one has all the variables, y, for which "(x r y)" or "(y r x)n 

occur in the CC. Continuing in this manner, the various levels 

of the tree are filled.  It is possible that a given variable 

has more than one arc impinging on it. Also, variables at the 

same level may have arcs between them. 
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Fig. 3:    The Level Tree of a 00 



All the relations with "(?" are evaluated first.  This will 

cause value ran3es to he assigned  to the variables at the second 

level.  These bindings may then he used to evaluate the relations 

at the next level, thereby fixing the ranges for the variables in 

the next level below. For each variable, its associated evalua- 

tion sequences will be rcpeato d until the maximal, in case of 

disjunctions, or minimal, in case of conjunctions, solution to 

the variable is obtained.  Tho tuples and function forms arc 

evaluated last. 

The bindings obtained for tho variables have to bo organi- 

zed to serve two purposes: 

(a) For use in tho quantifier checks, discussed in the 

previous section, and 

(b) For recognition of conjunction or disjunction frames 

within which the bindings of a variable occur. 

To serve tho purpose (a), the variables in a mini-scope 

expression are ordered in the order of their quantification: The 

variable of the innermost quantifier appearing last.  If a 

variable, x±1  occurs in an ordering, x1. ..x^. .x^ but does 

not occur in a miniscope form, p, with which the ordering is 

associated, then by definition the scope of x. in p is universal. 

To serve the purpose (b), for each conjunction (disjunction) 
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in a CC, a conjunctive (disjunctive) franc is created.  This 

frame will contain the variables that occur in the conjunction 

(disjunction). Each variable will contain pointers to the 

quantifier associated with it, to the relations in the CC in 

which it occurs, and to.the next variable in the orderin- out- 

lined in the previous paragraph.  Each variable will also contain 

.slots for storing the partitions of its range, induced by the 

CC.  We shall associate with this frame, also the-procedures 

nucessary to evaluate the relations in the frame, and update the 

bindings. my  time the bindings associated with a variable is 

changed, the relevant relations of the variable will be rc- 

evaluatcd. In a conjunctive frano the minimal solution of a 

variable will be obtained by successive intersections.  In a 

disjunctive frame, the maximal solution is obtained by successive 

unions. 

The frame data structures created for the variables in a 

CC would thus depend on the structure of the CC.  The collection 

of all such frames, created for a CC, is called the CC- 

.associative netf CCA-net.  The CCA-net, the evaluation order 

for relations, the updating rules for the CCA-net, and the 

procedures for quantification checks and residue representations 

may all be compiled from the CC-definition.  The details of 

this compilation process and the complexity of the procedures 

involved will be discussed in a future paper. 
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A fully instantiated CGA-nct will roprcscnt the coraplctc 

solution of a CC. All the information of the residues and 

partitions of a CC may be obtained from this net.  The repre- 

sentations of residues and partitions of a CC-evaluation 

constitute a sunnary of the information in the CCA-not, in a 

form suitable for communication in the language of the CC. 

3 • Li-.3 :   Comments on the evaluation process 

To have an effective model space, and do comnensense 

reasoning, it is essential that CC-evaluations be efficient. 

In WS  organization this is facilitated by several features. 

The most basic of these is the way the relation values are 

stored in the model space, as discussed in Appendix II.  This 

enables one to fetch easily the partitions induced by a relation 

on the range of a variable.  The second feature is parallelism: 

One may incorporate parallelism in a CC evaluation process at 

various levels.  At the level of relations, the elementary forms 

at the same stage of a level tree may all be evaluated in parallel. 

At the level of rniniscope expressions, the conjunctive and dis- 

junctive frames associated with different rniniscope expressions 

of a CC may be evaluated in parallel.  The casting of a CC in 

mini-scope form reduces the height of nested quantifications in 

a CC.  This simplifies the structure and processing of the -conjunc- 

tive and disjunctive frames.  The quantification checks associated 

with miniscope forms may all bo also executed in parallel. 
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Finally, the residue and partition extraction for the mini- 

scope forms may bu done in parallel. This evaluation process 

avoids back trackinr;.  This is partly because it actempts always 

to obtain the complete solution, and partly because the relation 

evaluation sequence can be ordered, as per the level tree. Also, 

for every binary relation its complete solution may be obtained 

easily from the model space. 

The possibility of compiling the CGA-net and its associated 

processors further enhances efficiency. One may, in fact, conceiv 

of machine orsanizations in which the evaluation algorithm for a 

CC may be micro-programmed, taking full advantage of the parallel 

processing possibilities.  We have presented here only the bare 

outlines of the evaluation process. 
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3.5.     Conrnonsensü Reasoning and Problem Solving 

3.5.1 :    The B^lc  Theorem 

Let Q([af ]P l^)  denote the truth value of     [A ]p    in 

odel state,  l^.    So also,   let  CR(raf ]P M^ and ^([^ ]P M^ 

denote  the   ^-residue  and ^-partition,  respectively, m model 

täte, M1.    Let    Aaf be  the  change in af in a new model state, 

Mj,  such that  the nev; free range  is     [^-fA^].    For each 

variable in af,  the change  Aaf, may specify deletions andjor 

additions  to  its  ran; o  of values . 

m 

s 

Let 

Aaf (SR([af ]P 1^ ))  and Aafim{[af]P M. )) 

denote the residues and partitions with the changes in Aa 

incorporated in then.    The theorems in this section pertain 

to the inferences  chat may be drawn on the truth values of 

<f>(t%  + AOf ]P M,) 

based on the  truth values of 

(p(Aaf(gR([ar]P M^M^and 

(p(Aaf (^(f^:]? M  )) M.). 
j 

The theorems aro presented below.    Their applications 

are discussed in the next section. 
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Theorem 1 ;     Up riat 1 n g /L^r ni n,"-: The ore 

För 5  = T and P 

[((cp(Aaf (^R([gf]P M. ))     M^ )   =    cpS)=> 

((p([af  + Aaf]P n.)   - (p5)] 

m 

(3.85) 

Proof is  by inrluctlon on the  structure  of  P:   P Is  a  p 

or a ^p,  or P is   (P^   #*Pg   * ...   * Pk),  k ^ 1,  and *  = ^ or V, 

or P is   ((¥z)(P1VP2V... V  Pk))  or   ((3z)P1P2   ...  Pk), 

"Thapyem 2i    Mc-c^ns-end  Analysis  Theorems 

(A):     [(cp(Aaf((UR([af]P M. ))  - 

(nrd^jp M.)))) M^) 

=  (cp([gT  + Aaf]P M  ) (3.84) 

(B):     cp((Ac^((FR([af]P M. )) (nu(fgf ]P i^))  A 

(^([g^lP M.))))  M.) 

(cp([gf   -l-  A^JP    n.)]. (3.83) 

Again,  the  proof is  by induction on the structure of  P. 

3.5.2.    Updatjnr; and. Learning Thaorem 

Our  discussion in this section  pertain mostly to the  T and F 

residues.    All statements made here  also apply to UR([af ]P M. ), 

if it exists,  if the residue check included also nT([af]P M. ): 

that is the residue decks evaluated the  left side  of   (3.84), 
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instead of just the reffidues. 

