
Best
Available

Copy

SOSAP-TR-aoA July 1977

CO

Hi
THE META DESCRIPTION SYSTEM:

A System to renerate Intelligent
Information Systems.

PART I: THE MODEL SPACE

by
/

C.V. Srinivasan

Dept. of Computer Science

Hill Centre, Busch campus, nutters,

The State University of N.J.',
New Brunswick, N.J. O8903.

O

i

This work was supported by Grant

DAHCIS - 75 . G6 of the Advanced

Research Projects Agency.

A i

IBPROVB) P^ TTOLIO i

82

DTIC
ELECTE
MAY 18 1982

05 17 105

„-. _

THE META DESCRIPTION SYSTEM:
A SYSTEM TO GENERATE INTELLIGENT

INFORMATION SYSTEMS - PART I,

THE MODEL SPACE.*

By Chitoor V. Srinivasan**

Accession For
NT IS QRAftl ^gf"
DIIC TAB □
Unannounced Q
Justification—

By
Distribution/

Availability Codes

Avail and/or
Special

ABSTRACT; This paper discusses the architecture of a

meta-system, which can be used to generate intelligent

information systemsf(r different domains of discourse.

It points cut the kl:ids of knowledge accepted by the

system, and the way the knowledge is used to do non-

trivial problem solvinr. The organization of the system

makes it possible fur it to function in the context of

an expanding model space. The problem solving systems

in the meta system cuarnunicate with the model space in

the language defined for the domain. They have the

capability to improve their performance, based on the

knowledge gained from this comraunicatinn. The meta-

system provides a basis for the definition of the concept

of machine understanding in terms of the models that the

machine can build in a domain, and the way it can use

the models
^

This work was supported by a grant from the Advanced
Research Projects Agency (grant number DAHCIS-73-G6),
of the Government of the United States of America.

♦-Department of Con-rputcr Science, Hill Centre, Öusch Campus,
Rutgers University, Now Brunswick, N.J. 08903.

-A

(1)

Table of con ton f,

I. Intrcductlon

pa^es

1 J Central Concepts and the MDS pftradlgn 3

1 J .1 Relational systems. Descriptions
and Mdel Space

1.1 .2 The Pre;.dem Solving Systems of MDS
1.1.3 The WS paradigm ^\

1 .2 Relationship tc Other Systems

3

17

17
18

II. MDS M:,del Space and the ASSIMILATOR 17

2.1 Intr eduction

2.2 Srclaief^5611^'1^5 PCCUS on 0b^cts

2.3 The Structure of Descriptions

2.3.1 Description Schemas and Templates 19
2.3.2 The /iSSIMILATOR Control 25

2.5.2.1 The Domain Compiler and
associated Facilities in MDS 25

2.3.2.2 Examples of Representations,
Access Functions, and the Basic
Commands of the ASSIMILATOR 30

2.3.3 The Compilation Process »4

2.4 Consistency Conditions or Sense Definitions 37

2.4.1 The Nature of Constraints:
Some Examples ««

2.4.2 What should sense Definition do. 39

2.5 Representation and Uses of Constraints 45

2.5.1 Use of Bounded Quantifiers 42

2.5.2 Use uf Relation Paths ^

2.5.3 Use of Definitional Anchors 44

■»■HaHMMniMMBnaHBM

(li)

44

45

2.5.4 use of Eivocatlcn Anchors

2.5.5 Use of Set Constructs

2.5.6 uses of CC[X r] as a function and a

predicate^ Examples of Commcnsense
Reasoning 48

2.5.7 Interaction Between Relations :

Their Recognition and Ccntrol... 57

2.5.7.1 DONLISTS and DETLISTS... 57

2.5.7.2 Dimensionality of a CC.. 59

2.5.7.5 Construction of DONLISTS
and DETLISTS g-]

2.5.7.4 Definitional Filters 63

2.5.8 Focus Lists and Updating Processes 72

2.5.9 Anchored Transformation Rules QQ

2.C . . _ Object Based Representation:
Bundles... 35

III. Residues, Commonsense Reasoning and
CC-evaluations 2

5.1 Syntax cf consistency Ccnditicns 92

5.2 The Mlni-scupe Form

3.3 Residues and Partitions

3.3.1 Residues and partitions of Propositions 99

3.3.2 Residues and partitions of predicate
expressions 1OO

3.3.2.1 Substitution Ranges, Their
Partitiens and Solutions of P 1oO

3.3.2.2 ^-solutions' of p I03

97

WiiiiMiliiiniMlirrihiiMTfttiMwiM

(ill)

pa Res

3.3.5 Elementary Forms I08

3.3.^ Prepositional Forms I09

3.3.5 MLnlsoope ExiTresslcns 111

3.3.5.1 Universal Quantifier 111

3.3.5.2 Existential Quantifier II3
■

3.4 Computation of Residues and partitions:
An overview... II5

3.4.1 The Evaluation Algorithm 116

3.4.1.1 Single Universal Quantifier 116

3.4.1.2 Single Existential Quantifier 119

3.4.1.3 General Predicate Expressions 121

3.4.2 Corn put at i en of Scluticns for Pro-
pos i 11 en a 1 Ex pre s s i ons 1 23

3.4.3 Coramente en the Evaluation Process 12?

3.5 Commcnsense Reasoning and Problem Solving 129

3.5.1 Basic Theorems 129

3.5.2 Updating and Learning Theorems I30

3.5.2.1 Basis for simplification of
consistency checks I3I

3.5.2.2 Basis for Learning I33

3.5.2.3 Use of Focus Lists to guide
Intelligent conversation■ I39

3.5.2.4 use of Focus Lists to guide
Recognition l4o

3.5.3 Basis for Theorem Proving 142

3.5.3.1 Gentzen's System of Logic and
the calculus of sequents 142

3.5.3.2 A Proof Example 145

3.5.4 Basis for ivieans-end Analysis I50

IV. Concluding Remarks I52

V, Acknowledgments 155

""" ■■m»"M-1"

(lv)

VI. References

Appendix I: M aificatlcn to the Description
Structure

Appendix I: Re present at i en of Collection«» and
Sets in the Mcdel Space

Pa fie s

158

A-1

A-2

Appendix IT:'; Maptation of Gentzen's System of

.L,,;iG tc Thecrem Proving in TOS ... A-10

^.

1 . INTRODUCTION

The Meta Description System (MDS) is a system for

describing know led v-c In a domain tc a computer. MDS can

be used to generate Intelligent information systems, auto-

matically from descrlptlcns of knowledpe in a domain of

discourse. The domain cculd be diverse as for example.

Medical Diäresis [Irwin % Srinivasan 1975], Modelling:

Psychclorlcal Systems [Sridharnn, Schmidt & Sridharan

1976, 1977 3 cr Mana oment Information System [Srinivasan

197^]. The major application of MDS has been so far

In modelling psycholu. leal systems. A brief discussion

of some of the features of MDS appears in Srinivasan

[1973a, I976f].

This paper presents informally the logical basis fcr

the organization and .-'peraticn of two cf the major subsystems

of MDS; Its MDDEL SPACE, and the problem sclving subsystem

called, ASSIMILATOIV"- which is responsible far the consistency

of models in the MODEL SPACE. The ASSIMILATOli helps the

MODEL SPACE assimilate assertions about models, making

sure that the laws of a demain are not violated. It is also

responsible fcr prcduclnr, reasons that explain why certain

assertions are accepted, ethers are not, and yet others are

accepted conditionally en certain hypothses. These reasons

and hypotheses will constitute the systems own understanding

* This is a new terminology. This subsystem was being called
.■mSTATIATOR-CHECKER in previous rep-rts.

-2-

of the assertions. They also fcrm the basis for all problem

solving and IntelUccnt activity in MDS. The reasons repre-

sent chunks of knowledge that may be used in a problem sol-

vlnn process to guide search.

The organl zatlcn and operation of the M3DEL SPACE and

ASSIMILATOR are central to the MDS concept of knowledge itself,

and its associated nctlcai of understandinrc. description and

use of knowledge. The objective of this paper is to present

an operational view cf this knowledge as it pertains to the

MDDEL SPACE.

The basic mtdelllnr concepts are presented in the

ccntext of a stylized dunain cf discourse: Transportation

Systems and Problems like the MISSIONARIBB & CANNIBALS

(M&C), FARMER & SON (P&S), etc. This is done for rBda-

goglcal reasons.

In Section 1 .1 below we shall give a brief outline of

the central concepts in MDS, and introduce the MDS-paradigm

for intelligent operation, We shall also establish the

terminology used in the paper.
>

Implementation Status of MDS

There are new fewc partially implemented versions of IDS,

One is MDS itself, which is implemented in INTERLISP. Only,

the so called domain acquisition part of is now cperaticnal.

This accepts definitions cf domain knowledge in

-5-

the Mta-Ktoguage of PUS, and represents therein the mod«l s^ce

in a form suitable fcp ccmpllatlcn and later use. jeel ü'wln,

John Ng and Tau Hsu participated in this implementaticn,

together with the author. The second part of MDS, namely the

cede for the domain coinj^iler, which derives fr m lemain defini-

tions procedures appropriate for the croatl.,.. and maintenance

of the model space. Is new being written.

The ether version cf MDS is called ABOS, Acti.n Inter pre-

tfttlon MDS. This is ImpleiTEnted in FUZZY [Le Paivre I976]. There

are differences between MDS and AD©S in syntax and certain other

definitional cenventions. AIMDS is an interpretive version of a

subset of MDS. It is now being used fcr modelling "belief systems".

1 ,1 l Central Concepts and the MDS-Paradipi

1 •'l •1 : Relational Systems. Description
Lan^ua/ne and Model Spaces.

The Model Space,, ^ * of a domain is central to the archi-

tecture of MDS, and Its uses. The structures and processes in the

model space are derived automatically by MDS from definitions of

a Relational System, RT. RT itself is defined in the meta,language

of SOS, RT aisc forms the basis for the definition of the syntax

and semantics of an elementary descriptor lan.^e. ^ whlch

-!_--!!l._^L-^e3Cri;e:' CcncePts ahd proMems

* We shall through ut use the subscript T, as in Mp, to denote
the prctctyplc d.main. Transportation Systems.

IP8III)IWI«IW!»«.JI.-MIWMWIIIWPI»IIWIIWI ■ ' ^^MMM————>m ■■ammmmmmmmmmmmmmm^mmmmmmmammmmmmmmmimmmmmmmmfi

A'

(hereinafter called entitles) m the d^am.

: vmamm i&xmt. ^
Every well-fcrmod relation t« • u relation In 1^ may cccur as a phrase

fiuaai) tn LT. Ti!US. In cur dcraainj _ may have ^^^
U- (Pl-tUnof.V' •■(voa„„üttp)..etc.,wherepisa

PLACE, h say, !, a HufW/ m 1E an Wlw ^ ^ a VHIIC^

LT ».y M.0 have, ln ajauicn, =cranand p^aso. U.e (^^T

(P l«atloncf h)(h hclain . m))) (ffl0VE((/1LL hmm h)(THfflE

EXISTS PUCE p)(plcat1(,1Lf h))) etc _.

^ " mtre ITC;'lera •0lV»»g SyStems of WS. "mST^TIATE"
1. « cc^ana to the ASSIMXUKH. .^„j. ^ ,1GOAL„ are

COmmandS tC the DEIQ«' "i*". " ^ soax-«^^ ffcblem
solver tSrlnlvaSan l976fj , 977c, _ ^^ ^^ ^ ^

m=y have aSSSÖÜteä, «STWTIATE dees not. -»ow- ls

a =™mand tc the THEa!EM fflovm (TP) fSrinivasan ,9760
I977d#«]#

Sentences m LT may be cf ^ types: ^^^

or ft^cedura!. The sontontlal ^^ &f ^^^

sentences is a variant: rf t-^ .
Plant of the sentential structure cf

the language of first ord«* i,.^o
c orasr logto. Examples of declara-

tive sentences appear in sectirn a x xn section 2. These are used to
express the static laws of n ^ .,

 IS. iS^ of a domain: The laws of consis-
tency that any given state of the w^toi .
- CI Che model sPace should satisfy,

3h preparation.

-5-

Thc procedural sentences are used tc express the dynamic

laws: The laws of change in the model space. Every

procedural sentence win have at least one occurrence

of a command phrase. Examples of such sentences occur

In section 2.5.9.

The semantics of LT Is entirely defined by the

semantics of the relations in RT. For the relations in

RT their semantics is defined by patterns of interactions

that they may have in the mcdel space: How the consis-

tency Gf one relation may depend on the consistency of

others. The forms of definitions of RT, the rationale

for their choice, their interpretations, and the assump-

tions on the control structure of the ASSIMILATOR that

they entail, are all discussed in section 2.

Representations in the Mdel Space; Bundles.

The structure cf RT is also used by WS to design

a system of representations for models of entities in Mj..

These representations are like the "frame " representations,

proposed by Minsky [1975]. Each model is a data-structure

representing a bundle of interconnected pieces of infor-

mation, where each piece has its own substructure. Each

bundle (mcxiel) may have a name, will have references to

itself and its definition, and will contain a set of slots.

Each slot is used fco represent a property of the bundle.

mmmt, . ^mmim

-6-

Each property represontatlcn win ttmml*
wxii itself consist of a set

of .lot. : one each tar the ^^ty ^

^ ValUe' to^-a, mt^OranaforEatfcn., «

g^tm, .f tmmotim ««, other bundles ln the moäel
space.

Each Suoh bundXo Is a natural mlt cf ^^ ^

in an inte.aot.cn. wlth aher SUeh «,». ln „. Bodel ^

From each bundle crm mrm i+. ^

snoae as .TZLT ^ ' VleW Cf the entlre ^el
Spa=e. as « pertain, te the .^ A1S0) ^ ^^ ^

t» rcua er attention in au WM.Mlng done to the ^

•«.. «. we shan See, the bundle atructnre aot ml,

lntrCdUOeS a ■WdU1-" ^*«» <"1*. but .0.0. m a very

real sense makes lntollifsnt ^„...Ing feasible. ln

loractlce.

The «t .isnlfioont as^ot cf WS U thst the bundle

retresentations a„d an its associated processors J

e.tablisbin, and m^„tainine a 00nslstent mcdel ^^ ^

compiled autcmatlcaiiv ; v ivrnq f^
i-t3 by MDS from schematic definitions of

the structure and semantics of P The Ccmn11^
nj« me compiled procedures

are such that for every event in ^
ry event in the mcdel space the system

cc^ supply the reasons fcr the event m ^ .
 — *** event, in the language LT.

The nature of this acmrAim*4
Ws compilatioi process is briefly ÜUtilned

in section 2.3.2.

-7-

The Model Space Lo/gLc

The model space work» In a three-valuedLlogical system:

T{Trvm)t ?(Unl<nown) and NIL(Paise), T > ? > Nil, rji = NIL

and /v? = ?. The ability to instantiate Schemas defined in

RT, update properties of bundles, and do model based reason-

ing and hypothesis generation, is primarily due to the use

of the 5-valued logic. We shall use the phrase. Common-

sense reasoning, to refer to the moäel based reasoning

done by the ASSIMILATICJR. Examples of this reasoning process

are presented in section 2.5.6 through 2.5.8. The deductive

mechanisms used for this process are defined in section 5.

1 .1 .2 The Problem Solving Systems of MDS

The ASSIMILATOR is the monitor for the model space.

All events in the model space are initiated and directed

by the A3SIMILATCR. It recognizes four kinds of commands t

Instantiator Commands, examples of which we saw before;

Recognition Commands, which are used to identify the class

membership of a bundlej Comparison Commands, which are used

to test for equality of bundles; and Retrieval Commands

which are used to identify the bundle or bundles associated

with a given name or phrase in LT. The instantiator

commands may present at a time a set of relations, all of

which are to be instantiated in parallel. The assimilatcr

is responsible to translate the relations to their associated

representations, or modifications to representations, in the

-8-

mcdel space. For example, tc assimilate "(p locatlcnof h)"

it might be necessary tc make several secondary changes m

the model space, m .rder to maintain consistency. Thus-,

If h was holding m, then the location of m should also be

set to p. Also, If h was Initially at the place, g, then

~(g Iccatlcncf h) should be made true In the new model

state. The ASSlMILATOR can recognize and Incorporate such

secondary changes.

The ASSIMILATOR does not have the domain knowledge or

the control structures necessary to plan and execute a

sequence of actions in the model space. Thus, it would

not know that h should have arrived at p using a VEHICLE,

If BUOhwas She case. ItJs the role of the DESIGNER to

recognize preccndltions for actions and plan action sequen-

ces, that seek to achieve given goals. Thus, in response

to (GOAL(p locatlcnof h)) the DBSIGNEB might construct the

sequence; For a vehicle, v,

(ASSERT (v holdln;i; h)) "

(ASSERT (p locatlcnof v))

(ASSERT ^(v holding h)),

and present to the ASSIMILATOR the corresponding actions

one by one. The reasons supplied by the ASSIMILATOR for

the success or failure of the actions may be used by the

DESIGNER in the planning process Itself, to modify a

-9-

glven plan. Thus, for example, the DESIGNER might receive

the explanation "^(v locaticn is locatlonof h)", as the

roagon for the failure of the assertion "(v holding h)".

To correct the error the DESIGNER might choose another

VEHICLE, Vi, which Is at the location of h, or else have

v brought tc where h Is. Also, the next time the DESIGNER

makes an assertion like "(v holding h)" It would already

make sure that v and h are at the same locatlnn. Thus,

the DESIGNER would have learnt an elementary fact of the

domain. The learned infcrmatlm wculd be summarized as a

rule In the DESIOTER's own local state. Rules like this

will be used by the DBSICUSR not only to avoid repeating

mistakes, but also to make the right choices, wherever

feasible. Examples of these processes are discussed in

Srinlvasan [I976f, 1 977c]. The logical basis that makes

It possible to use reasons in this manner is established

In section 5.

The DESIGNER will attempt to plan and achieve only

goals that are specified to objects that already exist in

the model space, or objects that are explicitly created,

using the INSTANTIATE (or CREATE) commands. The DESIGNER

does not have the control structure necessary to direct

and sequence through a construction process to model

predicate expressions. Fcr example, the DESIGNER cannot

prove an assertion like;

-10-

((ALL HUMAN h) (THERE-EXISTS PLACE p)(p locationcf h)).

The THEOREM PROVER (TP) IS used in MDS to prove assertions

like the cne above, assertions that hold universally true

In a domain. The TP uses Geritzen's Siystem of natural

deduction. It uses the model space to discover the cons-

traints that given assertions Imply. The method of proof

Is like B-.th's Semantic Tableaux method [Srlnivasan 1976c].

The proof is attempted by seeking to build a model for a

counterexample. Details of the TP are presented in Srlnivasan

[I977d]. They are briefly discussed in section 5.5.3.

These problem sclving systems determine the scope of

tho system's understanding for a given corpus of domain

knowledge, in some sense the concept of domain knowledge

Itself seems to exist only because of the existence of

control structures that can do these various kinds of

problem solving. The capability for understanding, exhi-

bited by MDS in the caitext of those problon solving

systons, forns the basis for lan^uapjc raiderstandin^ in MDS.

In the realm of description languages, LT, has the status

that "assembly langtiagos" have in progranninj systons.

Hi'jhor level descripitlon language nay bo djfined and

processed in MDS using the subsysten called, LINGUIST.

The fornalisns and processes of tho LINGUIST will be

ü. .

-11-

dosorlbed In a future paper.

The LMOUIST Is respcnsibie to 'translate sentences

to phrases, that msmiLATm can understand. A3 sh„n

in figure 1. the LMGUIST can use the DESIGNER and the

TP to tMs prcoess. The hypotheses supplied by the

^SIMILATOR «111 be use(1 by the LmauIST) ^ ^^^

in the ccntext of a discourse. The reasons for contra-

dictions in the model space will be used to seek alter-

nate interpretations.

The collection of all reasons and hypotheses genera-

ted during the aasi.Aiation of a sentence Mil represent

the system's own understanding of the sentence.

1.1 .3: The_HPS - parad-lfyn

The M«-Paradigm ls shown in figure 1 . it consists

of two parts , The duj^n definition part and the domain

Btlüzatlca part. E; the domain definition part the meta-

language of MDS is used to define RT and Lj,. These

definitions are translated to representations in the model

spaeo by the Doaaln Acäulsltlon a^tem (This part of WS

is now operational). These representations of RT and Lj

are used by the dcffialn compiler to generate code for the

creation and maintenance of models in the model space.

(This part is now being coded).

In the domam utilization part, sentences in 1^ are

■MBa^a__.^-__

""""•""W"

-12-

DEPINITIONS IN THE
META-LANGUACE OF MDS >

DCMAIM ACQUISITICN
TiSTEM

META
PROCESSORS

OF MDS

REPRESENTATIONS OP LT & RT

BUNDLE STRUCTURES: MODELS
MODEL SPACE

Doman Dependent Procedures for the
creation and updating of Models

JL

ASSIMILATOR CONTROL

ASSIMILATOR

T
Reasons &
Hypotheses

Phrases in L,
T

^F

Reasons &
Hypotheses

g
■H
-P i
Q)
a
c
a i
Q

A

D-STATE D-CONTROL

DESI GNER

vg
, TP-STATE UTO-CONTROLlilltf k TP

->

L-STATE L-CONTROL
LINGUIST
 K

Sentences in Lp

Q

.-•
Figure 1: The IXS - paradigm

.15-

received by the LINGUET, which Is responsible to translate

them to phrases In LT that ASSIMILATQR can understand. In
■

doing this translation, the LINGUIST may make use of the

DESIGNER and the TP. Each one of these problem solving

systems has Its own local state. These local states are

kept updated by the respective controls of the problem

solving systems, wltb infcrmatlcn received from the

ASSIMILATOR, namely the reasons and hypotheses gererated

by the ASSIMILATOR In response to the phrases at its Input.

The problem solving systems use the Information In their

respective states to guide their own activities. This forms

the basis for learning In MDS.

The local state c£ a problem solving system may be

viewed as a model of the system 's own past activities.

I Such models may again be themselves described schemati-

cally in the met a- Ian; .ua^e of MDS. Thus in MDS, one may

specify how a problem solver should model its own activities

The modelling Schemas for the DESIGNER'S problem solving
■

state are discussed In Srinivasan [1977c]. For a given

problem solver like the DESIGNER its modelling Schemas

may be domain dependent, or within a domain it may depend

on types of problems. Thus domain knowledge may appear

in bundles in IVDS at various levels of the system's

activities: At the level of the model space it may

appear as the data-base for a domain. At the level of

the LINGUIST, it may appear as definitions of the syntax

-U-

of Lrp or as decision processes associated with LINGUIST.

In each problem solving system the bundles may appear In

the representation of the problem solving states and In

the decision processes of the problem solver.

The logical basis for learning and commensense

reasoning within this paradigm is established In section 5.

1 .2. Relationship to other systems

I'tS Incorporates In Its organisation many of the

Important concepts that have been developed In Al-systems

over the last two decades:

"Means-end analysis" [Newell, A, et. al. I959] Is

used In model-space updating, and In problem solving by

DESMERi "Theorem proving" Is used to establish general

assertions In the drmainj "Procedural specifications of

knowledge" is used [Hewitt I972, Wlncgrad 1975] to define

the dynamic laws of the domain, the laws of change In the

model space j "pattern-based Invocation" of procedures is

used by DESlGNERi "declarative specifications of knowledge"

In first order logic is used to describe the static laws

of a domain, the laws of consistency that a model space

should satlsfyj inowledge In the model space Is represented

In "frame" like bundles. which behave like molecules in

Interactions with each other; finally, relational systems

are used as the basis for defining model spaces and

^^me—Bmmmm

-15-

languag^s. WS provides the logical frame work and an

architecture m which Ghese concepts function together.

ms dees not seek to define yet another programming

language or seek to contribute to programming techniques.

MDS is a problem solvinpr system, which can generate

programs from definitions of knowledge in a domain it

proposes a view of knc^ledge, and provides a formalism

for defining knowled-e. U defining this knowledge a user

need not concern hlnßelf with possible interactions between

components of his definitions, and provide procedures to

process such interactions. As we shall see in section 2.5.7.

MDS itself can derive from the definitions the procedures

necessary to anticipate and prcxess interactions between

models. Thus, the definitions themselves are modular. We

shall see examples of these definitions in section 2.

WS makes a clear distinction between the model space

and its control structures, and the control structures of

the various problem solving systems. The representations

and processes m the model space are completely independent

of the problem Solving systems, like DESIGNER, TP and LINGUIST.

Because of the commonsense reasoning paradigm each problem

solver is able to get from the model space new canbinations

of domain knowledge specific to its own needs, using these

chunks of knowledge each problem solver may develop its

-16-

cwn specific views of the model space. The ability and

efficiency of these Interactions between the problem

solvers and the model space is limited only by the

primitives -- descriptive relations -- available In the

model space. Since the relational system determines the

description language of a domain, this Is the same as

saying that the problem solving efficiency Is dependent

on the concepts expressible In the description language.

Thus, MDS brings to focus the knowledge representation

Issue as an Issue of language design, and not as an Issue

of program design or data-structure design.

Major Innovations in the MDS architecture are:

(I) the use of relational systems as the basis
for the design of model spaces and languages;

(II) The formalism used to describe knowledge, and
the control structures that can use the defined
knowledge to do useful work;

(311) The architecture of the model space In ^-valued
logic and the commonsense reasoning paradigm.

We present In this paper, the logical foundations of this

architecture, and establish the basis for using IDS to do a

variety of problem solving activities, activities such as

assimilation, goal directed planning and problem solving, theo-

rem proving, recognition, understanding, etc. Details of these

problem solving activities themselves will be discussed in

future papers ,

-17-

II. IVDS MODEL SPACE AND THE ASSIMILATOR

2.1 IhtrLdi3inti.,p

3h this chapter m shall introduce the logic, architec-

ture, methods and uses, and forms of definitions of the Wfl

model space. We shau define RT, and discuss interpretations

given to the various components of the definitions in the mcdel

space. We shall pre^nt examples of LT, and structures and

processes in ify, that are implied by RT.

