- Best
Available
Copy

PR dE U

ADA114513

OMC FICE TOPY

SOSAP-TR-20 A

THE META DESCRIPTION SYSTEM:

A System t©o renerate Intelldpgent
infcrmation Systems.

PART TI: THE MDEL SPACE

by

C.V. Srinivasan

Dept, of Cumputer
Hill Centre,

Science
Busch Campus, Nutzers,
The State University or Neday

New Brunswick, N.J. 08903,

This work was supperted by Grant

DAHCIS - 73 .. G6 of the Advanced
Research Projects Agency.
AFPROVED ™™ ™1131,7 2 REaAlgl}

o DISTRIGU. .u UNLINLIED 23

g2 05 17

din

July 1977

DTIC

ELECTE
MAY 18 1982 |

05

D

Lo P T—v———a

Accession For

[NTIS GRARI]
DTIC TAB 0
Unannounced]

Justification . . |

By

THE META DESCRIPTION SYSTEM: _Distridution/
Availability Codes

A SYSTEM TO GENERATE INTELLIGENT = (avail amdfor —

INFORMATION SYSTEMS - PART T, Dist | Special

THE MODET, SPACE.* g[
| }

k u\\ By Chitocr V. Srinivasan**

: ABSTRACT: This paper discusses the architecture of a

meta-system, which can be used to generate intelligent
information systems{cr different domains of discourse.

Tt points cut the kinds cf knowledge accepted by the

O N e

; system, and the way the kncowledge 1s used to deo nen-
trivial problem solving., The crganizaticn of the system

makes it possible for it tc function in the cmtext of

an expanding mcdel space., The problem solving systems

in the meta system ccmmnicate with the model space in

the language defined for the domain. They have the
capability to improve their performance, based on the
kncwledge gained from this communication. The meta-
system provides a basis for the definition of the ccncept
of machine understanding in terms of the models that the
machine can build in & dcmain, and the way it can use

the models.
———————————— \.—__\

* This werk was supported by 2 grant from the Advanced
Research Prcjects Ajency (grant number DAHCIS-73-G6),
of the Gevernment of the United States cf America,

#%Departient of Computer Sciencc, Hill Centre, Busch Campus,
Rutgers University, New Brunswick, N.J. 08903.

LA~ |

T

(1)
Table of Contents Pages
Intrcduction i
1.1 Central Cencepts and the MDS paradim 3
1.1.1 Relaticnal Systems, Descriptions
and M:del Space 3
1.1.2 The Problem Solving Systems of MDS 7
1.1.3 The MS Paradigm 11
1.2 Relationship tc Other Systems 14
MDS Mcdel Space and the ASSIMILATOR 1
2.1 Intrcducticn Wy
2.2 Knowledge Reresentation: Fceus cn Objects
and classcs 17
2.3 The Structure (f Descriptions 18
2.3.1 Descripticn Schemas and Templates 19
2.3.2 The ASSIMILATOR Control 25

2.3.2.,1 The Domain Compiler and
asscciated Facilitics in MDS 25

2.5.2.2 Examples of Representations,
Access Functions, and the Basic
Commands of the ASSIMILATOR 30

2.3.3 The Compilation Process 34
2.4 Consistency Cenditions or Sense Definitions i

2.%.1 The Natupe of Constraints:

Soume Examples o7

2.4.2 Wnhat shculd sense Definition do, 39

2.5 Representation and Uses of Constraints 4o
2.5.1 Use cf Bounded Quantifiers 4o
2.5.2 Use . f Relaticn Paths 43

2.5.32 Use «f Definitional Anchops Ly

2.6.

(11)

2.5.4 Use of Ivocaticn Anchors
2.5.5 Usc of Set Constructs

2.5.6 Uses of CC[X r] as a function and a
rredicate ; Examples of Commonsense
Refsohlfig ...»

2.5.7 Internction Between Relaticns:
Their Recognition and Eaxibrol ...

2.5.7.1 DONLISTS and DETLISTS...

2o Dimensionality of a cC..

2.5.7.2 Censtruction of DONLISTS
and DETI.ISTS

2.5.7.% Definitional Filters

2.5.8 Focus Lists and Updating Prccesses
2.5.9 IMnchored Transformation Rules

Objcet Based Representaticn:
Bundles.,,

ITT. Residues, Commonsense Reasoning and
CC-evaluations

3.1
52
3.3

Syntax of consistency Cenditicns
The Mini-scupe Form

Residues and Partiticns

Pages

Iy
bs

48

57

57
59

61
63

T2

92
92
95
97

3.2.1 Resldues and partitions cf Propesitions 99

3.3.2 Residues and partitions cf redicate
expressions

3.32.2.1 Substitution Ranges, Their

Partitions and Sclutions of P

5.3.2.2 E-solutions: of p

100

100
103

(111)
bPapges
3.5.3 Elementary Forms 108
%.3.4 Propesiticnal Forms 109
3.,3.5 Mnisccre Expressicons 111
3.%.5.1 Universal Quantifier 111
3.%5.5.2 Existential Quantifier 113
3.4 Computaticn of Residues and Partiticns:
An QuelEview . .. 115
3.4.1 The Evaluaticn Algcrithm 116
3.4.,1.,1 Single Universal Quantifier 116

3.4.1,2 Single Existential Quantifier 119
%.4.1.3 General Predicate Expressicns 121

3.4.2 cCumputaticn of Scluticns for Pro-

pesitional Expressions 1235
3.4.3 Cunments «n the Evaluation Prccess 127)
3.5 Commensensc Reascning and Prcblem Solving 129
3.5.1 Basic Thecrems 129
3.5.2 Updoting and Learning The crems 130
3.,5.2.1 Basis for simplification cf
ccnsistency checks 3
3.5.2.2 Basis for Learning 13%
3.5.2.3 Use of Fceus Lists to guide
Intelligent ccnversation: 139
3.5.2.4 Use of Focus Lists to guide
Recognition 140
3.5.3 Basis fcr Theorem Proving 142
3.5.3.1 Gentzen's System of Logic and
the calculus cof sequents 142
3.5.3.2 A Proof Example 145
3.5.4 Bosis for Means-end Analysis 150
IV. Concluding Remorks 152
V. Ackncw ledgements 155

VI. References

2% Appendix I:

Aprendix I:

Appendix I75:

M- aification tc¢ the Description
Structure

Representatiocn of Collections and
s¢ts in the Mcdel Space

daybation ¢f Gentzen's System of
li.diec t¢ Thecrem Proving in MDS...

Pages
158

A1

A-2

A=10

r_— ———ﬁ

1. INTRODUCTION

The Meta Descripticn System (MDS) 1s a system for
describing knowledpe in a domain to a ccomputer. MDS can
be used to generate intelligent infcrmation systems, autc-

matically frem deseripticns of kncwledpe in a demain of

discourse. The dcmain cculd be diverse as for example,
Medical Diagmesis [Irwin % Srinivasan 19757, Modelling

Psychelopidical Systems [Sridharan, Schmidt & Sridharan

1976, 1977] or Mana cment Information System [Srinivasan
19747, The majcr application of MDS has heen sc far
in modelling psychcle ical systems. A brief discussion
of some of the features cof MDS appcars in Srinivasan

[1973a, 1976f].

This paper presents infermally the logical basis for
the organization and -peraticn of twe of the major subsystems
cf MS: Its MODEL SP.CE, and the problem sclving subsystem
called, ASSIMILATOR,* which is respcnsible for the consistency
cf mcdels in the MODEL SPACE. The ASSIMILATOR helps the
MODEL SPACE assimilate asserticns about mcdels, making
surce that the laws of 2 dema@in are not viclated, It is alsc
respensible for preducing reaScns that explain why certain
asserticns are accepted, cthers are not, and yet cthers are
accepted ccnditicnally cn certain hypothses. These reasms

anl hypctheses will cinstitute the systems cown understanding

* This 1s a new terminclegy. This subsystem was beilng called
INSTATIATOR-CHECKER in previous rep-rts.

T e A T T = A T T T it iiapubye R

e

-2~

of The assertions,. They also fcrm the basis for all problem
Solving and intellircnt activity in MDS. The reascns repre-
sent chunks of knowled;e that may be used in a problem sol-

ving process to muide search.

The crganizati - and cperation of the MODEL SPACE and
ASSIMILATOR are cenl:~l to the MDS concept of imonledge itself,

and its assceiated nctions of understanding, descripticn and

usc of knowledge., The vbjective of this paper 1s to mresent
an operaticnal view ¢f this knowledge as it pertains tc the

MODEL S PACE. |

The basic mcdelling ccneepts are presented in the
ccntext of a stylizeld dumain ¢f discourse: Transpcrtation
Systems and Problems like the MISSIONARIES & CANNIBALS
(MC), FARMER & SON (F&S), ete. This is done fop peda-

gopical reasons.

In Section 1.1 lclw we shall give a bricf outline cf
the central concepts in MDS, and introduce the MDS -paradignm
for intelligent operaticn. We shall alsc estahlish the

terminclogy used in the paper.

Implementation Status of MDS

There are now tw. partially implemented versions cof MDS .
One 1s MDS itself, which is implemented in INTERLISP., Only,
the so called domain accguisition part of 1S now cperaticnal,

This accepts definitions of domain knowledre in

-3=

the meta-language of DS, and represents them in the mcdel space
in a form suitable foer compilation and later use. Jcel Irwin,
John Ng and Tau Hsu participated 1n this implementaticn,
tocether with the auth-r. The second part «f MDS, namely the
cude for the domain compiler, which derives fr m demain defini -
ticns procedures appropriate for the ercati o and maintenance
of the model space, 15 ncw being written,

The cther versicn cf MDS 15 called AIMDS, Acticn Interpre-
teticn MDS. This 1s implemented in FUZZY [Le Faivre 1976]. There
are differences between MDS and AIMDS 1in syntax and certain cther
definiticnal ccnventions. AIMDS is an interpretive version of a

subset of MDS. It is nuww being used fer mcdelling "belief systems'.

1.1: Central Concepts and the MDS - Paradi om

1.1.1: Relaticnal Systems, Descripticn
Longuage and Model Spaces.