When an anchor  [Cx r] is  updated there will usually be 

a set   erf invocation  anchors,   at which the relation valu-s  are 

changed.    Let  this set be 

B - {(@x r y^,   (@      P1   y2)#..##   ^      p )} (3#86) 
i n 

For every relation in B,  the  new  relation value,  y, ,   1   < i < n 

is mandatory . 

For an invocation  anchor   [% rj  implied  by B  — I.e. 

{&x r y) is  in B -- if 

9(Aaf(PR(cc[x r](@x);M )) M.) = IJIL_    c!o (^&7) 

then there would exist  a subset,  S1,   of  the new values  of 

(% r),  for which the F-residue  at   [^ r]  evaluates  to NIL. 

Then,   by Theorem 1,  it follows  that  the values in S1   may  only 

bo  assigned as  the  complement  solution  of   (@    r),  i.e. 
s1  C  (2   |   ^\tv  r z)}. 

Similarly,  if for a sunset S2   of  the new values   of 

(% r),   the       true-residue  at   [@x r]  evaluates  to T,  i.e. 

^(A^  (^(ccrx r](0x) mK^ = ^ b SQ) 

then the new values m S2 may be  assigned as  the  true values  of 
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i®Z'T)a  provided that none  of values in *    nn 
values in S2  cause a contradlc- 

^icn I« the interaction checks  associated with ^ r]. 

If f or e = T or P, 

(3.89) 
^(Aaf(^(CC[X rJ(@x)M  )) Mj   i    ^ 

then the  entire  rcrx wi ov,^ ^ , , 
Oct.. r] should be re-evaluated at § 

While evaluatin:   CCfX r^),   one need ^^ .^^ 

5of (N),  for the  ^positions  m  the  CC,   only lf they do not 
ap^ar in the  ^^  ^ ^   ^ f^ ^ ^ ^ ^    ^^ 

^ding 5fif (N),  the ro.evaluafcion may be  ^  ^^ ^^ ^J 

changes  specified  by Aaf  and B. Thus    CC ^ ,     . 
-f      u o. inus,  CC re-evaluation usinp 

residues may always  he rt^0 y^   be  done more economically than direct 
CG evaluations 

B. the case  of interacWon eheote,  the free ,«,„      a 

would renam uncha11:;ecl, fer every (@      t,    that  *« 7 
r„ *  lLY    CJ    ,;hat *pends on an 
I 4    r] in B.    BUC, scme of the relatlcns ^^^ ^ 

00[@y tj or its  5.resldUes Mould have change, their vaXues 

- ohee, for eensistonoy. the  5.resldues at t] may ^ _ 

evaluated with respect to these changes      n« „„» 
^nanges.    The contradiction 

check may be done  as  per ruleS 

fcpCmCccrY'tjc^s) ^3 ^ =: T) ^ 

(@Y t s)], . Y       J (3.90) and 
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[<!.(PR{00[Y t]((_3y S)  „.))  M  )   .„JJ^  ^ 

^tS) (3.91) 

Again,  as m the  previous case,  the entire  CO,  CCfY t](£L.) 

Itself „ould be evaluated only If   (5.89) Is  true for OCtY t](@y) 

Thus,  by a„ot  application of Theore™ 1, one may slmpiify 

oonslstenoy checks during an updating process,    other appli- 

cations 0f this theory arise m goal directed proble. solving. 

They set the basis ln ma for learnlng_    ^ u discussed ^^ 

3.5.2 .2 :    The Jjasls for Learning 

Goals are staced In MDS m the form 

(0 x y...z)  =  ( <blndlng-condltlons> 

(GOAL <goal-condltlons>)), (3.92) 

Khere X'y 2 are the free variables of <bindlng-condlttons> 

The binding con  'tlons „m s^clfy the Initial condition. for 

«- goal,  and the pjüects, that raay be USed to achieve the goal 

The <goal-condltlon> will always  be a conjunction of elementary 

forms.    The above goal statement may be Interpreted as follows: 

"The <goal-concatlonS> are to be satisfied for the objects 

-tlafymg the <Mndlnc.condltlonS>, for oven ranges of the 

free variables x,y,...,z." 

Each free variable vnii     «^ „ 
naoie will, of course, have an associated scope. 
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We shall refer to statements like (5.92) as the dimensions 

of goals. The dimension of a goal specifies the nature of 

the  goal.    Thus, for example,  the dimension. 

((PEOPLE X) (PLACE P Q)(P location of X)) 

(GOAL(Q  location of X)) (5.93) 

is the dimension of  a goal called,  say   (MOVE-PEOPIE P Q X). 

It  describes the nature  of this action.    This  goal may have 

associated with it a body, that specifies the  action for 

achieving the  goal, namely 

(XR  Q X)   =  ((SOME VEHICLE V) 

(ASSERT   (V holding X)) 

(ASSERT   (V  location Q)) 

(ASSERT^V holding X) C>.9#) 

3h general,  a goal  like MOVE-PEOPLE,  may have several trans- 

formation rules associated with it.    Each transformation rule, 

XR, will have the form: 

(XR x yc..z)  m  ( <binding-conditions> <actions>),       (5.95) 

where the <actions> may be subgoal statements  or ASSERT,DELETE 

or CREATE statements.   An XR is said to match a goal,   Gl,  if  there 

is a subset  of chan-es that the XR may cause, which matches with 

a subset  of the conjuncts m the  goal condition of 01, and the 

solutions of the binding conditions  of  Gl   do not contradict the 

•I"— 
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bindlng conditions of XR.    The true residues  of these binding 

conditions of  G1   and XR, win then characterize the c^text^of 

invocation of the XR called the dimension of XR invocation,   or 
the Invocation dimensions  of the XR. 

fin invoked XR may be  tried only if the  preconditions 

associated with the invocation dimension are satisfied, for the 

objects involved in the XR.    These  pre-condition statements 

will have the form, 

(CANDO   (<blndins conditions> <actlons» 

(<cond:itions>   (TRY <actlon>) 

(<oonditions>  (TRY <actlons>)... 
•  • • 

(<conditirns>   (TRY <actions>)] (3.96) 

A CANDO-statement is Said to match an invocation dimension of 

an XR if the   "«bindliiS-condltion> <actions»" of the  CANDO- 

statement match with ehe invocation dimension of the XR.   A 

CA^O-statement is sald to be satisfied if none of the <conditicns> 

in the statement  are ccntradicted,  or for every ccnlltlon that 

is contradicted its associated IRY-statement was executed success- 

fully.    Again,  the satisfaction or non-satisfaction of  a CANDO- 

statement would return residues that explain the reasons for 

the outcome.    We shall refer to these reasons as the 

precondition checks>. 

Finally,  the execution of the <actions> m an XR would 

result in a collection of residues that explain the reasons for 

 . - _______________^  
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the success, failure or conditional success  of the  actions,   m 

the Invocation context of an XE, one might have had several 

choices for the relations and objects on which th, <aotlons> 
-Ight he tate„.    Por the oholces made) ^ ^^^^ returaed 

by the actlcs may oo used to characterize the oholces. m the 

tern of mOaLMiUma^t tmt  Uaa. assoelated with the 
XU. Thus, for example, if the assertion.   (ASS^T  (V holding X)) 

in  (3.94) failed for th. reason,   ^(X », < , capacltyof V), 

then this piece  of Information may be summarized at the XH m 

the form of a negative focus  list element, 

NTLfV holdlna][.XR]   m 

([VX](  ^.(x  (f: .j , capacltyof v)) (j ^j 

On a later Invocation of the XR, the same assertion „in not te 

tried for object ocmblnatlons,  [vxj, that satisfy the above 
focus  list element. 