The definitions of RT will contain three components;

structural, sense and t-ran.^formational , Por each component

we shall discuss the definitional forms, and the rationale for

the choice of the fcrms shown. We shall also point out the

assumptions on the ASSIMILATOR control that they entail.

We shall see examples of commonsese reasoning in the

mcdel space and the role it plays in the maintenance of

consistency. The lc;lc of this reasoning process and the

associated deductive mechanisms are defined in chapter HI

2.2 Knowledge Representation; Focus en nhi^nf.«
and classes " ' —

There are two extremes in knowledge representation: One

may be called Operator-based and the other object-based. %

operator-based representations objects are treated as uninter.

preted formal entities, which may appear as components of a

-18-

maiel-state. A model-state Itself is described In terms of

how one might arrive there, starting from one or more dis-

tinguished initial states, by applying one or more sequences

of transformations (Operators). Examples of such representa-

tions appear in Algebra, Group Theory and in certain game

playing systems. They are useful in situations where total

knowledge is available, and the objects involved show certain

closure properties with respect to the operators.

In WS the bias is predominantly towards ob.ject-based

representations. Here operators and functions are characte-

rized in terms of how they affect properties of classes of

objects over which they may operate. The representations

focus on interactions between properties of objects. This

kind of representativ.u leads naturally to the so called

"frame systems". There is no notion of model-state. The

model, in fact, is likely to be always incomplete. Object

based representations have several advantages. We shall

discuss them in the last section of this chapter. It is

useful to first develop an intuitive understanding for the

nature of representations in the mcdel space and their impli-,

cations.

2 «5. The Structure of Descriptions

The constructs discussed below cover most of modelling

concepts in WS. Certain aspects pertaining to the specifications

■■

-19-

of properties of relatlcns, relation hierarchies, and defi-

nitions of tuüle and function Schemas, as well as meta-schemas

are not discussed. These are defined in Srinivasan [;i976e].

In what follows, we Bhall use square brackets, "[" and "]"

to enclose tuples, chain brackets, "(" and "} " to enclose

sets, and parentheses, "(" and ")" to enclose collections. We

also use parentheses bo delimit relational fcrms and express-

ions in LT. So also, we use, at times, the square brackets

in expressions in the way INTERLISP uses them, tc indicate

automatic closure of parentheses in nested expressions. But

these should not cause any confusion.

2.3 .1 . Description Schemas and Tempi atn.q

We shall use descriptive relation na^es]dke "locatlonof",

"cangoto", "candrive", "holding", etc. to describe properties '

of objects like PLACES, VEHICLES, HUMMs, etc. For each such

relation name we shall specify the clasees of objects which it

may relate. This will define the forms of the literals that

may appear in LT. Thus, we shall say that

[SI] (PLACE Locatlonof ITEMS)

is a description schema associated with "locatlonof". A phrase

like "(x locatlonof s)" is said to be dimensicnaliv consistent

only if x is a PLACE and s is an instance of ITEMS, say ..

(x1 x2...xn). Here, (x1 x2 ... xj is called a collection,

also at times, called a list. We W:L11 say

-20-

(x lücatlonof) - (x1 x2 ... x),

or write this as functlcnal,

(x Iccatlonof (:c, x^ ... x))

with the Interpretation,

(2-1)

(2-2)

(x Iccatlcnof x^) ^ (x Iccatlonof x2) ^

... ^ (x Iccatlonof x) (2-5)

Thus, by convention, relatlcns distribute over collections.

We shall caistraln the elements of ITEMS to be Instances of

HUMAN, ANIMAL, VEGETABHE or VEHICLE. A given Instance of

ITEMS may have an arbitrary number of instances of these ,

elements. In MDS, this is specified by the schema:

[S2]; (ITEMS elements (HUMAN ANIMAL VEGETABLE VEHICLE)),

where "elements" is a distinguished relation of MDS: This

relation may appear only with classes that are sets or

collections (lists). ColloetLon and sets in the model space

should be contrasted with nodes like PLACE, HUMAN, etc. Every

node is an Individual, "(x elements)" is dimenslonally In-

consistent for a node, x.

For every relation name, r, we shall define an Inverse,

r' such that

((Vx)(Vy)(x r y) <^ (yr'x)) (2-4)

In our domain, "locatloncf" and "location" are Inverses of

each other. To satisfy (2-4) we may now define either,

[S5] (ITEMS location PLACE),

.^^.

-21-

or fcr each possible element of ITEMS one may define its

associated schema, as fellows:

[S4]j {Emm location PLACE)

[35]! (ANIMAL location PLACE)

[S6]; (VEGETABLE location PLACE) and

[S7]: (VEHICLE location PLACE).

We shall choose the second alternative. In MDS, a schema like

[S4] is interpreted to mean that for every HUMAN, h, there is

only one PLACE, p, such that (h location p). This is

because PLACE is a node,. Thus, it would be dimensionally in-

consistent to say (h location (p1 p2)) or (h location NIL)

Another kind of schema definition occurs in the case of

the relation name, "heldby", which is the inverseof "holding"...

An object can be heldby a HUMAN or a VEHICLE. This may be

indicated by the Schemas:

[S8] (ITEI^ heldby HUMAlKyEHICLE)

[89] (VEHICLE holding ITEMS)

[S10] (HUMAN holding ITEMS)

Here the phrase "HUMAN\yEHICLE" is interpreted as (ONEOF HUMAN

VEHICLE). In our domain an object can be heldby only one object.

Structural tohemaa like SI through SIC are declared in

MDS by using devices called. Templates. Each template will

define all the Schemas associated with a given class of objects

in the domain. The temp_ates for PLACE and ITEMS are shown
below.

-22-

I-lGre. "TDN:" is the "^mplate DeflnlticnN" command In the

existing iraplementatl.n of MDS. The words W and "|;L"

associated re speotlvöly with PLACE ani ITEMS, in the defi-

nitions belcw are fl^s. that indicate special representation

or into roret at ions associated with the templates. The flag "RN "

TEMPLATfiS FOR PLACE ANT ITEMS g

[TDN: (PLACE RN) (ice at i en of ITEMS)]

[TDN! (IIEMS $ L) ((he Id by V) HUMAlKy EH ETLE holding)

(elements HUMAN VEGETABLE ANIMAL VEHICLE)]

defines PLACE to be a Regular node" template. It is a node,

and it is regular in the sense that every Instance of PLACE

should have a n_a^. Names are used in the model space and in

LT to denote objects (models)„ A model without a name Is

called a dummy, model. The flag 'T$L" associated with ITEMS

defines items to be a "dummy list". Thus, every instance of

ITEMS is a Ust (oollGction), 'and an instance, say (x., x ...x),

may not have any name associated with it. The only way of refe-

rring to such an instance in LT would be via an associated rela-

tion, like say (p looatlcnof), where (p locatlonof) might be

equal to (^ Xg ... xn).

The form "(beldby V)" in the ITEMS template, declares

'heldby" to be a variable relation, in the context of ITEMS:

There may be items, t, such that (t heldby) = NIL. This temp-

late also declares "holding" to be the Inverse of "heldby". If

no inverse is specified, as the case of "locatlonof" In the
PLACE template, then the inverse is obtained by deleting

(concatenating) the suffix "of" from (to) the indicated name.

•

-SJ-

Thus, the inverse of 'Wtlcnof« «U be "l^atlcn"

1-4. wxa«o, on adaltion. as we shall
later See, ttey lmplloltly deflne a repreSentllGn ° U

for» R+-,*,4V, JI Mit£SSsS£s£L^ Boheme
for storing descriptions of Instances of a class in7^~
model space. Thev eia . ^-p „
ref^ t %. CUrSe' deflne a ^nguage to
refer to the components of such descriptions.

The templates fear the various Qlamm*» * various classes in our domain are
shov.n in Table X. It is suggested ^ ^ ^^ ^ ^

liar with the various classes defined m Table I. and their

respective description structures. SoM of the templates ^ ,

this tabie contain labels. CC1, «2. etc., associated „1th

certain relation schoss. These labels Indicate the ^esence

of Oajslsten^ Ocndltlons (cc's) associated with the «spec-

tlve sche^. for an lnstarlce x of ^ ^ ^ ^^ ^

(x r y) „in constrain the Instances. y of y, whIoh may

appear as values of the phrase (x r) m the model space-

(X r y) can te true If and «ly If tte OC associated „1th

(x r y) is satisfied by x »d y. The fo™s. Interpretations.

uses, and properties of rr'q n™ ***,„ ^ too oi CG s are discussed In the ensuing

sections of this chapter. The CC's *.f««- ** x . j.ne ou s define the sense of the

relations in the model space Their- f^mmm . ^ . •
¥mi9. ineir forms and Interpretations,

In fact, establish the bamim r^ *.%, «oxi uno oasis for the use of WS as a meta-

system tc generate Intelligent infv™^ ^nigenr Information systems. W© shall
enter Into a discussion if «i »■ nn-** .• i. -, ., «oi* n ci cc s after introducing sone of the

-^--^r^-

-24-

TABLE I: Templates for the domain cf

Transportation Systems

1. [TDN; {Emm RN) (type HTYPE)

(candrive VEHICLES canbedrlvenby)

(ccmpatiblewlth ITEMS compatlblewlth, CC1)
(holding ITEl^ heldby)

(location PLACE],

2. [TDN: (VEHICLE RN) (capacity INTEGER)

(canbedrcvenby HUMANS)

(holding ITEMS - cc2)
(location PLACE)

(oangoto PLACES canbereachedby)],

5- [TDN; (ANIMAL RN) (type ATYPE)

(corapatiblewith ITEMS - CC5)
(location PLACE)].

4. [TDN; (VEGETABLE RN) (location PLACE)

(compatiblewith ITEMS - CC4)].

5. [TDN; (PLACE RN) (locationof ITEMS - CC5)]

6. [TDN: (ITEMS $L)

((heldby v) HUMA^KyEHICLE - CC6))

(elements HUMAN VEGETABLE ANIMAL VEHICLE)]

7 . [TDN: (HTYPE RN) (typeof HUMANS)]

8. [TDN: (ATYPE RN)(type of ANIMALS)]

-26-

RT and $T; Regular and Durrniy Tuple Schemas, These are

used to define n-ary relations for n >1 .

:In the examples discussed in this paper

only binary relations are used. We find

that in most domains binary relations are

the ones that are used predominantly.

RP and $P; Regular and Dummy Function Schemas. These

are used tc define functions which may be

declared as part of a relation definition

schema. Thus one may have a schema of the

form (X r F) where F is a function template.

In this case, for an instance x of X, the

value of (x r) will be obtained by exe-

cuting P on arguments which may themselves

be determined by x. For examples of use of

Function Scheme see Irwin & Srinivasan fl975].

Function Schemas may be used in MDS tc define

structures similar tc semantic nets.

TI,l7^,TS,etc : These are the various Terminal Templates,

Terminal Hhteger, Terminal Number, Terminal

String, etc . In the current implementation

of MDS (which is in INTER LISP), all INTER LISP

datatypes are also available as templates in

MDS, Also, every datatype used in the implemen-

tation of MDS itself is available to MTS as a

-27-

template. Thus, there are templates for repre-

senting templates, for representing names, rela-

tiens, constraints, actions, models, sets, etc .

seme of these are discussed in Appendix H.

MN,ML,MT,MP,etc.: These refer to various kinds of meta-

templates. An instance of a meta-template is

itself a template. Thus, an instance of Meta

Node (M) template will be a Node template. It

could be a Dunmy Node or a Regular Node. For

examples of uses of meta-templates see Irwin &

Srinivasan [1975].

One may also associate flags with description Schemas cf

the form (X r Y). Those flags fail into the following

categories'.

(i) Flags that define relation properties.

Properties like transitively, reflexivity, etc. in the
context of an [X r] may be declared to the system by using
relation flags. These declared properties are used by the
domain compiler in generating codes associated with [X r].

(il) Flags that define interpretations for
Functionals

111 ■■»■■'■

In the schema (X r Z), where Z is a collection with

(z elements Y), the normal interpretation given to (x r

(y-| y2...yn)), where x is an instance of X and (y1 y2...yn)
is an instance of Z, Is

■MMülüiiwiM

WMMMM-

-28-

ix r (y1 ...Yn))<=>{x r y1)-(x r y2K..-(x r yn)...(2.6)

However, if the flag "S ' is associated with [X r] then

the collection (y1 y2...y) will be Interpreted as a set.

Cy-I y2...yn)# in the context of (x r): (X r (y1 y2...y })

does not necessarily Imply (x r yj^) for 1 = 1 ,2,.. .,n. Thus,

sets and collections have different Interpretations in the

model space. Similarly, one may use the relation flag "B"

In the context of [X r]. If (X r Y) IS true and Y Is a tuple-

template. In this case. Instances of Y will be Interpreted

as Bags In the context of (x r).

(ill) Fla^s that specify storage control

Normally, for every (x r). If (x r) Is dimenslonally

consistent, then the value y such that (x r) =y is stored

In the model space in the form of representation of the

relation (x r y). However, one may specify by the use of

the, so called, dummy flag, that the value of (x r) Is not

to be stored. Jh this case, every time (x r) is requested

Its value will be computed using the function, CC's and

transformations associated with [X r]. The symbol %n Is

used for the dummy flag. If ([X r] flag |) and (X r Y)

are true, then ([Y r'] flag |} is Implied, where r' is the

Inverseof r. We shall see a use for the dummy flag In

section 2.5.9.

Other storage control flags may be defined to specify

storage of meanings, and action Interpretations. There Is

-29-

also a flag called the iroptpfe flag:-. Tho symbol ".'" :1s used

for this flag In the ouivent Implementation of M3S , If

([X r] flag I) la true then,, every time a new instance x of

X., is created the appropriate value of (x r) should also be

Instantiated. This may, at times, noocssitate the system to

prompt a user to supply a value for (x r). Examples of use

of this flag appear in Irwin and Srinivasan [1975].

(lv) Protection Flags

These may either explicitly indicate tte protaotlon

associated with the access and updating of relation values,

or present conditions under which Buoh aooess is permlPslbTo,

A common protection flag la the ''-"-" flag, which indicates

that the value of an (x r) oaraiot be changed during a problem

solving process.

(v) Ccntaxt or Jhte^t^Lon, fifths

In WS there may exist simultaneously several model

spaces for a given domain, each associated with a different

context. So also for an object, x, there may exist several

models of x, each associated with a different context. One

may explicitly associate with a description schema, the model

context, in which the constraints associated with the schema

are evaluated.
■

In the current Implementation of MDS there are facilities

for extending the repertoir of flags used with the tern plater

* The use of this feature was suggested by Sridharan.

-50-

and relations. Each flag definition may itself be controlled

by flag templates. The definitions of these flags as per the

flag templates will enable the dcmaln compiler to incorporate

these flags into the compiled code.

For each (X r Y) cne may also define in MDS an associated

action, called the Anchored Transformation Rule (ATR). This

rule will be invoked when necessary during the instantiation

of an (x r) for an instance, x, of X. We shall see examples

of the use of ATR's in section 2.5.9.

It should be ncted that "instance" and "instanceof " are

dis anguished relations m MDS, which are associated with every

template. Thus for a template, X, one may have CC «s and ATR's

associated with [X instance] itself. These will be invoiced every

time one attempts to create a new instance of X. Both the CG fs

and the ATR 's may be used during the domain compilation process

to produce efficient compiled codes for a domain. We shall

discuss the details cf this compilation process in another report

and the ijasJc nnmmands of thb AffSlMILATORT

The representation for an instance of PLACE might be

TO definition
of PLACE

and that of ITEMS,

self-reference Location of e lerne ntof

To definition L^Z I
of XTHVIS self-reference he Id by e lements elements of

■ ■

-31-

By convention, every data type may appear as the element

of one or more collecticns. Thus, we have the "elementof"

relation pointer appearing in both the data types above. Since

ITMS is a collecticn, it also has a pointer for the "elements"

relation. The first field in every data type will point to the

representation of the template that is associated with the data

type. The second field is a pointer to the instance itself. The

remaining fields correspend to the relations defined in the

template associated with the data type. For each relation its

associated field will pclnt to a, so called, descriptor unit

(DBSUNIT). The DESUNIT will have slots for the value of the

relations, reasons, hypetheses, etc., as mentioned before in

the description of bundles,. Each bundle in the model space will

correspond to the re present atinn of the model of an entity in

the domain. A more detailed discussion of these representations

appear in Srinivasan [1977c].

At this point lot us take note of the basic commands of

the ASSIMILATOR. For eech data-type (template) there will be

four associated classes of commands:

[Cl]: Recognition Commands
[C2]: Creation Commands, and

[05]: Comparison Commands.
[C4]: Retrieval Commands.

These are briefly described below. Let MACC be the accumulator
of the Model Space. We will use the symbol V to denote the

Contents of MACC. We shall refer to @ as the anchor of the

model space, it is the current ob.ject of focus in the model
space. Where convenient we shall use symbols §v9 @v etc. for

A Y

-52.

pedagogical reasons to Indicate anchors that are Instances of

X, Y etc. respectively. For all the commands described below,

the anchor is one of the argument of the commands.

[C1]t (DTYPE d) = T,?, NIL.

The result is T If the datatype of § is d, is ? if it

is unknown, else NIL.

[C2]a. Instantiate Template

(IT d m) = x or NIL.

The result x is a pc inter tc the newly created instance

of data type, d, with name, m, assigned to it, if m is given.

x is put in MACC if the instantiaticn is successful. Else,

MACC will contain NIL.

[C2]b. üistanliatc Relation —— — ,

(IR r y) or (IR :.) = T, ? or NIL.

This will attempt tc make (@ r y) true -- if y is not given

it will attempt to find the appropriate y. The command will

succeed only if there is no resultant contradiction in the model

space. The result of this operation is put in the MTBST register

of the ASSIMILATOR.

[C2] (c) Instantiate Relation Negative

(IRN r y) or (IRN r) = T, ?, NIL.

This is similar to IR but attempts to make ^(@. r y) true.

Ccrrespending tc [C2] (b) and [C2] (c) one may also have

commands FR and PRN (Poroe relation and Force relation, negative).

a—w^1^ i mi»«

-35-

These would attempt to force (@ r y) -- or ^{@r y) -- by

modifying the model space appropriately, if necessary.

[05] (EQUALS x) . T, ?, NIL

This checks (@. ■ x), The result is stored in MTEST.

[0^] Retrieval Commands

The above commands may be ccmpiled for each domain, from

the domain def initic ns. For each datatype the domain compiler

will alsc produce codes fcr the access functions, ((Sr), for

obtaining the value cf the field associated with the relation

r in (S) . if (@ r) is unkmwn, then the access functions may

invoke the cc's and ATR associated with (@ r) to find its

value, if (@ r) is dimension ally inconsistent then the value

of (@ r) = NIL. Similarly, one may also check the truth value

of (@r y) using tho access functions.

The ASSIMILATOR structure, presented above, has the form

of a machine. The commands are like machine commands. This

is deliberate. As discussed below, we do visualize a machine

control, in which the dc main dependent processors are micro-

programmed, and the basic ASSIMILATOR control invokes and

executes them to manage the model space.

The nature of algorithms for some of these processors, and

the associated data organizations are discussed in section 2.5.

They are part of the forms and interpretations of the descrip-

tion Schemas, templates, cc 's and ATR 's .

-34--

2.5.5: The Compilation Process

We shall assume the availability cf an assembly lan^ua^e

for the ASSmiLATOR with Commands of the form:

(INSTANTIATE (x r y) ^(x, r., y1) ... (xn r y))

(x r), (X r y), (EQUALS x y), (PTYPE x d)# ©to .

The assertions in the INSTANTIATE command are to be assimi-

lated in parallel. The ccrapilatlcn of a command like this

would involve fcur steps:

STEP (1): Determinaticn of all structures IK the model space

which need be changed in crder to accept the given collection of

assertiens. This is determined by the structural knowledge cf

a domain. For each assertion, (x r y), depending upon the

classes of x and y its associated structures may be directly

compiled from the templates of x and y, and the relation flags

associated with r. All the structural changes, derivable from

the given assertions using the description structures of the

objects Involved, will be hypothesized to be true in this step.

STEP (11): This step determines all the consistency conditions

associated with the hypcthesized structural changes, and

implied by the interactions of the hypotheses with other

relations in the model space. Each one of these conditions

(or re asms associated with the conditions) are evaluated for

appropriate bindings of the free variables. The hypotheses

may be accepted only if none of the conditions evaluate to

NIL. This evaluation will also produce the combined reason

..... . .
 ■■- ■

-35-

-•
for the acceptance, ccnditicnal acceptances or rejection cf

the hypotheses .

Every one of the consistency conditions Involved In

such a check may be complied. Also, the procedures neces-

sary to identify relation interactions caused by the hypo-

theses may be derived and compiled from domain definitions.

The details of this checking process are discussed in sections

2,5.7 through 2.5.9.

STEP (ill) if the checks evaluate co T or ? cr NIL then the

transformations associated with each asserted (x r y) for its

associated truth value are executed. This might successfully

terminate the as-: xmllaticn process, and return the resultant

reasons for the iucoess. Or, it may terminate the process

with the truth value ? and an associated hypothesis for the

acceptance cf the assertions. Or else, it may produce the

truth value NIL, indicating the presence of a contradiction

in the assertions, and go to STEP (iv). In this case, of

course, the reasons f r the contradictions will also be made

available .

All the transformation rules may be compiled fron the

demain definitions. If no transfcarnations exist then: this

step will be skipped.

STEP (iv) This step is used only if a contradiction has

been recognized. The system would then attempt to eliminate the

mmmmiJW'i!rmix''1*J!*°

-36-

reesons for the contradictions by proposing possible secondary

changes to the model space. The analysis used for this purpose

may also itself be compiled. This analysis is based on the

reasons for the contradiction, and certain definitional entities

called Focus Lists that are associated with the relations inv ivcd.

The details of this updating process are discussed in section

2.5, in the context of specific examples. The access functions for

(x r) = (y j(x r y))
and (x r y) = T, ? or NIL

are compiled from the data-structures, cc's and ATR's associated

with each templates. Also, for each template the EQUALITY checking

routines for instances of the template are compiled from the domain

definitions. The details cf this compilation process will be

discussed in a future repcrt.

The ASSIMILATOR itself is thus a ^re control structure.

which would invoice the above mentioned compiled procedures where

necessary to execute the commands received by it. For a given

domain, with well understood knowledge representation schemes, all

these domam dependent procedures may be compiled into "micro-

programs" from given domain definitions. The control structure

of the /DILATOR is different from the structure of the

"execution control", we see in all Von Neumann machines, it

seems, for intelligent operation both execution control and

assimilation control are essential. Details of the assimila-

tion control are discussed in [Srinivasan I977d].

J

-57-

2»2+ CcfiSlBtenoy Ccndlticns or Sense Definitions

2.4.1 Tho_ ^ture cf Constraints; Some Examples

The schema [SI] docs net specify all the restrictions

associated with what can be at a given PLACE. Not any combi-

nation of items may be at the location of a given PLACE, In

our domain we would like the following to be always true:

[(Vx) (Vy) (PLACE instance x)

((HUMM instance y) V (VEGETABLE instance y)

V(ANJMAL instance y) V (VEHICLE instance y))
r >

((■Vz)(x Iccaticncf z)(z holding y) =^>
(x lecationof y))

((Vz)(x locationcf z)(x lecationof y) =»

(SAFE y z))] ... (2.7)

All the literals in (2.7) are dimensionally consistent with

respect to the definitions in Table I. The predicate SAFE

is as yet unde:. fined. (2.7) asserts that if y and z are at

the same place x, then (SAFE y z) should be true, and if z

is holding y, and z is at x, then y should also, be at x. The

definitions of SÄPE may be problem dependent. Par the M&C

problem one may have,*

M&C-SAFE
[(Vx)(Vy)(SAPE x y) <^>

((V9) (Vp) (s instanceof ITEMS)

(p instanco of PLACE)

(p lecationof s) =~>
(((l!=OF MISSION/BY s)^(4{:0F CANNIBAL s))

 VjJJ^pP MISSIONARY s) -o)] ... (2.8)

* We assume implicit conjunction between parenthesized forms

iifr-Tr-'f-i ■ ,.,J.^.-l^.^.J.-,ijIJ..^||).. iiiiit'-iiii'riMiiij^^ ,,

-58-

Hore, (4{0F x y) is a function that returns the number of items

of type x in a collecUui y. For the domain P&S, the definition

of SAFE might be :

F&S-SAFE

(Vx)(Vy)(SAFE X y) 4=»
((x compatlblevjith y) V

((Vp)(p instancecf PLACE) (p iccationof (xy)) =»
((3h){h instance of HUMM)

(p locationcf h)] (2.9)

In this case if x is not ccmpatiblewith y then a HUMM is

required to be at the same PLACE as x and y. The constraint

for (x ccmpatiblewith y) in the case of HUMANs is shown below:

[(Vx)(HUMM instance y) =>

((Vy)(x compatiblewith y) <=»»
(((Vt)(x type t) <^> (y type t))V

~(y instance of HUMM] (2 Jo)

Similar defini ' ons for this relation, for other classes

of objects, are shewn in Table III. For a given HUMM, h, (2.10)

may be used to find all y such that (h ccmpatiblewith y) is true:

(yj (h ccmpatiblewith y)). However, for a given PLACE, p,

(2.7) cannot be used to find (y| (p locationof y)). But, if

a candidate y is supplied then (2.7) may be used to checl: whether

(p locationof y) could be true for the candidate. We shall call

constraints like (2.7), declarative constraints (not to be

confused with declrative descriptions of knowledge). Constraints

"■

-59-

11 ke (2 Jo) are called Imjggratlye constraints. A formal defi-

nition of these concepts is given In section 2.5.5.

The forms of (2.7) and (2 Jo) are not quite satisfactory

for the purpose of modelling in terras of object-based repre-

sentations. We shall state the constraints in a form, that

would facilitate the realization of the goals discussed in

the next subsection.

2.4,2. What should Sense Definitions do?