The Mcdel Space, Mp» * <of a demain 1is central tc the archi-

tecture of MDS, and its uses. The structures and prccesses in the

mcdel space are derived autcmatically by MDS from definiticns cf

a Relaticnal System, R, Rp itself 1s defined in the meta, language
|4

of MDS. Rp alsc forms the basis for the definition of the syntax

and semantics cf an ¢lementary degerdpticn language, Ly, which

is used tc. descri e, ccneepts and prchlems

* We shall throush ut use the subscript 1; @8 Yn Nb, to dencte
the prctctypic 1main, Transportaticn Systems.

e

(hereinafter calleq entities) in the domain,

Descripticn Lan uage, Ly

Every well-formed relation 4n HT may cceur as a phrase

(literal) in Lp. Thus, in our demain, cne may have rhrases
like "(p locaticnor D)"Y, "(v cangoto p)" etc., where pis a
PLACE, h Say, is a HUMAN, m is an ANIMAL ang VvV, @& VEHICLE.
Lp may alsc have, in addition, command phrases like (ASSERT
(b leccaticnef h)(n helding m)), (FROVE((ALL Humay h) (THERE-
EXISTS PLACE p)(p l.caticncr h))) ete. Thase are commands

to one cr mere prolien Sclving systems of Mmps, "INSTANTT ATE "

is a command to the /SSIMILATOR., "ASSERT" apq "GOAL" are
ccmmands to the DESIGNER, Which is a goal-directed Prcbhlem
Sclver [Srinivasan 1g976r, 1977¢c 1. Whereas, ASSERT and GOAL
mAy have preccnditicns, INSTANTTATE dces not. "PROVE" s
8 command t¢ the THECREM FROVER (TP) [Srinivasan 1976¢,
1977ax* 1,

Sentences in Lp may be of two types: Declarative
Cr Prccedural., The Sentential structure of declarative
sentences 1s a variant of the Sentential structure cf
the language of first order lcgic. Examples of declara.
tive sentences appedr in secticn 2. These are used tc

éxXpPress the static Lows_ of a dcmain;: The laws cf ccnsis-

tency that any glven state cof the model space shcyld satisfy,

*¥% In preparation,

oG

-5-

The prccedural sentences are used tc express the dynamic
laws: The laws of change in the mcdel space, Every
procedural sentence will have at least cne cecurrence

of a command phrase. Examples ¢f such sentences ceeur

in seetion 2.5.9.

The semantics ¢f Lp is entirely defined by the
semantics of the relaticns in Rp. For the relations in

Rp their semantics 1s defined by patterns cf interactions

that they may have in the model Space: How the consis-
tency of cne relaticn may depend on the consistency of
others. The forms of definiticns of Rp, the ra&ticnale
fer thelr cholce, their interpretaticns, ana the assump-
tions cn the contrcl structure of the ASSIMILATOR that

they entall, are all discussed in section 2,

Representations in the M.del Space: Bundles.

The structure cf Rp 1s also used by MDS to design
a system of representaticns for mcdels of entities in Mp.
These representaticns 2re like the "frame" representaticns,

Proposed Ly Minsky [1975]. Each mcdel is a data-structure

representing a pundle of interconnected pleces of infeor-
mation, where each picce has its own substructure. Each
bundle (mcdel) may have a name, will have references to
1tself and its definiticn, and will contain a set of slots.

Each slct is used t.. represent a property cf the bundle.

e

Each Property representaticn will itsellf consist cf a set
cf slcts : ope each fir the broperty value, reasons fcr

the value, QypctheSes, rules of tranSformatmans, and

Datterns cf interactions with cther bundles in the model

Space,

Each sueh bundle 1s a natural unit cf knowledge 1in
the domain, in the Sense that, as a unit, it barticipates
in all interacticns with cther such units in the model spacec,
From each bundle one nay .obtain a view of the entire mede 1
Space, as it pertajns te the bundle. Also, the bundle 1s
the focus cf attenticn in all brceessing done in the mcde 1
Space. As we shall Sec¢, the bundle Structure nct only
Intrcduces a "megulap ™ System design, but also, in a very
real sense makes intellipent Prceessing feasible, 1in

practice,

The mcst Significant aspect of MDS is that the bundle
representaticns ang all its assceiateqd processors: for
establishing and maintaining a consistent medel Space, are
compiled automatically Ly MDS from Schematic definitions of

the structure and semantics of RT. The ccmpiled pPrceedures

can supply the reascns fcr the event, in the language Lp.
The nature of this compilaticn process is brierly outlined

in secticn 2442 5

il T T et et et

=Te

The Model Space Logic

The model space works in a three-valued. logical system:
T(True), ?(Unknown) and NIL(False), T > ? > Ni1l, AT = NIL
and ~? = ?. The ability to instantiate schemas defined in
RT, update properties of bundles, and do model based reason-
ing and hypothesis generation, is primarily due to the use
of the 3-valued logic. We shall use the phrase, Common-

sense reasoning, to refer to the model based reasoning

done by the ASSIMILATICR. Examples of this reasoning process
are presented in section 2.5.6 through 2.5.8. The deductive
mechanisms used for this process are defined in section 3.

1.1.2 The Problem Solving Systems of MDS

The ASSIMILATOR iS the monitor for the model space.
A1l events in the model space are initiated and directed
by the ASSIMILATOR. It recognizes four kinds of commands :

Instantiator Commands, examples of which we saw before;

Recognition Commands, which are used to identify the class
membership of a bundle; Comparison Commands, which are used

to test for equality of bundles; and Retrieval Commands

which are used to identify the bundle or bundles associated

with a given name or phrase in Lp. The instantiator

commands may present at a time a set of relations, all of
which are to be instantiated in parallel, The assimilatcr

is responsible to translate the relations to their associated

representations, or mcdifications tco representations, in the

B e e O NS —‘

=8

medel space. For example, tc assimilate "(p locaticnof n)"
it might be necessary tc make several Seccndary changes in
the mcdel space, in .rder to maintain consistency. Thus,
if h was holding m, then the lccaticn of m should alsc be
set to p. Alsc, if h was initially at the place, g, then
~(g lecaticncf h) sheuld be made true in the new model
state. The ASSIMILATOR can reccognlze and lncarpcrate such

Seécondary changes,

The ASSIMILATOR dves not have the dcmain knowledge or
the contrcl structures necessary tc plan and execute a
sequence of actions in the medel space, Thus, it would
not know that h should have arrived at p using a VEHICLE,
1f suchvas the case., TItis the role of the DESIGNER to
recognize preccnditions fer actions and plan action sequen-
ces, that seek to aclieve given geals. Thus, in response
to (GOAL(p lceaticncf h)) the DESIGNER might construct the
sequence: For a vehicle, v,

(ASSERT (v holdingz h))

(ASSERT (p locatiinct v))

(ASSERT ~(v holdins h)),
and present to the ASSIMILATOR the correspending acticns
one by one. The reaswuns Supplied by the ASSIMILATOR for
the success cr failure f the acticns may be used by the

DESIGNER in the planning process itself, to modify a

-

ol

given plan. Thus, for example, the DESIGNER might recelve
the explanation "~(v loccation is lccaticnof h)", as the
roascn for the failure of the asserticn "(v holding h)".
Tc correct the errcr The DESIGNER might chcose another
VEHICLE, vi, Which is at the loccation of h, cr else have
v brought tc where h is. Also, the next time the DESIGNER
makes an asserticn like "(v holding h)" 1t would already
make sSure that v and h are at the same locatipbn. Thus,
the DESIGNER wculd have learnt an elementary fact of the
domain. The learned infcrmation waild be summarized as a
rule in the DESIGNER's own lccal state. Rules like this
will be used by the DESIGNER not only tc avold repeating
mistakes, but also t¢ make the righ‘c cholces, wherever
feasible. Examples ¢f these processes are discussed in
Srinivasan [1976f, 1977c¢]. The lcgical basis that makes
it possible to use reascns in this mamner is establlished

in secticn 3.

The DESIGNER will attempt to plan and achleve cnly
goals that are specified to cbjects that already exlst in
the mcdel space, cr obhjects that are expliclitly created,
using the INSTANTIATE (cr CREATE) commends. The DESIGNER
does nct have the ccntrcl structure necessary tco direct
and sequence through a construction process tc medel

predicate expressiwns. Fcr example, the DESIGNER cannct

prove an assertion like:

1B
((ALL HUMAN h) (THERE-EXISTS PLACE p)§ locationcf h)).

The THEOREM PROVER (TP) is used in MDS to prove assertions
like the cne above, assertions that hold universally true
in a dcmain., The TP uses Gentzen's system f natural
deducticn. It uses the mcdel space to discover the cons-

traints that given asserticns imply. The method of proof

1s like B th's Semantic Tableaux methcd [Srinivasan 1976c].

The prcof is attempted by seeking to build a mcodel for a

counterexample. Details of the TP are presented in Srinivasan

[1977d]. They are briefly discussed in section Dl s

These prcblem s.1lving systems determine the scope cf
the system's understanding for a given corpus of dcmain
knowledge. In some sense the concept of domain kncwledge
itself seems to exist unly because of the existence of
control structures that can do these various kinds of
problem sclving., The capability for understanding, exhi-

bited by MDS in the cintext of these oproblen solving

systclis, forms the basis for loncuage understonding in MPS,

In the rcalm of description languases, Lp, has the status .
that "asseubly languazes"™ have in prosgruwming systons.
Tizher level desceription langunge nay be defined and
processcd in MDS ueing tihc subsysten cnlléd, LINGUIST,

The formalisms and processes of the LINGUIST will be

P —

— B e

]l

deseribed in a futurc paper,

)
The LINGUIST is responsible to transilate sentences

to phrases, that ASSTIMILATOR can understand. As shown
in figure 1, the LINGUIST can use the DESIGNER and the

TP in this prccess. The hypctheses Supplied by the
ASSIMILATOR will be used by the LINGUIST, as expectations
in the ccntext of a discourse. The reasons for contra-
dictions in the model Space will be used to seek alter-
nate interpretaticns,

The ccllection of all reascns and hypotheses genera-
ted during the assimilaticn of a sentence will represent

the system's ocwn mnderstanding of the sentence.