Similarly, the relations and objects for which actions 

«ueceeded may be characterized by ^Itlv^u^ts associa- 

ted with an XR. The focus  list medicates would consl.t of T 

^d/or u residues returned by the ASSWILATOR. for the relations 

and obaects involved,    on a future Invocation of the same action 
the relations and obiecte; ^a-no-f>,,4       *.^ xm oDjects satisfying the  positive focus  list 
will be  preferentially chosen. 

XR's m m .ay also a have post-conditions associated with 

the..  These have the same for. as the CANDO-statement.    But the 

i 
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word "IFDQNE" is used instead of "c^NDO". Evaluation of these 

post-conditions also would return residues. We shall refer to 

these as the <post-condition checks>. 

The invocation and execution   (also called the instantiation) 

of an XR would thus result in residues that characterize the 

instantiation, in terms of four components: 

I[XR]  . [<dlmension> <pre-condition checks> 

<focu5  list> <post condition checks>] (3.98) 

The DESIGNER is responsible for gathering together the residues 

and associating them in the right manner with the XR's and goals, 

and thus maintain an updated problem solvw R^Q      A brlef 

discussion of this  process appears m Srinivasan [1973].    A 

more detailed discussion will appear in Srinivasan [im*]. 

&   (3.98) the <dlmensiQn> and Recondition checks> 

together specify the appropriateness of an XR in a given invo- 

cation.    The <focus  lists> have validity only in the given 

<dimension> and precondition checio context,    in another invo- 

cation of the XR, if the <dimension> and precondition cheejo 

of the invocation natch with those in  (3.98) then the <focus 

ll5ts> m  (3.98) may be used to guide search according to the 
rules given below: 

(1)    Avoid ohooslns relations and object ocmblnatlons that 

satisfy eleaents m the negative focus Hat of matching 

XR invocation. 
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(II) Choose  preferentially the objects  and relations that 

satisfy the elements in the  positive focus  list of matching 

XR Invocations. 

(III) If choices as  per   (l) and  (11) do not succeed then 

update focus  lists and repeat   (i) and  (il) for new untried 

combinations. 

By theorem 1,  the objects that satisfy the true-residues 

in the  positive focus  lists are  likely to succeed again,  and 

those that satisfy the false-residues in the negative focus 

lists are likely to fail again. 

The focus  lists  associated with a goal dimension will 

depend  on all the XR's executed to achieve the goal.    Again, 

the DESIGNER is responsible for constructing        the summarizing 

focus  lists for a goal dimension,  based on the focus-lists 

of the associated XR executions.    As XR executions are repeated 

in different execution contexts the DESIGNER will acquire 

progressively more domain knowledge from the model space, 

in the form of residues.    These residues, taken together and 

summarized as focus   lists,  would represent combinations  of      - 

chunks of domain knowledge unique to a goal   (problem) or 

task environment.    The use  of focus  lists an    per rules 

(i),     (11)    and    (ill)  above sets the basis for learning 

in MDS.    Through its interactions with the model space, the 

DESIGNER acquires for each problem,  its own unique way of viewing 

the model space and using the danaln knowledge.  As mentioned 
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before.  Theorem 1   sets the  logical basis for this  learning. 

The focus  lists are used in MDS for a variety of purposes. 

lüo other uses of focus  lists ©re discussed  below. 

3.5.2.5:    Use,ßf focus  lists to gn-trte intelligent conversation 

The predicate expressions in the characterization   (3.98) 

of  I[XR], may be used selectively by a system to conduct a con- 

versation with a user,  concerning the nature.  appropriateness 

and reasons for sue cess/failure etc.,  of an XR execution. For 

a given goal, the residues associated with the goal may be  large 

and quite numerous.    To maintain an intelligent conversation 

there should then be seme rules available for judicious selec- 

tion of residues and predicates within the residues, which could 

be used for the conversation.    The  positive and negative focus 

lists may be used for doing this selection. 

In explaining the reasons for the failure  of an action 

the negative focus  list is usually significant: The action 

failed because it contradicted some of the fixed relations and 

values.    While  explaining the reasons for the success  of an 

action the  positive focus  list is usually significant:    The 

action succeeded because some of the secondary changes in the 

positive fecus  list of an XR, succeeded. 

Thus, while explaining the reasons for the success of the 

assertion,   (ABSERT(V holding X)), the fact that 

(X I : ^:capacityof V) 
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was true, would not  be  of much Interest. Here, the  phrase 

[VEHICLE capacity] might  belong to the negative focus  list of 

the action.    However, If the action failed, then the reason 

^(X fj= : ^ : capacltyof V),  becomes significant,  and forms the 

basis for corrective reaction. 

Similarly, suppose the action failed because-- 

~ (V location:locatlonof X).     In this case  [VEHICLE location] 

may belong to the positive focus  list  of the  action.    Thus, 

subsequent action might have been Invoked to change   (V location) 

to  (X  location),     in this case,  part  of the reason for the 

success of the action,   (V holding X), would be the reaction 

to the Initial failure.    The dimension of this reactlon,namely: 

[((PEOPLE X) (VEHICLE V) (PLACE P) 

(X  location P)   ~ (V location P)) 

(GOAL  (V  location  P)], (3.99) 

would thus  be a legitimate  part  of the reasons for the success 

of the assertion, 

3,5.2,4:     Use  of focus  lists to guide Recognition 

The transformation rules in MDS may be used In two ways. To 

plan and execute actions to reach a given gr "" ,  or to recognize 

given sequences  of actions as constituting a familiar goal. The 

recognition task may be  posed to MDS as  one  of constructing the 
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dlmenslcns that may be associated with a given sequence  of actions. 

The central problern In this task is a classification problem:  The 

actions are to be classified Into two groups. Those that may be 

considered the principal actions, and those that are the   "slde- 

effects" that accompany the  principal actions in the modelspace. 

Here,  one may use the positive focus  lists associated with the 

actions to find one or more minimal sets of principal actions, 

whose focus  lists account for all the remaining actions in the 

sequence.    The dimension possible for the action sequence may 

then be constructed In terms  of the Initial and final conditions 

associated with the principal actions.    These dimensions may then 

be matched against known goals in the system, to complete the 

recognition process. 

It is interesting to note here, that the focus  lists are 

built up as a result of interactions with the model space.    As 

the focus  list repertoir becomes rich the recognition tasks 

would become simpler.    Thus, availability of goal statements 

and XR's is not  by itself sufficient, to do good recognition. 

Experience with the use of the goals and XR's in the model 

space is necessary.    This Illustrates another aspect  of learning, 

in MDS. 