Objective [Obi]: Ensure Model Space Consistency

In the three valued logical system,- we shall require of

the model space only a week state of consistency: It should

be at all times contradiction free. Thus, the model space

may contain relations whose truth values are unknown. This

may, at times, result in the following kinds of situations:

Consider the chains

(a) (x r y)-^ (x1 r1 y-,) ^ . .. =^ {xn rn yn)

(b) (u t v) -^ (u- t- v-)-»,..«► iv^t r y) iii n n n
■ ' AS

If the truth value of (xn rn yn) is unknown (?) in the model

space, then it can accept the assertion (x r y) (u t v) -- we

assurae iraplicit conjunction. This is because, -v ? = ?

and accepting (x r y)(u t v) would not cause any contradiction.

Wo shall., however require that the model space be such that,

at a later time, if (^ rn yn) is asserted,the latent contra-

diction should surface.

-40-

Objectlve [0b2]: For each jg r) find If possible cne
of the followlnp;;

(a) The y such that (@ r y) Is true If such a y exists

In the model space.

(b) The candidates (y1 y2...y) for one or more of which

(0 r y) may be true.

(c) The constraints specific to @t that characterize

all y such that (§ r y) is true.

Objective [Ob^]: Give Reasons

If (@ r y) = T, ? or NIL then identify .and express the

reasons for this in I/p, This is the most important require-

ment. The satisfaction of this objective makes it possible

to do problem solving In MDS.

Objective [0b4]; Anticipate Interactions

For each (@ r y) identify the specific interactions that

take place in the model space with other relations that may

exist in the model space.

Objective [0b5]: Avoid Combinatorial Explosions

In seeking to satisfy [obi] through [0b4], and in using

the model space to solve problems, it should be possible to

specify starategjes and learn rules that contribute to mini-

mizing combinatorial explosions.

ft ' " iiwiiw....- tmmmmmmmmmmmmmmmmmTSS!SSBi~-iUM^

-41-

We shall present below the elements cf a system archi-

tecture In which all the above objectives may be realized.

<u~

-42-

2-5. Representatigis and Uses of Crast-natpt-.« .

2'5,1* U5e of Bounded QuantlfieT'R

The weak definition cf model space consistency makes it

sufficient to check for each (x r y) the relevent constraints

only over the objects and relations that actually exist m the

model space, at the time (x r y) is asserted. It Is not nece-

ssary to resolve hidden contradictions because of unknown quan-

tities. Thus an quantifications m our constraints win be

bounded, and general predicate expressions may be reduced to

conjunctions an^/or disjunctions of propositions, whose truth

values may be directly tested m the model space.

Further, one may notice that variables range only over

specified classes of objects in the model space. Thus in (2.7),

x ranges only over PLACES, and y ranges only over what can

appear as elements of mm. To take advantage of these "

categorized variables we shall modlfy the language of constraints

indicating explicitly, where feasible, the range of each quanti-

fied variable. We shall use

"(<classname> x)(px...)M

to denote

((Vx)(<classname> instance x) =#. (Px...))"
and use

" ((SOME <c lassname> x) (px...)) "

to denote

"((3x) C<classname> instance x)(Px...))",

where(P x...) is predicate expression In which x occurs

free. Where appropriate we shall also use form,

"(<ciass1>/^class2>//./<class> x) " to denote a

range that extends over a disjunction of classes, and forms

"(<ciass> x y)" for "(<ciass> x)(<class> y)", and

"(SOME <class> x y)" for "(SOME <class> x) (SOME <class> y)"

2.5.2 The Use uf Relation Paths

We will use ": " to denote relation concatenation, and

call phrases Vj iv2. ..5rn", relation paths. We shall use

"(x P1 :r2 y)" to denote "((x ^) r2 y)". In view of (2-6)

and the convention,

(x r) -. (z |(x r z)), ... (2.11)

It follows that

(x r.,:^ y) 4^ ((vz)(x r., z)^(Zr2y)). (2.12)

If r2 is the inverse of r2, and in the structural descrip-

tion both (x r-,) and(y r2) are constrained to be nodes. or

collections of equal cardinality then

(x ^ :r2 y) 4->((Vz)(x ^ z)4->(zr2y)) .. (S.lj)

For a relation path ^ :r2:.. .rn its inverse path is

rn:rn-1 :«'«r2:ri« Using these conventions we may now

rewrite (2.7) and (2.10) as follows:

■"•"' '

-44-

[(PLACE p)

(HUMANE GAT ABLE ANIMA^EHICLE X y)
((p locatloncf (x y)) =>> (SAFE X y))

(x heldby: legation :lccationof x)] ... (2.14)

[(HUMAN h)(y)(h compatiblewlth y) ^=>((h type rtypeof y) V

~(y Instancecf HUMAN)] : ... (2.15)

2.5.3. The Use cf Deflnltlcnal Anchors

With every constraint we shall associate a distinguished

relation name, called the anchor relation cf the constraint.

The anchor relation cf (2.14) and (2 .15) are "locatloncf"

and "ccmpatlblewlth;' respectively. We shall anchor the

constraint Itself at the, so called, definitional anchor, which

Is a pair [<anchor class> <anchor relatlon>], where the

<anchor class> is always a class name. The definitional

anchor of (2.14) is [PLACE locatloncf] and that of (2.I5) is

[HUMAN compatiblewlth] . We shall refer to the constraints

themselves by the phrases CC[PLACE locatlcnof] and

CC[HUMAN compatiblewlth].

The use of definitional anchors and the assumptions in

section 2.5.4 on Invocation of CC's, will enable us to write

constraints as set c_ai struct Ion expressions, as discussed In

section 2.5.5.

2.5.4. The Use of Invocation Anchors

We shall assume that a CC[X r] for a class X and a

relation r will be Invoked only In the context of evaluating

-45-

or checking the truth value of an ((^ r y), v;here @ is an

Instance of X. We shall can [^ r] the invocation anchor

of CC[X r], andOx Itself, the anchor. The Invocation of

CC[X r] may thus occur under two conditions:

(a) When executing (2R r y) or (IRN r y) (or (iR r)

or (IRN r)), and MACC has an@x, and the truth

value of (@x r y) (or the value of {@x r)) Is unknown.

(b) When executing (IR r-, z) or (IRN r-, z) for some z

and P1, and MACC has an (5^ such that ft« ^l z^ ls

dlmenslonally consistent. In this case CC[X r] may

be Invoked at an [f^ r]^ Thus, assigning z to

(@Y r-,) might affect the value of ||x r). Therefore,

CC[X r] should be checked at @x under the hypothesis

(@Y r1 z).

In view of this Invocation protocol we shall use In every

CO a distinguished free variable called, £, which will always

get bound to the anchor of the model space at the time of

invocation of the CC.

2.5.5. The use of Set Constructs

The focus of attention during the evaluation of a

CO[X r] at an anchor (S^, is the set (s | (^ r s)). To realize

the objective [0b2] we shall seek constraints of the form

'

-46-

(Sp (S)x s), in which @x and .s occur free, and

(@x r s) ^(SP.^ s) .. (2J6)

SP is called the SEI predicate, since one may write, for a

description schema (X r y),

CCfXr] = {(YS) | (SP@s)) ... (2J7)

The set expression in (2 .17) may be read as '4;he collection

of all instances, s of Y, such that (SP @ «) is true. " if y

is a node, then the ASSBULATOR will expect (SP@ s) to return

a unique singleton collection, (s). on the other hand, if the

description schema is (x r z), where (z elements Y) is true,

then the ßSSmiLATOR v.-iii anticipate one or mo^ members, s,'

tn.the collection. One may also, of course, put constraints on

the maximum and minimum number of candidates that (SP @ •) may

return. We shall call s the set variable of the CC.

As we shall see in the ensuing sections, the ability to

specify constraints m the for (2.17) with interpretation (2.16),

and the conventions we have adopted on the Invocations of CC's,

together will make it possible for us to really the objectives

fob.,] through [ob5]. There is, however, a minor difficulty to

be overcome: It is not always possible to find constraints of

the form (2.16). often one may have only a (Q @ s) such that

(@r s) ^ (Q@ S). _ (2J8)

Si cases like this we shall write

CCfXr] . ((YS) |(@r s)(Q@s)) ... (2/,9)

. §

-47-

Ccnstralnts of this form are given special interpretations In

the ASSIMILATOR. While evaluating (2.I9) the system would expect

a candidate, s, to be supplied. If no candidate is supplied then,

s = ? and ((S)r s) = ? is assumed, and (Q @ ?) is evaluated. This

may result in the identification of a collection of candidates

(y-1 y2...ylc) - (y | (SP@y) ■ ?), for one or more of which {Q r y)

may be true. Since (§ r s) = ?, in this case the set predicate

Itself will evaluate to ?, if (Q @ y) f NIL.

CC's of the form (2,19) are the dec larative PC 's and those

of the form (2.1?) are the imperative CG's. Using these conven-

tions we may now rewrite (2.14) and (2.I5) as shown in (2 .20)

and (2.21). These expressions are typical of the declarative

sentences* in LT :

CC[PLACE locationof] ■
[(HUMAN/VEJETABL^/^JIMAL/VEHICLE S) |
{{§ locationof s)(s he Id by NIL) V

(s heIdby: location (Q))

((y) (@ locationof y) =#> (SAFE (3 y)] ... (2 .20)

CC [HUMAN Compatiblewlth] -

[(y | (Ätype:fcypeof y) V
^(y Instance of HUMAN)] ... (2.21)

In (2.2o) the phrase (s heldby NIL) is a functional,

interpreted as ((Vz) ~(s heldby z)). The phrase "(§ locationof

s)" indicates that an s may be declared to the system. If

(s heldby NIL) is true then the proper s Is specified by the

* All CC's are constructed from dec larative sentences in Lrr.
However* not all CO 's are declarative CC 's.

mmm

-48-

predicate, functional, (s he Id by: location §)4 Notice that

(2.20) Is more compact than (2 .14) and Is oriented more

towards evaluation at a given anchor, @ , or given pair

[@ •], The constraint (2.21) illustrates a case where It

may be more economical, to store In the model space

(•|<v($ r s)) than (s| ((a) r s)).

In the followln- sections we shall discuss the Inter-

pretations given to the above CG's in the modelling context

We shall see how the objectives [ob.,] through [ob5] may be

realized. We shall aisc present examples of commonsense

reasoning that is used to supply reasons for the truth

values in the model space for the various relations.

2.5.6. Uses of CC[X r] as a function and a predicate;

Examples, of Commonsense reasoning.

One may have two kinds of Invocations of a CC[X r]:

(a) CC[X r](^) and

(b) CC[X r](^ so).

In both cases 0C[X r] Is used as a function with lambda

variables @ and s, and an attempt Is made to compute

(s | (% r s)). In the first case (^ r) = ? Is Initially

assumed, and one of the following may result:

(1) (s ((^ r s)): This may happen If CC[X pj&J Is

Imperative.

■Hl^H

-^9-

(U) (s ((S^ r s) , ?): This will be Interpreted
as a ccllecticn of candidates for (&„ r).

(HI) ? : 3h this case one may also get a predicate

expression characterizing (s j fa r s)) for the
given @x

(lv) NIL.

3h case (b) also the same four possibilities exist for

the result. But m cases (i) and (ii) cf the result the

returned collections rnay include so, thereby indicating the

truth value of (% r ,o), ^ both these ^ invücatlon^ ^

set predicate of CC[X r] may be used to explain why (^ r so) =

T. ? or NIL for a given s^ or why (^ r) = (s j (SP^ s)).0

Let us consider a few examples.

Let us assume the model space for the M&c problem. Let

MISSIONARY and CANNIBAL be instances of HIYPE, types of HUMMS .

Let the model space have

(MISSIONARY typoof (m., BU mj)
(CANNIBAL typeof (c1 c c)

(VEHICLE instance BOAT)

(HUMAN instance (a^ m2 m c1 c c)).

For a missionary, m-, then

CC [HUMAN compatiblewlth] ^) = ^ m2 m^ BOAT).. (2.22)

as per (2.21). The reason for this will be

[(m., type:typeof y) V ^(y instanceof HUMAN)] (2.25)

-50-

where y Is the set variable. The expression in (2.25)

consists of the true literals of (2.21) for one or more

items in (m1 m2 m, BOAT). In this case, there are no

literals that are false or ? for all the elements in

(nij m is- BOAT). The reason for (SL c an pat i blow it h m2)

will be

(m-j type: type of rn2) ... (2.24)

In this case the second disjunct of (2.23) becomes false

and thus does not appea.r as part of the reason. We shall

call expressions like (2.25) and (2.24) True Residues;

(2.25) is the true residue of CCfHUMM compatlblewith] (IT^),

and (2.24) is the true residue of CCfHUMAN compatlblewith]

(m- nu). For a definitional anchor [X r] we shall denote

its true residues by phrases of the form:

aR(CC[X r]((£))) or TR(CC[X r]((3 s)).

A true residue will exist for a CC, for given bindings

of @ and the set variable, s, only if the set predicate of

the CC evaluates to T. The true residue will consist of the

sub-expressions of the parent expression, that remain after

deleting all these that evaluated to NIL or ?. In cases where

the set variable rang©» ever a collection, we shall delete only

those sub-expressions that evaluated to NIL or ? for all possible

bindings of s. We shall generally write residue expressions

indicating explicitly the bindings of the variables. Thus, for

(2.25) and (2.24) we shall write:

mmmmmm

-51-

[((HUMAN @) = m1)

((HUMAI0EHICI£ y) • (a, m2 m BOAT))

[^type:typeof y) V ^(y Instance of BOAT)]].. (2.23a)

[((HUMAN @) = m1)((HUMAN y) = rrig) (@ type rtypeof y)]

For a CANNIBAL, c, , the reason for (m., compatlblewith c.) =

NIL will be

['v(m1 typertypeof c1) (c1 Instanceof HUMAN)] (2.25)

which is chtained by taking the negation of the False Residue

of CC[HUMAN compatlblewith] (^ c1). Ih this case, of course,

CC[HUMAN compatlblewith] ^ e1) = NIL. The False Residue will

consist of the sub-expressions that remain after deleting all

those that evaluated to T or ?. Of course, the parent express-

Ion Itself should evaluate to NIL. We shall use phrases of the

tom PR(CC[X r]((0)) and FR(CC[X P](@ S)) to denote false

residues of CG 's.

One may similarly define also IMmcwn Residues. UR(CC[X r]

((D)) and UR(CC[X r](@ s)). These will exist only when the

CO evaluates to ? and win be obtained by deleting all the sub-

expressions that evaluate to NIL or T m the set predicate, for

given bindings of (0 and s. Jh the M&C problem, suppose there

were more that three MISS ION AR IBS. & this case the model

space will contain the functional

(MISSIONARY typeof (m., m2 m ?)), (2.26)

«^

-52-

whcre the ? in the collection indicates that there may be more.

In MDS, a new element may be added to a collection only if the

collection contained ?. Thus, one could make it impossible to

have more than two HTYPEs, by setting in the model space:

(HTYPE instance (MISSIONARY CANNIBAL)).

In the case (2.26), (2.21) will evaluate to T for § • a.

and y = (m1 m2 m, BOAT). However, for y = ? both literals in

(2,21) will evaluate to ?, producing the unknown residue:

[[((0 =m1)(y = ?) ((Q type: type of y) V ^(y instanceof HUMAN)]

(2.2?)

This unknown residue may be viewed as characterizing

(x j (m-j ccmpatiblewlth x)). In this case the residue expression

happens to be identical tc the set predicate. But in general,

the residue exprosslwiis will be subexpressions of the set pre-

dicate. The residue extraction process is a part of the common-

sense reasoning process. It is defined for both prepositional

and quantified expressions in chapter 3. The relationship

between residues and reasons is summarized below in Table II.

TABLE II: Residues and Reasons

TRUTH VALUE of " Reason for CC[X r]((p) or
CC[X r](@) or CC[X r]((0s). The set variable
CC[X r](©>) is optional below.

T (TR(CC[X T){§ --)
? (l)R(CC[X r](0 —)

NIL 'v(FR(CC[X r](@ —)

"g*"''^ "■'■ iiriiniNifiilMi

-535-

m the problem solvin process the residues (reascns) are used

as the basis for learning and dunaln specific speclaii .ati .n

Let us new consider a few more examples.

Table III shews all the OC's used in our domain, and

Table IV shows the definitions associated with SAFE. The

command (QSCC: <CC-exp> definitional anchor>) is used to

define CC's m the current implementation/MDS. This command

is part of the subsystem called QUEST, which is used for

defining the CC's and transformations m a domain. Predicates

like SAFE are called CC-macros. They are invoked as macros

within CC's and transformations. Each CCMACRO has a name,

declared arguments, the maero expression and a context. Thus,

a CCMACRO like S^E nay have different definitions in different
contexts. The definitions of SAFE in M&S . and P&S contexts

are shown in Table IV. The command QSCCM.- is used to define

CCMACRO's in MDS .

Let us now consider some of the possible residues

asscciated with CC[VEHICLE holding]. This Cc is shown in

Table HI, and is reproduced below, for convenience:

CC [VEHICLE holding]:

[(HUMAT^EGET ABLE/ANIMAL x) j

(©holding x)(o holding: #= : ^: capacity of 0)

((y)(0 holding y) ==*> (SAFE x y)] ... (2#28)

-54-

TABLE III: CaLSlsjency Ccndltlcns of the

Transportation Domain.

0011 CC[HUM/\N cornpatlblewlth]. ~

[(HUM%/MIMA^EGE.TABL^EHICLE s) j
(VtYpettypecf s) V ^{s Instancecf HUMAlO].

CC2: CC[VEHICLE hcldlng]

[inrnm/mmpsybEGEjimuE s) |
((p holding s)((p holding:#: ^ :capacityof §)
((y)(9 holding y) =» (SAFE s y))]

CCJ>: CC[AMIM/i compatlblewlth]

t(nmj$y/vEGvrmi.?/mmAi/bmicLE s) |
(G type:typeof s) V (Q Instance of HUMAN) V

•w(@ type HERBIVORE) (s Instancecf VEGETABLE)]

CCh: CC[VEGETABLE compatlblewlth]

[(s j (@ compatlblewlth s) V

(s Instancecf VEGETABLE)]

CC5: CC[PLACE locatloncf].

[(s | (((T) locatlonof s)(sheldby NIL> V

(s he Id by; loc at 1 on @)) ((y) (€> Ice at^ on cf y)

** (SAPß s y)]

COS: CC[ITMS heldby]

(s ({g heldby s) ^(s eler|ent;of (p)].

The CC has the form (2.19) and Is thus a declarative £C:

It may be used to check a given {§ holding gj but carpet be

used to find (s ((@ holding s)). ^ the second conjunct of

(2.2 8) the relation name "#»" occurs in the path "holding:# :<:

capacltyof". This Is used to get the cardinality of {Q holding)

In the context cf #, collections are Interpreted as, sets;

-55-

Table IV: COMACROS In the domain,

[OSCCM: SAFE (X Y) "MAC"
[(X location :locationof Y) =»

((SOME ITEMS s)(X location-.location of s)

(((#0F MISSIONARY fl) > (#OF CANNIBAL s)) V

((#0F MISSIONARY s) is O)]].

Note: The third argument of QSCCM: is the context.

[QSCCM: SAFE (X Y) "FSCS "
[(X compatlblewith Y) V

(X location ».location of Y) =»
(((SOME HUMAN h)(X location: location of h)]].

((X1 x2...xn}#=) = n, and ({x1 x2.. .xn ?}4) ^ n but still the

relation ({x- x2 .. .x.. ?}«|fn) has the truth value ?. Thus, In

a comparison like (fx,, x2 ?}#=:^2) Its truth value will be ?.

So also, ((x-, x2 ?}4f=:^4) will be ?. But, ({x1 x2 ?)#=:> 2-)

will have truth value T.

Let us assume that Initially (BOAT holding ?) is true in

the model space. In this case CCfVEHICLE holding] (BOAT) will

evaluate to ? with the unknown residue:

[(BOAT holding x)(BOAT holding: #= :^:capacltyof BOAT)

((y) (BOAT holding y) =^(SAFE x y)] ... (2.29)

In the above expression we may ignore the literal "(BOAT

holding x)". since it is part of the declarative nature

of the CO: For every assertion (BOAT holding x) will be
either true or false by hypothesis . Let us now assert (BOAT

holding x). This will cause the model space entry (BOAT
holding (x ?)). The evaluation of CC[YEHICLE holding] (BOAT x0)

-56-

will evaluate to ?, because both (BOAT holding:^ :^:capatltyof

BOAT) and ((y)(BOAT holding y) =» (SAFE xo y))* will evaluate

to ?, leading to the unknown residue:

[(BOAT holding:^ :^: capacityof BOAT)

((y)(BOAT holding y)=> (SAFE *Q 7))] ... (2.^0)

Notice that the set variable x in (2.29) has been replaced by
xo in (2.30). Thus, all future additions to the BOAT should
be SAFE with xo.

Let us now suppose that (BOAT capacity 4) is true, and

when (BOAT holding x) was asserted (BOAT holding (x.. x2 ?))

was in the model space. In this case, the unknown residue
will be the same as (2.29) for the collection (xo x^ x2 ?).

We have assumed that the SAFE predicate is not contradicted
for xo.

If the SAFE predicate was contradicted then for seme

element x, in (x-. Xg), (SAFE x x) would have been NIL. In

this case the model space would remain unchanged, and the

following residue would have been supplied for not accepting

(BOAT holding xo):

[(VEHICLE Q) = BOAT)

(HUM Ar$/ANIMAiy^E GET ABLE y) = (x X.. Xg ?))
(SAFE xo y)] ... (2.31)

The reason would be.

In this case $APE x0 x0)=T and (SAFE x0 ?)=?, The bound
variable y acquires the binding ? because (BOAT holding
(x0 ?)) exists in the model space.

-57-

[((VEHICLE (?)= BOAT)

((SOlvi^/kuMA10ttIIMAV^EGETABLE y) = ix0 ^ x2 ?^
MSAFExoy))] (2.32)

which is the negation of (2 .^). In a problem solving context,

reasons like this may be made use of to avoid repeating same

kind of mistakes. Also, reasons explicating true residues may

be made use of to make the right choices based en past experience.

The properties of residues (and reasons) that make them useful in

a problem solving context are discussed in chapter III.

The reasons obtained from the CC's at a given anchor are

not sufficient to explain or guide an updating process. The

CC itself may supply only the necessary conditions. To consider

the complete updating process it is necessary also to analyze

the way relations interact in the model space. This is discussed

in the next section, where an example of cemmensense reasoning

in the context of relation interactions is presented. Again we

shall see that the form and inter pre tati OB of CC's play an

Important role in identifying and ccntrolllng the Interactions.

2 .5 .7 . Interaction Between Relations; Their Recognition
and Control

2.5.7.1 DONLISTS and DETLISTS

Definition 1 : Depends on

 — ^ —mm

-58-

([a. r] dependsun [Oy t]) if there exist a z (z could

be ? or NIL) such that (0Y t z) or (z t,0Y)(or ^{QY t z) or

»w(a t1 0Y)) occurs in a true, false or unknown residue of

CC[X r]^) or CC[X r](^c so) for seme so.

In this case we shall say that [Y t] is an element of

DONLIST [X r].

Definition 2 : Determines

([(V t] determines [0X r]) if ([0X r] depends on

[Q t]>. In this case, we shall say that [X r] is an

element of DETLIST [Y t].

Notice that [X r] e DETLIST [Y t] does not necessarily

mean that for any given oY and 0X ([0X r] dependscn [GY t]).

It only implies that there exist 0X
and 0Y such that ([j^x r]

dependscn [0Y t]). We have the following formulas:

(([^ r] dependson [CY t]) «=> {[QY t] determines [Q^ r]))

(([X r] elementof DETLIST[Y t]) ^> ([Y t] element of DONLIST[X r]).

(([Y t] elementof DONLESTfX r]) #»> ((SOME X (^) (SOME Y ©^)

([(^ r] dependson [© t])))
(([X r] elementof DETLIST[Y t]) ^=>

((SOME X Gx)(S0ME Y ©y)([@y t] determines [Q, r])))

The DONLISTs and DETLISTs for the definition anchors may

be obtained by analyzing the forms of CO's in a dctnain. These

may be used in a variety of ways to identify, anticipate, control

and respond to situations that arise in updating processes. We

shall present below an example of the kind of analysis that may

-59-

be dene to construct DETLISTfe .

We shall also Introduce the concept of definitional filters
that are used to direct search for all 0X such t£t [Q r]~
dependsTrOy t] for a Siven QY, We shall discuss ways of using
filters to minimize search and checking during updating
processes.

2 .5 .7 .2 : The Dimensionality of a CC and its
Dependency Graph

Let us consider again CCfPLACE locaticnof] shown in (2.20).

One may construct for this CC a, so called, dependency graph as

shown in figure 4. The arcs in this graph represent the relation

names that appear in the CC, with the associated negation signs,

if any. The nodes represent class names that are used in the CC

either explioitlv or implicitly.

Q

/location
/

5« 1
HUMAN/

VEHICLE

he Id by JL

location of

HUM AI0-E GET ABL^/
ANIMAL/VEHICLE y

JI
DEPÄPI yTPH 0F

T

HUMAl/l^EGETABLE/
ANIMAL/VEHICLE

JL

k

oheldby \ This corresponds to
/ "(s he Id by NIL)"

HUMAI^J/VEIDICLE

Fig 4: Dependency Graph of CC PLACE locaticnof.

 ^ _ ; _:_.i..-

———••——

-6 A-

Por example, the expresslun

"((Vy)(0 locatlancf y) =» (SAFE s y))"

teat occurs in (2.20) uses the class disjunction

(H^A^EGETABL^ANIM/V^EHTCLE y) explicitly, because there

exists a bound variable y, that represents the instances of

these classes that are used in an evaluatiai of the CC. This

expression is represented in figure 4 by ncdes 1, 2, 5 and 4,

and the arcs "locatlonof" and "<->", where "< - ->" represents

connections to the dependency graph of (SAFE s y).