1455 The MDS - Paradigm

The MS -Paradigm is Shawn in figure 1, It ccnsists
of two parts: The demain definition part and the demain
utilization part. In the demain definition part the meta.
language of MDS 1is used to¢ define Rp and Lp. These

defipitions are translated to representations in the model

Space by the Demain AcQuisition System (This part cf MDS
1s now cperational), These representations of Rp and L

are used by the domain cumpiler to generate code for the

cereaticn and maintenance of models in the mcdel Space .,

(This part 1is now being ccded),

in the dcmain utilization part, sentences in LT are

R e e e S SRR

-2 -
DEFINITIONS IN THE || DOMAIN ACQUISITION
META-LANGUAGE OF MDS A 5v STEM
I 5
e
+ META REPRESENTATIONS OF Lp & Ry H
-l
e I BUNDLE STRUCTURES: MCDELS e
MODEL SPACE Y A
g o
ot
«
Doman Dependent Procedures for the g
creation and updating of Models A
T =T o Sle e, S """‘“‘\Al/_ T i g L SR, | e e SRS '_*”"'
ASSIMILATOR CONTROL b t |
) 4 & & T M I L A T O R l “
8. I |
v , o i
Reasons & Phrases 1in Ly Reasons & f |
Hypotheses ~ Hypotheses | |V
;— V8
4 ! o ot
D-STATE || D-CONTROL % TP-STATE || To-CONTROL]l[
t (& |
DESIGNER - TP o
3 |
| 5
| 2 .
. 5 2
1 .L-STATE || L-CONTROL - B
LINGUIST

{ Sentences in LT

_/ Figure 1: The ¥DS - Paradigm

B e e e W — -J

13-

recelved by the LINGUIST, which 1s responsible to translate
them to phrases in Lp that ASSIMILATOR can understand. In
dcing this translaticn, the LINGUIST may make use of the
DESIGVER and the TP. Each cne c¢f these problem solving
systems has its cwn local state. These lccal states are
kept updated by the respective ccntrols of the problem
solving systems, with informaticn received from the
ASSTIMILATOR, namely the reascns and hypotheses gere rated

by the ASSIMILATOR 1in respcnse to the phrases at its input.
The problem sclving systems use the infcrmation in their
respective states to pgulde thelr cwn activities. This forms
the basis for learning in MDS,

The lccal state of a prcblem solving system may be

viewed as a mcdel of the system's own past activities.
Such mcdels may again be themselves described schemati-

cally in the peta-lan uage cf MDS. Thus in MS, one may

specify hcw a problem sclver shculd mcdel 1ts own activities.
The modelling schemas fcr the DESIGNER'S problem sclving
state are discussed in Srinivasan [1977c]. For a given
prcblem sclver like the DESIGNER 1its mcdelling schemas

ma&y be domain dependent, cr within a domain it may depend

on types of prcblems. Thus domain knowledge may appear

in bundles 1in M)S at various levels of the system's
activities: At the level of the model space it may
appear as the data-base for a domain. At the level of

the LINGUIST, 1t may appear as definitions of the syntax

14

of Ly or as decision processes associated with I, INGUIST.
In each problem solving system the bundles may appear in
the representation of the problem solving states and 1n
the decision processes of the problem solver.

The logical basis for learning and commensense

reasoning within this paradigm is established in Ssection 2

1.2, Relationship to other systems

MS incorporates in its organisation many of the
important concepts that have been developed in AI-systems

over the last two decades:

"Means-end analysis" [Newell, A, et. al. 19597 1s

used in model-space updating, and in problem solving by
DESIGNER; 'Theorem proving" is used to establish general
assertions in the dcmain; "Procedural specifications of
knowledge " is used [Hewitt 1972, Wincgrad 197571 to define
the dynamic laws of the domain, the laws of change in the
model space; 'pattern-based invocation" of procedures is
used by DESIGNER; "declarative specificatiocns of knowledge"

in first order logic is used to describe the static laws

of a dcmailn, the laws of consistency that a model space
should satisfy; knowledge in the model space is represented
in "frame" like bundles, which behave like molecules in

interacticns with each cther; finally, relational systems

are used as the basis for defining model spaces and

“15=

languages. MS provides the legical frame work and an

architecture in which these ¢ncepts function together,

MS dces not seck to define yet another precgramming
language c¢r seek to ccntribute to programming technigjes.

MS 1s a problem Solving system, which can _generate

proggams frcem definiticns of knowledge in a domain. It

proposes a view of kncwledge, and provides a formalism

for defining knowledpe., In defining this knowledge a user
need nct ccncern himself with pcssible interactions between
ccmpenents of his definitions, and prcvide procedures tc
process such interactions. As we shall see in secticn 2.5.7.
MDS itself can derive from the definitions the prccédures
necessary to anticipate and process interactions between
models., Thus, the definitions themselves are modular. We

Shall see examples cf these definiticns in secticn 2.

MS makes a clear distincticn between the model space
and its control structures, and the control structures cf
the various problem Sclving systems. The representations
and processes in the model Space are ccmpletely independent
cf the prcblem solving systems, like DESIGNER, TP and LINGUIST.

Because of the commensense reasoning paradigm each rroblem

Solver is able to get from the model Space new c anbinations
of domain knowledge specific to its own needs, Using these

chunks of knowledge each problem Sclver may develop 1its

-16-

cwn specific views c¢f the mcdel space. The ability and
efficlency of these i1interacticns between the problem
solvers and the model space i1s 1limlted only by the
primitives -- descriptive relaticns -- available in the
model space, Since tle relaticnal system determines the
description langua;e <«f a domaln, ¢this 1s the same as
saying that the prcblem sclving efficiency 1s dependent
on the ccncepts expressible in the descripticn language.
Thus, MDS brings tc¢ focus the kncwledge representaticn

1ssue as an issue of language design, and nct as an 1issue

of program design cr data-structure design.

Major innovaticns in the MDS architecture are:

(1) the use c¢f relaticnal systems as the basis ﬂ
for the design cf mcdel spaces and languages;

(11) The formalism used to describe knowledge, and
the control structures that can use the defined
kncwledge tou do useful wcerks

() The architecture c¢f the model space in 3-valwed
loglc and the commensense reasoning paradigm.

We present in this paper, the loglcal foundaticns cf this
architecture, and establish the basis for using MS tc do a ,
variety of problem sclving activities, activities such as ?
assimilation, gcal directed planning and problem solving, thec-

rem proving, recogniticn, understanding, etc, Detalls of these
problem solving activities themselves will be discussed in

future papers.

PR SR ¢ e T T

-17-

II. MDS MODEL SPACE AND THE ASSIMILATOR
2.1 Intrcducticn

In this chapter we shall Intrcduce the logic, architec-
ture, methcds and uses, and forms of definitions of the MS
mcdel space, We shall define Rp, and discuss interpretations
given to the various components cf the definiticns in the mcdel
Spage. We shall present examples c¢f Lp, and structures and

prccesses in Mp, that are implied by Rn.

The definiticns cof Rp will contain three compcnents;

structural, sense ang transformational. For each ¢ cmponent

We shall discuss the definiticnal forms, and the raticnale for
the chcice of the foirms shown, We shall also point out the
assumptions on the ASSIMILATOR cantrol that they entail,

We shall see examples of ccmmonsese reasoning in the
W
model space and the role it plays in the maintenance of
censistency. The lcde of this reascning prccess and the

associated deductive mechanisms are defined in chapter III.

2.2 Xnowledge Representaticn: Focus cn Objects
&nd classes

There are two extremes in knowledge representaticn: One
may be called Operatcr-based and the cther object-based.
operatcr-based representations objects are treated as uninter.

preted formal entities, which may appear as components of a

S e e — PP ——

|

-18-

medel-state., A mcdel-state itself 1is described in terms cf
how one might arrive there, starting from one or more dis-

tinguished initial states, by applying cne or more sequences

of transformations (Operatcrs). Examples of such representa-
tions appear in Algebra, Group Theory and in certain game
playing systems. They are useful in situations where total
knowledée is available, and the objects involved show certain

closure preperties with respect to the operators.

In MDS the bias is predominantly tcwards object-based

representations. Here cperators and functions are characte-
rized in terms of hcw they affect properties of classes of
objects over which they may operate. The representations
foeus cn interactions between preperties of cbjects. This
kind of representati.i: leads naturally to the so called
"frame systems". There 1S nc nction of mcdel-state. The
model, in fact, is likely to be always inccmplete. Object
based represent§tions have several advantages, We shall
discuss them in the last sectiun cf this chapter. It is
useful tc first develocp an intuitive understanding fcr the
nature cf representaticns in the mcdel space and their impli-

cations,

2.3. The Structure of Descriptions

The constructs discussed below cover most of modelling

ccencepts in MDS. Certain aspects pertaining to the specifications

“19=

of properties cf relaticns, relaticn hierarchies, and defi-

niticns cof ftuple and function schemas, as well as meta-schemas

are not discussed. Tihese are defined in Srinivasan [1976e].
In what follews, we sihall use square brackets, "[" ana ""
to enclcse tuples, chain brackets, "{" and "}" to enclese

sets, and parentheses, "(" and ")" to enclcse gollections. We

also use parentheses to delimit relational fcrms and express-
ions in LT. 3c alsc, we use, at times, the square brackets
in expressicns in the Way INTERLISP uses them, tc indicate
automatic clcesure of parentte ses in nested expressicns. But

these shculd not cause any confusicn.

2.3.1. Description Schemas and Templates

We shall use descriptive relation names like "locaticnof",

"eangoto", "candrive ", "holding", etc. to describe preperties
of objects like PLACES, VEHICIEs, HUMANS, ete. For each such
relation name we shall Speclfy the classes of objects which 1t
may relate. This will define the forms of the literals that

may appear in LT. Thus, we shall say that
[S1] (PLACE Lecaticnof ITEMS)

1s a description schema assceiated with "locaticner ", A phrase

like "(x lceaticnof s)" 1s saig to be dimensionally ccnsistent
only 1f x is a PLACE and s 1S an instance of ITEMS, say s=

(x4 xg...xn). Here, (x1 - SO xn) 1s called a collectim,

also at times, called 2 1list. We wlll say

B

(x locationcf) = (x1 S xn), (2-1)
or write this as functicnal,
(x lcecaticnof (Xﬂ B s xn)) (2-2)

with the iInterpretation,

(x lceaticnof x1) ~ (x lceaticnof x2) 4
.++ ~ (x lccationof x) (2-3)

Thus, by conventicn, relations distribute over collections.

We shall coanstrain the elements cof ITEMS to be instances of
HUMAN, ANIMAL, VEGETABLE or VEHICLE. A given instance cf
ITEMS may have an arbltrary number of instances of these 4

elements. In MDS, this is specified by the schema:

[S2]: (ITEMS elements (HUMAN ANIMAL VEGETABLE VEHICLE)),
where "elements" is a distinguished relation of MDS: This
relaticn may appear only with classes that are sets or

collections (lists). Collcction and sets in the model space

should be ccntrasted with ncdes like PLACE, HUMAN, etc. Every
node is an individual., "(x elements)" is dimensionally in-
cnsistent for a node, X.