Focus  lists thus play a central role in problem solving in 

MDS.    They provide a format for summarizing and using domain 

knowledge.    The  predicate expressions that characterize the 

elements of focus  lists are  obtained from the residue extraction 

process.    The logical basis for the use of residues in this manner 
is  provided by Theorem 1. 
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3.5.5.    Basis For Theorem Proving 

Suppose one wanted to prove the assertion 

[(HUM/iN h)(SOME PLACE p) 

(h location p)] (3.98) 

This asserts that for every HUMAN, h, there Is a PLACE,  P, such 

that   (h location p) is true.     Ih our model space. If there 

existed a HWAN,  h^ such that there was no PLACE,  p, for which 

(ho location p) was true, then this would contradict the 

schema [S4], Introduced in section 2 "5 1 

[14Ji   (HLMAN  location PLACE) 

Hence,   (3.98) is true m our domain.    We shall present below the 

formallzatlon of this proof,  as it would appear in MDS, and use 

It, to illustrate the basis for theorem proving in MDS. The TP- 

ccntrcl structure in MDS, and its use of  GenWs system of 

logic   (see Kanger I963 for a brief exposition of this  logic, 

and [Beth 1959] for an interesting discussion), are outlined in 

Appendix III.    The essentials  of this  logic necessary to under- 

stand the example m this section, are presented below. 

3.50.1 :    Gentzen's System of logic  g^ thp 

calculus  of seauenfcs, 

A sequent is of the form 

(Pl)(P2)...(Pn)->(Q1)(Q2)...(Qn): (3#99) 

— _ 
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f er n,m ^ c, where each P^^ and Q.  is a predicate expression in 

miniscope form.    The  left side is interpreted  as a conjunction, 

and the right side,  as a disjunction.    We will use symbols, S, 

S., etc.,  to denote an arbitrary sequent. 

A TP-state, TP,, will consist  of a set of such sequents . 

We shall use   "; " to separate the sequents in a TP-state. 
The calculus  of sequents,  proposed by Gcntzen,  provides a 

systematic way of expanding the  quantified expressions in a 

sequent,  to generate sequents  of the form, 

(P1)(l^)   ...   (Pn) 
Si   ■> S2 (,q1 ) (q2 )   ...   (qm); (5.100) 

where each pu   and q.;  Is  a literal   (an elementary form), without 

negation.    The expansion cf quantifiers in the sequents   of a 

TP-state would result in the generation of two kinds  of variables: 

Eigen Variables;    Each eipjen variable denotes a unique 

and distinct instantiated  object. 

Eigen Terms;       Each eigen term is an unbound variable with 

an associated range.    These ere the free variables in the expres- 

sions appearing in sequents.    The range  of an eigen term may 

consist  only of the eigen variables generated by the calculus. 

In a TP-state,  TPj.   let,  EV(TPi),  denote the collection of 

all eigen variables in TPi,  and ETCTP^, the  eigen terns in TP  . 
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The rules fcr  the generatlcn ■ f these variables  are 

given be lew.    Each rule is   rt   the  fcrm 

signifying that  a sequent  of the form   %<  -> 8g in a TP-state, 

may be replaced by  anothtr of the form   "S, * 8uin. 
5   4 

Generalization Rules: 

These generate eigen terms, z. 

(* III S1 ♦Sg((3 s)(Qx)S-([(x z)]Qx) 

S1 ->.r32((3 x)(Qx)S5 
(3.101) 

(V ->) :  ([(x z)].P:;()S1 ((Vx)Px)S1 -► S 
s^{WrypTtS~s^ l (5.102) 

^here  z is a new variable that  does not occur in the TP state, 

TP^, in which the sequents in the dinominator appear.    The 

range  of  z is, EV(TP. ). 

Instantiation Rules^: 

These  generate eigen variables,  a. 

C*V)l    S1   ^S2((¥x)Qx)S3([(x a)]Qx) 

"s7Ts'((Vx)Qx)S, (3*10:5) 

and 



■ 

■145- 

S1V(7l)Px)S1   ->S3 
(5-10^ 

where   "a" does not  occur in the  TP state,  TP.,  m which the 

sequencs m the   ^nominator ap^ar.     "a" denotes an unique, 

ntwly instantiated object.    The  adaptation of these expansion 

rules,  and other igoppsltlonal rule5  of Gentzen to ws is 

df.scussed in Apj»ndlx III. 

3.5.3.2:    A^Jg'PPf example 

We shall stai:.o  ti* theorem to be  proven, namely statement 

(5.93), as a sequenti 

(M) -♦  ((HUM« li){SOHE PLACE p) 

(h looatlon p)); (3_1o5) 

her. :(M) is a conJ.r^Uon of all true assertl^s m Bh, model 

BP«.. Applying the rule .(. y) (the rule (3.1O?))( ^ ^ 

sequent may be transformed to 

(M) * ((SOME PLACE p)(h0 looatlon p)); (3-1o6) 

«here h0 Is an eigen variable oreated by issuing the oo^and: 

(CREATE Emm h0).     Dlltially, ail the relations  of h   „ill have 

the value   V.  assigned to the..    Thus, the »del ,pj. will have 

the following: 

w 

iiiiiTtiittriiiiilinriiiiirirrnrni-i Tirrr'' 
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f (HIW^N instanco   (h    ?)) 

(h0 type f)(iio oandrlve   (?)) 

(h0 compatiblov;ith   f?))^ holdlng   (?)) 

(ho location  ?)], 

The  rule   (•» 3)   fthe  mile   C^ 1A4\^ ^ ^   Itnc  rule   (5.101)) is  applied next  to the  sequent 

in   (3.106), result^   ln the generation of  m ^       ^   ^   ^ 

(M) -> (h    location z); 
(3.107) 

The range  of this z 1Sj  at the momen 
'"» iiiij,    because no elp-en 

variables exist In the  TP «tot»    t^ » 
W Che T,-state, that are Instances  of the soope 

cf z. namely PLACE, and are created as a result oft. 
or Gentzen's rules   (or the1 -PPHoatlon 

(or their adaptation to MDS).    Notloe that 

the «Ma,tng used ,0  M.lgn  (Ranw  z)  ^^ is ^^ ^ 

captation of Oent^s rules. where „e have taken Into account 
the fact  that varlablaa  1* MnQ u^ ö*4.»uieB in MDS have SODDP^  -ac-,^.. „,    , 

scopes associated with them. 

« this point  our obJectlve Is to conetruct  possible ran^e 
the eigen te™,  z,  uslng the ^^ ^^ ^ ^ 

-ail locus on the objects and relations on the rlght side ot   (, ,ori 

^.  z. appear..    Thls Mould brlng _ ^^ •1->. 

- « anchor.  ^ .cation,. ^ are n0 ^ „^ ^ ^ 

%    ceatlon).    .ctlec that the lae. of a 00.  at an anchor  rc    P] 

1" fche ^'"»^   U*Hex r y)(x r mr instance J' 
In effect, we shall now  apply the  ym*   t*     \t* 

PPXJ   the rule   (3->)(the rule   (3.1o4)) 
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to the above predlcaco, to create a new Instance of PLACE, say 

P0, and assert (ho location pj to the model space. This would 

cause  the  ASSmiLATOR to Incorporate  the  following changes. 