In the case of the expression

"(s heldby.-location 0)"

which also occurs m (2.2) the (HUMMWEHTCLE y/such that

((s heldby y) .» (y location G)) is said to be implicitly used

in the CC. The CC has no bound variable corresponding to the y

above. Thus, node 5 appears m figure 4 without an associated

variable,

The classnames used implicitly in a CC may be determined

fron the relation paths used in the CC and the description

structures defined for the dcmam. We shall call the analysis

used to identify tho implicit and explicit class names in a CC,

the_dimensional analysis. For a functional like 1

"{■ heldby :location o)" we shall represent its dimension as

mmmm ■

-61-

[((HUMAl^EGETA^L^/ANIMAI^EHICLE s) heldby)

((HUM%4EHICLE) locaticn) (PLACE c)] ... (2.35)

This dlmenslcn Is consistent with the descriptiai Schemas

denned for the dcmain. A cc itself is said to be dimen-

sicnaily consistent if all its literals and functionals are

dimensionally coisistent. The analysis of dimensional

ccnsistency may also be used to find missing relation names

in relation paths, missing ranges of variables, and also

errors in a CC. The dimensional consistency checking sub-

system of the current implementation of MDS was written by

Joel Irwin.

The dependency graph of a CC portrays its dimensionality.

It may be used to coistruct DONLISTs, DETLISTs and definitional

filters. This is discussed in the next secticn.

2.5.7.5. Construction of DQNLlSlte & DETLISlte

Let us for a moment ignore the implications of the

"(SAFE s y)" predicate- in figure 4. The general rules for

constructing DON and DET lists from a dependency graph is

given below:

DONLIST - mJT.K

[Y t] e DONLIST[X r] if the clajss Y occurs in a node in

in the dependency, grajDh of CC[X r], and the arc with label

t or ^t (t ' or ^t') eraanates (impinges) on the node Y in

the dependency graph CC[X r]. t' is the inverse of t.

-62-

In this case [X r] c DETLISTfY t].

Prom figure 4 c^e thus cbtams that there may exist a

PLACE, p, a raATVEIIICLE, hf a HUM/^EGETABL^ANIMA^EHICLE

x, etc. such that

([p locatloiof j dependaon

(fh holdinr J [p locatlcnof]
[x locatlai] etc. ...)) ^^

The symbol h In (206) denotes the Implicit use of HUM/^

VEHICLE in "(s heldby.locatlcn C)". expanding the disjunction

of classes over which the variables m (2.36) range, we get by

the DONLIST rule that

DONLrSTfPLACE l.catlcnof] =

{[HUMAN hcldlng'][VEHICLE holding]

[HUMAN locatlcn][VEHICLE location]
[PLACE 1,cation^ etc.) ^„x

Thus we get

[PLACE locatloncf] e DETLIST[HUMAN holding]

DETLIST[HUMAN location]

■DETLIST[VEHICLE holding]
etc- (2.58)

This implies that, when (h holding x) is asserted (by using an

IR Command, say) f,r a HUMM, h, then CC[PLACE locatlonof]

should be checked for all places p such ttet ([h holding]

determines [p location of]). During this checking one may, for

example, discover that (h location) = p and (x location) - g

are not the same. Thus (h holding x) cannot be accepted by

-63-

the model space without violating CCfPLACE lecaticnof]. The

reason for this violation would be:

[(x heldby:lccation pMp location of x) V
A^X heldby:locatitiiof g) v(x heldby NIL)

(g locaticnof x)] ... (2.39)

This reaso. is true under the hypothesis (h holding x). We

shall discuss in the next section the conmonsense; x'eascning

process that may be used to identify treasons like (2.39)

Wo shall also consider efficient ways for directly

identifying for a given [h holding] all the PLACES, p, such

that ([p locationcf] depends en [h holding]).

2 .5.7.4: Definitional Filters

For a given [X r] e DETLIST[Y t] and given Gy our problem

is to find

(Oxld&x r] dependscn[0Y t])).

This search may, of ccurse, be confined to only the instances

of X. Still it may be large search. In practice it is

necessary to have a better control over this search, and

where feasible eliminate the search altogether.

The Problem oji devising schemes to efficiently control

and direct this search is. the so called "Frame Problem". The

solution of this problem is not only domain dependent, b^t

■

. : :

-64- -'

within a da.am It Is dependent en the particular, oolleotlcns

Of objects that exist m the motol space, it is not thus

possible to specify a genera! solution to the "frame problem".

One may only specify schemes where in the problem may be Kept

under octroi, and unforeseen combinatcrial explc^s are

avoided. The forms of CC and their invocati« centre! make

it possible-tc state sengral schemes to keep the "frame problem"

under check. What is «„,. ^ nay have ^ ltself ^^ ^

necessary centre! structures from an analysis of the cc.s cf

the domain.

We shall discuss two ways of c^trolllng search m a

frame Interaction;

(a) One is by the Definitional Filters which are

can pi led by MDS, and

(b) the other is by the use of representational faci-

lities in the model space which a user may use to

create appropriate representations for a domain.

Part (a) ls discussed below and part (b) is discussed in

action 2.5.9. No^aliy, When an (x r y) is asserted, in order

to accept it. it may be necessary to mako certain secondary

changes m the model s^ce. TMs may, ln gen]Eral reSult ^ a

chain of updating „ocesses. It is essentlal to have facllltles f cr

strolling this ^.cess. Devices called Focus Lists are used

in WS to control these. These are discussed in section 2 5 8

-65-

Deflnlclonal Fl Iters

A definitional filter DF[X r][Yt] is used to compute

a set s£[0Y t] such chat

[0X] DsJ[GY t] J [0x|([ex r] dependscn[0Y t])). (2.39)

where f^] is the sot of all instances of X, A DP filters

out of [Qy.] all x such that [x rfj does not depend on [Qy t].

The DP may be stated as

DP[X r][Y t] « ((X x)|DPP (0y s x)) (2.4o)

where Oy* s anä x are the free variables of the Definitional

Filter Predicate, DPP. The DP is anchored at [Y t]. Thus,

Qy is the anchor variable of the DPj x is its set variable;

and s is the, so called, change variable t (Cy t s) is the

change that is being attempted at (t?y t]. Using such a DP,

for a given Oy and F>, one may compute all the affected Qy..

The dependency grapl of CC[X r] may be used to construct

DP[X r][Y t], if [X r] is in DETLlSTfY t]. The ccnstructicn

of these filters is based on the following observation.

Let us assume that dependency graphs are always connected

graphs. Consider the graph in figure 4. If [0 locaticnof]

depends en some [QY t] for a Y and t in the graph, then there

will be a path w, from 0 to Gy in the graph. Q Itself may,

therefore, be reached from 0Y via the inverse path w'. Suppose,

Oy = h for a HUMAN, h, and 0 is a PLACE, p. Let [p locaticnof]

-66-

depend en [h h^ldine]. The paths in figure k that might lead

to h from p are (again we Ignore (SAFE s y)):

[(p locatlcncf h) V (p locatlcnof s) ^(s heldby h) V
(p locatlcnof s) (s heldby h)]

Thus p itself should be reachable from h via cne of the paths

in the disjunction

[(h location p) V ^(h holding s)(s locaticn p) V
(h holding s)(s location p)] ,,, (2.41)

Thus, at a given h, if (h holding S) was the change at (h hold-

ing; then the places affected by it will be a subset of

(p|(h locaticn p) v ^(h holding s) (s locaticn p) V

(h holding s)(s location p)) ... (2.42)

Wc may now write

DF[PLACE locatlcnof J[HUM AN holding] =

[(PLACE p)|(0 location p) V ^(o holding s) (s location p)

V(e) holding s)(s locaticn p)] ... (2.43)

where Q Is a HUVIAN, and s is the change variable. This DF will

be anchored at [HIM holding]. Thus, if (h holding x) was newly

asserted, then the system would evaluate the above DF for (§-h)

and (B*c}, and find that it had to check CC[PLACE locatlcnof]

at the places p = (h locaticn) and g . (« location), under the

hypothesis (h holding x). At both these places, p and g, a

^^^^^HnHMWH*M«H_M

-67-

ccntradictlon will bo encountered for the following reasons.

We have the assumpticns (h holding x), (h location) ■ p

and (x location) = g. For the discussion below, we shall also

assume that the SAFE predicate is true, and altogether ignore

this predicate in the residues and reasons. At the PLACE, p,*

CC[PLACE locatlcncf] (p x) = T and

TR(CC[PLACE looatlcnof] (p x)) = (x heldby:location p)

By (2.16) it, therefore, follows that (p locationof x) should

be true in the model space. This contradicts the assumpticn,

(g looatlcnof x). The reason for this contradiction will be

the negation of the false residue of

(p locationof x) <^>CC[PLACE locationof] (p x).

The false residue of a form (u ^ v) is the same as the false

residue of the form (uv v ^u^v). In the above case u is

false and v is true. We have the following residue equation.**

PR(uv V ^u ^v) = PR(uv) V FRUuvv) = PR(U) v PR(^v)

since u is false and v is true. However, PR(^v) = oTR(v).

Thus,, we get,that the reason for the contradiction is

Please check with CC[PLACE locationof] shown in (2 .20).

These are discussed in chapter III.
*-.;:

-68-

[A](^PR(u)-TR(v)) = ^(p locatlcncf x)(x heldbytlocaticn p)

In the case of the PLACE, g, CCfPLACE locatlonof] (g) will evalua.

te to NIL and false residue will be:

PR(CC[PLACE loGatlcnof](g x)) =

[(x heldby MIL) V (x heldby:location g)].

and (g locatlonof x) is true. Thus, In this case the reason

for the contradlctioii will be

[B]. [(g locatlcncf x) ^(x heldby:locatlonof g)
~(x heldby Nil)].

The resultant reascn will be the disjunction of [A] and [B],

namely the expresslcn in (2.39). To accept the assertion

(h holding x) this reason should "how be mode to disappear.

That is, it should bo made to evaluate to NIL or ? in the

model space. In general, it is necessary to use a

"means-end analysis" scheme to realize this objective. We

shall present in the n^xt section a simple way of doing this,

that works for most of the cases arising in the model space.

Devices called. Focus Lists (PL's) are used in the model

space for this purpose. We shall conclude this section with

a summary of the properties and conventions associated with

interaction checks (frame checks) in the model space.

Prame Checking in the Mcdel Space

The DP's are used to identify interactiens that are not

•

-69-

dlrectly implied by the descripticn structures in a domain.

The interacticns directly implied by the description struc-

tures in a domain are illustrated by the following example.

Suppose (h holding x) was newly asserted, for an ANIMAL,

x, and at the time this assertion was made (m holding x)

was true in the model space. In our domain we have the schema

[S8] (ITBMB he Id by HUMANWEHICLE)

and thus only one HUMAN may hold an object.* Therefore, the

assimilator will postulate automatically all the following

relations:

[(h holding x) (x heldby h) ^(m holding x) ^(x heldby m)]

(2.44)

The asserticns for "holding" and "heldby" appear together in

(2.44) because of the assumpticn (2.4), which is a part of the

built in structure of the model space. The negated asserticns

appear because of the schema [S8]. This knowledge will be a

part of the domain dependent processors compiled for the domain.

To check for the consistency of (2.44) the following CC's should

be checked:

CC[ANIMAL heldby] (x) (2.45a)

CC [HUMAN holding](h) (2.45b)

CC [HUMAN holding](m), (2.45c)
CC[X r]((nx), {2'A5d)

*It Is also true that while a VEHICLE is holding something nothing
else may hold the same object. A description scheme where more than
one person or vehicle may hold an object is presented in Appendix I,

-70-

for every [X r] such that Qx Is a member of one or more of

the following sets:
■

DF[X r][ANIMAL heldby](x h)

DP[X r][ANIMAL h ldby](x m)

DF[X r][HUMAI^ holding] (« x)

DF[X r] [HUMAN holding](h x) ... <2.46)

For each DF above the argument pair is (<anchürXchange>).

The assertions in (2 Jf4) may be accepted cnly If none of the

CC's above produce a contradiction.

In our domain the CG's (2.45a) through (2.45c) do not

exist. Where a CC does not exist for an anchor [X r] we shall

assume that the CC is (y | (0X r y)), 1 .e. any declared y Is

acceptable. Thus, the cnly checks in the case of (h holding x)

will be those resulting from the interactions, namely those

implied by (2.45d) and the DF's in (2.46).

In general, fcr any ((^ r y) the interaction between r

and its inverse, and r and itself, is part of the structural

knowledge built into a domain. We shall therefore Ignore all

definitional filters of the forms:

DF[X r][X r] and DF[X r][Y r']

for all Y for which (X r Y) is true --i.e. the scheme (X r Y)

exists» We thus havfe the following lemma characterizing the

conditions for the existence of DF's:

-71-

LEMMA 2 .1 I*

[(EXIST DP[X r][Y t|) ^=> (EXISTS CC[X r]J

([Y t] e lenient of DONLIST[X r])
^([Y t] » [X r]) (^(X r Y) V a,(t Inverseof r))]

Frame Filters

Besldes definitional filters, Dpfx r][Y t], cane may

also have in MDS the so called framt; filters (FF'S), FFfX rjfY t].

to PF[X r][Y t] may exist only if DFfX r][Y t] exists, and if

the FP exists then the subset

Sx[Cy t] m (DPfX rJTY t](QY s)nFF[X r][Y t] (0Y s))

(2.^9)

Frame filters may be problem dependent and may be assigned to

an anchor during a problem solving process. It may also be

defined at the time of domain definition. Examples of use of

frame filters are not discussed in this paper.

The subsystem for building dependency graphs and defini-

tional filters was built by John Ng, in the current implementa-

tion of MDS.

The Unary predicate EXISTS is used here with the
obvious connotation.

-72-

2.5.8. Focus Lists and the np^t.i^ f^g^g

Whereas DF's and PF's are used to Identify and select

primary interactions, one may think of Focus Lists as ccntro-

lling secondary changes, induced by an assertion (x r y).

With each [X r] one may associate two kinds of focus.lists:

The BPSitive focus, list, PFLpc r], and the negative focus list,

NFL[X r]. From among all [^ t] such that (^ r] dependscn

[QY t]), the NFL[X r] is used to select those that should remain

VVtm* in tte-Uü&UzK ffi^es^. Thus, NFL[X r] characterizes

the stable relativs on which [ox r] may dependai. If there is

an inconsistency at [Gx r] thm none of the stable relations

may be changed in order to resolve the inconsistency. Similarly,

PFL[X r] characteri2eB an the unstable relations en which

[Gx r] may depend an. Thus, to resolve an inconsistency at an

[% r], one or more of the unstable relations may be changed.

An element of PFL[X r] is of the form PFLfY t]rx r]. So

also, an element of NPLfX r] is of the f orm NFLfY t jfX r]. In

both cases, [y t], should belong to DQNLISTfX r]. Each PPLfX r]

(NPLfX r]) is anchored at [X r]. Notice the'duality between

DP's and PL's (FOCUS Lists); A DP is of the form DPfx rJfl t]

where [X r] e DETLISTfY t], where as an PL is of the form

FLfY t]fX r].

Each element cf an PL is itself again a set

construction expression of the form.

-75-

PFL[Y t][X r] - ([y z] | (^ r] depe^^ fy t])

(y t Z)(PFLPOV y B»

NFLfY tKX r] - ([y z] | (^ r] dependson fy tj)

(y t z)(NPLP n y z))

Clcarl3r,

PFLfY t][X r](Ox) n NPLfY t]fX r](Ox) = NIL (2.50)

Wo shall usually assume the ccnjuncts "(rOx r] dependscnfy t])

(y t z)" and simply write PPL and NFL expressions as

PFL[Y tKXr] = (f y z]) (PFLPGX y z)) (2.51)

NFL[Y tJfX r] ^ ([y z] ({WL* Qy, y z)) (2.52)

Also, when PFLP or NPLP is vaccuous .. i.e. always T - then we

shall simply say that [Y t]: itself is a member of PFLfX r] cr

m?L[X v]. Thus, if [Y t] is a member of NPL[X r] then for an

[% r] all (o^.t) 8U0h thatd^r] de^ndson [^ t]) are stable.

So also, if fy t] 18 a member of PPL[X r] then all (^ t) such

that ([^ r] dependsui ^Y tj) are unstable.

In our domain we may have for example,

NFL [PLACE location of] ■

([HUMAN holding][VEHICLE holding]). (2.53)

indicating that when (opiACE locatlonof) changes then the perti-

nent "holding" and ^holdby" relations should romam stable. Also,
we may have

-74-

PFL[PLACE Iccaticnof] =

([HUMAN lvcat!en][VEGETABLE location]
[ANIMAL location][VEHICLE location]) (2.5^)

Thus, If there Is an inconsistency at an (©tr^jj locatlonof)

then cne may attempt to resolve It by changing the location

of a HUMAN, ANIMAL, VEGETABLE or VEHICLE. Lot us consider an

example.

Suppose a HUMAN, h, is holding an ANIMAL, x, and h changes

location from p to g« Let us assume that initially the follcwing

is true:

[(h location p)(x location p){p locatlonof (h x))

(h holding x}(jt heldby h)^ (2.55)

To move the HUMAN from p to g the following should be made true

in the model space (this is obtained directly from the description

s true ture s inv oIv ed);

[(h location g) (g locatlonof h)
^(h location p) ^(p locatlonof h)] (2.56)

To accept these the following checks should be done:

CC[PLACE locatlcnof](p)

CC[PLACE locatlonof](g) (2.57)

and for every Q , such that Q ±s a member of one or more of
7v -A.

the following sets.

 1111

-75-

DF[X r][PLACE locatlonof] (p h)

DF[X r][PLACE iLcatlcxicf] (g h)

DFfX r][HUM/\ri lccaticn](h p)

DF[X r][HUM/iIJ lccatlcn](h g) (2.58)

one has to check

If we again ignored the SAFE predicate, as we shall see below,

none of the above DF's would exist. In Table III one may notice

that "locaticn" and "locationof" occur only in CCfPLACE locaticncf]

and in CC[VEHICLE holding]. In the latter, it occurs via the

SAFE predicate. If wo igiored SAFE — assuming it to be always

true -- thön the only source of interaction with "locaticn" and

"locationof" is CC[PLACE locationof]. Thus, m (2.58), r would

be either "locaticn" or "locaticncf" and X would be HUMAl^/

VEGETABL^NIM AT/VEHICLE. By lemma 1, such DF's cannot exist.

Thus, in this case wo have no relation interactlcns to check.

The cnly CC's to chock are those in (2.57). Let us suppose that

TR(CC[PLACE locaticncf](p h)) =
((h heldby NIL)

((V y){p locationof y) =» (SAFE h y)] (2.6o)

and.

TR(CC[PLACE locationof](p)) =

[(0= P)(s = (x ... ?))

((s heldby NIL)v(s heldby:locaticn G))
((V y)(0 Iccaticnof y) =# (SAFE s y))] (2.61)

-76-

The residue {2.60) will evaluate to T under hypothesis (2.56),

but (2.61) will evaluate to NIL, because for (s=x), and (G=p J

the expression ((« heldby NIL)v(s heldbyilocatlcn p)) will be

NIL. This now contradicts (2.16), namely (P Iccatlcnof x) «=>

CCrPLACE lc«atlunof](P x) producing the reason

Mx heldby NJ.L)(p locatlonof x)
^(x heldby:location p)J.. (2.62)

in the case of CC[PLACE locatlonof] (g) we have the .opposite

situation:

CC PLACEflevr.ticncf]is x) = T but (g locatlcnof x) Is

false, because x is still at p m the model space. This will

produce the reason:

[(x heldby location g) ^(g locatlonof x)] (2.63)

The combined reason for failure at the definitional anchor

[PLACE Icoatloicf] v.lll be the disjunction of (2,62) and (2.63):

Let (R x p g) denote this disjunction:

(R x p g) =

Mx heldby NIL)(p locatlonof x)
~(x heldby:location g) V

(x heldby: location g) ^(g locatlonof x)] (2.64)

To eliminate this cause for failure we shall try to make

(R x p g) = ?. To dc this one or more relations m (2.64) should

be set to ?. The values of the relations Implied by

NPL[PLACE locatlonof] cannot be changed. Thus ncne of the

■■ . .. ■::

-77-

"holdlng" er "heldby" relations may be changed (Please see NFL

In (2.53)). So alsc, none of the relations in the hypothesis

(2.56) may be ohaoged. Deleting from (2.64) all the "holding"

("heldby") relations, and the relations of the hypothesis we

have left

[(p location of x) V ^(g location of x)] (2.65)

as the enly candidates for change. Indeed, both these relation

values may be changed since they both belong to PPL[PLACE location of i-

Lot us set

[(p locatlcnof x) = (g 1-ocatlonof x) =
(x location) = ?] (2.66)

in the model space. Then, under the combined hypothesis (2.56)

and (2.66) the raasuis for the contradiction disappear. Also,

in this case, the evaluation cf CC[PLACE loeatiencf] (g) will

automatically set (x location) = g and (g lecaticnof) = (h x..?).

This will complete the process of assimilating the assertion

(h location g).

Ha general, in the model space, we shall always attempt

to eliminate the reasons for a centradiction by forcing it to

evaluate to ?.

The focus list should be made more selective than the

ones shewn In (2.53) and (2.54). It is quite possible that not

all "holding" relations should remain stable. Thus, for example.

mmmmma^mm

-78-

h may be holding mere- than one object, some may be FDCED objects

-- where FKED is, say a type of object -- and others may be

MOVABLE objects, one may then have the rule that FIXED objects

cannot change locations, only MOVABLE ones can. This rule may

be captured by the f-Hewing FL expressions:

NFL[HUMAN heIcling] [PLACE locationof] =

^HUMAN z] I ^Z type FIXED)) (2-67)

Only for objects z that are not FIXED should (0HUMAN holding 2)

remain stable. Similarly,

PFL[HUMAN holding][PLACE locationof] =

(tfymm z] I {z type FIXED)) (2-68)

For FIXED.objects (@HmjMj holding z) may be changed. Thus, when

z moves, -z would let go his hold on FIXED objects and take with

him only the MOVABLE ones .

Focus list conditions like this may be defined at domain

definition time or at problem solving time. The DF, FF and FL

mechanisms provide a practically unlimited and continuous control

of frame interactions, and secondary updating. The focus lists

not only provide guidance for secondary updating, but also

provide a formalism to describe updating criteria. Thus, strate-

gies learnt in an updating process may be summarized as focus

lists, for future use.

iliiiilüiwn ii .MII1.

-79-

The fccus list mechanism will be automatically invoked

In an updating process to dc means-end analysis, when necessary,

unless it is blocked off by the, so called, fjIter switch, which

can be associated at some time with invocation anchors, [Q r].

If for an [X r] there are no focus lists then it is assumed

that all the relations are stable in the context of every [Q r].

Thus, if the filter switch is en for an [Q r], or if there are

no focus lists for an [X r], then the means-end analysis step

will be skipped. The command PR, (Force Relation) is used to

force the invocation of the means-end analysis processes during

updating.

In the next section we shall discuss sane representa-

tional shifts in the rncdel space that would enable the system to

completely avoid the search for frame interactions and secondary

updating, in cases where locations of objects change. In effect

in the new representations, the objects carried by a HUMAN/VEHICLE

will implicitly move with the HUM AN,/VEHICLE. This shift in

representation is achieved by the use of anchored transformation

rules and the dummy storage flag (which was discussed in section

2.5.2, item (ill)).

",

.80-

2.5.9. Anchored Tr^nsformatlcsn Rules

The Anchored Transformation Rule, ATR[X r] has the

general form:

[(NIL <N3L-aotlcn>)
(? <?-actions >)
(T <T-actlans >) (2.69)

where NIL, ? and T are the possible outcomes of all the consis-

tency and interactions check at an [QX r]. If the checks result

in NIL then the <NIL-acticns> will be executed. Hopefully, these

actions will remove the cause of the contradiction. If the checks

evaluate to ? then the <?-action> will be executed. These may

find some or all of the unknown values in an updating process .

The <T-acticns> when executed may cause the "side effects

necessary in the dcmaln when (0X r) is updated. In this section

we shall discuss two kinds of uses of ATR's. One is a prescrip- •

tion for the kind of updating that was discussed in the previous

section. The other is a shift in representation that eliminates

the need for secondary updates.

Each ATR may, by convention, use implicitly the following

arguments :

1) (3 : the anchor
11) s : the change at (0X r)

ill) OLDVAL : Old value of (©* r)
iv) NB/WAL : New value of (Q^ r), and
v) REASONS: The reasons obtained fron1 all the checks.

■ ■■-■■■ ■ ■. ■.

-81-

Let us associate with [PLACE lecaticnof] the following ATO:

ATR[PLACE looatlOiOf] -
{NIL ((X | (s holding x) *.{* type FIXED))

(ASSERT (x locaticn ?)))

((x | (s holding x)(x type FKED))
(ASSERT ^(s holding x)]. (2.70)

The first compoient cf <NIL-action> asserts (x location) = ? for

all x that in effect satisfy (2.6?). The second component asserts

.(s holding x) for all x that satisfy (2.68). The command phrases

follow the syntax:

<command phrase> :: = <action> | <canmandphrase> ... |

,..<command phrase> | (<bindingcondition>
<c ommandphrase>)

The binding condition is used to bind variables which participate

in the <action>. The action itself will be executed oily if the

<binding ccndition> is successful, m (2.70) the binding

conditions are set expressions. In cases like this the indicated

action is performed on all the elements of the set.

The above ATR gives a prescription for using the focus list

predicates associated with [PLACE locationof]. This may result in

avoiding some search and decision at the updating time, at the |

expense of flexibility. The use of Am's to change representa- j

tiens in the model space is shown be lew :

Let us associate with [HUMAN holding] and [VEHICLE holding]

rtTiiii niili

■

-82-

tho following ATR, and modify ATR[PLACE locatlonof] as shewn in

(2.75). These ATR's and their operations are discussed below:

ATR[HUMAN holding] = ATR[VEHICLE holding] =

[(T ?)
(((SOME PLAGE p)(0 location p))
((y I (y clement of NEWVAL) ^(y element of C^VAL))

(ASSERT ([y location] flag |)(y location ?)