For every relation name, r, we shall define an inverse,

r' such that

((rx)(#y)(xry) & (yr'x)) ! (2-4)

In our demain, "lccationcf" and Mocation" are inverses of

each other. To satisfy (2-4) we may nw define either,

[S3] (ITEMS lccaticn PLACE),

21 -

or for each possible element of ITEMS cne may define its
associated schema, a&s fcllaws:

[S4]: (HUMAN locaticn PLACE)

[S5]: (ANIMAL lccation PLACE)

[S6]: (VEGETABLE lccation PLACE) and

[S7T]: (VEHICLE lccation PLACE).
We shall chocse the seccond alternative, In MDS, a schema like
[S4] 1is interpreted to mean that for every HUMAN, h, there is
only one PLACE, p, such that (h lcce@tion p). This is
because PLACE is a ncde¢. Thus, 1t would be dimensicnally in-

consistent to say (h lccation (p?! p?)) or (h location NIL)

Another kind ¢f schema definitiocn cceurs in the case cf

the relaticn name, "heldby", which is the inversecf "holding"..

|
|

An object can be heldby a HUMAN or a VEHICLE, This may be

indicated by the schemas:

[S8] (ITEMS heldby HUMAN\VEHICLE)
[S9] (VEHICLE holding ITEMS)
[S10] (HUMAN holding ITEMS)

Here the phrase "HUMANVEHICIE" is interpreted as (ONEOF HUMAN

VEHICLE). In our domain an object can be heldby cnly cne object.

Structural ~chemas like S1 through S10 are declared in
MDS by using devices called, Templates. Each template will
define all the schemas associated with a given class of objects

in the dcmain. The temp.ates for PLACE and ITEMS are shown
below.

P

Here. "IDN:" is the "femplate DefinitionN" commard in the
exisbting implementaticn ¢f MDS. The words "RN" and i T
assceiated re spectiveély with PLACE am ITEMS, in the defi-
niticns belcw are flags that indicate Speclal representation

or interovretaticns assceiated with the templates. The flag "By "

IEMPLATHS FOR PLACE AND ITEMS:

[TDN: (PLACE RN)(locaticnof ITEMS)]

[IPN: (ITEMS $L)(heldby v) HUMAMNVEHICLE holding)
(elements HUMAN VEGETABLE ANIMAL VEHICLE)]

defines PLACE to be o 'regular ncde" template. Tt is a node,
and it 1s regular in tﬁe sense that every instance of PLACE
chould have a nawe. Nomes are used 1n the model space and in
Lp to dencte cbjects (models). A model without a name is
called a dummy model. The flag "$L" assceiated with ITEMS
defines i1tems to be gﬂ"dummy “ist". Thus, every instance of
ITEMS is a 1is% (oolléééion),‘and an instance, say (x1 X, ...xn),
may not have any name associated vith 1t. The only way of refe-
rring to such an jsnstance in Lp would be via an assceiated rela-
tlon, like say (p lceaticnof), wherpe (p.lccationof) might be
cqual o {x, Xy weo Xn)°

The form "(heldby V)" in the ITEIS template, declares
'heldby" to be a variable relation, in the context of ITEMS:

There may be items, t, such that [t heldby) = NIL. This temp-
late alsc declares "holding" tc be the inverse of "neldby". If
ne finverse is specified, as - the case of "locationor™ in the
PLACE template, then the inverse 1S obtained by deleting
(ccneatenating) the suffix "op" from (tc) the indicated name.

s . P ——

23

Thus, the inverse cof "lccaticnof " will be "locaticn ",

Templates definec the dimensicnaligy of relaticns: What
classes a relation name may relate, They alsc Specify the
descri ption structurc_of a class: Wnat relations are used te
describe an instance of a class, In addition, as we shall
later see, they implicitly define a representation scleme
for storing descriptions of instances of a class in the
model space., They alsou, of ccurse, define a language to
refer to the components of such descriptions,

The templates fep the various classes in cur domatn ape
Shown in Table T, It is suggested that the reader get famj-
liar with the various classes defined in Table I, and their
respective deseripticn Structures., Scme of the templates in I
this table contain labels, 01, oc2, ete., assoeiated with
certain relaticn Schemas., These labels indicate the presence

of Consistency Conditicns (CC's) assceiateq With the respec-

tive schemas. For an instance x ¢of X, the CC assoeiated with
(xry)will ccnstrain the instances, y of Y, which may

appear as valueé of the phrase (x r) in the model space:

(x r y) can be true ir and cnly if the CC asscciated with
(xry)is satisfied by x and y, The forms, interpretations,
uses, and properties of oC's are discussed in the ensuing
Séctlens of this chapter., The oo's define the sense of the
relatins in the model space, Theip forms and interpretations)
in fact, establish the basis for the use of MDS as a meta-
System tc gencrate intelligent information systems. We shall

enter intco a discussicn of CC's aftor introducing some of the

e B e

TABLE I:

['TDN ¢

[TDN:

['TDN ¢

[TDN:

[TDN :
[TDN @

[TDN :

[TDN :

24

Templates for the demain cof
Trans portaticn Systems

(HUMAN RN) (type HTYPE)

(candrive VEHICLES canbedrivenby)
(compatiblewith ITEMS compatiblewith, €C1)
(holding ITEMS heldby)

(locaticn PLACE],

(VEHICIE RN) (capacity INTEGER)
(canbedrcvenby HUMANS)

(holdingz ITEMS - CC2)

(location PLACE)

(canscte PLACES canbereachedby)].

(ANIMAT, RN) (type ATYPE)
(compatiblewith ITEMS - CC3)
(lccaticn PLACE)].

(VEGETABLE RN) (lccatiocn PLACE)
(compatiblewith ITEMS - cCU)]J.

(PLACE RN) (lccaticnof ITEMS - CC5)]

(ITEMS $L)
((heldby v) HUMANVEHICLE - CC6))
(elements HUMAN VEGETABLE ANIMAL VEHICLE)]

(HTYPE RN) (typecf HUMANS)]
(ATYPE RN) (typecf ANIMALS)]

=25.

ccmmands cof the ASSMILATOR, the nature of representations in
the mcdel space, some of the cther definitional facilities in
MDS, and the ecncepts of domain ccmpilaticn,

2.3.2 The ASSIMILATOR Ccntrcl

2.3.2.1: The Dcmain Compiler and assceilated
Facilities in MS.

A template, X, may be used as the basis for designing a
system cf representation for storing descriptions of instances
of X in the model space. The “crm of this representation may
depend a the characteristics of the storage medium. Thus,
the representatiocn scheme for storing descriptions in a
"secondary store" would be different from the representaticn
scheme for a "primary stcre". We shall here pestulate the

avajilability cf functicns Pi1, 1 =1,2,...,m,
Pi : {<templates>} 1—~1-> (<datatypes>) (2.5)

that map templates uniquely tc their correspending datatypes
in the stcorage medium, i, These functicns will bca part of

the, sc called, domain ccmpiler,

MDS has several definitiocnal facllities that assist the
domain ecmpiler to desiin representations and produce effi-
clent compiled code, Scme of these are reviewed below,

The flags '"RN" and "$L", that we menticned before, are
directly relevant to the design of representaticns. Scme of the

ther template flags currently used in M)S arc given below:

6=

RT and 4T: Regular and Dummy Tuple schemas. ThesSe are
used to define n-ary relations for n >1.
~In the examples discussed in this paper
cnly binary relaticns are used. We find
that in most domains binary relations are

the ones that are used predominantly.

RF and $F: Regular and Dummy Function schemas. These
are used tc define functions which may be
declared as part of a relatiocn definition
schema, Thus one may have a schema of the
form (X r F) where F is a functicn template.
In this case, for an instance x of X, the

value of (x r) will be obtained by exe-
cuting F on arguments which may themse lves
be determined by x. For examples of use cf
Function Scheme see Irwin & Srinivasan [1975].
Functicn Schemas may be used in MDS tc define

structures similar to semantic nets.

TI,T# ,TS,etec: These are the various Terminal Templates,

Terminal Integer, Terminal Number, Terminal

String, ete. In the current implementation

of MDS (which 1s in INTERLISP), all INTERLISP |
datatypes are also avallable as templates in

MDS, Alsov, every datatype used in the implemen-

tation cf MDS 1itself is available to MPS as a

o A

template. Thus, there are templates for repre-
senting templates, for representing names, rela-

tions, constraints, acticns, models, sets, ete.

scme .cf these are discussed in Appendix II.

MN,ML,MT,MF ,etc.: These refer to various kinds of meta-
templates. An instance of a meta-template is
itself o template. Thus, an instance of Meta
Ncde (MN) template will be a Node template. It
could be a Dummy Node or a Regular Node. For
examples of uses c¢f meta-templates see Irwin &

Srinivason [1975].

One may also associate flags with descripbion schemas cf
the form (X r Y). These flags fall into the following

categerles:

(1) Flags that define relation properties.

Properties like transitively, reflexivity, etc. inh the
context of an [X r] may be declared to the system by using
relation flags. These declared properties are used by the
demain compiler in generating codes asscciated with [X r].

(11) Flags that define interpretations for
Functicnals

In the schema (X r Z), where Z i1s a cocllecticn with

(Z elements Y), the normal interpretation given to (x r

(v4 ye.t.yn)L where x 1s an instance of X and (yy ye...yn)
1s an instance cf Z, is

-28.

(xr (3.9)0 r gy ol e y)rinlx e y). .. (2.6)

However, 1f the flag "S' is associated with [X r] then
the collection (y1 y2...yn) will be interpreted as a set,
{yy Yoeee¥n)s 1n the context of (x r): (X r { ¥q y2...yn])
does not necessarily imply (x r yi) for1 =1,2,,..,n. Thus,
Sets and collections have different interpretations in the
model space. Similarly, one may use the relation flag "B"
in the context of [X r], 1f (X r Y) 1s true and Y 1s a tuple-
template. In this case, instances of Y will be interpreted
as Bags in the context of (x r).

{111) Flags that specify storage control

Normally, for every (x r), 1f (x r) is dimensionally
consistent, then the value y such that (x r) =y 1s stored
in the model space in the form of representation of the
relation (x r y). However, one may specify by the use of

the, so called, dumy flag, that the value of (x r) is not -

to be stored. In this case, every time (x r) is requested
its value will be conputed using the function, CC's and
transformations associated with [X r]. The symbol "4" is
used for the dummy flag. If([X r] flag $) and X r Y)
are true, then ([Y r'] flag §) is implied, where r' is the
inverseof r. We shall see a use for the dummy flag in
section 2.5.9.

Other storage control flags may be defined to specify
storage of meanings, and action interpretations. There is

= == I e . - —— P ————
S e — R e, A=~ " o s

..29..

also a flag called the prompt flag®, The symbol "!" 4is used
for this flag in the current impiementation of MIS, If

([X r] flag !) is true then, evepry time a new jinstance x of
X, 18 created the appropriate value of (x r) should alcc be
instantiated. This may, a% times, nnceossitate the system to
prompt a user to supply a valus Tor (x v). rramples of use
of this flag appear in Irwin and Swinivasan [1975].

