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ABSTRACT
The degree of approximation achievable by piecewise polynomial

functions on certain reqular grids in the plane is shown to be adversely
affected by smoothness requirements, -~ in stark contrast to the univariate
situation. For a rectangular grid, and for the triangular grid derived from it
by adding all northeast diagonals, the maximum degree of approximation (as the
grid size 1/n goes to zero} to a suitably smooth function is shown to be

O(n-p_z) in case we insist that the approximating functions are in Cp .

e e

This only holds as long as p € E%E and p € 23-4 . respectively, with r

the total order of the polynomial pieces. In the contrary case, some smooth

o B N L

functions are not approximable at all. In the discussion of the second mesh, a

new and promising kind of multivariate B-spline is introduced.
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SIGNIFICANCE AND EXPLANATION
\A:>One of the important properties of univariate splines is that in most
senses smooth splines approximate just as well as do piecewise polynomials on
\ the same mesh, This report shows this to pe untrue in the multivariate
se;ting. In particular, it details the cost in approximating power one may
have to pay foi the iuxqry of a smooth piecewise polynom%al approximant. In an

extreme case, piecewise polynomials of total degree < r on a rectangular grid

. Rfo
with all derivatives of order (?pﬁﬂbontinuous will fail to approximate certain

< AN =
smooth functions at all (as the grid goes to zero) unless p is kept below
(r"3)/2 .
During the analysis of approximation on a certain regular triangular

grid, a novel kind of bivariate B-spline is introduced. This B-spline, in

. contrast to the established multivariate B~spline derived from a simplex, can

be made to have all its breaklines in a given regular grid. This makes it a
prime candidate for use in the construction of smooth multivariate piecewise

polynomial approximation, and its properties will be explored further.
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APPROXIMATION BY SMOOTH MULTIVARIATE SPLINES

1 2

Cv de Boor and R. DeVore

1. Introduction. One of the important properties of univariate splines is that in

most senses smooth splines approximate just as well as piecewise polynomials. As we shall
see, this is no longer the case for multivariate splines where both the smoothness of the
spline and the geometry of the partition can have a limiting effect on the order of
approximation. This type of limitation has already been recognized in certain cases [9],
such as low order splines on a rectangular grid. For example, there is no effective
approximation by C“’-cubics on rectangular grids. The purpose of this paper is to give a
systematic study of this and related questions. We restrict our inquiry to bivariate

approximation but it will be clear that our techniques extend to higher dimensions.

Let Il = {li} be partition of RZ into triangles and/or rectangles. Denote by
ﬂn 1= {Ii(n)} the corresponding scaled partition, with "i(n) i= W /n, all i . Denote by
St p(lln) the space of splines of order r and smoothness 9 on nn , Ll.e., B ©
r

Sr p(ﬂn) if and only if s @ Cp(l?) and, on each ﬂi(n) , 8 is a polynomial of total
’

o
s () is dense in

order r (i.e, total degree < r )., We are interested in when U
n=1"r,p n

Co(lz) . We study this problem in detail for two particular partitions: I := {uij} ’
consisting of the squares aij = {4,i+1)x[3,3+1] , and the partition A which results
when each square of [ is divided into two triangles by introducing the northeast
diagonal. The technique developed for these two cases can be used for more general

partitions as well,
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In Section 2, we study approximation on Bn . This modest example already has the

salient features of the general problem. We show that S (tn) is effective if and only

r,p
if p € E%l « Thus, roughly speaking, only smoothness up to one-half the order of the

polynomial pieces is allowable in this case. It turns out that smoothness also affects the
rate of approximation in that certain C;-functions can only be approximated to within
O(n-r+p") + Thus any smoothness condition reduces the achievable order of approximation.