([p^ccaticnof] flag$)))

((y I (y elementof OIDVAL) ~(y elementof NEWVAL))
(ASSERT (y location p) ~([y locaticn] f^ag $))

(((Vz) (p location of z) =-?=>(z holding NIL))
(ASSERT a.([p .lecationof] flag $)] (2.72)

ATR [PLACE locaticnof] =

[((T ?)(((Vy)(y elementof NEWVAL) #• (y holding NIL))
(ASSERT ^([® locaticnof] flag |))

(((a elementof NEWVAL) ^(s holding NIL))
(ASSERT ([#. location of] flag $))))

(NIL ((x I (s holding x)(s elementof NEWVAL)

(x type FIXED))

(ASSERT ^(S holding x)) (2.75)

Also, let us associate with [Y location] for Y • HUMAN, VEHICLE,

VEGETABLE, ANIMAL, the following CC:

CC [HUMAN location] = CC [VEGETABLE location] •
CC[ANIMAL location = CC [VEHICLE location] =

[(PLACE p) j (0 locaticn p)(o heldby NIL) V

(§ heldby:lecation p)] (2.7^)

The ATR in (2.72) does the following:

. . .■■■■'

-83-

Por all y such that P has just gotten hold of "the y — i.e.,

(y elementof NWA]-.) ^(y elementof OLDVAL) - the dummy flag,

I« is asserted for the invocation anchor [y location] . Also

(y location) = ? is set, and for the PLACE, p, such that

(€> location p), (fp locationof] flag |) is asserted. As discussed

in section (2.3.2), item (iii), the $ flag has the following

interpretation: HVery time (y location) is called for, its value

will be computed using the CC anchor ATR associated with

[y location], ih our case, this would c^use the CC in (2.74)

to be evaluated, and (© heldby:location) to be returned, m the

case of [p location^, the value of (p locationof) may be,

(*-, x2 ... ?), where the ? indicates the presence of possibly

more elements in the collection. The CC associated with

[p locationof] will be evaluated to find these addltlcnal ele-

ments, namely the elements that are being held by ^, ^ ...

The second part of the ?-T-actions in (2.72) takes care

of the case when an object is just let go off by 0 --i.e.

-(y elementof NEWML) (y elementof OLDVAL). For all these y,

(y location p) is asserted. That is, y is pUt at the place at

which Q is located. The $ flag on [y location] is removed, and

if none of the objects at p is holding anything then the $ flag

at [p locationof] is also removed. This sets the representation
back to old form.

The ATR[PLACE locationof] keeps track of moving the

flag as an object at a PLACE, that is holding something, moves

-84-

to another place. If x is at p, and (x holding m) is true, tten

by (2.72), ([p looatloncf] flag $) will be true. Now, if x moves

to g, then ([g locatiuncf] flag |) is asserted, and if p does net

have any more objects that hold something then ~([p locationcf]

flag $) is asserted.

The selective association of these | flags now completely

eliminates the need for secondary updating in the model space, as

locations change. Thus, a VEHICLE may be holding a hundred

passengers. But as it moves, the only secondary change in the

model space will be the movement of the $ flag associated with

[p Iccaticncf]. The lecations of the passengers themselves need

not be changed.

In the example we discussed, fortunately, there was no

propagation of secondary changes in the updating process. The

propagation characteristics at an [X r] are governed by the, so

called CLOSURE([X r]),

CLOSURE([X r]) =

(DONLl.ST[x r] Ü DETLIST[X r] U

(CLOSURE(DONLISTfX r] y DETLIST[X r])) (2.75)

where the closure cf an union is the union of the closures of its

elements. In the case cf [PLACE locationof] , we had

CLOSURE ([PLACE lecationof]) = DQMLIST[PLACE locationof],

(2.76)

This was the reason, why we had no propagation of secondary changes.

■ ■ MMMHBB

 ■ ' IIMJIMI INI wmipiimpniigHII^MI^HMMHIMIMMIWTRS^ ' ' . ,-.„JUJJBWIi

-95-

One may define the depth of an [X r] to be the number of

applications of the CLOSURE operator in equation (2.75). For

[PLACE locationcf], its depth is 1 . in general, the defini-

tional filters and the focus lists may be ordered at an [X r]

in increasing order of the depth of [Y t], for [Y t] e DETLIST

[X r], and [Y t] e DONLISTfX r]. In an updating process, one

may choose the secondary changes, in increasing order of their

depths, preferring those with smaller depths over those with

larger depths.

CLOSURE[X r] may be computed from domain definitions. One

may also, of course, compute a CL0SURE[0X r] for an instance

[§£ r] of [X r], at "run time" by using the definitiimai filters.

This completes the discussion of the basic modelling

concepts in MDS. We shall conclude this section with a review of

what we have done so far.

■■■

-86-

2. 6; Object Based Representations! aiKUtt •

We have proposed a way of defining relational systemG?R,

and using them for two purposes: Che is to define the syntax

and semantics of elementary description languages. L, that are

based en R. The other is to define the structures and processes

of model spaces. M.

The bundle structures are obtained by viewing the rela-

tional Schemas and their consistency from the point of view of

classes, X, that naturally occur in the domain: what relations

may occur with X, and en what classes, Y, do the relations of X

depend on. The bundle of an entity, x, is a representation in

the model space, of the description of x in the language L. it

is a model of x net .nly in the sense that It is a representation

of x, but alsc. In the sense that it satisfies within the ^-valned

bMafillJMaJtejyj^thg proiperties of logical consistency, that

instances of the class X should themselves satisfyf in tea

relational system R.

Slots in the bundle not only have values, but also the

reasons and hypotheses associated with the values. Where a

value is unknown, it may be characterized by cendttiens,

expressed in L. Most importantly, all the potential interactions

of a bundle with other bundles m the model space may be derived

economically using the DF and PP filter schemes. The depth of

such interactions may be controlled at problem solving time by

the use of frame filters, and the filters switch.

■ ■

-

mm
. ■■ ■'' ■'

•

-87-

The schematic definition of the properties of a class X

in R, is alsc the definition of the bundle scheme, used to

represent members of class X. What makes these schematic defi-

nitions useful and interesting is that they are instantiable.

Thus, the burjdle paradign, which is essentially a descrlptlcn

paradigm may also be used as a programming paradigm: What is

described as a Jaailft schema may also be instantiated in the

model space. Of course, it is assumed that the schema defini-

tions themselves are consistent.

To instantiate, X, one may first create a new instance

cf the data-type that is associated with X, if the CC[X Instance]

and ATR[X instance] associated with X, admit of such an instance.

BUtially, all the slots of ©x will contain, ?, indicating that

their values are all unknown. The slots may be filled by issuing

(INSTANTIATE (^ r)) ccmmands for each relativ r, that is asso-

ciated with §x. If CC[X r] is imperative, then this may succeed

in finding the (y j (C^ r y)), or characterizing this value by

a ccnditim. othemse, it may find the candidates for (O. r).

The choices of y for ((^ r y) would then have .to be made by the

DESIGNER, TP or a user, depending on the context of creation of

©X-

Modification *c the model space are dene by the INSTANTIATE,

FORCE and DELETE commands. The problem solving systems or a user

that issue these ccmmands need not, however, be too danain specific.

The ASSIMILATOR can use the domain knowledge to understand

.iwiujpji JiiujmwHWiW RMPggHj

-88-

the consequences of a given assertion, and where there is an

inconsistency, provide the reasons for it. This frees the

programmer or the problem solver from a whole class of details

of the donain characteristics, namely all those that pertain

to the consistency of the model space. Thus programs can be

vague or may even contain errors. The system can respond intelli.

gently to unexpected situations. We shall refer to this kind of

programming as Knowledge Based Programming Srinivasan fl 973b,

1977c], a programming methodology in which a user or a system

need not be aware of all the relevant domain laws. The paradigm

for knowledge based programming is illustrated in figure 3. The

program control uses the reasons and hypotheses supplied by the

ASSIMILATOR to decide on the next step in program execution.

Also, these reasons and hypotheses are used to update the program

execution state. It should be noted that in this paradigm the

VA
1
GUE SPECIFICATION
DP PROGRAM

r

4 PR OHR AM
CONTROL

FROCK AM
EXECUTION
STATE 1 -

Hypotheses
Reasons -""L^ , \

Next cc mmand

ASSIMILATOR

1

i
MODAL SPACE

Fig. 3: Paradigm for Knowledge Based Programming

i mi mmmsKmmm.-mms***

-89-

"next command" generated by the program control, may not be

present m the vague specification of the program. It may be

one that is generated by the control.

The organization of the program control and the program

execution, state is a characteristic of the kind of problem

solving that is done by the program, to decide en the next

command. In MDS we distinguish between three general Schemas

for doing this: The goal directed schema of DESIGNER, the model

construction schema of THEOREM PROVER, and the understanding

schema of LINGUIST. Thus, in the MDS paradigm, an intelligent

machine will have fur execution controls, with associated data

organizations: Those of ASSIMILATOR, DESIGNER, TP and the

LDJGUIST.

This kind of use of model space is made possible largely

because of the choice of object-based representations, as the

basis for defining relational systems, and the use of

anchored PC's for constraint specification, in this schema the

CC's are used both as functions and as predicates. The advantages

of object-based representations, as contrasted with operator-

based representations, are summarized below:

(a) Local Isclation; The effects of an inconsistency at

a definition anchor is localized to itself, and other relations

that interact with it. The interactiens themselves are predict-

able and smoothly c ntrcliable, using filters and focus lists.

Errors can be characterized in terms of the static properties of

im^ßmmi^mtismmmmmmmyf'mfm^m^mmmmmmmm ":'r~3M

-90-

of the model space. In cperator-based representations, errcr

propogatlon characteristics canrct cften be easily stated in

terms of the static prcperties of a model space. They may be

characterized oily in terms of operator sequences, or a grammar.

These are not convenient entities with which one may reason.

(b) Immediacy and Focus ; The items that participate

in a predicate, functicn or a problem solving process can

provide immediate access to all properties, confcraints, trans-

formatins, and combinations of reasons, that might be relevant

to the context of their use. In cperator-based reoresentat-t mRr

the interactions amcng items will depend on the opsrator sequence

involved, and combinations of properties relevant tc a task may

only be indirectly obtained via the effects produced by the

operator sequences.

(c) Flexibility; This is partly a consequence of (a)

above. Changes and extensicns to definitions of classes in a

domain may be introduced more gracefully in ob.ject-based Schemas,

than in operator-based cnes. Changes and extensions in an opera-

tor-based scheme may call for a change of the entire system.

(d) Incompleteness; In object-based schemes. Incomplete

data result in partitioning of properties into known and unknown

categories, where the 3-values logical system may be uniformly

used to characterize a modal space. In operator-based schemes,

unless the operators are defined a priori to account for every

——

-91.

possible ccmblnaticn of unknowns, it is not possible to

characterize conveniently the state of a model space. Unknowns

in operator-based systems will result in "non-determinism",

which may contribute fet combinatorial explosions.

In the next chapter we shall present the basis for

commons ens e reasoning and briefly discuss algorithms for

CC-evaluation, and residue extraction.

-92-

111 Residues, Commonsense Reasoning and CC-evaluations

In this chapter we shall define the syntax of CC's, define

the g-calculus that is used to compute residues and prove the

properties of residues that make them useful for commonsense

reasoning. The CC-evaluatlon process and associated representa-

tions are discussed in section 5.4. Some of the representation

schemes in the MDS model space, that facliitate CC-evaluatlon

are discussed in Appendix II.

The methods discussed in this section are not unique in

any sense. They are included here only to make the definitions

precise and to point out the feasibility of using the commonsense

reasoning paradigm. In a subsequent paper we shall discuss the

complexity of CC ©valuation processes, in the context of the MDS

model space.

5.1 l Syntax of Consistency Conditions

<CC> * <set-exp>

<set-exp> -► (<set-var> "j"<P>)
<set-var> -> <var> | <tuple> I

(<scope>Lj<var>)
(<sc ope> LJ <tuple>)

<scope> -> <class> | <class>//'<scope>

<class>\ <scope> | x

<class> is used to denote the name of a class in a domain. It

is also the name of template that defines the class. The symbol

'W is used for blank, A is used for null string. It is also

' ■^'1^*?ZZ?HZZ

■ ■

-95-

later used for denoting null sets

<7ar> -> x | y | x<1> | y<1>

<1> > 0 | 1 | 2 | &*
<v> ■*> <var> | <tuple> | <fn-call>

<tuple> -> [<segment>]
<p-arg> -> <var > |(.<v> ^j<r>)| CCv> u <v>)

<^€3mev\t> ■♦ <|f>arq> (<s.e.3»wev»b>»-j ^p-^T-^
<r> -» <relname> | <relnanie>:<r>

<relname> is used to denote a relation name In the domain.

<fn-call> -> (<fn-name>LJ<args>)

<fn-name> denotes the name of a function defined by using

the function template schema. Functions appearing in a CC are

required not to change the model space during CC evaluation.

<args> -> <segment> | <set-exp> j
<args>JLiJ<args>

<quantifier>-> (<scope>|_j<b-vars>) |
(<q-type>LiJ<scope>LLl<b-vars>) |

(SOME LJ <sc ope> LJ <var> U <1> !_] <i>)

<q-type> ■#• AHL | SOME | THE

In our discussions in this chapter we will use "(Vx)"

and "(3x)" as the symbols for quantification. This is dene

only for convenience. All quantifiers in CC's are required to

be as specified by <quantifier>. In the existential quantifi-

cation, "(SOME ... <i> <i>)" the integers are used to indicate

lewer and upper bounds on the number of solutions.

'

<b-vars>

<P>
<var> | <var> U<b-vars>

(<P-arg>Li <T>LI<p-^g>) (
(<tuple-name> LJ<segment>)
-v <P>

<P> is the elementary predicate. We shall use symbols

P, Q, Pi, Qi, etc. to denote these. Notice that <p> can appear

with or without negation. The <tuple-name> denotes the name of

a tußle template. Tuple templates are used in MDS to define

n-ary relations for n > 1 ,

<&-seg> ->

<&-exp> ->

<V-seg> -»

<V-exp> +
<^ -exp> ->

«=$> -exp> ->

<'^exp> ->

<q-seg> ->

<fy> | <P> - <&-seg>
(0-seg>) | <p> j

<P> <&-exp>

<P> | <R> V <V-seg>
(<V-seg>)
(<p> ^ <p))

(<'P> <=» <p>)

-<|ö> I (^<P>)
<quantifier> <F>> I

<quantifler> <q-seg>

We shall use the symbol <q> to denote a quantifier,

<L-exp> ^ <p> | <&.exp> j <v-exp> j

< ^ -6xp> («=»-exp) (<^exp>
<P> -> <L-exp> | (<q-seg>).

The following special symbols are used, whenever

convenient

ta* mm

-95«

-> v I
n ♦ x

<P> x 4. <P>

A <P> -> <p>

? T j U | F

ThUS 9 Mil denote «. » anä „,. ? ^ used througha,t

«. the evaluatlon faction, and a Is used to denote a substltu.

tlon list of the form

a - f(x a)(y ;:) .__]

indicating substitution of a for x, b for y. etc. MP Is the

predicate expression P „Uh substitution a. ,[ojp ls the truth

value of MP. By convention^ . t. vl «m denote T. , or H1L.

consistency c.ndltl.ns are represented m the model space

in their mini-scope, forms. TMs form ls deflne(J ^ ^ ^

sectlcn, and rules ftl. convert^ an arbitral P to Its mini-

scope form are presented.

3.2 The_m.nl-Soope Form

Let <v> denote a string of universal <quantlflers>, and

<3>, a string of existential <quantlfiers>. Let PX be a predi-

cate expression m which x occurs free, and PX be cne m which

x does not occur free. Then, the definitio. of the Mini-Scope

Form (MSP) may be stated as follows:

(Ft) P is in MSF

(P2) If P ?.nd Q are in MSF then so are (P v Q) PO

in), (P^Q) andP^Q. ^ ^ ^

-96-

(F3) If P is In MSF then ((Vx)p) is In MSP only if x

cccurs free in P, and P is not cf the form P-jPg*

(P1 - P2)

(F4) If P la in MSF then ((3x)p) Is in MSF oily if x

occurs free in P, and P is not of the form

(P1 v P2).

The following rules may be used to cenvert an arbitrary

P to its MSF. The prepositional rules given below are to be

applied first. The rules are applied until no more rules can

bo used.

(A) Proposltjuial Rules

i) % <vP -> P

ii) (P=£> Q) -> ('vPVQ)

iii) (P <^ Q)-> (PQ V ~P -vÄ)

iv) 'v(pQ) -> (^p V 'vÄ)

v) 'v(PVQ) -> -JP -vQ

(B) Quantificaticnal Rules

i) a.((Vx)p) ■► ((3XKP)

ii) -((3X)P) -> ((¥x)^P)

iii) ((Vx) Px* P

iv) ((3x) Px)->P

Here Px indicates that x does not occur free in P.

v) (<V>PQ -> (<V>P)(<¥>Q)

vi) (<3>(PVQ)) ■» ((<3>P) V (<3>Q))
viii) ((¥x) <¥> (Px V Qx)) ^

(<V> (((Vx)P) V Q)

mumm

-97-

viii) ((¥x)<V> {Px V Qx) *

(<V.> (p v ((Vx)Q)))
ix) ((3x)<3> Px Qx -* «3> ((HX)P)Q)

x) ((3:c)<:,)> Px Qx ■♦
(«3> P ((3x)Q)).

We shall assurno that the variables in a predicate

expression are all distinct, m the current irnplementation

of MDS, the program for transforming CC's to their MSP was

written by Tau Hsu.

In the next soction the residues are defined and the

^calculus that is used for residue extraction is introduced.

3.3 Residues ana partitions .

We shall first define residues for propositicnal express-

ions. As mentioned befcre, let a be a substitution list of the

form:

a = [(x a)(y b) ...] ^j *

If x is in a, then we shall let

[a]((Vx)P) . [a]((3x)p) = [a]P. (3>2)

If x is free in P and x does not occur in a then we

shall assign x = ? in P. AISC we havej

(a) cp(x r ?) = ? fcr all x for which (x r) is dimen-

sionally Consistent.

-98-

(b) Per ö tuple name R,

9 (R f^-! ^ ... ? ... a) = T if

o((Vx)(na1 a2 ...x...a)) ■ T

= NIL If

..p((Vx)(R a1 a2...x...an)) = NIL

cine ■ ?

(c) cp(? r) = cp(r ?) = ?

where r is a relation path

For a function, f, if cne or more of its arguments is unknown

then its value is ?, unless the function itself returns another

value. Thus, in the ji-valued logical system cp[a]P is always

well defined.

We shall require that expressions of the form, (cpP = ?),

flo not occur in CC's. This is consistent with our view that

in a domain itself, taere is no concept of a relation having

value, ?: Every relation is NIL or T in seme model space. How-

ever, there may exist P, for which it may be impossible to cons-

truct the model space in which P = T or NIL. In MDS, such pre-

dicates may have value ?, and computations attempting to assign

a T or NIL value to them, may never terminate. This view is

consistent with semi-decidability cf sentences in first order

legic.

-99-

3.3.1 Reslduos and Par-t1tl^g „f Pronr,^ t1 rr,c

We Shan «Mum. that an prcpcalticns are m nim-accpe

fo». i.e. negattona ap^ cnly ln the elementary forms pj ^

« ana v are the „ly c.nnoctlves. We shaU ocnslder below> ^

groimdlng substitutions 1 P P v^o xoutions, i.e., p has no variables in It.

Deflnltlcn ':L.U Residues of Elementary fa^,

(^fajp=p) if cpfajp^cpr, elsex. ... (3.4)

TRfoJ^p ■ ^Rfa]p
PR[a]~p = ^TR[a]p

Definition ..P: Rosi.duos_o£_Ccn,1 unctions ana,Dls,unctj Gns

Let « be - cr V. Then

Lo.mma 3.1

(9fa]P\cp5) ^> (5Rfö]p . x) (3 7)

Lernma 3.2

Proofe of these lomHas are by Induction on the structure

of P: P is a <n> cr P t« /s «. n \ W or 1 la (^ v P2 v ... vpk) or ^ P2 ... p^.

 Ill Hi ll I j^JlJ^i^ji -SI—IIB^—^—^^l—M——^^»^»

-100-

We shall hereafter indicate explicitly the bindings

associated with a residue, by writing the residue in the

f cvm

[a](?R[a]P).

3.5 .2 Resl.dues_ and Partitions (f
Predicate Expressi ons

5.3.2.1 Substitution Rqnpfis. Their

Partitions and Sointicns of p

A substitution range is a list of the form

ft- (a1 a2 ... an)

where each

a1 = [{x, (41 a^ ...))(X2(^ a^...))

•" (xm (am1 knß •••)>]#... (3.10)

(3.9)

in which a^ are constants. For 1 - 1 ? « ^ ,, 0^ * r(Jr 1 - »#«#..«#11, we shall say-
that

(Hange %x.)==(all ^ ...) ^^

Definition 3^; („ J £) and (a e a).

(i) (a e a1) if a and cc1 have the same variables, and for

each x in a,

(Range a x) C (Range ^ x).

-101-

(11) (a e a) If there exists an 1 such that (&■ memborcf a)

find a e a .

(ill) (a 3 ß.) er (p_C a) If

((V5)(5 t i) + (6 e a)) (3.12)

In the ccntext of predicate expresslais, we shall at

times distinguish between three kinds of substitution ranges.

1) Range of Universais: QL-CP)

QLjCP) is of the firm

^(P) = ([(x(a1a2...))(y(b1b2...))]) (3.13)

and It specifies the range of values for the universally

quantified variables of p.

(11) Free Range: flu(P)

gu is of the form (5.9), and It specifies the range of

values fcr the free variables cf P. If P has no free variables,

then ^(P) ■ X.

(ill) Solutlcn Range: ^(P ^)

a is of the form Ö.13) and it specifies the solution for

the existentlally quantified variables of P, for the given

free range gu.

-102-

Slnce we have QMUBftd that all variables m P arc

distinct clearly, ^ ^ and ^ will not have any common

variables. By definition, let us set

[XJP = P and (A e x)

We shall ofLcn use aX cr aX to dencte a substituticn

range m which x is the only variable. We shall use ^(P ^)

to denote the ^-solu^n of P for the free range ^ A^c, we

shall generally Use oxpressicn of the fcrms:

(f^Jf^JC^JP)

with the interpretaticn

(Va)(a c eaf)(Vp)(ße 4^) ^

((36)(5 e ^aß)(cp[a][ß][5]P = ^) (3Jif)

irrespective of, whether th0 variables m ^ are universaily

quantified, and these m ^ are existentiaiiy quantified. But,

always c^ and ^ are used to specify ranges for the bound

variables of P.

We will consider residues of predicates, P, only in the

context of a given af. We shall make use of the fact that P

is in mini-scope form, and define the residues enly for

expressicsof the f or. ((Vx) (P^P.v .. .vPk)) and ((3x) (^ P2 .. .PJ),

ameng quantified expressions.

-03-

Every predlctito expresslcn p, may be reduced to Its

equivalent prepositional form in the model space, since P

is evaluated enly ever the models that exist in the model

space. Thus, residues of P are equivalent to residues of

their asscciated propvsitiaiai forms. But, prepositional

residues of this kind are likely to be very large expressions.

They are hard to generalize. They cannot easily be used in

new situations, when the bindings of the variables change.

The expressive pwer of the sentential fcrms of P is completely

lest in the prepositional residues. We shall discuss below a

way of extracting the residues in which the sentential forms of

P are not lost. We snail express the residues in terms of

expressions of the forms:

5R(P) = [<scope of bindings for variables in Q>]Q.

where Q would be a subexpressicn of the parent expression P,

and the bindings specify the context for Q. If the model

space changes and the bindings change, then Q may be easily

re-evaluated in the context of the new bindings. Since Q is,
in general, a sub-cxpressicn of p, the re-evaiuaticn of Q will

always be a simpler task, than the re-evaluation of p.

5.3.2.2. g-Solutions of P

Definition 3A1 Partitions Induced by P

Every predicate expression, P, induces a partition of the

HHUBBg

-io4-

range of its free variables, af (P) Into three parts

?af (P) for ? = T,U and P:

?a<P) - (o | (a G Sf (P))((p[a]P = 9%) (5J5)

Also, If 2 is the only bound variable of P, then we shall say
that,

5z(P a) = (u j falanU lO]P=(pC)) (3#16)

and

2(P a) = fTz(P a) U2(P a) PZ(p «)] (3.17)

If P is an elementary predicate, p, then z(p a) may be

computed using the model space. Por binary relations, the

storage of relation values m terms of collections (See

Appendix II), facillbates the direct retrieval of 2(p a) from

the model space. For n-ary relations, n > 2, the partition

ss(p a) will be computed when called for.

We shall present the residue definitions m such a manner,

that it makes apparent its conputation. Besides computing

residues, we shall also compute the, so called, partitions of

P for a given af. An example of a partition of P is presented
below :

definition

Suppose cp^jp = ? and P ■= ((Vz)^). Then by

tiun

-105-

((3a) (a € af)(r.[a]P = ?))

'-(3ß)(ß e af)(«[P]p =NIL) ... k.ril

Thus, ln this case Fg, (P) . x. However, Taf (P) may exlst.

%(P) would, of course, exist. The true reside win have
the form

»f«^-ei*,.(pm^K^j« ... (3.19)

for some sub-express!.« Q of p. Por eaoh a ^ ^ (p) ^

universally quantified variable, z, may have lts range ^^

tloned Into two parts:

MPa) = (^ b2 ... bm ?) and

^(Pa) = (^ ^ ...an),

such that for £ = u and T

(u • C«{Pa» ^ (cpfajnz.u)] .^j (3<2o)

Ln this case, we shall say that

U%(p) - ([a (2 U2(P a))] 1

(a « %(P))(U2(P a)\x)l (3>21)

Also, uT£f(P) = ([a (2 Tz(Pa)) |

(a f UO^PJHTZCP a)\x)] (^-^

and the true parti tiai of p.

-106-

This is the part of p M4«.>, ^
evaluates . ' ^ ltS ass^ated hindlngs, that
evaluated to true, when P itspif - ,

»n f itself evaluated to ? for g-.