[(ho location po)(po locatlonof   (ho ?))], (5Jo8) 

and return the followm. unknown residue.« 

(HO   =  (f(s   (h0   ?))]((s  heldby NIL) V 

(s heldby:location  p  )) 

w      r(y(h0  ?))]((^)(pü  locatlonof  y)   ^ 

(S/iFEs  y))) (3.109) 

The TP interprets thi*  IJR as the condition under which  (3.I08) 

has been accepted,  ana incorporates this m the TP-s.ate  as 

follows: 

(M)(UR) ♦ (ho location z)i (3>11o) 

At this  point, it is  possible to assign a range for z, namely, 

[U  (P0 t))].    This would result in generating the  assertion, 

{TEASSERT    ^ location z)) (3j11) 

The negation sign in   (3.111 ) is  because   "^ location z)" ap^ars 

on the right side  or the  sequent in   (3.110),  and THASSMT attempts 

to move   "(h0 location z)" to the model space,   (M), which is  on 

the  left side.    As  per Gentzen's rule, 

(-* ~):    S*P -> S0S_5 -J 2J^  ( 
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the negation sign is necessary.    TH^SffiT w-n. 
M   ^ J-tt^öJERT win seek to find a 
binding within the rm-e of .    *    u . -™0 * 

the given binding would directly contra^. 
tion in   (M)      & 0  i^Hltradict ^ existing asser- 

CM).     & our case,  this existing assertion would be 
(h0  location  po)".     Thus   Z will be   bou * *' 

diction 4m *>* Po and ft contra. 
dlotion in the sequent would be recognized      &  a 
1:M« o    * ö"izea.    a  our example, 
m* contradiction causes every seou^ *    * 
rt    ,. —SILse^uent in the  Tp-state to be 
contradicted.    Notice,  that m the case  of 
the TP .* *. 0Ur exar"Ple here, 

<«.:,:" :r;:r:;"h" - - '• - -■ ~- 0).    n   oile theorem to be provon had ^^ 
example, ueen, i or 

(M)(molocatlonpo)(motypeMISS1QNfflY) 

(=0 looati«, po)(0o type CA1W1BAL) ^ 

((HIMAN h)^{h locatton p  ) y 
O 

(h type  MISSION/IRY))) 

then   (UR) would be   - . ^ , * /  wuuxa oe  Che unknown residup   »4-  r«    n 

cc,se,  the proof will oaii   *•« 1 
1X1 oal1 for an expansion of   CTID ^  . 

of a type for h    ^   - f     '    nd assi^ment ^^ i or h, in ehe model space. 

lli>JMti#TOiWiwailt 
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In using the unknown residues from the model space In this 

manner, the  TP attempts  to complete the models m the model space ] 

in such a manner that  a contradiction In the sequents may be j 

recoenlzed.    The basis for usln;: unknown residues in this manner j 

is  provided by part   (A)  of Theorem 2.     In modelling the unknown 

residues,   (UR), the TP would attempt  to maintain the values  of 

the true-partitions, m the model space, associated with the 

(lB)'s.    completion  of the models for   (UR) under this hypothesis | 

would by Theorem 2,  part   (A) guarantee consistency in the model space. 

The model space is used in this  process to actively guide 

the TP in seeking cont-radictions in the sequents.     Jn a given TP 

state  TP^  each sequent  m TP1 will cause  a THASSERT of the form: 

where the ^ »a will    o  the  literals  on the  left side and q.'s, 

the  literals  on the ri, ht side.    If every secant ^ ^D    ^ 

contradicted for t^o^same assignment  nf Mn...^  ^ ... ^^ 

terms, then the  proof is complete.    An outline of the proof 

procedure is  presented in Appendix III.    Search strategies, and 

problems encountered in the  proof process will be discussed in 

a future  paper. 

The soundness of using a modelling facility like WS for 

guiding search in a theorem  proving process was independently 

investigated by Sanford  [Sanfiord, D.  1977b], in the context  of 

■   ' ■ ■     1 
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• reSolutlon bMM l;icorem ^^ ^^^^    ^ ^^^^ ^ 

modelling Schemas In ms. 

5.5.4.     Basis, for Means-enri  fln^o^ 

The basis for ::iGanR.end ^^ ^  ^^  ^ ^ 

of  theoretn 2.     We us«  -M^  ^^T,    J 
u„o  the follcwing corollary for neans.enä 

analysis ln model 5paoe updatlng processes: 

Corollary 3.1 . 

j 

^(fSf   +  Ac^]   P M. )   =  f)j 

By ap^oprlately forolng the ^.„.^ ^ f< focus 

lists  as  a mi He.    -, --,  — 
 guide,  a new model state M    is  nhi-n-,-^^    . Ji  1S  o'^ained,  in which the 

Z7T 0Ontradl0;1OnE ^ —^•     - ™ - note. 
COr0llary 3J  1S ^ ln «- — .^ «ly beoause „e 

h^ve  precluded  occurrences   of forms 

(«pfaifjp = ?) 

In any of the  CC's. 

Once the falscresidue is m*+ +-. löue is set to evaluate to ?, tie  model 
space may be uoriatn -     .  ^ y  o« updateu,  and new values for. i-v.^ 

e    ^ vaxues lor the unknown relations 
- - .no. ^ the oandldates avaiiabie ^^ ^ 

by using TP, as the case mav be    ,f .    , 
^ thG 

3   be' lf SUCh updati^ 1- found necessary. 
In the case  of DESIGNER,  where pre-condlti.n. . 

thm  ^ condltlons are Important 
tne  above approach oamot  be  tii^     f* ^      ^nr, 

to evaluate t0 ?    tr, 2* '       USO' f0r01n8 an P-— 
ffe0t 0aUSeS the ^- »Dorset the oon.ltlons 
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that existed, when oontraatati™, •.«. <ä0tlon Kas reoognlzed.)    in this case 
It is neeessary to ..t r*. sub.,oals to ellmlnate oontraactlons 

^ele=tlne these .ub.so.u. .^ foous  ^ ^ ^ ^^ ^ 

^-"*- "-X. „UX appear as the initlal condltlon for these 

uh-^s.    .hese Si,..,oals would attompt te 

Theorem 2, for cpF  . r cr ffl«  ,,•,«. 9.       -  er ^  _ ?.    The ramificatlons  of fch;Ls 

process will be dleouasad in  a f,1+- 
ssed m a future report   [Srinlvasan 1977c]. 
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IV       CpnC luc31n_ _p£rriflT^ 

We have  «„„^ the  ^^ ^^ ^ ^ ^^ 

^ion and operate or ms.    „e have shwn ^  ^ ^ ^ 

»P-. 1. doflned, „... lt OJeratsS(  ^ briefiy ^^^^^ ^^ 

m^y be  used as  the  hft«4«  -P. 
but. for a variety of lntolllEent proble. 

living,  lite  ampliation. SCS^dlreotedsoaroh    theor. 
, "^ -u B&aSil*  theorem  Buying 

BäaBMlÄJaLmaffliaa. «d läiSuase^äerStanäia^ 
The physlcal cr ;aBl„tlon of ms may ^ ^^^ ^    ^ 

tins of a networ. of .hii2^   Each blmdla ls  ^ ^ ^^^^ 

Xt is a „a.io ^t of interactions and «actions.    „,,. lt ls 

the basis for aU oeraaimlo.tlon.    Each bundle 
"■    üaon bundle, corresponds in a 

natural way to a reco.mizable entff,, . entity in a d™aln of discourse 
laandle sche„a re^eoents a class  of entitles m tbe domain 

»S itse^ raay bt, vlewed ln ^ ot ^ ^^^^ 

AT the  highest level wa has/«  ♦.»«-  u 
<ale' ^ ltself'""h ca.p- 

nent bundles. MoDEL SPACE. ASSMILAT0R, „^ Tp and ■ 

LINGUIST.    These bundle« ar-P i«*- 
are lnte^onnected by communication 

paths  over which thsy mav exrh^n^ 
3   may exchange messages m the  languages 

ol   a domain of knowledge.    The mmtm  im 
S«.    ihe meta-ianguage  of MDS is used 

to define this domain language. 