This should be compared with the univariate case where the full order of approximation is
achievable regardless of smoothness,

We study approximation on An in Section 3., Here, the role of the geometry of the
partition becomes more apparent. The splines sr,p(An) are effective if and only if

2r-4

3 v hence there is a gain over the case Zn from roughly r/2 to 2r/3 , It is

clear from our techniques that this is due to the fact that the partition A has three

o <

pairwise independent directions, viz. (1,0), (0,1) and (1,1), whereas I has only two,

e

viz. (1,0) and (0,1). More generally, if the partition I 1is generated by m pairwise

independent vectors (what we mean by this is made precige in Section 4), then sr p(lln) is
L[4

effective if and only if p € r-1 - ri!£171 « Thus the more directions, the higher the
allowable smoothness, but of course at the expense of a more complicated partition.

The results just described have two components. Pirst they say that gst p(lln) is not
. r

dense in Co(lz) if p is too large. This rests on the fact that s‘ p(ﬂn) will not
’

contain splines of finite support when p is too large. Our approach for this part of the
problem is more or less the same in both cases M =X and I = 4 . The second half of the

analysis is to show that gsr pknn) is dense when 0 is suitably restricted. This
r

requires the construction of appropriate approximation methods. We develop different

methods for constructing such approximations in the two cases.

r-3
¢ Xx=3
For I it is easy to see that S, := sz,p(zn) is effective when ¢ 5~ since S,

then contains the tensor products of univariate splines of order p+2 and smoothness o .

The more difficult problem is to show that S approximates any Co-function f to
within O(n-t+p+1) « This is done by approximating the derivative D“"’f by splines of




lower order and smoothnesa, integrating and making local corrections for the approximation
to f .

Our construction of approximants from S := sr,p(An) has a completely different
flavor, being based on extensions of the idea of multivariate B-splines. These ideas extend
readily to more general partitions. Recall that multivariate B-splines are defined by
certain cross sectional volumes of simplices, If the simplex is replaced by a more general
polyhedron, the resulting function is still a piecewise polynomial, but now perhaps with
fewer lines of discontinuity. In particular, by a suitable choice of the'polyhedron, we can
force the discontinuities of the regulting spline to be contained in the mesh lines of

An . As mentioned in Section 4, other choices for the polyhedra will handle other
partitions NI of »? + We feel that this viewpoint for constructing multivariate splines
may prove to be very useful. For example, some of the standard finite elements can be
described this way (3].

Here are some notational conventions used. CE(A) stands for the set of r times
continuously differentiable functions on the set A with compact support in A . 1} is

the L_-norm on r2 , and 1<1(a) 1is the L -norm over the set A . Further,

16t cm 1m0 se omax 10PN e1 ana (] m max 0B,

w: a+f<r a+f=r
|La_] denotes the largest integer no bigger than a , i.e., the "floor" function, and
T-a-1 denotes its companion, the "ceiling® function, which gives the smallest integer no
smaller than a . Further,
B o= {1,2,...,m} .

We also need the difference operator A; defined on the function g by the rule

r
85g 1 (x,y) = I (=1)P* (;] (;) g(x+ph, y+qh) .

P.g=0
This is the tensor product of the univariate r-th order difference operators in the

coordinate directions. Explicitly, I , with

| 4 r
h " 6(h,o) 6(0,h)

r
6:a b)g t (x,y) — L (-1)t-p(;) g(x+pa,y+pb) .
v p-o
.3 -
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[T




2. Approximation on rectangular grids, Let I := (aij} with aij 1.

["1"‘1+1]'[Yj'yj+1] and X4 = y; 1= i . We are interested in the restriction of §

1= §  (I) to some compact set,
r,p

Lemma 1. BRvery s @S = sr,p(x) can be represented on
82 = {(x,y) : x,y > 0}

as a linear combination of the truncated powers in

- - - P q P i
T Tr'p(t) 1= {(x %), (y—yj)+ t 1,3,p,920; pHg < ¥ ; q’?® if 52 o} .

Proof, This is proved by induction, similar to the proof that truncated power

functions are a basis for univariate splines. |||

Recall that tn denotes the partition I scaled by 1/n . Let x,(n) := y;(n) := i/n.