True part of a p may alst- ^«^ w
2h fcM. Where ^%JP * NIL. Ll thls case caie may alsc have the „nw,

when P is a n. Hnl3^ ^^ Cf P- ^^
-nFlsa proposition, cne may have a true na.t I ,

Dart) r-p D u ^^ unknown

raay evaluate t0 ? f» - a. but scre fop
,p--^

be such that ,faJp = T_ f ^ 1 < K k n^y

^ Shal1 toOUGta* - »- =c„venUo„ that

aUAjp - nstxjp . x
(3.25)

A^c, m binding specifications „e -hal! 4* .

an tte , . **""«•« vartableS, ir the range

-U the instances m t;ie socpe cf

this „e shall usuau,: say Xhe ^' * 0aSeS llte

& the subseetlcn bei™ „e def1no ffc
" aeime the, so called r

calculus that 1, used tc oc
1IM' t

- P -n ^ ran, :os a / " e iTT^ "^ ^"^
« the stnuctu« cf p, %' ""^ " ^^ ******'»

(1) P is a p)r a ^

nil«"

-107-

(li) P - (^ P2 *...* Pk), k^1, - =. or V.

or (ill) P = ((Vy)^ v P2 v...v Pk)) ur

((3y) P1P2... p), k > 1,

whore P1, i < 1 ^ k are general predicate expressions in mlnl-

scope form.

Definition 3.ij; Truth Value of [af]P.

((cpfo^jP =T) ^ ((Va)(a e %) ^ (cp[a]P = Tj) (3.26)

((cpIOfJP = ?) ^> ((3a)(a e af)(cp[a]P - ?))

~((3ß)(ß e QLf)((p[ß]P «NIL)) (5.27)

(cpfo^JP -NIL) ♦^((3a)(a 6 af)(cp[a]P =NIL)) (3.28)

3h what follows we shall consider all propositions and

predicate expressions U be (n-i2)-ary predicates for n ^ 0:

Elementary forms (P ^ .. .xn y 2), propositions (M ^ .. .xn y z)

(M^g..^), (N x^,.xn y z), ÖJ1 V N2 V...V Nk), etc. We shall

throughout assume that the solutions

SjJf(2) ■ ([x1 ...xn y z] |

(9 (Z Xj Xg., .xn y 2) = cpf:) (3.29)

is available to us for a general expression Z. Jh section

3.5 we shall briefly cutline a procedure for obtaining £ßf (z)

for a proposition Z, using the relation values stored in the

model space.

 ' II»111"

-1o8-

3 .5 .3 : Elementary Form

P = (p x1 ... x y z) or

~(p x1 ... xn y z) (3.30)

^pf(P) may be obtained from the model space. Fcr a given

a, ^2(P a) may be directly retrieved from the model space, as

also the partition z (p a) (see equations (3.16) and (3.1?)):

The partitions of P,

nS[%]f = [^f(P)]P (3.31)

where

f:ßf(P) - ([a (z tlziP a))]| (a € %)

(?2(P a)\x)) (3.31a)

W_ßf (P)]P = UPJ. (P)]P Ife'-S else x. (3.32)

We shall heroafcor uniformly use the symbol p to denote

a binding for [x-, ...::n y z] end the symbol, a, for a binding

of the prefix [x1 .. .:cn y]. Per any proposition, Z, we shall

hereafter use the solutions defined below:

(A) ^(Z) . (a|(^(Za)\x)) (3.33)

(B) WfäiZ) = (a|(a c ^^.(Z)) (Tz(Za)\x)) (3.34)

(C) UPc^Z) = (Uaf(Z) UFaf(Z)) (3.35)

(D) FU%(Z) = (a((a g Faf(Z))

(Uz(Z a)\x)) (3.36)

-109-

Note that an a can bo m all of the solutions ^f (z).

(E) 5pf(2) =(.(b(2 .2(z a))]j{a e ^(z))]

(P) lFTßf(Z) .(fo (Z Tz(z a))((a e UFTaf(z))]

(0) ^(2) = ([a (z U2(z a))|(a eP^fz))]

(3.37)

(3.38)

(3.39)

All the above soluticns may be ccmputed if ^f (Z) is ^^^

3.3.^: Pil^.Pcsi 11 enal Fcrms

N = (^ V N2 V ... VNk) and

M = ^ Hg ... Mk f with arguments

Cä| X2...xn y z].

We have the fcllcwlng definitions:

(a) T2(N a) = U Tz (N, a)
i=1 *

(b) Uz(N a) =:Ly1 Uz (^ a) . Tz (N a)

(c) P2(N a) = n P2(N4 a) i=1 ^ i "/

(d) T2(M a) = n Tziw a) i=1 ^ i "/

. k
(e) U2(M a) =1U1 U2 (r^ L) . P2 (M a)

k
(f) P2(M a) = U P2(M a)

(3.40)

lllllilM

-110-

Kn.winß the solutions m (jAo) for each a £ ^ ^

^y then compute all one solutions (A) through (G) given In

the previous sectiui

Definition^: Rogues of Propcsltinn. w<^ ^^ ^ rir
ej-:pressicns.

» P - {P1 * P2 * ..,* Pk), where # » . ^ v# and each

P^ is a mini-scope expression, then let

^f(P) - (5%(P) n ^(P^) bM)

Then ^[^JP^ ^^ (^(P))^)) (5Jfö)

K" S4(P) = A then Its associated P1 nill get dropped off the

residue expression.

Definition 1.7; PartitUns of ^.pi^^.^

Again P = (^ . p2 . _* p^)

uPT4(p) ■ (^(P^ n IF%(P)) (3!^)

^(P) - (uc^) nF%(p)) (3<44)

nur^jp . (^ (iBru^(P)]Pi .nufPTai(P)]Pi)) (^46)

Using the solutions in (3.4o), and definitions 3.6 and

3.7, the residues and partitions of P may be computed. Even

«•

-111-

though the sclutlcn In (3.^0) are ttm/bmA «»i« ^ \^.-rvj art fat area only fcr proposi-

tions, they apply equally well for forms like

? = (?!* P2 *...* Pk)

The only requirement is that [^ ...^ y z] bo the free

variables of P.

3.3.5: Millsp>pe expressions

3.3.5.1 J Unly&rsai Quantifier

P - ((Vz)Q)

Q = (S v Q2 v ... v Qk), k>^t

-here P has (n+1) free variables ^ .. ^ $ and each (^(n^)

free variables [^...^ y 2]. v/e have the following.

Taf(P) = (a j (Tz(Q a) . Sp(a))3 ^gj

kliere Sp(z) is the range of values of z m the scope of z,

in P.

We have here integrated out the variable z.

Uaf(P) = (a j (jZ(Qa)V)) (5.50)

Ußf(P) ■ [^(^[Ua^P)] (^51)

«here Ua2(P) = [(z (u , ((3 a)(u 6 Uz (Q a)] '

-112-

Paf(P) = (a |(PZ(Q a)\x)) (3^3)

Pßf(P) = CF%(P)3[Pa
Z(i>)] • b^)

PaZ(P) = [(z (u j ((3a)(u e P? (Q «)))] (3^3)

Deflnltlcn ^.8; Residues of Quantified Express j ens

fcr Universal Quantifiers

]h;thls case, nan» of a e ^ will contain the variable

z. We shall extend each a tc Include z, as follows:

Let Tz^P a) =Tz(Q:L «) (3.56)

and fcr ^ = U and P

^zi(P a) = (i;z(Q a) n ^i\ a)) (5.57)

^f(P) - ([a (z ^z^P a))] j

(a c Saf(P))(z^P a)\x)) (3.58)
Then,

mOflP - ((Vz) V (^[^(P)^)) (3.59)

Definition ^S.Q; Pf-ti-tltlon of p

P = ((Vz)(Q1 V Q2 V ... v Qk))

lh this case bPT4(P) and P^^P) are again as in (3.45)

and (5.44), with tha exception that "ef (Pj) " for S = T and u,

respectively, should bo replaced by "^a ((3z)Q)".

ma—mmmmt

-115-

IIT

UIJäJCP) = ([« (z Tz1iP a))]|

(a e UFT 4(p))(T2i(P a) j=x) (5.6I)

Pu 4(p) != ^a (z Uzi(p «))]|

(a G Fy o^(P))(Uz1(P a) =f X) (5.62)

k
[af]P = (V (3z)(ra[T4(P)]QjL - TRCIF^CP)^)) (3.63)

k
nuraf]P = (V i3z)im[U^(P)-\öu± - UR[PUÜJ(P)]Q1)) (3.64)

In this mode of computing residues and partitions the

bindings specifyin: bhs ^-solutions for each subexpression Of

P is passed on to t e subexpression, past the quantifier. Ulti-

mately when the subexpression becomes an expression in ele-

mentary form, its residues and partitions will be computed

as per equations (3.^1) and (3.52). At a higher level, a

subexpression, Q^ nay get dropped off a residue, or parti-

tion expression, if lbs associated binding is empty.

3 .3 .5 .2 : Existential Quantifier

P = ((3z)(Q1Q2...Qk)), k> 1,

Q ■ Q^... Qk

where p has (n+1) free variables [x-, ..^ y] and each ^ has

(n42) free variables [x ,. .xn y z]. We have the following:

 .-. —. mmBBT&

-114.

*%,(?) - (a |(Tz(Q a) j= x))

T£.f (P) - [Taf (P)][Tcr(P)]

TaZ(P) = [(z (u | ((3a)(u c Tz (Q a)]

%(?) = (a j(Tz(Qa) =x)(Uz(Qc:) j= X)

Ufi.f(P) = [Uaf (P)][Ucr(P)]

Uaz(P) = [(z(u j ((3a)(a e U^CP))

(u t Uz(Q a)]

Füf (P) = (a | (a |r Ta...(P))(a jr U^ (p)]

Pfi.f (P) = Pa^. (P)

Definition 3.10; Residue of an Existentiaiiy
Si!P.^PlPled Expression

Pz1!? a) = Fz(Q1 a)

and for g • U and T

^zi(P a) = Uz(Q a) n ^-z (Q1 a)

?4(P) = ([a (z ^(P n))] |

(a « ^af(P))(5z:L(p a) \x)]

k
5R[%]P = ((3a) A (eRfSflJ(P)]<L))

1=1 i 1

Again, If 5^ (P) - x then the corresponding Q1 will

t ho re s 1 due ex pre s s 5. on .

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

((3.73)

(3.7^)

(3.75)

(3.76)

drop off

^^^..:.^.^^^.^.,^.^^:^.^^.^^
aü -■ :-.^ ,..^,„..-^M:.,.... ,

-115-

Deflnltlon ^.11 ; Partitions of Exlstenti any

Quantified Expressions

Q = ((32)Q1Q2...Qk), k > 1,

W^CQ) - (UPaf (Q) n Taf{Q1)) ... (3#77)

»O^CQ) = (Fg^ (Q) n u^ (Q^) (3#78)

^T%(Q) - ([a TZ(Q1 a)] (

(a € IFT4(Q))

(TZ(^ a) f.X)3 (3.79)

^üftJC^J - ([a Uz(Q. a)] j

(a e FIJoJf
i(Q))(Uz(Q:l a) ^x)] (3#8o)

k
nT[af]Q = ((32) A (mflF^CQ)]^)) ^^ j

nu[af]Q = (Oz) ^A (URrF^CQ)}^)) (?#&)

3.4.. Corn^utation of Residues an^ partlclnn^An Q^g^g

As presented above, the residue and partition computa-

tlons require for each P, ^f (P), to ^ knoWn# Slnce p ^

in mini-scope form, thl. would ultimately reduce^knowlng

e^f for the propositions contained by the various mlnlscope

subexpressions of p. We shall review below the evaluation

algorithm implied by the definitions given in the previous

section, and briefly outline the method for the computation
Gf iigin) for a proposition, M.

-

♦116-

3.^.1. The_Ey_aiuatlon AIporlthm

3.4,1,1, Sin; ,lp,. Universal Quantifier

P = ((¥2)1^), M = (M^ l^V..^), lc> 1,

Each Mi is a propcslLicnal expression, which win contain z

as one of its variaoles. We have the following solutions of R,

(MD; ^{M1 a) - (u |(cp[a][(Z u)^ =cp^))

(M2): TZ(M a) = U Tz (M, a)
1=1 *

im)t Uz(M a) =(U Uz(Mi a)) - Tz (M a)

(M4)j Pz(M a) = n Fz(M, a)
1=1 1

(M5): SfipCM) = (a j (?z(Ma) |.x))

(M6): UPaf(M) = (Uaf(M) UFaf(M))

(M7): IFT%(H) - (lFaf(M) nTaf(M))

(M8):Puaf(M) - (Faf (M) n Uaf (M)) '

im)t ^(M) - [(z(u | ((3a)(a€^(M))

(u e 5z(M a)]

(MIO), UP^CM) = r(2(u | ((3a)(a e up^^^

(u t Tz(M a)]

(MID.-P^CM) = r(z(u | ((3a)(a ePu%(M))

(u t Uz(M a)]

■ ■SS

»117-

The above solirclcns may be used tc o

cf P, as defined below :
btaln the ^-solutions

&h Taf(P) =(a| (T2(Ma) =SF(2)))CT%(M)

where ^(z) is the local range of z m p.

(K)-- Uc^CP) - (a |(af Uaf(M))(p2(Mu) =X))CU^(M)

(*5)l Faf(p) =Faf(M).

C^)« UFT%1(P) . IF^fM)

(P5): P^fP) =PU%(M)

(P6}: ^(P) =^2 (u | ((3a)(ae^f(P))

(u t ^z(M a)]

We may write

(p9): ^f(P) -[«%(P)]f5%{P)3

with the interpretation

(^Ha«5%(P)) ^((36)(5e?as(p))((p[a][5]p

We have the following identities:

= 90)

■W"

-118-

(1) Taf(p) U ll^o^p) =Ta:f(M)

(11) Uaf (P) U P^CF) = U^ (M)

(ill) TaglP) -%(«)

To compute the residues and partitions of P, the solutions of

P are redistributed arncng M. , for 1 ^ i ^ k, as follows:

(PlO): 5fii(P) (5%(P) n Sgf(M1))

(P11): lFTaJ:(P) = iWtftfi?) DTg^iM^)

(P12)| Fu4(?) = (F^CP) n Uaf (Mi))

(Pl5)l ^(P) - [(z (u I ((3a)(a £ g4(P))

(u c 5z(Mi a)]

Similarly UPT^(p) andFua^(P) are also defined. Using

these remstributed solutions, the residues and partitions of

P may be computed as shewn below:

(PU): SR[?af (P)]P = ((Vz) V (SR[5QJ (P)][^ (p) ^i))

(P15): nT[af (P)^ = (TR[TaJ(P)][Tc^(P)]M1 -

ro[UPTaJ(P)][IJPT^(p)]M1).

k
(P16): ITr[af]P = (V ((3z) ^[0^^))

im>t UViOf]^ - (UR[UaJ(p)][Ua^(p)]M1 -

UR[F
U%(P)][FU4(P)]M1)

PmMOTBHMBH

-119-

(P18) matw . (^ (te) mjf^(P)]MI))

If Sap(P) = X for a given 1. then the corresponding M

«11 *op 0« the ro,tdUe expreSSltn. So a1So. it „A^

«■ F^{P) 1. X then the oorreeponcttng M, will *op off the

the partition expressione, nr a„d m. r.speetlvoly. Let us

n« eonslder the soluciene for expreSsionS with a single

existential quantifier.

5.♦.1.2. gin, aejixistentlal Q,imnt.<Qgg

Q =('32)N), li - (N, N2 ...Nk), kssn

Eaoh Nl is a propositional expressi«, with z as one of its

free variables, «e hW, then the following solutions:

(N2).- TZ(N a) . n TzCN, a)
1=1 *

to): ^a) ={^ »(N, ,)) . Psö(a)

(»*)l Fz(N a) = u p2(N4 0)
1=1 i

(N5): 5ar{M) = („ | fe(Na) fx))

m, ^(u) =[(z (u| ((3a)(a6i;VN))

(u € ?z(N a)]

using these, the foilowlng solutlnns for Q may he ohtalnea:

20-

where

(Q1): Taf(C) -^(N)

(02): Uo^Q) . (a |(T2(N a) mX)ia e u^m)

(Q3): Paf(Q) - (a | Fz (N a) = SQ(z)))

m* .^(Q) = (ziu | ((3a) (a e 5Sf(Q))

(u e Sz(N a)]

(Q5): lFTaf(Q) =Fu%(Q) =UFTa6(Q) =Pufle(Q) =x

However, we will have the following solutions for each ILi

(^)l UPT4(Q) = (UFaf (Q) fl Taf (N^)

UFaf (Q) = (Uaf(Q) U Fc^ (Q))

(Q7): Fuo|(Q) . (Paf(Q) n Uaf (^))

mt IFT4(Q) = f^ (u (((3a)(a f ^(Q))

(u e Tz(N;L a)

(09): FU^(Q) = (Z (u , ((3o)(a ePij^(Q))

(u e WB(M a)]
1 '

(010): ^(Q) = Saf(Q.)

(OH): C4(Q) " ^(0) ^gv-/ ^i=ife

USing these, the residues and partitions may be written
as follows:

»18). 5R[5af (Q)]Q = ((3z) ^ m^Wm^W^))

(si?): matVt • cni^wn^id)^)

J

■;.. ■

-121-

^)i mogn ■ ((Hz) S (nT[%]N1)),

(Q16): nu[af]Q = ((32) ^ (UR[a,]N.))
i =1 • i 1

>

If P in 3A. 1.1 and 0 above have several quantifiers, then

the redistribution of the bindings to K± (K^) will take place

only after all the quantifier checks are completed. The organi-

zation of the binding for this case is presented in the next

section, below,

3.^.1.3s General Predicate Expressions

Case (a): p = ((Vz)Q), Q = (Q^V. ..VQk), k ^ 1, or

Case (b): Q = ((3z)p), p = P1P2...pk, k> 1,

where each Pi (and Q^,) is itself a quantified expression with

z as one of its free variables. After completing all the quanti-

fier checks for each P^^ (C^), we will have the solution, in the

following form;

where Z± is a pjL or a Qi, for 1 ^ i ^ k. Sgs(Zi) will contain

the solutions for the quantified variables, that are local to

Z±, It may be noticed that this form is the same one, shown in

(P9). Using ee^-CZj^), the solution for case (a) and (b) above

may now be obtained.

"'—'—" — , . i

-122-

For case (a) one should use formulas (Ml) through (M9)

and (P1) through (P18), after doing the following substitutions:

Replace (Ml) by,

("'')= tz^ a) . (U | (ta (zu)] . eef(v))

mo substitute t^ou^out « for « and ^ for ^. fc formulas

(PI3) through (P10) the .oluticn, ?sJ(p, wlll contaln nct only

the bl„dlngs speolflod for ^ but ^^ ^ ^^^^ ^ ^ ^

«h«.« in (Z1) aheve, Ur ^ That ls, ^ ^^^^^

•Peolfy binding rangoa „ct only for z. but aise for ail the

leoal variables of Q,.. To inaieate this. <£if}mb,

respeeified as follows: '

?2s(p) - (6U | ((fcHa , 5jJ(p))

«ho» 6U specifies the bindings for z and aix the other loea!

variables of ^. Similar =«siderations apply alSo fc,r other

as solutions of p.

Similarly, for case (b) the srlni-i „c . u yuj tne sciutluns may be obtained,
**„ by using ,Ef (Zi) tor_Zi. Pi> and the ^^^

0«) »d („) throush (Q16). tft,r the f&lli:wing ^^

Replace (N1) by

Ön^.tKP.a) -(«I (ta (. u)] , ^ (ptm

*d substitute throughcvrt. P for W and P, for H .

wmmmimmm

-123-

As in case (a), ?a|(Q) will bo specified by

5QJ(Q) - (6U | ((3a)(a e ^(Q))

(cp[a][6u]pi = (pjr)

where 6^ specifies the binding ranges for z and all other

local variables of P^ Again, similar considerations amly

also to other as solutions of Q.

The evaluation algorithm implied by the above definitions

may now be summarized as consisting of three steps:

Step 1: Finding solutions for propositions like M,!'},!«^

and JLj that occur within mini-scope expressions.

Step 2: Doing quantification check for the mini-scope

expressions, proceeding outwards*

Step 3; After completing all quantification checks, re-

distributing the solutions of the mini-scope expressions, among

their prepositional components. These redistributed bindings

are used for calculating the appropriate residues and partitions

of P. These residues and partitions will be computed, of course,

only after evaluating an entire predicate expression. In the

case of CC's, this will amoimt to the evaluation of the set

predicate, SP, of the CC.

The algorithm used for step (1) above, is briefly outlined

be lev/-

■■MHmaWMHMBHMmm

3,^,2. ffor.iputation of Solutions for Propositlonal

oyprossions

For each elementary form (p x^...^) or ^(p x^..^), for

n ^ 2, one may easily obtain from the model space the solutions

xi(P a), for given *. and i, 1 < i < n« The availability of the

anchor, @, in CC makes it possible to assign to each elementary

form in a CC a free range o(, and thus determine for each preposi-

tional form in a CC, its associated free range and solutions.

The scheme for doing this is briefly outlined below.

The elementary forms in a CC are ordered in a level tree,

as shown in figure 3. All binary relational forms in which §

ocCars appear at the top of the tree. \t level 1 we have the

anchor @. A.t level 2 we have all variables, x, for Which forms

ii(@ r x)" or "(x r @)n occur in the CC. At the third level,

one has all the variables, y, for which "(x r y)" or "(y r x)n

occur in the CC. Continuing in this manner, the various levels

of the tree are filled. It is possible that a given variable

has more than one arc impinging on it. Also, variables at the

same level may have arcs between them.

■ ■■■ .'..-. :' '.■■ > :'- ;-:■■.-■. i ■.

-I2^a-

\ <r>

nk

Fig. 3: The Level Tree of a 00

All the relations with "(?" are evaluated first. This will

cause value ran3es to he assigned to the variables at the second

level. These bindings may then he used to evaluate the relations

at the next level, thereby fixing the ranges for the variables in

the next level below. For each variable, its associated evalua-

tion sequences will be rcpeato d until the maximal, in case of

disjunctions, or minimal, in case of conjunctions, solution to

the variable is obtained. Tho tuples and function forms arc

evaluated last.

The bindings obtained for tho variables have to bo organi-

zed to serve two purposes:

(a) For use in tho quantifier checks, discussed in the

previous section, and

(b) For recognition of conjunction or disjunction frames

within which the bindings of a variable occur.

To serve tho purpose (a), the variables in a mini-scope

expression are ordered in the order of their quantification: The

variable of the innermost quantifier appearing last. If a

variable, x±1 occurs in an ordering, x1. ..x^. .x^ but does

not occur in a miniscope form, p, with which the ordering is

associated, then by definition the scope of x. in p is universal.

To serve the purpose (b), for each conjunction (disjunction)

——■——

-126-

in a CC, a conjunctive (disjunctive) franc is created. This

frame will contain the variables that occur in the conjunction

(disjunction). Each variable will contain pointers to the

quantifier associated with it, to the relations in the CC in

which it occurs, and to.the next variable in the orderin- out-

lined in the previous paragraph. Each variable will also contain

.slots for storing the partitions of its range, induced by the

CC. We shall associate with this frame, also the-procedures

nucessary to evaluate the relations in the frame, and update the

bindings. my time the bindings associated with a variable is

changed, the relevant relations of the variable will be rc-

evaluatcd. In a conjunctive frano the minimal solution of a

variable will be obtained by successive intersections. In a

disjunctive frame, the maximal solution is obtained by successive

unions.

The frame data structures created for the variables in a

CC would thus depend on the structure of the CC. The collection

of all such frames, created for a CC, is called the CC-

.associative netf CCA-net. The CCA-net, the evaluation order

for relations, the updating rules for the CCA-net, and the

procedures for quantification checks and residue representations

may all be compiled from the CC-definition. The details of

this compilation process and the complexity of the procedures

involved will be discussed in a future paper.

-127-

A fully instantiated CGA-nct will roprcscnt the coraplctc

solution of a CC. All the information of the residues and

partitions of a CC may be obtained from this net. The repre-

sentations of residues and partitions of a CC-evaluation

constitute a sunnary of the information in the CCA-not, in a

form suitable for communication in the language of the CC.

3 • Li-.3 : Comments on the evaluation process

To have an effective model space, and do comnensense

reasoning, it is essential that CC-evaluations be efficient.

In WS organization this is facilitated by several features.

The most basic of these is the way the relation values are

stored in the model space, as discussed in Appendix II. This

enables one to fetch easily the partitions induced by a relation

on the range of a variable. The second feature is parallelism:

One may incorporate parallelism in a CC evaluation process at

various levels. At the level of relations, the elementary forms

at the same stage of a level tree may all be evaluated in parallel.

At the level of rniniscope expressions, the conjunctive and dis-

junctive frames associated with different rniniscope expressions

of a CC may be evaluated in parallel. The casting of a CC in

mini-scope form reduces the height of nested quantifications in

a CC. This simplifies the structure and processing of the -conjunc-

tive and disjunctive frames. The quantification checks associated

with miniscope forms may all bo also executed in parallel.

-128-

Finally, the residue and partition extraction for the mini-

scope forms may bu done in parallel. This evaluation process

avoids back trackinr;. This is partly because it actempts always

to obtain the complete solution, and partly because the relation

evaluation sequence can be ordered, as per the level tree. Also,

for every binary relation its complete solution may be obtained

easily from the model space.

The possibility of compiling the CGA-net and its associated

processors further enhances efficiency. One may, in fact, conceiv

of machine orsanizations in which the evaluation algorithm for a

CC may be micro-programmed, taking full advantage of the parallel

processing possibilities. We have presented here only the bare

outlines of the evaluation process.