(1v) Protection Flags

These may either explicitly indicate the mrotectlicn
associated with the access and updating of »elation values.
or prefcnt conditions under which sush 22cezs i1s perminsiblin,
A commen proteetion flag is the "™ " flag, which indlcates
that the value of an (x r) cannoct be changed during a problem
solving process. |

(v) Cantext cr Mtentlon flaps

In MDS there may exist simultaneously several model
Spaces for a glven domain, each asscciated with a different
context. So also for an object. x, thore may exist several
mcdels of x, each associated with a different context. One
may expllcitly assceiate with a deseripticn schema, the mcdel
context, in which the ccnstraints associated with the schema
are evaluated.

In the current implementation of MDS there are facilities

for extending the repertoir of flags vied with the templaten

¥ The use of this feature was suggested by Swidharen.

=30 -

and relaticns. Each flag definition may itself be controlled

by flag templates. The definitions of these flags as per the

flag templates will enable the demain compiler to incorporate

these flags into the compiled code.

For each (X r Y) 'ne may alsc define in MDS an assceiated

action, called the Anchored Transformation Rule (ATR). This
rule will be invcked when necessary durlng the instantiation
of an (x r) fcr an Instance, x, of X. We shall see examples

of the use of ATR's 1in section 2.5.9,

It shculd be ncted that "nstance " and "nstancecf " are

dis:inguished relaticns 1in MDS, which are associated with every

template, Thus for a template, X, cne may have cC's and ATR 's
associated with [X instance] itself. These will be invcked every
time one attempts to create a new instance of X. Bcth the ¢C's

and the ATR's may be used during the decmain compllation process

discuss the details cr this compilation Prccess in another repcrt.

2922 Examples cf Reggesentations, Access Functions
and the Basic Commands cf the S IMILATOR.

The representation for an instance of PLACE might be

To definition L .
of PLACE Self -reference | Lccationof |elementor

and that of ITEMS,

T¢ definiticn

to prcduce efficient cunpiled codes for a domain. We shall
i
i
i
|
l
of TTHIS self -reference heldby|elements |elementscf i

-31-

By ccnvention, every gdata type may appear as the element
of one or more ccllecticns. Thus, we have the "elementof"
relaticn pcinter appearing in both the data types above. Since
ITEMS is a collecticn, it also has a pointer for the "elements "
relation. The first field in every data type will point tc the
representaticn of the template that is associated with the data
type. The second ficld is a pointer to the instance itself. The
remaining fields correspcnd tc the relations defined 1in the
template asscciated with the data type. For each relaticn its

assoclated field will pcint tc a, So called, descriptor unit

(DESUNIT). The DESUNIT will have slcts fcr the value of the

relations, reasons, hypctheses, etc., as mentioned before in

the descripticn of bundles. Each bundle in the mcdel Space will
ccerrespond to the representatinn of the medel of an entity in
the dcmain. A mcore detalled discussicn of these representations
appear in Srinivasan [1977c].

At this pcint let us take note of the basic ccmmands cof
the ASSIMILATOR. Fcr each data-type (template) there will be
four assceciated classes of commands:

[C1]: Reccgniticn Ccmmands
[C2]: Creation Commands, and
[C3]: Compariscn Commands .
[C4]: Retrieval Commands.

These are briefly described belcw. Let MACC be the accumulator
of the Mcdel Space. We will use the symbol "@" to denote the
Contents of MACC. We shall refer tc @ as the anchor of the
mcdel space, It 1s the current object of focus in the model
Space, Where ccnvenient we shall use sSymbols @X’ @Y.etc. for

R ————————

<30 -

pedagogical reasons to indicate anchors that are instances of
X, Y ete. respectively. For all the commands described below,
the anchor is cne of the argument of the commands,

[cl]: (DTYPE.d) # B T .

The result is T if the datatype of @ 1s d, 1s ? if it
1s unkncwn, else NIL,

[C2Ja. Instantiate Template

(IT dm) = x or NIL.

The result x is a pcinter te the newly crcecated instance
of data type, d, with nome, m, assigned to it, if m is given.
X 18 put in MACC if the instantiaticn is Successful, Else,
MACC will ccntain NIT..

[C2]b. Imstantiate Relaticn

(Rry)or (R=xz) =T, 2 cr NIL.

This will attempt tc make (@ r y) true -- 1if ¥y 1s not given

1t will attempt to find the appropriate y. The command will

Succeed cnly 1if therc is nc resultant contradiction in the model

Space. The result of this coperaticn is put in the MTEST reglster

of the ASSIMILATOR.

[C2] (c) Instentiate Relation Negative

(RNr y) or (RN) =T, ?, NIL.
This is similar tc¢ IR but attempts to make ~@r y) true.

Corresponding t. [C2] (b) and [C2] (¢) cne may also have

commands FR and FRN (F.rce relaticn and Porce relation negative),

33

These would attempt to force (@ r y) -- or ~(@r y) -- by
modifying the mcdel space appropriately, if necessary,
[C3] (EQUALS x) =T, ?, NIL

This checks (@ = x). The result 1s stored in MTEST,

[Ch4] Retrieval Commands

The abcve commands may be compilled for each domain, froum
the domain definiticns. Fcr each datatype the domain compiler
will alsc produce codes fcr the access functicns, (@r), fer
obtalning the value ¢f the field assccilated with the relaticn
rin @. If (@ r) is unkncwn, then the access functions may
invoke the cc's and ATR assceiated with (@ r) to find its
value. If (@ r) is dimensionally incensistent then the value
of (@ r) =NIL. Similarly, cne may also check the truth value

of (@r y) using the access functicons.

The ASSIMILATOR structure, presented above, has the form
of a machine. The cumands are like machine ccmmands. This
is deliberate. As discussed below, we do visualize a mach;ne
control, in which the demain de pendent processcrs are micro-
programmed, and the basic ASSIMILATOR centrol invekes and

executes them to manace the model space.

The nature of algorithms for scme of these processors, and
the associated data crganizations are discussed in section 2.5.
They are part of the forms and Interpretaticns of the descrip-

tion schemas, templates, cc's and ATR's.
—— e (RS- 5NN T

e e e

-3[,__

i 2.2.2: The Compilation Process

We shall assumc the availability of an asscmbly language

for the ASSIMILATOR with Ccmmands of the form:

(INSTANTIATE (x v ¥) ~(xy vy ¥4) oon (x 7 ¥,))

(xr), (xry), (RQUALS x y), (PTYPE x d), etc.

The asserticns in the INSTANTIATE ccmmand are to be assimi-
lated in parallel. The ccempilaticn of a command like this
weuld invelve fcur steps:

STEP (i): Determinaticn of all structures in the mcdel space
which need be changed in crder to accept the given collecticn of

asscrticns. This 1is determined by the structural kncwledge cf

a demain. Fuar each assertion, (x r y), depending upcn the
classes of x and y its assceciated structures may be directly
compliled from the templates of x and vV, and the relation flags
associated with r. All the structural changes, derivable frcom

the given assertions using the description structures of the

objects involved, will be hypcthesized te be true in this step.

STEP (ii): This step determines all the consistency conditions
associated with the hypcthesized structural changes, and

implied by the interactiocns of the hypctheses with other
relations in the model Space. FEach one c¢f these conditicns

(or reascns associated with the conditions) are evaluated for
appropriate bindings ¢f the free variables. The hypotheses

may be accepted only if ncne of the conditions evaluate to

NIL. This evaluaticn will also produce the combined reascn

for the acceptance, ccnditional acceptances or rejecticn of

the hypotheses.

Every cne of the consistency ccnditions involved in
Such a check may be compiled. Alsc, the procedures neces-
Sary te identify relaticon interactions caused by the hypo-
theses may be derived and ccmplled from domain definitions.
The cdetaills of this checking process are discussed in secticns

2.5.,7 Ehirough 2.5:9.

STEP (i1i) If the checks evaluate tc T or ? cr NIL then the
transformations asscciated with each asserted (x r y) fer s
asscciated truth value are executed. This might successfully
terminate the asrimilaticn prccess, and return the resultant
reasons fer the success. Or, it may terminate the process
With the truth value ? and an asscciated hypothesls for the
acceptance cf the asserticns., Op else, it may produce the
truth value NIL, indicating the presence of a contradiction
in the assertions, and gc¢ to STEP (iv). T this case, of
course, the reascns for the ccntradictions will alsc be made
available,

All the transformation rules may be compiled from the
dcmain definiticns. If no transfcimations exist then this

step will be skipped.

STEP (iv) This step is vsed only if 2 contradiction has

been recognized. The system would then tettempt to eliminate the

s

_36 =

reascns fer the contradicticns by prcposing possible Secondary
changes to the model Space. The analysis used for this pur pose
may alsc itself be canpiled., This analysis 1s based n the
reascns fcor the contradicticon, and certain definiticnal entities

called Focus Lists that are asscciated with the relaticns inv: lved,

The details of this updating process are discussed in secticn
2.5, in the context of specific examples. The access functicns for
xr) =(|[&xry))
and (xry) =T, 2 cr NIL
are compiled from the data-structures, cc's and ATR's assceiated
with each templates. Alsc, fcr each template the EQUALITY checking
routines for instances cf the template are ccmpiled from the domain

definitions. The details of this compilaticn process will be

discussed in a future repcrt,

The ASSIMILATOR itself is thus a pure camtrol Structure,

which would invcke the above menticned ccmpiled procedures where
necessary to execute the commands recelved by it. Fer a given
demain, with well understccd kncwledge representaticn Schemes, all
these dcmain dependent preccdures may be ccmpiled into "micrc.-
programs " from given domain definiticns., The contrcl structure

of the ASSIMILATOR is different froam the structure of the
"execution centrol”, we see in all Ven Neumann machines. It

SeemsS, fer intelligent cperation beth execution contrel and

assimilation centrol are essentlal. Details c¢f the assimila-

tion centrol ape discussed 1in [Srinivasan 197747,

_ ; M e
: e S e ———— -

..37..