Each component  bundle of MDS mav itm*i* u 
4« . '^ may itseli   be again described 
n terras  of snb.bundXee.    The „^^^ fflay ^ ^ ^ 

d-rlbe tbese exponent struet.es. The description of tbe «a 

---- in tbe .eta la„gua^  ap_ ln s » 

■ 
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Each bun(älc 10 a£sa;latcd wtth three ^^  ^ ^^^^^ 

K-^uoU^ Pr^^ana g^,^. The K.ogrMs ^ ^^ 

invcea auto^ttoax, Khen thelr assoolated ^ ^ ^^ 

or m=dlfled.     a ^ one may not oniy cjefine ^^ ^^^^^ 

but a1So create 1^=,. of these struotu,es> acoording ^ 

given specifications. 

The   bundle  pavaälm ls  a descrlption ^^^^     ^  ^ 

view or the fact that ^s can i^st^iate  bundle schemas,  ^ 

-cniption  pana.i,, may also be used as a ^^^ ^^^ 

It is not,  however  a progr^i.g paradi^ ln the conventlonal 

sense  of the  phrase.    We have  used feh-   n», 
nave  used the  pnrasc,  lajowlodge  ^ggd 

^oj-rammin^,  to fefer to the kin* «f  „ ne k:Lnd of  Programming done m MDS 
[Srinivasan 1973b], 

*ntrax to the „g^^tlon of »s U  thG fchree ^^ 
o^oa, system ^ lts assoolated ^^^ This ^^^ 

u    to        rate undeT ^^^^ ^ ^^^^^ ^^^ ^ ^        ^ 

.a.au ,,„,_ varlety of ^^^^ ^ ^^^^ ta 

*«nct«  atelll,:ence  and Symboiio  ^^^^ 
section  I. We  have    •,•->  #»«-* 

have, in fact,  provided a framework for the do«   .« 
of   "knonedge" ItMlf    and .*. . definition 

sei., and Its associated concepts of lan^a« a„„ 

fe-mU^ Kn«^. exists  cnly m the context of J^T 
tlona! structure.    Within this st      . "^ °f » organl.a. 

MS st™t^- tacwiedge pertains to 

^ff*^ ^ ~ — - - structure, 
^J^-^te« that  the structures can a«t.     * ms 

^7Z tirrdXttnrrr3 lndireotiy ^ ™ -  Pfljiitions, and patterns of ohange ^ ^^ 
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by transformation, rulp^ and focus-lists.    At  the  level of 

domain knowledge the sense definitions  portray the static 

laws  of a domain, and the  transformation rules,  the dynamic 
laws. 

Our Investigations m MDS have  pointed out certain ways 

of organizing compv.ting machines, which would facilitate easy 

and efficient impleraentation of MDS, making use of the Inherent 

parallel  processing possibilities m  the MDS architecture. 

These we shall discuss in a future  paper. 

We have  perhaps raised In thiö  paper more issues for 

clarification and further elucidation,  than questions that 

we have  answered,  or solutions,  we have  proposed.    The research 

on MDS is an on goliv; activity.    Much work remains to be yet 

reported,  and much remains for further investigation.    We have 

attempted to preseii: here  the  logical foundations  of an 

approach to create intelligent systems,  the  approach that 

MDS represents. 
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v- ACM WLJD GEMENTO .• 

This  paper is based on lecture notes prepared for a 

seminar on MDS,  during the spring of 1975.    Many of the  concepts, 

like those  on filters,  focus  lists,   commonsense reasoning, 

theorem ^rovir^, ecc.    are discussed here in greater detail. 

The architecture  of MDS has remained the same since the 

spring  of 1975.    We have,  however,  had better definitions  of 

concepts and a clearer understanding  of their scope and 

significance. 

The  progress we have made  on the implementation  of MTS 

would have  been impossible without the  help of my students Joel 

Imln, John Ng and Tau Hsu.    Explaining MDS to Joel and John, 

clarified many of the concepts in my own mind.    We would likl 

to thank Sridharan for participating in the MDS seminar.    Sri 

was respc^sible for many lively discussions, which contributed 

to our understanding  of the significance of MDS. 

An appreciation for the  power, flexibility and naturalness 

of MDS,  began to emerge only after we started our work on the 

BELIEF system of  Chuck Schmidt.    We  sp.nt mo^  than six months 

creating representations in MDS for act.. Schemas and act intern^- 

tmm Schemas  of BELI^.    This  laid the foundation for the 

design and implementation,  by Sridharan and Hawrusik,   of a mini- 

ma system, called  AIM)S.    Since then, MDS concepts have profoundly 

influenced the scope and direction in the BELIWm project. 
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I learnt about  the details  of  QentZen's system  of  Ic^lc 

from  lectures given  by Gerald Darlington and Ann Yasuhara, m 

the MDS seminar.    T.is enabled me to adapt this system of  logic 

for Theorem  Provinc lr MDS.    We gratefully acknowledge the help 

of Darlington and Yasuhara. 

The discussion  I had with Robert Baizer made me realize 

the  potential for the application of MDS to develop  "Aufcomatic 

Programing systems."    The concept  of   "Programming over a 

imo.ledge  base, " grew after these discussions. 

The work on MDS started  late in 1971,  as a part  of my 

efforts to implement a design-aid system for Computing systems 

design, using as a oasis the  Computer Description Language, 

called  CDLI fSrinivasan l967a,  b].    Thls work enabled me to 

perceive the severe problems and difficulties involved in creat- 

ing an intelligent design.aid.    The tyranny of programming was 

unbearable, and the littleness  of the resulting system would have 

made it  obsolete,  by the time  it was ready.    The meta system 

architecture  of MOS came into being as a  direct result  of my 

tempts to cope Kith these problems.     Gavin Clove implemented 

the first version of a template establishment system, called 

TIMPEST.    Since then WS has steadily moved in the direction 

of being a formalism for the description and automatic utiliza. 

tion of knowledge. 
■ 

I am thankful to Saul Amarei. who as the leader of the 

reeeareh group at HCA Laboratories, „as respcnslble for getting 
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support for the wor!c on CDL1 ,   during the  late Go's.    The 

support given by RCA and the grants from the Air Force 

Cambridge Research Laboratories,  Bedford,  Mass., together 

made possible the work on CDL1, which later led to the deve- 

lopment  of MDS. 

Since June 1971, through September, 1975, the work on 

MDS was supported by the National  Institute  of Health of the 

U.S.  Government.    During the period, March 1975 through August 

1977, we had overlapping support also from the Advanced 

Research Projects A-ency,  of the Department  of Defence.    The 

support of both these Institutions had been invaluable. 

The writing of this paper would not have been possible 

but for the sabbatical leave granted to the author by Rutgers 

University for the ; ear 1977.     1 ^ thankful to Saul Amarel, 

and to my colleagues in the department for recommending this 

leave and to Rutgers for approving It. 
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APPENDIX 1 

A MODIFICATION TO DESCRIPTION S-RIJCTUHE 

Wo wish hore to admit the situation whore more than ono 

person or vehicle nay hold an object. WQ shall also raakc the 

holding relation transiting To offoot these changes, wo shall 

change the clescription schena, [s8] as follows; 

CS83 :  (ITEMS heldby /\GENTS) 

[SIIJ:  (AGENTS elements (HUMAN VEHICLE)) 

CSl2]I  ([ITEMS heldby] flag X). 