-129-

3.5. Conrnonsensü Reasoning and Problem Solving

3.5.1 : The B^lc Theorem

Let Q([af]P l^) denote the truth value of [A]p in

odel state, l^. So also, let CR(raf]P M^ and ^([^]P M^

denote the ^-residue and ^-partition, respectively, m model

täte, M1. Let Aaf be the change in af in a new model state,

Mj, such that the nev; free range is [^-fA^]. For each

variable in af, the change Aaf, may specify deletions andjor

additions to its ran; o of values .

m

s

Let

Aaf (SR([af]P 1^)) and Aafim{[af]P M.))

denote the residues and partitions with the changes in Aa

incorporated in then. The theorems in this section pertain

to the inferences chat may be drawn on the truth values of

<f>(t% + AOf]P M,)

based on the truth values of

(p(Aaf(gR([ar]P M^M^and

(p(Aaf (^(f^:]? M)) M.).
j

The theorems aro presented below. Their applications

are discussed in the next section.

-130-
.

Theorem 1 ; Up riat 1 n g /L^r ni n,"-: The ore

För 5 = T and P

[((cp(Aaf (^R([gf]P M.)) M^) = cpS)=>

((p([af + Aaf]P n.) - (p5)]

m

(3.85)

Proof is by inrluctlon on the structure of P: P Is a p

or a ^p, or P is (P^ #*Pg * ... * Pk), k ^ 1, and * = ^ or V,

or P is ((¥z)(P1VP2V... V Pk)) or ((3z)P1P2 ... Pk),

"Thapyem 2i Mc-c^ns-end Analysis Theorems

(A): [(cp(Aaf((UR([af]P M.)) -

(nrd^jp M.)))) M^)

= (cp([gT + Aaf]P M) (3.84)

(B): cp((Ac^((FR([af]P M.)) (nu(fgf]P i^)) A

(^([g^lP M.)))) M.)

(cp([gf -l- A^JP n.)]. (3.83)

Again, the proof is by induction on the structure of P.

3.5.2. Updatjnr; and. Learning Thaorem

Our discussion in this section pertain mostly to the T and F

residues. All statements made here also apply to UR([af]P M.),

if it exists, if the residue check included also nT([af]P M.):

that is the residue decks evaluated the left side of (3.84),

-131

instead of just the reffidues.

When an anchor [Cx r] is updated there will usually be

a set erf invocation anchors, at which the relation valu-s are

changed. Let this set be

B - {(@x r y^, (@ P1 y2)#..## ^ p)} (3#86)
i n

For every relation in B, the new relation value, y, , 1 < i < n

is mandatory .

For an invocation anchor [% rj implied by B — I.e.

{&x r y) is in B -- if

9(Aaf(PR(cc[x r](@x);M)) M.) = IJIL_ c!o (^&7)

then there would exist a subset, S1, of the new values of

(% r), for which the F-residue at [^ r] evaluates to NIL.

Then, by Theorem 1, it follows that the values in S1 may only

bo assigned as the complement solution of (@ r), i.e.
s1 C (2 | ^\tv r z)}.

Similarly, if for a sunset S2 of the new values of

(% r), the true-residue at [@x r] evaluates to T, i.e.

^(A^ (^(ccrx r](0x) mK^ = ^ b SQ)

then the new values m S2 may be assigned as the true values of

-132-

i®Z'T)a provided that none of values in * nn
values in S2 cause a contradlc-

^icn I« the interaction checks associated with ^ r].

If f or e = T or P,

(3.89)
^(Aaf(^(CC[X rJ(@x)M)) Mj i ^

then the entire rcrx wi ov,^ ^ , ,
Oct.. r] should be re-evaluated at §

While evaluatin: CCfX r^), one need ^^ .^^

5of (N), for the ^positions m the CC, only lf they do not
ap^ar in the ^^ ^ ^ ^ f^ ^ ^ ^ ^ ^^

^ding 5fif (N), the ro.evaluafcion may be ^ ^^ ^^ ^J

changes specified by Aaf and B. Thus CC ^ , .
-f u o. inus, CC re-evaluation usinp

residues may always he rt^0 y^ be done more economically than direct
CG evaluations

B. the case of interacWon eheote, the free ,«,„ a

would renam uncha11:;ecl, fer every (@ t, that *« 7
r„ * lLY CJ ,;hat *pends on an
I 4 r] in B. BUC, scme of the relatlcns ^^^ ^

00[@y tj or its 5.resldUes Mould have change, their vaXues

- ohee, for eensistonoy. the 5.resldues at t] may ^ _

evaluated with respect to these changes n« „„»
^nanges. The contradiction

check may be done as per ruleS

fcpCmCccrY'tjc^s) ^3 ^ =: T) ^

(@Y t s)], . Y J (3.90) and

-133-

[<!.(PR{00[Y t]((_3y S) „.)) M) .„JJ^ ^

^tS) (3.91)

Again, as m the previous case, the entire CO, CCfY t](£L.)

Itself „ould be evaluated only If (5.89) Is true for OCtY t](@y)

Thus, by a„ot application of Theore™ 1, one may slmpiify

oonslstenoy checks during an updating process, other appli-

cations 0f this theory arise m goal directed proble. solving.

They set the basis ln ma for learnlng_ ^ u discussed ^^

3.5.2 .2 : The Jjasls for Learning

Goals are staced In MDS m the form

(0 x y...z) = (<blndlng-condltlons>

(GOAL <goal-condltlons>)), (3.92)

Khere X'y 2 are the free variables of <bindlng-condlttons>

The binding con 'tlons „m s^clfy the Initial condition. for

«- goal, and the pjüects, that raay be USed to achieve the goal

The <goal-condltlon> will always be a conjunction of elementary

forms. The above goal statement may be Interpreted as follows:

"The <goal-concatlonS> are to be satisfied for the objects

-tlafymg the <Mndlnc.condltlonS>, for oven ranges of the

free variables x,y,...,z."

Each free variable vnii «^ „
naoie will, of course, have an associated scope.

- ■■'-mim

- 134-

We shall refer to statements like (5.92) as the dimensions

of goals. The dimension of a goal specifies the nature of

the goal. Thus, for example, the dimension.

((PEOPLE X) (PLACE P Q)(P location of X))

(GOAL(Q location of X)) (5.93)

is the dimension of a goal called, say (MOVE-PEOPIE P Q X).

It describes the nature of this action. This goal may have

associated with it a body, that specifies the action for

achieving the goal, namely

(XR Q X) = ((SOME VEHICLE V)

(ASSERT (V holding X))

(ASSERT (V location Q))

(ASSERT^V holding X) C>.9#)

3h general, a goal like MOVE-PEOPLE, may have several trans-

formation rules associated with it. Each transformation rule,

XR, will have the form:

(XR x yc..z) m (<binding-conditions> <actions>), (5.95)

where the <actions> may be subgoal statements or ASSERT,DELETE

or CREATE statements. An XR is said to match a goal, Gl, if there

is a subset of chan-es that the XR may cause, which matches with

a subset of the conjuncts m the goal condition of 01, and the

solutions of the binding conditions of Gl do not contradict the

•I"—

-135-

bindlng conditions of XR. The true residues of these binding

conditions of G1 and XR, win then characterize the c^text^of

invocation of the XR called the dimension of XR invocation, or
the Invocation dimensions of the XR.

fin invoked XR may be tried only if the preconditions

associated with the invocation dimension are satisfied, for the

objects involved in the XR. These pre-condition statements

will have the form,

(CANDO (<blndins conditions> <actlons»

(<cond:itions> (TRY <actlon>)

(<oonditions> (TRY <actlons>)...
• • •

(<conditirns> (TRY <actions>)] (3.96)

A CANDO-statement is Said to match an invocation dimension of

an XR if the "«bindliiS-condltion> <actions»" of the CANDO-

statement match with ehe invocation dimension of the XR. A

CA^O-statement is sald to be satisfied if none of the <conditicns>

in the statement are ccntradicted, or for every ccnlltlon that

is contradicted its associated IRY-statement was executed success-

fully. Again, the satisfaction or non-satisfaction of a CANDO-

statement would return residues that explain the reasons for

the outcome. We shall refer to these reasons as the

precondition checks>.

Finally, the execution of the <actions> m an XR would

result in a collection of residues that explain the reasons for

 . - _______________^

■ ■:■.■.- :_■,

-136-

the success, failure or conditional success of the actions, m

the Invocation context of an XE, one might have had several

choices for the relations and objects on which th, <aotlons>
-Ight he tate„. Por the oholces made) ^ ^^^^ returaed

by the actlcs may oo used to characterize the oholces. m the

tern of mOaLMiUma^t tmt Uaa. assoelated with the
XU. Thus, for example, if the assertion. (ASS^T (V holding X))

in (3.94) failed for th. reason, ^(X », < , capacltyof V),

then this piece of Information may be summarized at the XH m

the form of a negative focus list element,

NTLfV holdlna][.XR] m

([VX](^.(x (f: .j , capacltyof v)) (j ^j

On a later Invocation of the XR, the same assertion „in not te

tried for object ocmblnatlons, [vxj, that satisfy the above
focus list element.

Similarly, the relations and objects for which actions

«ueceeded may be characterized by ^Itlv^u^ts associa-

ted with an XR. The focus list medicates would consl.t of T

^d/or u residues returned by the ASSWILATOR. for the relations

and obaects involved, on a future Invocation of the same action
the relations and obiecte; ^a-no-f>,,4 *.^ xm oDjects satisfying the positive focus list
will be preferentially chosen.

XR's m m .ay also a have post-conditions associated with

the.. These have the same for. as the CANDO-statement. But the

i

.137-

word "IFDQNE" is used instead of "c^NDO". Evaluation of these

post-conditions also would return residues. We shall refer to

these as the <post-condition checks>.

The invocation and execution (also called the instantiation)

of an XR would thus result in residues that characterize the

instantiation, in terms of four components:

I[XR] . [<dlmension> <pre-condition checks>

<focu5 list> <post condition checks>] (3.98)

The DESIGNER is responsible for gathering together the residues

and associating them in the right manner with the XR's and goals,

and thus maintain an updated problem solvw R^Q A brlef

discussion of this process appears m Srinivasan [1973]. A

more detailed discussion will appear in Srinivasan [im*].

& (3.98) the <dlmensiQn> and Recondition checks>

together specify the appropriateness of an XR in a given invo-

cation. The <focus lists> have validity only in the given

<dimension> and precondition checio context, in another invo-

cation of the XR, if the <dimension> and precondition cheejo

of the invocation natch with those in (3.98) then the <focus

ll5ts> m (3.98) may be used to guide search according to the
rules given below:

(1) Avoid ohooslns relations and object ocmblnatlons that

satisfy eleaents m the negative focus Hat of matching

XR invocation.

-138-

(II) Choose preferentially the objects and relations that

satisfy the elements in the positive focus list of matching

XR Invocations.

(III) If choices as per (l) and (11) do not succeed then

update focus lists and repeat (i) and (il) for new untried

combinations.

By theorem 1, the objects that satisfy the true-residues

in the positive focus lists are likely to succeed again, and

those that satisfy the false-residues in the negative focus

lists are likely to fail again.

The focus lists associated with a goal dimension will

depend on all the XR's executed to achieve the goal. Again,

the DESIGNER is responsible for constructing the summarizing

focus lists for a goal dimension, based on the focus-lists

of the associated XR executions. As XR executions are repeated

in different execution contexts the DESIGNER will acquire

progressively more domain knowledge from the model space,

in the form of residues. These residues, taken together and

summarized as focus lists, would represent combinations of -

chunks of domain knowledge unique to a goal (problem) or

task environment. The use of focus lists an per rules

(i), (11) and (ill) above sets the basis for learning

in MDS. Through its interactions with the model space, the

DESIGNER acquires for each problem, its own unique way of viewing

the model space and using the danaln knowledge. As mentioned

-159-

before. Theorem 1 sets the logical basis for this learning.

The focus lists are used in MDS for a variety of purposes.

lüo other uses of focus lists ©re discussed below.

3.5.2.5: Use,ßf focus lists to gn-trte intelligent conversation

The predicate expressions in the characterization (3.98)

of I[XR], may be used selectively by a system to conduct a con-

versation with a user, concerning the nature. appropriateness

and reasons for sue cess/failure etc., of an XR execution. For

a given goal, the residues associated with the goal may be large

and quite numerous. To maintain an intelligent conversation

there should then be seme rules available for judicious selec-

tion of residues and predicates within the residues, which could

be used for the conversation. The positive and negative focus

lists may be used for doing this selection.

In explaining the reasons for the failure of an action

the negative focus list is usually significant: The action

failed because it contradicted some of the fixed relations and

values. While explaining the reasons for the success of an

action the positive focus list is usually significant: The

action succeeded because some of the secondary changes in the

positive fecus list of an XR, succeeded.

Thus, while explaining the reasons for the success of the

assertion, (ABSERT(V holding X)), the fact that

(X I : ^:capacityof V)

-14O-

was true, would not be of much Interest. Here, the phrase

[VEHICLE capacity] might belong to the negative focus list of

the action. However, If the action failed, then the reason

^(X fj= : ^ : capacltyof V), becomes significant, and forms the

basis for corrective reaction.

Similarly, suppose the action failed because--

~ (V location:locatlonof X). In this case [VEHICLE location]

may belong to the positive focus list of the action. Thus,

subsequent action might have been Invoked to change (V location)

to (X location), in this case, part of the reason for the

success of the action, (V holding X), would be the reaction

to the Initial failure. The dimension of this reactlon,namely:

[((PEOPLE X) (VEHICLE V) (PLACE P)

(X location P) ~ (V location P))

(GOAL (V location P)], (3.99)

would thus be a legitimate part of the reasons for the success

of the assertion,

3,5.2,4: Use of focus lists to guide Recognition

The transformation rules in MDS may be used In two ways. To

plan and execute actions to reach a given gr "" , or to recognize

given sequences of actions as constituting a familiar goal. The

recognition task may be posed to MDS as one of constructing the

-141-

dlmenslcns that may be associated with a given sequence of actions.

The central problern In this task is a classification problem: The

actions are to be classified Into two groups. Those that may be

considered the principal actions, and those that are the "slde-

effects" that accompany the principal actions in the modelspace.

Here, one may use the positive focus lists associated with the

actions to find one or more minimal sets of principal actions,

whose focus lists account for all the remaining actions in the

sequence. The dimension possible for the action sequence may

then be constructed In terms of the Initial and final conditions

associated with the principal actions. These dimensions may then

be matched against known goals in the system, to complete the

recognition process.

It is interesting to note here, that the focus lists are

built up as a result of interactions with the model space. As

the focus list repertoir becomes rich the recognition tasks

would become simpler. Thus, availability of goal statements

and XR's is not by itself sufficient, to do good recognition.

Experience with the use of the goals and XR's in the model

space is necessary. This Illustrates another aspect of learning,

in MDS.

Focus lists thus play a central role in problem solving in

MDS. They provide a format for summarizing and using domain

knowledge. The predicate expressions that characterize the

elements of focus lists are obtained from the residue extraction

process. The logical basis for the use of residues in this manner
is provided by Theorem 1.

-142-

3.5.5. Basis For Theorem Proving

Suppose one wanted to prove the assertion

[(HUM/iN h)(SOME PLACE p)

(h location p)] (3.98)

This asserts that for every HUMAN, h, there Is a PLACE, P, such

that (h location p) is true. Ih our model space. If there

existed a HWAN, h^ such that there was no PLACE, p, for which

(ho location p) was true, then this would contradict the

schema [S4], Introduced in section 2 "5 1

[14Ji (HLMAN location PLACE)

Hence, (3.98) is true m our domain. We shall present below the

formallzatlon of this proof, as it would appear in MDS, and use

It, to illustrate the basis for theorem proving in MDS. The TP-

ccntrcl structure in MDS, and its use of GenWs system of

logic (see Kanger I963 for a brief exposition of this logic,

and [Beth 1959] for an interesting discussion), are outlined in

Appendix III. The essentials of this logic necessary to under-

stand the example m this section, are presented below.

3.50.1 : Gentzen's System of logic g^ thp

calculus of seauenfcs,

A sequent is of the form

(Pl)(P2)...(Pn)->(Q1)(Q2)...(Qn): (3#99)

— _

-143-

f er n,m ^ c, where each P^^ and Q. is a predicate expression in

miniscope form. The left side is interpreted as a conjunction,

and the right side, as a disjunction. We will use symbols, S,

S., etc., to denote an arbitrary sequent.

A TP-state, TP,, will consist of a set of such sequents .

We shall use "; " to separate the sequents in a TP-state.
The calculus of sequents, proposed by Gcntzen, provides a

systematic way of expanding the quantified expressions in a

sequent, to generate sequents of the form,

(P1)(l^) ... (Pn)
Si ■> S2 (,q1) (q2) ... (qm); (5.100)

where each pu and q.; Is a literal (an elementary form), without

negation. The expansion cf quantifiers in the sequents of a

TP-state would result in the generation of two kinds of variables:

Eigen Variables; Each eipjen variable denotes a unique

and distinct instantiated object.

Eigen Terms; Each eigen term is an unbound variable with

an associated range. These ere the free variables in the expres-

sions appearing in sequents. The range of an eigen term may

consist only of the eigen variables generated by the calculus.

In a TP-state, TPj. let, EV(TPi), denote the collection of

all eigen variables in TPi, and ETCTP^, the eigen terns in TP .

-1 44-

The rules fcr the generatlcn ■ f these variables are

given be lew. Each rule is rt the fcrm

signifying that a sequent of the form %< -> 8g in a TP-state,

may be replaced by anothtr of the form "S, * 8uin.
5 4

Generalization Rules:

These generate eigen terms, z.

(* III S1 ♦Sg((3 s)(Qx)S-([(x z)]Qx)

S1 ->.r32((3 x)(Qx)S5
(3.101)

(V ->) : ([(x z)].P:;()S1 ((Vx)Px)S1 -► S
s^{WrypTtS~s^ l (5.102)

^here z is a new variable that does not occur in the TP state,

TP^, in which the sequents in the dinominator appear. The

range of z is, EV(TP.).

Instantiation Rules^:

These generate eigen variables, a.

C*V)l S1 ^S2((¥x)Qx)S3([(x a)]Qx)

"s7Ts'((Vx)Qx)S, (3*10:5)

and

■

■145-

S1V(7l)Px)S1 ->S3
(5-10^

where "a" does not occur in the TP state, TP., m which the

sequencs m the ^nominator ap^ar. "a" denotes an unique,

ntwly instantiated object. The adaptation of these expansion

rules, and other igoppsltlonal rule5 of Gentzen to ws is

df.scussed in Apj»ndlx III.

3.5.3.2: A^Jg'PPf example

We shall stai:.o ti* theorem to be proven, namely statement

(5.93), as a sequenti

(M) -♦ ((HUM« li){SOHE PLACE p)

(h looatlon p)); (3_1o5)

her. :(M) is a conJ.r^Uon of all true assertl^s m Bh, model

BP«.. Applying the rule .(. y) (the rule (3.1O?))(^ ^

sequent may be transformed to

(M) * ((SOME PLACE p)(h0 looatlon p)); (3-1o6)

«here h0 Is an eigen variable oreated by issuing the oo^and:

(CREATE Emm h0). Dlltially, ail the relations of h „ill have

the value V. assigned to the.. Thus, the »del ,pj. will have

the following:

w

iiiiiTtiittriiiiilinriiiiirirrnrni-i Tirrr''

— ■■

0 46.

f (HIW^N instanco (h ?))

(h0 type f)(iio oandrlve (?))

(h0 compatiblov;ith f?))^ holdlng (?))

(ho location ?)],

The rule (•» 3) fthe mile C^ 1A4\^ ^ ^ Itnc rule (5.101)) is applied next to the sequent

in (3.106), result^ ln the generation of m ^ ^ ^ ^

(M) -> (h location z);
(3.107)

The range of this z 1Sj at the momen
'"» iiiij, because no elp-en

variables exist In the TP «tot» t^ »
W Che T,-state, that are Instances of the soope

cf z. namely PLACE, and are created as a result oft.
or Gentzen's rules (or the1 -PPHoatlon

(or their adaptation to MDS). Notloe that

the «Ma,tng used ,0 M.lgn (Ranw z) ^^ is ^^ ^

captation of Oent^s rules. where „e have taken Into account
the fact that varlablaa 1* MnQ u^ ö*4.»uieB in MDS have SODDP^ -ac-,^.. „, ,

scopes associated with them.

« this point our obJectlve Is to conetruct possible ran^e
the eigen te™, z, uslng the ^^ ^^ ^ ^

-ail locus on the objects and relations on the rlght side ot (, ,ori

^. z. appear.. Thls Mould brlng _ ^^ •1->.

- « anchor. ^ .cation,. ^ are n0 ^ „^ ^ ^

% ceatlon). .ctlec that the lae. of a 00. at an anchor rc P]

1" fche ^'"»^ U*Hex r y)(x r mr instance J'
In effect, we shall now apply the ym* t* \t*

PPXJ the rule (3->)(the rule (3.1o4))

-147-

to the above predlcaco, to create a new Instance of PLACE, say

P0, and assert (ho location pj to the model space. This would

cause the ASSmiLATOR to Incorporate the following changes.

[(ho location po)(po locatlonof (ho ?))], (5Jo8)

and return the followm. unknown residue.«

(HO = (f(s (h0 ?))]((s heldby NIL) V

(s heldby:location p))

w r(y(h0 ?))]((^)(pü locatlonof y) ^

(S/iFEs y))) (3.109)

The TP interprets thi* IJR as the condition under which (3.I08)

has been accepted, ana incorporates this m the TP-s.ate as

follows:

(M)(UR) ♦ (ho location z)i (3>11o)

At this point, it is possible to assign a range for z, namely,

[U (P0 t))]. This would result in generating the assertion,

{TEASSERT ^ location z)) (3j11)

The negation sign in (3.111) is because "^ location z)" ap^ars

on the right side or the sequent in (3.110), and THASSMT attempts

to move "(h0 location z)" to the model space, (M), which is on

the left side. As per Gentzen's rule,

(-* ~): S*P -> S0S_5 -J 2J^ (

-148-

the negation sign is necessary. TH^SffiT w-n.
M ^ J-tt^öJERT win seek to find a
binding within the rm-e of . * u . -™0 *

the given binding would directly contra^.
tion in (M) & 0 i^Hltradict ^ existing asser-

CM). & our case, this existing assertion would be
(h0 location po)". Thus Z will be bou * *'

diction 4m *>* Po and ft contra.
dlotion in the sequent would be recognized & a
1:M« o * ö"izea. a our example,
m* contradiction causes every seou^ * *
rt ,. —SILse^uent in the Tp-state to be
contradicted. Notice, that m the case of
the TP .* *. 0Ur exar"Ple here,

<«.:,:" :r;:r:;"h" - - '• - -■ ~- 0). n oile theorem to be provon had ^^
example, ueen, i or

(M)(molocatlonpo)(motypeMISS1QNfflY)

(=0 looati«, po)(0o type CA1W1BAL) ^

((HIMAN h)^{h locatton p) y
O

(h type MISSION/IRY)))

then (UR) would be - . ^ , * / wuuxa oe Che unknown residup »4- r« n

cc,se, the proof will oaii *•« 1
1X1 oal1 for an expansion of CTID ^ .

of a type for h ^ - f ' nd assi^ment ^^ i or h, in ehe model space.

lli>JMti#TOiWiwailt

■ ■ . ■■

.149-

In using the unknown residues from the model space In this

manner, the TP attempts to complete the models m the model space]

in such a manner that a contradiction In the sequents may be j

recoenlzed. The basis for usln;: unknown residues in this manner j

is provided by part (A) of Theorem 2. In modelling the unknown

residues, (UR), the TP would attempt to maintain the values of

the true-partitions, m the model space, associated with the

(lB)'s. completion of the models for (UR) under this hypothesis |

would by Theorem 2, part (A) guarantee consistency in the model space.

The model space is used in this process to actively guide

the TP in seeking cont-radictions in the sequents. Jn a given TP

state TP^ each sequent m TP1 will cause a THASSERT of the form:

where the ^ »a will o the literals on the left side and q.'s,

the literals on the ri, ht side. If every secant ^ ^D ^

contradicted for t^o^same assignment nf Mn...^ ^ ... ^^

terms, then the proof is complete. An outline of the proof

procedure is presented in Appendix III. Search strategies, and

problems encountered in the proof process will be discussed in

a future paper.

The soundness of using a modelling facility like WS for

guiding search in a theorem proving process was independently

investigated by Sanford [Sanfiord, D. 1977b], in the context of

■ ' ■ ■ 1

■ .

-150-

• reSolutlon bMM l;icorem ^^ ^^^^ ^ ^^^^ ^

modelling Schemas In ms.

5.5.4. Basis, for Means-enri fln^o^

The basis for ::iGanR.end ^^ ^ ^^ ^ ^

of theoretn 2. We us« -M^ ^^T, J
u„o the follcwing corollary for neans.enä

analysis ln model 5paoe updatlng processes:

Corollary 3.1 .

j

^(fSf + Ac^] P M.) = f)j

By ap^oprlately forolng the ^.„.^ ^ f< focus

lists as a mi He. -, --, —
 guide, a new model state M is nhi-n-,-^^ . Ji 1S o'^ained, in which the

Z7T 0Ontradl0;1OnE ^ —^• - ™ - note.
COr0llary 3J 1S ^ ln «- — .^ «ly beoause „e

h^ve precluded occurrences of forms

(«pfaifjp = ?)

In any of the CC's.

Once the falscresidue is m*+ +-. löue is set to evaluate to ?, tie model
space may be uoriatn - . ^ y o« updateu, and new values for. i-v.^

e ^ vaxues lor the unknown relations
- - .no. ^ the oandldates avaiiabie ^^ ^

by using TP, as the case mav be ,f . ,
^ thG

3 be' lf SUCh updati^ 1- found necessary.
In the case of DESIGNER, where pre-condlti.n. .

thm ^ condltlons are Important
tne above approach oamot be tii^ f* ^ ^nr,

to evaluate t0 ? tr, 2* ' USO' f0r01n8 an P-—
ffe0t 0aUSeS the ^- »Dorset the oon.ltlons

■■' ^vUw ."JX^ '

-151

that existed, when oontraatati™, •.«. <ä0tlon Kas reoognlzed.) in this case
It is neeessary to ..t r*. sub.,oals to ellmlnate oontraactlons

^ele=tlne these .ub.so.u. .^ foous ^ ^ ^ ^^ ^

^-"*- "-X. „UX appear as the initlal condltlon for these

uh-^s. .hese Si,..,oals would attompt te

Theorem 2, for cpF . r cr ffl« ,,•,«. 9. - er ^ _ ?. The ramificatlons of fch;Ls

process will be dleouasad in a f,1+-
ssed m a future report [Srinlvasan 1977c].