2.4 Censistency Cenditicns c¢r Sense Definitions

Wt st £ B e

2.4.17 The Nature ¢f Censtraints: Some Examples

The schema [S1] doss nct specify all the restrictions
associated with what can be at a given PLACE, Not any combi-
nation of items may be at the lccation of a given PLACE, In

cur dcmain we would like the following to be always true:

[(¥vx) (Vy) (PLACE instance x)
((HUMAN instance y) V (VEGETABLE instance y)
V(ANIMAL instance y) V (VEHICLE instance y))

=>
((Vz) (x locaticncf z)(z holding y) =

(x locaticnof y))
((Vz) (x locationcf z)(x lccaticnef y) =
(SAFE Y z))] ... (2.7)

All the literals in (2.7) are dimensiocnally consistent with

respect to the definiti-ns in Table I. The predicate SAFE

‘ is as yet unde:fined, (2,7) asserts that if y and z are at
the same place x, then (SAFZ y z) should be true, and if z
1s holding y., and z is at x, then y should also. be at x. The
definitions of SAFE may be problem dependent. For the MgC
problem one may have.*

M&C-SARE,
[(Vx)(Vy) (SATE x v) <>
((v4) (vp) (s instanceof ITEMS)
(p instancc of PLACE)
(p Locationof s) =>
((({=07 MISSIONARY s)>(=}0F CANNIBAL s))
V_(({-0F MISSIONARY s) = 0)] ... (2.8)

* We assume implicit conjuncticn between parenthesized forms.

-38-

Here, (HOF x y) is a function that returns the number of items
of type X In a collectien y. For the domaln F&S, the definition
of SAFE might be:

F&S -S AFE
(vx) (vy) SAFE x y) <
((x compatiblewith y) V
((¥p) (p instancecf PLACE)(p lccationef (x y)) =
((3h) (h instnceof HUMAN)
(p locaticncef h)] ... (2.9)

I this case if x is not compatiblewith y then a HUMAN is
required to be at the same PLACE as x and y. The cmstraint

for (x ecmpatiblewlith y) in the case of HUMANS is Shown below:

[(vx) (HIMAN instance y) =
((¥y) (x compatiblewith y) <=>
(((vt)(x type t) <> (v type t))V
Similar defini "ons for this relation, for other clasees
of cbjects, are shcwn in Table III, For a glven HUMAN, h, (2.10)
may be used to find all y such that (h compatiblewith y) 1s true:
(y] (h compatiblewith y)). However, for a given PLACE, b,
(2.7) cannct be used tov find (v] (p locationef v)). But, if
a candlidate y 1s supplied then (2.7) may be used to checl: whether
(p locaticnof y) cculd be true for the candidate., We shall call

censtraints like (2.7), declarative constraints (not tc be

confused with declrative descrptions of knowledge). Constraints

WL e Syne !!.——-__—j

-39~

like (2.10) are called imperative constraints., A formal defi-

nition of these concepts 1s given in section 2.5.5.

The forms of (2.7) and (2.10) are not quite satisfactory
for the purpose of modelling in terms of object-based repre -
sentations. We shall state the constraints in a form, that
Wwould facllitate the realization of the goals discussed in

the next subsection.

2.4.,2. What should Sense Definitions do?

_Qbjective [0b1]: Ensure Model Space Consistency

In the three valued logical system. we shall reqQuire of
the model space only a week state of consistency: It should

be _at _all times contradiction free. Thus, the model space

may contaln relations whose truth values are unknown. This
may, at times, result in the following kinds of situations:

Consilder the chains

(a) Ery)=@ry)=...=xrv)

(b) (uwtv)=>(u & vy) = ... =alx, r v)
If the truth value of (xn B yn) 1s unknown (?) in the model
sSpace, then 1t can accept the assertion (x r y)(u.t V) == we

assume 1mplicit ccnjunction. This 1s because, ~ ? = 9
and accepting (x r y)(u t v) would not cause any contradiction.
We shall, however require that the model space be such that,

at a later time, if (x B yn) is asserted,the latent contra-

n
diction should surface.

alh@=

Objective [0b2]: Fcr each (@ r) find if possible cne
of the follwwing:

(&) The y such that (@ r y) is true if such a v exists

in the model spacad.

(b) The candigdates (31 y2"'yn) for one or more of which
(@ r y) may be btrue.

(c) The ccnstraints specific to @, that characterize

all y such that (@ r y) 1s true.

Objective [0b3]: Give Reasocns

If (ry) =T, ? or NIL then identify .and express the
reascms for this in Lp. This is the most important require-
ment. The ratisfacticn of this cbjective makes it possible
to do prcblem solving in MDS.

Objective [0b4]: Anticipate Interactions

For each (@ r y) identify the specific interactions that

take place in the model space with cther relations that may

exist in the model space.

Objective [0b5]: Aveild Combinatorial Explosions

In seeking to satisfy [0bl] through [0b4], and in using
the model space to sclve prcblems, 1t should be possible to

speclfy starategies and learn rules that contribute to mini-

mlzing combinatorial explosicns.

BT] T L e

W

A=

We shall present below the elements of a system archi-

tecture in which all the above objectives may be realized.

DIk

2.5, Representations and Uses of Canstraints:

~ L Use of Bcunded Quantifiers

The weak definition cf model space consistency makes it
Sufficlent to check for each (X r y) the relevent ccnstraints
only over the objects and relations that actually exist in the
model space, at the time (x r y) is asserted. It 1s not nece-
Ssary to resolve hidden centradictions because of unknown gquan-
tities. Thus all dQuantifications in our constraints will be
bounded, and general bPredicate expressions may be reduced to
cenjuncticns anq/Br disjunctions of propesitions, whese truth

values may be directly tested in the model space.

Further, one may nctice that variables range only over
Specified classes of objects in the model Space. Thus in (2.7),
X ranges only over PLACES, and y ranges only over what can
appear as elements of ITEMS. To take advantage of these °
categorized variables e shall modify the language of constraints
indicating explicitly, where feasible, the range of each quanti-
fled variable. We shall use

"(<classname> %) (B)"

tc denote

"((¥x)(<classname> instance x) = (Px...,))",

and use

"((SOME <classname> x)(Px...))"

3o

to dencte

"((3x) (<elassname> instance x) (P x...))",

where(P x...) 1s predicate expressicn in which x cceurs
free. Where appropriate we shall also use form,

"(<elass1> A&class2> /.. /<class> x)" to denote a

range that extends over a disjunctiocn of classes, and forms
"(<elass> x y)" for "(<class> x)(<class> y)", and

"(SOME <class> x y)" for "(SOME <class> x) (SOME <class> y)".

2.5.2 The Use of Relation Paths

We will use ":" to denote relaticn concatenation, and

call phrases "r,:r,...:r_", relation paths, We shall use
il "= n

"(x ry T, y)" to dencte "((x r,) r, y)". In view of (2-6)

and the convention, 5

(xr) = (z hGE & 2y .. (2.11) ‘
it follows that

(x ryir, y) @ ((¥2)(x vy 2) = (z 1, ¥)). (2.12)

I ré is the inverse of r,, and in the structural descrip- |
tion both (x ry) and(y r;) are constrained to be ncdes, or |

collecticns of equal cardinality then

(x vy y) & ((F2)(x vy 2) €(21, ¥)) .. (2.13)

For a2 relation path PyiTpi...T) its inverse path is

Tl o, i) ey r |
PPy _q%...T:iry. Using these conventions we may now u

rewrite (2.7) and (2.10) as follows: :

2 PR Wy ey g o D e, T .
- i - e 8 i Pakd o T A e e o e
- R T T W N S . S

iy

[(PLACE p)
(HUMANVEGATABLE ANIMAL/EHICLE x y)
((p locationcf (x y)) =» (SAFE x y))
(x heldby:lceaticn :lccationof B | e (2.14)

[(HMAY h)(y) (h compatiblewith y) <=>((n type:typeof y) v
~(y instancecf HUMAV)] 3 (2.15)

2,59 The Use_cf Definiticnal Anchcors

With every constraint we shall associate a distinguished

relaticn name, called the anchcr relation cf the constraint.
The anchor relaticn of (2.14) and (2.15) are "lccaticncr"
and "ccmpatiblewith) respectively. We shall anchor the

constraint itself at the, so called, definiticnal anchor, which

is a pair [<anchor class> <anchcr relation>], where the
<anchor class> is always a class name. The definltiocnal
anchor of (2.14) 1s [PLACE locationcf] and that of (2.15) is
[HUMAN compstiblewith] . We shall refef to the constraints
themeelves by the phrases CC[PLACE locaticnof | and

CC[HUMAN compatiblewith].

The use of definitional anchors and the assumptions in ‘
section 2.5.4 cn invocaticn of €C's, will enable us to write

constraints as set censtruction expressions, as discussed in

secticn 2.5.5,

2.5.4, The Use of Invocation Anchors

We shall assume that a CC[X r] for a class X and a

relaticn r will be invoked nly in the context of evaluating

v ” To} L= e ey T ——

e

or checking the truth value of an (@X r y), where @y 1s an
instance of X. We shall call [@¢ r] the invocation anchor
of CC[X r], and @X itself, the anchor. The invocation of

CC[X r] may thus occur under two condltions:

(a) When executing (IR r y) or (IRN r y) (or (IR r)
or (IRN r)), and MACC has an @y, and the truth

value of @y r y) (or the value of (@)(r)) 1s unknown.

-

(b) When executing (IR ry z) or (IRN ry z) for same z
and ry, and MACC has an @, such that (@Y ry z) 1s
dimensionally consistent. In this case CC[X r] may
@5 r) deperds m @By v3).
be invoked at an [@X r]L Thus, assigning z to
(@Y r1) might affect the value of (@X r). Therefore,
CC[X r] should be checked at @X under the hypothesis
@ ry 2).
In view of this invocation protocol we shall use in every

CC a distinguished free variable called, @, which will always

get bound to the anchor of the model space at the time of
invocation of the cC.

2.5.5., The Use of Set Cconstructs

The focus of attention during the evaluation of a

CC[X r] at an anchor @, 15 the set (s | (@X r s)). To realize

the objective [0b2] we shall seek constraints of the form

-46-

(sp @y 8), in which @y and ‘s occur free, and

@ rs) &>(SP@ s) .. (2.16)

SP 1s called the SET bredicate, since one may write, for a
description schema (X r Y),

CCXr] =({Ys)| (spes)) ... (2.17)

The set expression in (2.17) may be read as "the collectiocn

of all instances, s cf Y, such that (Sp @ s)1s true." Iry
1s a node, then the ASSIMILATOR will expect (SP@ s) tc return
a unique singleton collection, (s). On the other hand, 1f the
description schema is X r Z), where (Z elements Y) 1s true,
then the ASSIMILATOR will anticipate one or more members, s,
tnthe collection. One may also, cf course, put constraints on
the maximum and minimum numberp of candidates that (Sp @ S) may

return. We shall call S8 the set variable of the CcC.