"X" flag indicates that the relation is transitive. 

Also, we shall associate a no CO, with [ITEMS heldby]; 

GC[ITEMS heldby]: 

(y | (0 heldby y) ^(y elonent Q) 

((VEHICLE x  z)(SOME w) 

(w heldby x)(w heldby z) =^ 

((x heldby z) V (z heldby x)). 

First of all, an item cannot hold itself.  Then, if two 

vehicles x and z  hold the same object w, then (x heldby z) or 

(z heldby x) should be true.  Most of tho arguments presented 

in section 2 will go through also for this new representation; 

Only the section on "Eramo chocking in tho Model space " 

Section 2.^.7.1+. would appear different. ■-''•••-•'•« 
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AFFEMDIX II 

Roprosontation of nnlicctlon and Sets in the Model Space 

1• Model Space events and the Event  State. 

An event in the model space is an ASSIMIUTOR comuand that 

cither creates a new nodol or updates the properties of some of 

the existing models. Every  event is assigned an event number, 

in increasing order of its appearance.  The event state of the 

model space is the event number of the current (last event). Uc 

shall use event numbers to specify the recency of values and 

reasons in the model space. 

2. Cpllectiün and Sets 

A QoHeoticffl (set) is represented by a list of the forms 

(2) = (6 # f c u r z1 z2—-z) (1) 

where 6, #, f, 0, u and r have the following interpretations; 

6(z)  is the pointer to the definition of (z). 

#(z)  is the number of known elements in (z). 

f(z) = ? or NIL is the flag of (z),  (Open (z)) is true 

if f(z) = ? In this case (z) has room for more 

elementsv Otherwise, (closed(z)) is true. 

c(z)  is the compliment of (z), 

u(z)      is  the unlflioim part of (z) 

r(z)      are the reasons  (residues)  associated with (z). 

_i  —^   ^   i , n^^—w——^—■■——in   
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Wo shall use (z11) to denote a collection with exactly 

n elements and Un ?) to denote a collection which has n 

elements, but has room for more, 

2•1 DjlfiJlition of (z) 

Each collection (z) is defined by a list template. Let 

6(2)=Z.  The frame schema (Z elements (Y., fc,...^)), partly 

defines the elements of Z.  The full 9l&mnt def±nitlon vlll 

have the form: 

6(z) =  (Z elementdn) = 

( <edn>1 <edn>2 ... <ed::>k ) (2) 

where each <edn> is an element definition of the form, 

<edn> = [<lb> <ub> <scopc> <cc> <atr>], 

where <lb> is the lower bound on the number of instances of 

<scope> that (z) may have and <ub> is the upper bound on this 

number. The <cc> will constrain the instances of <scope> that 

may appear as elements of (z).  The <atr> will specify rules for 

adding (deleting) instances of <scope> to (from) (z).  The 

scope of (z), (Scope (z)) will be the disjunction of the scopes 

of its element definitions. 

If Y is the <scope> of an <Gdn> of Z then we shall say 

that (Z element Y) is true.  Also, we shall say that X is an 

instance of (Scope (z)) if it is an instance of one of its 

disjuncts. 
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2.2. Cpnplinent of (z) 

G(Z) has tho form 

c(z) =("c" # f t r z1 z2 ... z) (2) 

where "c" indicates that the list is a compliment of a (z), 

f(c(z)) - ? or NIL specifies whether c(z) is open or closed, 

t(c(z)) = z is the true part of the list, and r(c(z)) are 

the residues associated with tho members of G(Z). If x is 

a menher of c(z) then x is not an element of the collection 

(2).  Only instances of (Scopc(z)) may appear as members of 

c(z). 

2.3. The_ linjgiown Part of (z) 

U(Z) B("iü!#f t r z
1 z2...z ). (3) 

If u(z) exists then its members will represent the candidates 

for elements of (z). 

2A. Elements of .(_z) 

We shall use "(z)" to denote both the collection (z) and 

the list (z). The relation name "meraberof,: is used exclusively 

for lists, and "elcmentof1' is used only for collections. Let 

CC[Z clement Y] denote the CC anchored at the <edn> whose 

scope is Y.  Then, 

[(Z clement Y)(Z instance (z)) =£> 

((£) elomentof (z)) <^=> 
GC[Z element Y]((z) 0^) ] W 
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The representation of (z) is defined by the following: 

. (a)     (Q    elementof (z))  4^> 

((@ nenberäf (z)) V 

(-vCC raeraberöf c(z)) 

((Closed G(Z)) V^(CJ
 memberof u(z)))) 

(b) ~(@y elementof (z)) <?=> 

((0 memberof G(Z)) V 

^,(9 instanceof (Scope (z))) V 

UCly memberof (z)) 

((Closed (z)) V^((S) memberof u(z)))) 
/ 

(c) ((£) elementof (z)) = ?) <==> 

((@ memberof u(z)) V 

^((Q memberof (z)) V 

^(^ memberof c(z))) 

(0 instanceof (Scope (z)) 

(Open (z))(OpGn c(z))) (5) 

Each collection thus defines a partition of all the items 

in its scope. Let n(z) denote the partition defined by (z): 

n(z) = [T(z) U(z) FCzOl (6) 

where 

(a) T(z) = (x | (x elementof (z))) 

(b) U(z) = (x | (x elementof (z)) = ?) 

(c) F(z) =  (x |^(x elementof (z))) (7) 

Notice that an -unknown element of a collection may exist 

only if both (z) and c(z) are open. If x is an unknown element 

of (z) then x may potentially belong cither to (z) or to c(z). 
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In general, the mfeown truth value of a relation, in the LIDS 

model space, is a property that is incidental to the model 

space.  It is not a property that is intrinsic to the domain, 

that is being modelled.  Thus, one may have relations that are 

universally trric (false), i.e. true (false) in all possible 

model spaces of a domain.  But, there is no notion of an 

universally unknown truth value*. 

The element definitions given in (3.6) enable economical 

representations of collections in the model space.  This is 

discussed below; 

2• Jj 1 Qiaeolal Cases yf (z) 

^;i-)  Instances of classes 

Let I(Y) denote the collection of all instances of a 

class Y.  The form of I(y) is, 

KY) = (Y#f e r y1 y2...y) (8) 

where e(I(Y)) is the event number of the last event, that 

created an instance of Y. In this case the complement of 

I(Y) is not stored. By definition, 

(y instanceof Y) <^=>(y memberof I(Y)), 

~(y instanceof Y) <^>~(y memberof I(Y)) (9) 

* The Theorem Prover in MDS operates in two valued logic. But 

it uses the model space, which is in 3-valuod logic. 
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(ü)    NULL Colloctions 

(NULL (z)) is true if 

,.(3) = (5 0 NIL (y)) 

(y) = (c G NIL (z) r). (10) 

Here (z) has no members; Its cardinality is 0 and it is 

closed.  The "e" in the compliment of (z) indicates that all 

instances of (Scope (z)) as of the event, e, are members of (y). 