-152-

IV CpnC luc31n_ _p£rriflT^

We have «„„^ the ^^ ^^ ^ ^ ^^

^ion and operate or ms. „e have shwn ^ ^ ^ ^

»P-. 1. doflned, „... lt OJeratsS(^ briefiy ^^^^^ ^^

m^y be used as the hft«4« -P.
but. for a variety of lntolllEent proble.

living, lite ampliation. SCS^dlreotedsoaroh theor.
, "^ -u B&aSil* theorem Buying

BäaBMlÄJaLmaffliaa. «d läiSuase^äerStanäia^
The physlcal cr ;aBl„tlon of ms may ^ ^^^ ^ ^

tins of a networ. of .hii2^ Each blmdla ls ^ ^ ^^^^

Xt is a „a.io ^t of interactions and «actions. „,,. lt ls

the basis for aU oeraaimlo.tlon. Each bundle
"■ üaon bundle, corresponds in a

natural way to a reco.mizable entff,, . entity in a d™aln of discourse
laandle sche„a re^eoents a class of entitles m tbe domain

»S itse^ raay bt, vlewed ln ^ ot ^ ^^^^

AT the highest level wa has/« ♦.»«- u
<ale' ^ ltself'""h ca.p-

nent bundles. MoDEL SPACE. ASSMILAT0R, „^ Tp and ■

LINGUIST. These bundle« ar-P i«*-
are lnte^onnected by communication

paths over which thsy mav exrh^n^
3 may exchange messages m the languages

ol a domain of knowledge. The mmtm im
S«. ihe meta-ianguage of MDS is used

to define this domain language.

Each component bundle of MDS mav itm*i* u
4« . '^ may itseli be again described
n terras of snb.bundXee. The „^^^ fflay ^ ^ ^

d-rlbe tbese exponent struet.es. The description of tbe «a

---- in tbe .eta la„gua^ ap_ ln s »

■

•*m^mmmi*m~

-153-

Each bun(älc 10 a£sa;latcd wtth three ^^ ^ ^^^^^

K-^uoU^ Pr^^ana g^,^. The K.ogrMs ^ ^^

invcea auto^ttoax, Khen thelr assoolated ^ ^ ^^

or m=dlfled. a ^ one may not oniy cjefine ^^ ^^^^^

but a1So create 1^=,. of these struotu,es> acoording ^

given specifications.

The bundle pavaälm ls a descrlption ^^^^ ^ ^

view or the fact that ^s can i^st^iate bundle schemas, ^

-cniption pana.i,, may also be used as a ^^^ ^^^

It is not, however a progr^i.g paradi^ ln the conventlonal

sense of the phrase. We have used feh- n»,
nave used the pnrasc, lajowlodge ^ggd

^oj-rammin^, to fefer to the kin* «f „ ne k:Lnd of Programming done m MDS
[Srinivasan 1973b],

*ntrax to the „g^^tlon of »s U thG fchree ^^
o^oa, system ^ lts assoolated ^^^ This ^^^

u to rate undeT ^^^^ ^ ^^^^^ ^^^ ^ ^ ^

.a.au ,,„,_ varlety of ^^^^ ^ ^^^^ ta

*«nct« atelll,:ence and Symboiio ^^^^
section I. We have •,•-> #»«-*

have, in fact, provided a framework for the do« .«
of "knonedge" ItMlf and .*. . definition

sei., and Its associated concepts of lan^a« a„„

fe-mU^ Kn«^. exists cnly m the context of J^T
tlona! structure. Within this st . "^ °f » organl.a.

MS st™t^- tacwiedge pertains to

^ff*^ ^ ~ — - - structure,
^J^-^te« that the structures can a«t. * ms

^7Z tirrdXttnrrr3 lndireotiy ^ ™ - Pfljiitions, and patterns of ohange ^ ^^

-154-

by transformation, rulp^ and focus-lists. At the level of

domain knowledge the sense definitions portray the static

laws of a domain, and the transformation rules, the dynamic
laws.

Our Investigations m MDS have pointed out certain ways

of organizing compv.ting machines, which would facilitate easy

and efficient impleraentation of MDS, making use of the Inherent

parallel processing possibilities m the MDS architecture.

These we shall discuss in a future paper.

We have perhaps raised In thiö paper more issues for

clarification and further elucidation, than questions that

we have answered, or solutions, we have proposed. The research

on MDS is an on goliv; activity. Much work remains to be yet

reported, and much remains for further investigation. We have

attempted to preseii: here the logical foundations of an

approach to create intelligent systems, the approach that

MDS represents.

-155-

v- ACM WLJD GEMENTO .•

This paper is based on lecture notes prepared for a

seminar on MDS, during the spring of 1975. Many of the concepts,

like those on filters, focus lists, commonsense reasoning,

theorem ^rovir^, ecc. are discussed here in greater detail.

The architecture of MDS has remained the same since the

spring of 1975. We have, however, had better definitions of

concepts and a clearer understanding of their scope and

significance.

The progress we have made on the implementation of MTS

would have been impossible without the help of my students Joel

Imln, John Ng and Tau Hsu. Explaining MDS to Joel and John,

clarified many of the concepts in my own mind. We would likl

to thank Sridharan for participating in the MDS seminar. Sri

was respc^sible for many lively discussions, which contributed

to our understanding of the significance of MDS.

An appreciation for the power, flexibility and naturalness

of MDS, began to emerge only after we started our work on the

BELIEF system of Chuck Schmidt. We sp.nt mo^ than six months

creating representations in MDS for act.. Schemas and act intern^-

tmm Schemas of BELI^. This laid the foundation for the

design and implementation, by Sridharan and Hawrusik, of a mini-

ma system, called AIM)S. Since then, MDS concepts have profoundly

influenced the scope and direction in the BELIWm project.

-156-

I learnt about the details of QentZen's system of Ic^lc

from lectures given by Gerald Darlington and Ann Yasuhara, m

the MDS seminar. T.is enabled me to adapt this system of logic

for Theorem Provinc lr MDS. We gratefully acknowledge the help

of Darlington and Yasuhara.

The discussion I had with Robert Baizer made me realize

the potential for the application of MDS to develop "Aufcomatic

Programing systems." The concept of "Programming over a

imo.ledge base, " grew after these discussions.

The work on MDS started late in 1971, as a part of my

efforts to implement a design-aid system for Computing systems

design, using as a oasis the Computer Description Language,

called CDLI fSrinivasan l967a, b]. Thls work enabled me to

perceive the severe problems and difficulties involved in creat-

ing an intelligent design.aid. The tyranny of programming was

unbearable, and the littleness of the resulting system would have

made it obsolete, by the time it was ready. The meta system

architecture of MOS came into being as a direct result of my

tempts to cope Kith these problems. Gavin Clove implemented

the first version of a template establishment system, called

TIMPEST. Since then WS has steadily moved in the direction

of being a formalism for the description and automatic utiliza.

tion of knowledge.
■

I am thankful to Saul Amarei. who as the leader of the

reeeareh group at HCA Laboratories, „as respcnslble for getting

-157-

support for the wor!c on CDL1 , during the late Go's. The

support given by RCA and the grants from the Air Force

Cambridge Research Laboratories, Bedford, Mass., together

made possible the work on CDL1, which later led to the deve-

lopment of MDS.

Since June 1971, through September, 1975, the work on

MDS was supported by the National Institute of Health of the

U.S. Government. During the period, March 1975 through August

1977, we had overlapping support also from the Advanced

Research Projects A-ency, of the Department of Defence. The

support of both these Institutions had been invaluable.

The writing of this paper would not have been possible

but for the sabbatical leave granted to the author by Rutgers

University for the ; ear 1977. 1 ^ thankful to Saul Amarel,

and to my colleagues in the department for recommending this

leave and to Rutgers for approving It.

-158-

VI: References:

1. Beth, E.W. [1939] "The Foundatians of Mathematics",

North Holland, Amsterdam.

2. Irwin, J. and Srinlvasan, C.V. [1975]: "The Description

of CASNET in MDS," RUCEM-1R-49, Department of Computer

Science, Rutgers University, New Brunswick, N.J. 08905.

3. Hewitt, C. [1972] 1 "Description and Theoretical Analysis

(using schemata) ... robot", Ph.D. Dissertation, Dept. of

Mathematics, M.J. Cambridge, Mass.

4. Kanger, Stig. [1963]: "A simplified proof for elementary

logic". In Computtr Programming and Formal Systems,

Braffort and Hirschberg (Eds),

North Holland, Amsterdam.

5. Le Faivre, R, [I976]: "Procedural representation in a

Fuzzy problem solving system", Proc. of National Computer

Conference, N.Y. 1976, pp. I069-I074.

6. Mlnsky, M.A. [1975]: "A framework for representing know-

ledge ", in Winston, 0. (Ed.). The Psychology of Computer

Vision", McGraw Hill, N.Y. 1975.

7. Newell, A, et. al. [I959]: "Report on a General Problem

Solving Program for a Computer," in Proo. Iht. Conf. on

Iftf, Processing, UNESCO, Paris, France, pp. 256-264, also

reprinted in Computer & Automation, Jxily 1959.

-159-

8. Sanford, D.M. [1977a]: "Hereditary-leck rescluticn: A

resolution refinement strategy combining Streng Model

Strategy with Lock Resolution," SOSAp-TR-30, Computer

Science Dept., Rutgers University.

9. Sanford, D.M. [1977b]: "Formal specifications of Models

for Semantic Thecrtffl Proving strategies," SOSAp-TR-52,

Dept. of OoBputer Science, Rutgers University.

10. Schmidt C.P., et. al. [1976]? "Recognizing Plans and

Summarizing Actions," Proc . ABB, Edlnburg, Scotland,

PP. 291-506.

11. Srldharan, N .S. and Schmidt, C.P. [1977]: "Knowledge-

Detected Inference In BELIEVER," CBM-TR-75, Computer

Science Dept., Rutgers Univ. Jan. I977.

12. Srldharan, N.3. [I976]: "The Frame and Focus Problems.

Discussion in relation to BELIEVER system", Proc. AJSB

1976, Edinbur;,, Scotland, pp. 522-353.

Srldharan, N.S. and Havrusik, F. [1977]: "Representation

of Actions and Transformations in AIMDS," CBM-ra-76^

Computer Science Dept., Rutgers Univ.

Srinivasan, e.V. [1975a and 1976f]: "Architecture of

Coherent]hfcrmation System: A General Problem-Solving

System," Proc w ÜCA13, 1973,. Re published in IEEE Trans,

en Computers, Vol. c-25, 4, pp. 390-^02, April I976.

I"?

-16o-

16

18

15. Srinlvasan, e.V. [197^]: "Programming over a knowledge

Brse: The basis for automatic programming, " SoSAp-m-4,

Dec. 1973, Dept. of Computer So., Rutgers Uhlv.

Srinlvasan, e.V. [1974]; 'beBcriptlon In MDS of a Coherent

Information System for a Banking domain," S0SAP-IM-4A,

June 1974. Dopt, of Computer Sc., Rutgers University.

Srinlvasan, e.V. [1976c]: "Theorem Proving in the Meta

Description System," SOSAP-IR.2O, Dept. of Computer Sc.,

Rutgers University, January I976.

Srinivasan, e.V. [1977c,d]: "Meta Descriptien system.

Part II: DPSICITER, The goal directed problem sclver,"

and "... Part in, the Theorem Prover, " Both of these

are in preparation.

Srinlvasan, e.V.: [1967, a,b]: "introduction to CDL1 , A

Computer Description Language," and formal Definition

of GDL1," Sole: tlflo reports 1 and 2, Sept. Oct. I967,

issued to contract AP 19(628) 4789, contract Monitor

Recce H. Ufbano, Air Force Cambridge Research

Laboratories, Bedford, Mass.

20. Winograd, T 1975 1 "Frames and the declarative

procedural controversy, " m BDbroW, D.G. and Collins,

A•M• (Eds-)' Mmmm&m and fj^a^m^, ACademlc
Press, N.Y.

19.

-161-

21. Srinivasan, C.V, [I976e]: "Pormal definition of the

model space of 'ehe meta description system, " SOSAp-TR

20B, Dept. cf Comp. Sc., Rutgers Ihlvorsity,

u^

A-1

APPENDIX 1

A MODIFICATION TO DESCRIPTION S-RIJCTUHE

Wo wish hore to admit the situation whore more than ono

person or vehicle nay hold an object. WQ shall also raakc the

holding relation transiting To offoot these changes, wo shall

change the clescription schena, [s8] as follows;

CS83 : (ITEMS heldby /\GENTS)

[SIIJ: (AGENTS elements (HUMAN VEHICLE))

CSl2]I ([ITEMS heldby] flag X).

"X" flag indicates that the relation is transitive.

Also, we shall associate a no CO, with [ITEMS heldby];

GC[ITEMS heldby]:

(y | (0 heldby y) ^(y elonent Q)

((VEHICLE x z)(SOME w)

(w heldby x)(w heldby z) =^

((x heldby z) V (z heldby x)).

First of all, an item cannot hold itself. Then, if two

vehicles x and z hold the same object w, then (x heldby z) or

(z heldby x) should be true. Most of tho arguments presented

in section 2 will go through also for this new representation;

Only the section on "Eramo chocking in tho Model space "

Section 2.^.7.1+. would appear different. ■-''•••-•'•«

A-2

AFFEMDIX II

Roprosontation of nnlicctlon and Sets in the Model Space

1• Model Space events and the Event State.

An event in the model space is an ASSIMIUTOR comuand that

cither creates a new nodol or updates the properties of some of

the existing models. Every event is assigned an event number,

in increasing order of its appearance. The event state of the

model space is the event number of the current (last event). Uc

shall use event numbers to specify the recency of values and

reasons in the model space.

2. Cpllectiün and Sets

A QoHeoticffl (set) is represented by a list of the forms

(2) = (6 # f c u r z1 z2—-z) (1)

where 6, #, f, 0, u and r have the following interpretations;

6(z) is the pointer to the definition of (z).

#(z) is the number of known elements in (z).

f(z) = ? or NIL is the flag of (z), (Open (z)) is true

if f(z) = ? In this case (z) has room for more

elementsv Otherwise, (closed(z)) is true.

c(z) is the compliment of (z),

u(z) is the unlflioim part of (z)

r(z) are the reasons (residues) associated with (z).

_i —^ ^ i , n^^—w——^—■■——in

A-3

Wo shall use (z11) to denote a collection with exactly

n elements and Un ?) to denote a collection which has n

elements, but has room for more,

2•1 DjlfiJlition of (z)

Each collection (z) is defined by a list template. Let

6(2)=Z. The frame schema (Z elements (Y., fc,...^)), partly

defines the elements of Z. The full 9l&mnt def±nitlon vlll

have the form:

6(z) = (Z elementdn) =

(<edn>1 <edn>2 ... <ed::>k) (2)

where each <edn> is an element definition of the form,

<edn> = [<lb> <ub> <scopc> <cc> <atr>],

where <lb> is the lower bound on the number of instances of

<scope> that (z) may have and <ub> is the upper bound on this

number. The <cc> will constrain the instances of <scope> that

may appear as elements of (z). The <atr> will specify rules for

adding (deleting) instances of <scope> to (from) (z). The

scope of (z), (Scope (z)) will be the disjunction of the scopes

of its element definitions.

If Y is the <scope> of an <Gdn> of Z then we shall say

that (Z element Y) is true. Also, we shall say that X is an

instance of (Scope (z)) if it is an instance of one of its

disjuncts.

A-if

2.2. Cpnplinent of (z)

G(Z) has tho form

c(z) =("c" # f t r z1 z2 ... z) (2)

where "c" indicates that the list is a compliment of a (z),

f(c(z)) - ? or NIL specifies whether c(z) is open or closed,

t(c(z)) = z is the true part of the list, and r(c(z)) are

the residues associated with tho members of G(Z). If x is

a menher of c(z) then x is not an element of the collection

(2). Only instances of (Scopc(z)) may appear as members of

c(z).

2.3. The_ linjgiown Part of (z)

U(Z) B("iü!#f t r z
1 z2...z). (3)

If u(z) exists then its members will represent the candidates

for elements of (z).

2A. Elements of .(_z)

We shall use "(z)" to denote both the collection (z) and

the list (z). The relation name "meraberof,: is used exclusively

for lists, and "elcmentof1' is used only for collections. Let

CC[Z clement Y] denote the CC anchored at the <edn> whose

scope is Y. Then,

[(Z clement Y)(Z instance (z)) =£>

((£) elomentof (z)) <^=>
GC[Z element Y]((z) 0^)] W

A-5

The representation of (z) is defined by the following:

. (a) (Q elementof (z)) 4^>

((@ nenberäf (z)) V

(-vCC raeraberöf c(z))

((Closed G(Z)) V^(CJ
 memberof u(z))))

(b) ~(@y elementof (z)) <?=>

((0 memberof G(Z)) V

^,(9 instanceof (Scope (z))) V

UCly memberof (z))

((Closed (z)) V^((S) memberof u(z))))
/

(c) ((£) elementof (z)) = ?) <==>

((@ memberof u(z)) V

^((Q memberof (z)) V

^(^ memberof c(z)))

(0 instanceof (Scope (z))

(Open (z))(OpGn c(z))) (5)

Each collection thus defines a partition of all the items

in its scope. Let n(z) denote the partition defined by (z):

n(z) = [T(z) U(z) FCzOl (6)

where

(a) T(z) = (x | (x elementof (z)))

(b) U(z) = (x | (x elementof (z)) = ?)

(c) F(z) = (x |^(x elementof (z))) (7)

Notice that an -unknown element of a collection may exist

only if both (z) and c(z) are open. If x is an unknown element

of (z) then x may potentially belong cither to (z) or to c(z).

A-6 ■

In general, the mfeown truth value of a relation, in the LIDS

model space, is a property that is incidental to the model

space. It is not a property that is intrinsic to the domain,

that is being modelled. Thus, one may have relations that are

universally trric (false), i.e. true (false) in all possible

model spaces of a domain. But, there is no notion of an

universally unknown truth value*.

The element definitions given in (3.6) enable economical

representations of collections in the model space. This is

discussed below;

2• Jj 1 Qiaeolal Cases yf (z)

^;i-) Instances of classes

Let I(Y) denote the collection of all instances of a

class Y. The form of I(y) is,

KY) = (Y#f e r y1 y2...y) (8)

where e(I(Y)) is the event number of the last event, that

created an instance of Y. In this case the complement of

I(Y) is not stored. By definition,

(y instanceof Y) <^=>(y memberof I(Y)),

~(y instanceof Y) <^>~(y memberof I(Y)) (9)

* The Theorem Prover in MDS operates in two valued logic. But

it uses the model space, which is in 3-valuod logic.

A-?

(ü) NULL Colloctions

(NULL (z)) is true if

,.(3) = (5 0 NIL (y))

(y) = (c G NIL (z) r). (10)

Here (z) has no members; Its cardinality is 0 and it is

closed. The "e" in the compliment of (z) indicates that all

instances of (Scope (z)) as of the event, e, are members of (y).

Every time (z) is accessed this event number, e, will be compared

with the event numbers associated with the classes in the scope

of (z). If any of these classes has an event number that is

Greater than e, then the corresponding elements of (z) will be

computed, using the cc's and Amis associated with (z). If all

the event numbers of the classes are less than or equal to e,

then the existing specifications of (z) will be used.

We shall use

(z) = 6(z)[NIL NIL T] ^5

to denote the NULL collection.

(iii) .UNIVERSAL Collections

(ALL (z)) is true if

(z) = (6 e NIL (y) - r)

(y) = (c 0 NIL (z)) (^2)

A-8

Hero again o, is given the same interpretation with respect

to the list (Z), as in (ii) above. We shall use *

(z) ■ 5(z)[T NIL NIL] (13)

to denote the universal colloction.

(iv) Open Colicctions

As a collection (a) is open only if as lists, both (Z)

and o(2) are open. Open collections my have one of the

following forms:
•

a) 6(z)[T(z) ? .P(z)],

b) 6(z)[T(z) ? ?]

c) 6(z)f ? ? F(z)],

d) 5(z)[? U(z) FCz)],

e) 5(z)f ? u(z) ? j,

f) 6(Z)(;T(Z) U(Z) ?], or

g) 6(Z)C ? ? ?]. (1lf)

As we shall see below, it will never be necessary to

enuuerate in a collection all the items in i.s scope. Goopared

to the number of instances in the scope of a collection, the

number of members in the representation of the collection win

always be small,

(v) Values of (@ r)

We shall use collections to represent the values of relati ons

A-9

(§x r). Every (© r) thus definos a partition of the Items in

its scope. If (X r Y) is true and Y is a node toi,iT3lato then

the valuu of (0 r) will be one of the followlngj

C@x r) = (z) a (6 1 NIL (y) > r y)

(y) = (c ? ? (z)) (15)

if C§x r y) is tr-uo Or,

i@x r) = (z) = (5 0 ? (y) (u))

(y) »(09? (z))

(u) = (u n f (z) r z1...zn) (16)

if candidates (z , z t,,,9z)f are Imown for (§ r), but

(@_ r) itself is unhnown. Or

(@x r) = (z) =(60? (y) u))

(y) = (c n ? (z) r y1.../1)

(u) = (u e ? (z)) (17)

if C@- r) is unlQiown but sone y, for v/hich —,((3 r y) is true,

arc lenovrn

Or

(0X r) » (z) = (6 0?) (18)

if nothing is known about (Q r). Similar representations will

exist also for the case where Y is a list template in (X r Y),

The partitions inplied by those representations are made use of

to obtain complete solutions of Consistency conditions. The CO

evaluation algorithm is discussed in section 3»^»

->«™.

A-10

Appendix III

Maa^.tAon of fta^^. .^^ ^ ^^ to

!I3a^orflp} proving fa vps t

The imormmim and insj^t^^tion rules have been

already explained in the text (see (3.101) threugh (3.I0M)

We also have the following prepositional rules:

C* V) :

(A ->) :

Ov ♦) :

Splitting RuXoaj

(V ->) : s1(p)s2>*e1i S^Q) s2->s3;

S1(PVQ)S2->S3;

S1^S2(P-Q)S37'"

Absorption fluiea.

S1->S2(PVQ)S3;

Sl(P)(Q)S2.>S^;

S1(P-Q)S2->S2;

licgation Rules;

s1s2->s3(p);

S1('vP)S2->S3;

S^ S2UP)S3;

^^^^HMi

A-11

l'or a given W-statc all appllcablc proportional ruloa

^ould bo applied rirst. Thoroaftor. the noeOod 3onorallZatlon

and instantiation rulcS arc applied to a TP.state, TP., to

gonorate the next TP-stato TO TO..
, ' tatC' ^W In the state IP for each

sequent, sav s 1-^4^1.^, » ^ Sj , 1 < ^ k, th0 Coiiection of asscrtions
n'+1

a(s? ' = ^jl-'-Pj-n^jl^ja--.^,,)

Is oonstructod, and all the IHASSERTis

(TIMSKRT aCsf1)), 0- = 1,2),..(k)

are assented to the Model Spaee In par8llel. I];ls ,^h. rosu]t

m the reoecnltion of eontradletlens In eaeh sequent of IT.

In snoh a ease the Tf process wenld ternlnato. Otherwise/Ihe

unknown residues generated by the VSaTMrTAmnn ^ ^ un" ÄooJJtiLATOR ±n response to the
THASSERT's will al3 he hvmi.^+ -i-. -M -• x au. De brought .o bheir respective sequents and
the TP-state, iPi+1 , wlll bo updatod# ^ ^.^ ^ ^ ^^^

rules will be followed.

The m associated with a p. win he brought down to the

loft side of its associated sequent, and the m associated with a

^ Will he brought to the right side. It should be noted that

applicatien of an .stantiation rule also rray result in the

receipt of an m, returned by the ASSMIIATOR as the conditions for

the acceptance of the insteantiation. The im»s associated with the

instantiation rule (3 .) wlll ß0 to thG lGft ^^ Qf ^ ^^

and those associated with (♦ ¥) win go to the right side.

A-12

Each TIIASS^T Will cause the ASSIIIILiTOR to call m its

own chockinc and updatinS processes. This nay result in narrm;.

ing down the ranges for the eigen terns in the IP-state.

One nay assume that the variables in each m entered in a

sequent would he distinct and new to the Th-stato. ÜSo, in eac

UR the following expansions would have been incorporated,thorebv

renoving the binding expressions appearing in the URr

[CSS (a1 a.2...e.n ?))] ((3z)P1P2... .rk) and

((3a)[(Z(a1a2...aii ?))]P1 P2.».Pk)

arc transforned to

n
.V[(z a.)^?^.,^) v ((}]z)P1P2..,Pk)J

and all subexpressions of the iorn,

k
((Vz)(V , A ± i i M

i:z1 CzC4 a; ...aj ?))]Pi)

are transforned to

& n

0
(i=i S=i (f(z ^^^^X^)^ VP2 v,..vpk)).

In both the above expansions the right nost quantified

expression will occur only if the binding ranges for z include a ?.

In attenpting TKÄSOTT if the range for an eigen tern, 2,

is NIL., then

SSSS. ■^...-Jrtiiiw

A-13

a) citlior archer applications of appropriate

tiation rules i/or.icl bo sought or
instan-

b) the model ooB^ln^np

would be initiated.
procedure for the relevant z'

to oxanpl. or the nodol smteSSm ^ was onccnteroe
in the «.^.lon i„ soctlon ^^ ^^ ^ ^ ^^ ^

which .ocel conpletlon procedure should be Inlliatea ln order

to fmd new possible bindings for an c™. *■* ., 1 o ior an eigen term, z, even though
it has already a non-NIL ran.-o. The m^«i -, . • "se. me model completion as a
strategy for using domain knowledge will bo A***

^KG uj.li oe discussed m a future
report.