As we shall see in the eénsuing sections, the abllity to
Specify ccnstraints in the for (2.17) with interpretaticn (2.16),
and the conventions we have adopted cn the invocations of cc's,
together will make it pocssible for us to realize the objectives
[oby] through [ob5], There 1s, however, a minor difficulty to
be overcome: It 1s not always possible to find constraints of
the form (2.16). Often one may have cnly a (Q @ s) such that

(ers) = Qe s). oes (2.18)

In cases like this we shall write

XCXr]=((rs) |[(ers)@es)) ... (2.19)

|

-U47-

Ccenstraints of this form are glven special interpretaticns in
the ASSIMILATOR. While evaluating (2.19) the system would expect
a candidate, s, to be supplied. If nc candidate is supplied then,
s =?and (@r s) = ? 1s assumed, and (Q @ ?) 1is evaluated. This
may result in the identification of a collection of candidates

(¥4 y2...yk) = (y | (SP@y) = ?), for cne or more cf which (er v)

may be true. Since (@ r s) = ?, in this case the set predicate
1tself will evaluate to ?, 1f (@ @ y) % NIL.

cC's of the form (2,19) are the declarative CC's and those

of the form (2.17) are the imperative CC's. Using these conven-
tions we may now rewrite (2.14) ana (2.15) as shown in (2.20)
and (2.21). These expressions are typical of the declarative
sentences* in Ly ¢

CC[PLACE locationof] =
[(HUMAN/VEGET ABLE/ANIMAL /VEHICLE s) |
((@ locationof s)(s heldby NIL) V
(s heldby:location @))
((y) (@1ocationof y) = (SAFEQ@ ¥)] ... (2.20)

CC[HUMAN Compatiblewith] =

[(y | @type:typeof y) V
~(y instanceof HUMAN)] Bk (2.21)

I (2.20) the phrase (s heldby NIL) is a functional,
Anterpreted as ((Vz) ~(s heldby z)). The phrase "(@ locationof

s)" indlcates that an s may be declared to the system. If

(s heldby NIL) is true then the proper s is specified by the

_____ - - - - -

* All cC's are constructed from declarative sentences in Lm.
However, not all CC's are declarative CC's.

¥ . e " s e & - = ~
S T, o A S S AT E o L S e TR Gee " PR T r— PoTpeTTIL e W T, mT T

[P =

b

T R e ——

-48-

predicate, functional, (s heldby:location @). Notice that
(2.20) 1s more compact than (2.14) and 1s oriented more
towards evaluation at a given anchor, @ , or given pair

[@ 8]. The constraint (2.21) {llustrates a case where it
may be more economical teo store in the medel S pace

(s]~(@ r s)) than (s|(ers)).

In the followin: sections we shall discuss the inter-
Fretaticns given tc the above CC's in the modelling context.
We shall see how the objectives [oby] through [ob5] may be

realized. We shall alsc present examples of commonsense

reascning that is used to supply reasons for the truth

values in the model space for the various relations.

2.5.6. Uses of CC[X r] as a function and a_predicate:
Examples of Cocmmonsense reasoning.

One may have two kinds of invccations of a CC[X r]:

(a) ccrx ri(@,) ang
(b) corx ri(e s.).

B ¥ O

In both cases CC[X r] 1s used as a function with lambda
variables @ and s, and an attempt is made to compute
(s | (@ r s)). In the first case (@x r) = ? is initially

assumed, and one of the follewing may result:

(1) (s | (@ r s)): This may happen if CC[X r1y) 1s
imperative,

:

-49.

(1) (s (@ rs)=2): Tnis will 1e interpreted
as a ccllectiocn of candidates for (@x r).

(111) 2?2 : Tn this case cné may also get a predicate
expression characterizing (s | @X rs)) for the
given @X

(1v) NIL.

In case (b) also the same four possibilities exist for
the result. But in cases (1) and (11) of the result the ’
returned ccllections may ineclude S0 thereby indicating the
truth value cf (@ rs_). In both these two invocations, the
Set predicate of CC[X r] may be used to explain why (g, r s,) =
Ty ? or NIL for a given S s or why (@X r) = (s | (SP@X s)).

Let us ccnsider a few examples.

Let us assume the model Space for the M&C problem. Iet
MISSIONARY and CANNIBAL be instances of HTYPE, types of HUMANS.
Let the model space have

(MISSIONARY typecf (m, m,, m3))
(CANNIBAL typeof (c1 c, 03)
(VEHICLE instance BOAT)

" (HUMAN instance (m, My My C4 C, 03)).

Far a missionary, m , then
CC [HUMAN compatiblewith] (mg) = (m, m, ms BOAT).. (2.22)
as per (2.21). The reason for this will be l

[(my type:typeof y) V ~(y instanceof HUMAN)] (2.23)

i
——

-50-

where y is the set variable. The expression in (2.23)
consists of the true literals of (2.21) for one or more
items in (my m, ms BOAT). In this case, there are no
literals that are falsc cr ? for all the elements in
(m, m, My BOAT). The reason for (m1 compatiblewith m2)
will be ‘

(m1 type:typeof m2) . (2.24)

In this case the second disjunct of (2.23) becomes false
and thus dces not appear as part cf the reason, We shall

call expressicns like (2.23) and (2.2%) True Residues:

(2.23) 1s the true residue of CC[HUMAN compatfiblewith] (m,),
and (2.2%) is the true residque of CC[HUMAN compatiblewith]
(m; my). For a gefinitional anchor [X r] we shall denote

its true residues by phrases of the form:
TR(CC[X r](@)) or TR(cC[X r](@ s)).

A true residue will exist for a CC, for given bindings
of @ and the set variable, s, only if the set predicate of
the CC evaluates to T, The true residue will consist of the
sub-expressicns cf the parent expression, that remain after
deleting all thcese that evaluated toxNIL or ?. In cases where
the set variable ranges cver a collection, we shall delete only
those sub-expressicns that evaluated to NIL or ? for all possible
bindings of s. We shall generally write resldue expressions
indicating explicitly the bindings of the variables. Thus, for
(2.23) and (2.24) we shall write:

4
E———— - S A e,
) N T S TR S, . Jm—— - - B ———

B -

[((HWMAY @) =m,)
((HIMAAERHICIE y) = (my my m; BOAT))
[@ type:typeof y) V ~(y instance of BOAT)1].. (2.23a)

[((HMAV @) = m) ((HMAV y) = m,) (o type:typeot y)]
(2.24n)
For a CANNIBAL, ¢y, the reason for (m1 compatiblewith c1)
NIL will be
[«.(m1 type itypecf c1)(c1 instanceof HUMAN)] (2.25)

which is ontained by taking the negatinn of the False Residue
of CC[HUMAN compatiblewith] (m_l c,). In this case, of course,
CC[HUMAN compatiblewith](m, ¢;) = NIL. The False Residue will
cosist of the sub-expressions that remain after delei:ing all
those that evaluated to T or 2. of course, the parent express-
ion itself should evaluate to NIL. We shall use phrases of the
form FR(CC[X r](@)) and FR(CC[X r](@ s)) to denote false

residues of CC's.

One may similarly define also Unknown Residues, R(CC[X r]

(6)) and W(CC[X r](ps)). These will exist aly when the

CC evaluates to ? and will be obtained by deletling all the sub-
expressions that evaluate to NIL or T in the set predicate, for
given bindings of @ and s. In the M&C problem, suppose there
were more that three MISSIONARIES. In this case the model

space will contain the functionai

(MISSIONARY typeof (m, My My ?)), (2.26)

-52.

where the ? 1n the collection indicates that there may be more.
In MDS, a new element may be added to a collection only if the
collection ccntained ?. Thus, cne could make it impossible to

have more than two HTYPES, by setting in the model space:
(HTYPE instance (MISSIONARY CANNIBAL)).

In the case (2.26), (2.21) will evaluate to T for o = m,
and y = (my my, ms BOAT). Hcwever, for y = ? both literals in

(2.21) will evaluate to 2, producing the unkncwn residue:

[[(o = m1)(y = ?) (@ type:typeof y) V ~(y instanceof HUMAN)]
(2.27)

This unkncwn residuc niay be viewed as characterizing
(x| (m1 ccmpatiblewith x)). In this case the residue expressiocn !
happens to be identical tc the set predicate. But in general,
the resildue expressicns will be subexpressicns of the set pre-
dicate. The residuc extraction prccess is a part of the common-
Sense reascning prccess. It 1s defined for both propositional
and quantified expressicns in chapter 3. The relationship

between residues and reasons i1s summarized below in Table II.

TABLE II: Residues and Reasons

TRUTH VALUE of Reascn for CC[X r](@) cr
CC[X r]é@) or CC{X r](©0s). The set variable
cciX rij(ps) 1s opticnal below.

¥ (TR (cC[X r](e --)

? (R(cCX r](p =-)

NIL ~(FR(CC[X r]1(p --)

b e Py

i —— G M AR B 4

5}

In the problem sclvin process the residues (reasons) are used

as the basis for 1earn1ng and domailn specific Speclalizaticn.

Let us now consider a Tew more examples .

Table III shows all the C's used in oup domain, and
Table IV shews the definiticns asscclated with SAFE, The
command (QSCC: <CC-exp> <definitional anchor>) is used to
define CC's in the current implementatioﬁfMDS. This command
1s part of the subsystem called QUEST, which is used for
defining the CC's and transformaticns in a domain. Predicates
like SAFE are called CC-macros. They are invcked as macros
within CC's and transfcrmaticns. Each CCMACRO has a neme,
declared arguments, the maero expressicn and a ccontext. Thus,
a COMACRO like SAFE ray have different definitions in different F
ccntexts. The definitions of SAFE in M&S . -and F&S contexts

are shown in Table IV. The ccmmand QSCCM: 1s used to define

CCMACRO's in MDS.

Let us now consider some of the possible residues
assceiated with CC[VEHICLE holding]. This gg 1s shown in
Table III, and is repr.duced below, for convenience:

CC[VEHICLE hclding]:
[(HUMAYAEGET ABLE /INTMAL x) |

(@ holding x)(p holding: ¥ : <: capacityof Q)

((v)(0 holding y) = (SAFE x y)] ... (2.28)

G T e . > B

-54.

TABLE III: Consistency Ccenditicns cf the
Transportaticn Domain.

cC1: CC[HUM/N ccmpatiblewith].
[(HUMAY AN IMALATEGET ABLE A FHICLE s) ,
(@/’cype:typeof s) V ~(s instancect HUMAV)]J.