Every time (z) is accessed this event number, e, will be compared 

with the event numbers associated with the classes in the scope 

of (z).  If any of these classes has an event number that is 

Greater than e, then the corresponding elements of (z) will be 

computed, using the cc's and Amis associated with (z). If all 

the event numbers of the classes are less than or equal to e, 

then the existing specifications of (z) will be used. 

We shall use 

(z)  = 6(z)[NIL NIL T] ^5 

to denote  the NULL collection. 

(iii) .UNIVERSAL Collections 

(ALL (z))  is true if 

(z) =  (6  e NIL (y)   - r) 

(y)  =  (c 0 NIL (z)) (^2) 
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Hero again o, is given the same interpretation with respect 

to the list (Z), as in (ii) above. We shall use  * 

(z) ■ 5(z)[T NIL NIL] (13) 

to denote the universal colloction. 

(iv)    Open Colicctions 

As a collection (a) is open only if as lists, both (Z) 

and o(2) are open.  Open collections my have one of the 

following forms: 
• 

a) 6(z)[T(z)  ? .P(z)], 

b) 6(z)[T(z) ? ? ] 

c) 6(z)f ?   ? F(z)], 

d) 5(z)[ ? U(z) FCz)], 

e) 5(z)f ? u(z) ? j, 

f) 6(Z)(;T(Z) U(Z)  ? ], or 

g) 6(Z)C ?   ? ? ].                    (1lf) 

As we shall see below, it will never be necessary to 

enuuerate in a collection all the items in i.s scope. Goopared 

to the number of instances in the scope of a collection, the 

number of members in the representation of the collection win 

always be small, 

(v)     Values of (@ r) 

We shall use collections to represent the values of relati ons 
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(§x r). Every (© r) thus definos a partition of the Items in 

its scope.  If (X r Y) is true and Y is a node toi,iT3lato then 

the valuu of (0 r) will be one of the followlngj 

C@x r) = (z) a (6 1 NIL (y) > r y) 

(y) = (c ? ?  (z)) (15) 

if C§x r y) is tr-uo Or, 

i@x  r) = (z) = (5 0 ? (y) (u)) 

(y) »(09? (z)) 

(u) = (u n f (z) r z1...zn) (16) 

if candidates (z , z  t,,,9z  )f  are Imown for (§ r), but 

(@_ r) itself is unhnown.  Or 

(@x r) = (z) =(60? (y) u)) 

(y) = (c n ? (z) r y1.../1) 

(u) = (u e ? (z)) (17) 

if C@- r)  is unlQiown but sone y,  for v/hich —,((3   r y)  is  true, 

arc lenovrn 

Or 

(0X r) » (z)  =  (6 0?) (18) 

if nothing is known about (Q    r). Similar representations will 

exist also for the case where Y is a list template in (X r Y), 

The partitions inplied by those representations are made use of 

to obtain complete solutions of Consistency conditions. The CO 

evaluation algorithm is discussed in section 3»^» 
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Appendix III 

Maa^.tAon of fta^^. .^^ ^ ^^ to 

!I3a^orflp} proving fa vps t 

The imormmim and insj^t^^tion rules have been 

already explained in the  text (see  (3.101)   threugh (3.I0M) 

We also have the following prepositional rules: 

C* V)   : 

(A ->)   : 

Ov ♦)   : 

Splitting RuXoaj 

(V ->)   : s1(p)s2>*e1i S^Q ) s2->s3; 

S1(PVQ)S2->S3; 

S1^S2(P-Q)S37'" 

Absorption fluiea. 

S1->S2(PVQ)S3; 

Sl(P)(Q)S2.>S^; 

S1(P-Q)S2->S2; 

licgation Rules; 

s1s2->s3(p); 

S1('vP)S2->S3; 

S^  S2UP)S3; 
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l'or  a given W-statc all appllcablc proportional ruloa 

^ould bo applied rirst. Thoroaftor. the noeOod 3onorallZatlon 

and instantiation rulcS arc applied to a TP.state, TP., to 

gonorate the next TP-stato TO    TO.. 
, '    tatC' ^W  In the state IP   for each 

sequent, sav s    1-^4^1.^, » ^ Sj  , 1 < ^ k,  th0 Coiiection of asscrtions 
n'+1 

a(s? ' = ^jl-'-Pj-n^jl^ja--.^,,) 

Is oonstructod, and all the IHASSERTis 

(TIMSKRT aCsf1)), 0- = 1,2),..(k) 

are assented to the Model Spaee In par8llel.  I];ls ,^h. rosu]t 

m the reoecnltion of eontradletlens In eaeh sequent of IT. 

In snoh a ease the Tf process wenld ternlnato. Otherwise/Ihe 

unknown residues generated by the VSaTMrTAmnn ^ ^ un" ÄooJJtiLATOR ±n response to the 
THASSERT's will al3 he hvmi.^+  -i-. -M -• x  au. De brought .o bheir respective sequents and 
the TP-state, iPi+1 , wlll bo updatod#  ^ ^.^ ^ ^ ^^^ 

rules will be followed. 

The m  associated with a p. win he brought down to the 

loft side of its associated sequent, and the m  associated with a 

^ Will he brought to the right side.  It should be noted that 

applicatien of an .stantiation rule also rray result in the 

receipt of an m,   returned by the ASSMIIATOR as the conditions for 

the acceptance of the insteantiation. The im»s associated with the 

instantiation rule (3 .) wlll ß0 to thG lGft ^^ Qf ^  ^^ 

and those associated with (♦ ¥) win go to the right side. 
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Each TIIASS^T Will cause the ASSIIIILiTOR to call m its 

own chockinc and updatinS processes.  This nay result in narrm;. 

ing down the ranges for the eigen terns in the IP-state. 

One nay assume that the variables in each m entered in a 

sequent would he distinct and new to the Th-stato.  ÜSo, in eac 

UR the following expansions would have been incorporated,thorebv 

renoving the binding expressions appearing in the URr 

[CSS (a1 a.2...e.n  ?))] ((3z)P1P2... .rk) and 

((3a)[(Z(a1a2...aii ?))]P1 P2.».Pk) 

arc transforned to 

n 
.V[(z a.)^?^.,^) v ((}]z)P1P2..,Pk)J 

and all subexpressions  of the  iorn, 

k 
((Vz)( V    ,   A  ±    i i M

i:z1   CzC4 a; ...aj ?))]Pi) 

are transforned to 

&        n 

0 
(i=i S=i (f(z ^^^^X^)^ VP2 v,..vpk)). 

In both the above expansions the right nost quantified 

expression will occur only if the binding ranges for z  include a ?. 

In attenpting TKÄSOTT if the range for an eigen tern, 2, 

is NIL., then 
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a)     citlior archer applications of appropriate 

tiation rules i/or.icl bo sought    or 
instan- 

b)     the model   ooB^ln^np 

would be initiated. 
procedure for the relevant z' 

to oxanpl. or the nodol smteSSm ^ was onccnteroe 
in the «.^.lon i„ soctlon ^^    ^^ ^ ^ ^^    ^ 

which .ocel conpletlon procedure should be Inlliatea ln order 

to fmd new possible bindings for an c™. *■* .,  1 o    ior an eigen term,  z,  even though 
it has  already a non-NIL ran.-o.     The m^«i -,   . • "se.     me model completion as a 
strategy for using domain knowledge will  bo A*** 

^KG uj.li oe discussed m a future 
report. 