CC2: CC[VEHICLE holding]
[(HuMAy 7N DAL Y EGETABIE s) |
(@ heldaing s) (0 helding:# : < :capacityof @)
((v)(€ helaing y) = (SAFEs y))]

CC3: CC[ANIMAL ccmpatiblewith]
[(HUM Ay A7 EGETABLE /AN IMAL AEHICLE s) l
(0 type:typect s) Vv (0 instanceof HUMAN) V
~(@ trre HERBIVORE) (s instancecf VEGETABLE)]

cCl : CC[VEGETABLE ccmpatiblewith]
[(s | (@ compatiblewith s) v
(s instanceof VEGETABLE)]

CC5: CC[PLACE lcecationof].
[(s | ((p lecaticnef s)g heldby NIL)} v
(s heldby:locaticn 0))((y) (@ lccationof y)
®» (SAFE s y)]

CCo: CC[ITHMS heldby]
(s | (© heldby s) ~(s elementor ©)1.

The CC has the form (2.19) and 1s thus & declarative gc:

It may be used to check a given (@ helding so) but cannot be
used to find (s | (@ holdlng s)). In the seccnd conjunet cf
(2.28) the relation name "#' cccurs in the path "holding : # :<:
capacitycf", This is used to get the qardinality of (0 holding).
In the context of 4, ccllecticns ape interpreted as, sets:

B e e T TP A ST =<~ = ! J

55

Table IV: COMACRCS in the domain.

[0SCCM: SAFE (X Y) "M&C"

[(X location:locationof Y) =

((SOME ITEMS s)(X location:locationof s)

(((4 OF MISSIONARY s) > (4 OF CANNIBAL s)) V
((4:OF MISSIONARY s) is 0)]].

Note: The third argument of QSCCM: is the context.

[qScCcM: SAFE (X v) "F&s"

[(X compatiblewith Y) V

(X location:locationof Y) =

(((SOME HUMAY h)(X location:locationof h)]].

((Xy x2...xn}#=) =n, and ({x, Xpee X 2}) > n but still the
relation ([x1 Xy aeX, ?}#n) has the truth value ?. Thus, in

a comparison like ([x1 X5 ?2}# :<2) 1ts truth value will be ?.
So also, ({xq X, 2?4 :>4) will be 2. But, ({x4 X, 2}k :>2)
will have truth value T.

Iet us assume that initially (BOAT holding ?) is true in
the model space. In this case CC[VEHICLE holding](BOAT) will

evaluate to ? with the unknown residue:

[(BOAT holding x)(BOAT holding: # :<:capacityof BOAT)
((y) (BOAT holding y) =>(SAFE x y)] ... (2 .29)

In the above expression we may ignore the literal "(BOAT
holding x)". since 1t is part of the declarative nature

of the CC: For every assertion (BOAT holding x) will be

either true or false by hypothesis. Let us now assert (BOAT
holding x_). This will cause the model space entry (BOAT
holding (x, ?)). The evaluation of CC[VEHICLE holding] (BOAT x)

~56 -

will evaluate to ?, because both (BOAT holding:# :<:capatityof

BOAT) and ((y)(BOAT holding y) = (SAFE x E v))* will evaluate
to ?, leading to the unknown residue:

[(BOAT holding:# :<: capacityof BOAT)
((y)(BOAT holding y)=> (SAFE x_ ¥))] 556 (2.30)

Notice that the set variable x in (2.29) has been replaced by
x, in (2.30). Thus, all future additions to the BOAT should
be SAFE with Xqe

Let us now suppose that (BOAT capacity 4) is true, and
when (BOAT holding x_) was asserted (BOAT holding (x, X, ?))
was 1n the model space. In this case, the unknown residue
will be the same as (2.29) for the collection (xo Xy X5 2
We have assumed that the SAFE predicate 1s not contradicted
Per % _a

o)
If the SAFE predicate was contradicted then for sane
element x, in (x1.x2), (SAFE X, Xx) would have been NIL. In

this case the model space would remain unchanged, and the

following residue would have been supplied for not accepting
(BOAT holding xo):

[(VEHICLE Q) = BOAT)
(HUMAy/ANIMAT, VEGETABLE y) = (x_ X, X, ?))
(SAFExoy)] (2.31)

The reason would be,

* In this case GAFE x4 Xxo)=T and (SAFE x4 ?)=?. The bound
variable y acQuires the binding ? because (BOAT holding
(%, ?)) exists in the model space.

T P —

=57 -~

[((VEHICLE (@)= BOAT)
((SOMEHUM Ay ATIMAL AEGETABLE y) = (x x. % 7))

(~(SAFE x_ v))] 5 (2.32)
which 1s the negation of (2.%1). In a problem solving context,
reasons like this may be made use of to avoid repeating same
kind of mistakes., Also, reasons explicating true residues may
be made use of to make the right choices based on past experience.
The mroperties of residues (and reasons) that make them useful in

a problem solving context are discussed in chapter III,

The reasms obtained from the CC's at a given anchor are
not sufficient to ecxplain or gulde an updating process. The
CC itself may supply only the necessary conditions. To consider
the complete updating process it is necessary also to analyze
the way relations interact in the model space., This 1s discussed

in the next section, where an example of canmansense reasoning

in the context of relatio interactions is presented. Again we
shall see that the form and interpretatioms of CC's play an

important role in identifying and cmtrolling the interactl ons.

2.5.7T. Interaction Between Relations: Their Recognition
and_Control

2,5, 7.1 DONLISTS and DETLISTS

Definition 1: Depends on

-58-

([Qx r] dependson [Cy t]) if there exist a z (z could
be ? or NIL) such that (G, t z) or (z t'.@Y)(or ~(Qy t z) or
ol E B @Y)) occurs in a true, false or unknown residue of
Cﬁkr]@k)orCWXr]K&so)fm'mmesy

In this case we shall say that [Y t] is an element of

DONLIST [X r].

Definition 2 : Determines

([oy t1 determines [0y r]) if ([0oy r] dependson <
(@Y t])}., In this case, we shall say that [X r] 1s an

element of DETLIST [Y t].

Notice that [X r] ¢ DETLIST [Y t] does not necessarily i
mean that for any given Oy and Oy ((@X r] dependsm [0y t]).
It only implies that there exist Oy and (y such that (REX r]
dependson [Qy t]). We have the following formulas:
(([gg v] dependsan [0y t]) <%>([@Y t] determlnes [Oy ri)) : |
(([X r] elementof DETLIST[Y t]) <> ([Y t] elementof DONLIST[X r]),

(([Y t] elementof DONLIST[X r]) <> ((SOME X 0y) (SOME Y @)
([r] dependson [e, t1)))
(([X r] elementof DETLIST[Y t]) <
((SME X Q) (SOME ¥ Oy) ([@, t] determines [¢y r])))
The DONLISTs and DETLISTs for the definition anchors may

be obtained by analyzing the forms of CC's in a domain. These

e —

may be used in a variety of ways to identify, anticipate, control

-

and respond to situations that arise in updating processes. We

shall present below an example of the kind of analysis that may

— i W e . PV b A

...59 -

be done to construct DETLISTs ,

We shall also iantrcduce the concept of definitional filters
that are used to direct search for all Oy such tﬁl: [0y r] }
dependsm[OY t] for a given OY. We shall discuss ways of using j

filters to minimize search and checking during updating
processes. :

2.5.7.2: he Dlmensionalitv of a CC and its
Dependcncv Craph

Let us consider again CC[PLACE locationof] shown in (2.20).
One may cmstruct for this CC a, so called, dependency graph as ’
Shown in figure 4. The arcs in this graph represent the relaticn
names that appear in the CC, with the associated negation signs,
if any. The nodes represent class names that are used in the CC
elther explicitly or implicitly.

i) : 'E
/{"‘"&L&Qﬂ_l_@ Mm\<\l/o:ati onof = m—
., 3
QESEtE HUMAMEGETABLE/ 2
51 / [ANIMAT, VEHTCLE
“HUMAN T |
VEHICL 45 |
D APH OF |
EE %MEC% e |
y A
AN 2] P i
heldby N HwAYAEGETABLE e ” {
ANIMAI/%EHICLE i ;
— This corresponds to |
Z : ~heldby } "(s heldby NIL)"
HM ANV EHICLE ’

Fig 4: Dependency Graph of CC PLACE locationof.

Bl

For example, the expressim

"((¥7)(0 locaticnor y) = (SAFE s y))"
that occurs in (2.,20) uses the class disjunction
(HUM AN VEGET ABLE/ANIM AL VEHICIE y) explicitly, because there
exlsts a bound variable ¥, that represents the instances of
these classes that are used in an evaluatim of the CC. This
expression 1s represented in figure 4 by nodes 1, 2, 3 and 4,
and the arcs "locaticnor" ang "¢ ->", where "¢ - 5" pepresents

connections to the dependency graph of (SAFE s 77
In the case of the expression
"(s heldby:lccaticn O)"

which alsc occurs in (2.2) the (HUMAN\VEHICLE y) such that
((s heldby y) = (y locaticn @)) 1s said to be implicitly used

in the CC. The CC hras no bound variable corresponding toc the y

above. Thus, node 5 appears in flgure 4 without an associated

variable,

The classnames used implicitly in a CC may be determined
from the relation paths used 1in the CC and the description
structures defined for the domain, We shall call the analysis
used to identify the impllicit and explicit class names in a CC,

the dimensional analysis. For a functional like l

"(s heldby:locaticn 0O)" we shall represent 1ts dimension as

61 -

[((HMAYAEGET ANLE/ANIMAL AEHICLE s) heldby)
((HWMANAEHICLE) locaticn) (PLACE € s (2.35)

This dimension is consistent with the description schemas
defined for the damain. A CC itself 1s said to be dimen- !
Simally consistent if all 1ts literals and functicnals are
dimensicnally cnsistent., The analysis of dimensiocnal

cnsistency may also be used to find missing relation names

in relation paths, missing ranges cf variables, and also

errors in a CC, The dimensional consistency checkigg Sub-

system of the current implementation of MDS was written by
Joel Irwin.

The dependency graph of a CC pertrays its dimensionality.
It may be used to ccnstryet DONLISTS, DETLISTS and definitional

filters. This is discussed in the next sectim.

25489 Censtruction of DONLISTS & DETLISTs

Let us for a mcment ignore the implications of the

"(SAFE s y)" predicatec in figure 4, The general rules for
constructing DON and DET 1lists from a dependency graph is

given belcw:

DONLIST - RULE

[Y t] e DONLIST[X r] if the class Y cccurs in a node in
in the dependency graph of CC[X r]; and the arc with label
t or at(t' or at') emanates (impinges) on the node Y in

the dependency graph CC[X r]. t' 1is the inverse of t.

52w

In this case [X r] e DETLIST[Y t].

From figure 4 one thus cbtains that there may exist a
PLACE, p, a HWMAY/VEHICLE, h, a HWM AYVEGETABLE/ANTMAL EHICLE
X, etec. such that

([p locatimof] dependson
([h holding] [p lo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>