Set Sp =S, (E) .

Theorem 1. U, S is dense in C,(R?) if and only if » ¢ 533,

* npm °p 28.2enge ln & it and only 2% 2

Proof. It p € r—;’- + then S, contains all the truncated powers

p+1 p+1 ~
(x,y) b—> (x-xitn))* (y yj (n))+ and hence the space sp+2,p(zn) of splines of
coordinate order p+2 and smoothness p . It is known that ggmz p(tn) is dense in
’

co(lz) } see for example (S) .

Suppose that ¢ > r_;:i and that £ @ C;(Rz) with If - snl =0(1) as n+ e , for

some splines 8, @ S . Suppose without loss of generality that f has its support in

l+2. Since p > 5;—3- , the only truncated power functions in T (as introduced in Lemma 1)

are of the form t(x,y) = xp(v-yj)+q or t(x,y) = (x-x;) Py with p + q < r . Since

A;t = 0 for such t , we have from Lemma 1 that A;s =0 on R+2 for all s € S . This

implies that we also have A;sn = 0 on l+2 for n=1,2,..., from which it follows that

Ay f = 0. If we divide by h?* and take the limit as h + 0, we find that D{f+Tlg¢ = o,
L J

Since there are Co-functions for which D!FrFlg $# 0 , we have proved the theorem. |||

-4 -




Theorem | shows that only splines with smoothness less than about one-half the order

r will be effective for approximation, It turns out that even when p € 552 , the order of

approximation is affected negatively by smoothness. More precisely, we now show that the
optimal order of approximation achievable with splines of order r and smoothness ¢ is

n-r+D+‘|

heorem 2. Let p < 553 and k := r-p-1 . Then

(i) there are functions f € C;(lz) for which dist(f,sn) ¥* o(n'k) , nre

kg 2 _k
(ii) for each f @ Co(! ) . dist(f,sn) = 0(n" ") .

Proof. We will show that if f @ c;(nz) ana dist(£,5,) = o(n™¥), then D(F*kiTlg
vanishes at 0 , and this shows (i). Actually, with a finer analysis, we could show that
all k-th order derivatives of D(X¥/Y)¢ vanish on all of R? .

Suppose that f @ é;(lz) and that there are functions 8, € S, such that

(2.1) If - snl =o(nK) as n+w,

Let m be a positive integer and set h := 1/m « If n = bm with b an integer, then u,
r : r

1= Ahsn is in S, and, with g := Ahf ., we have

(2.2) g -ul = otn’¥) .

Now any truncated power t(x,y) = (x - %), Py or tix,y) = xP(y - yj)+q in T

=T (L) is annihilated by ar Hence, on R 2 + U, is a linear combination of the
r,p h +
r

splines Aht , with t(x,y) = (x-xi(n))+p(y-yj(n))+q in s, and i,j > 0. Such t has

P < p,gq and p+q < r , and therefore p,q < k « Thus u

n is a polynomial of coordinate

order k on each % (n) € tn with 1,3 20,

b
For given N > 0 , choose b so that 1/((b+1)m) € kn < 1/(bm) . Then the points

(in,0) , 0< i €k , are in Ooo(bl) and so (G?n,O)“bm)(O) = 0, Using (2.1), we have
| 3 k -k k
|(6(n,0)9)(°)| = I(G(n,O)(g-“bm))(O)l < const fg-u ¥, = o (tom)™) = o(n®) ,

p(k,0)

therefore g(0) = 0 . If we now let m * ® and recall that h = I/m and g = A;f R

we find D{F*:T)g(0) u 0, as desired.




We now prove (ii). Without loss of generality we assume from now on that f is

supported in the unit cube Q := [0,1]2 It p= L;Egng , then (ii) follows from the fact

that 8, contains the tensor product splines of order k = r-p-1 . For general p , the

argument is more involved. We need a certain subspace of Sy o the space sr p(Zn) of
’

those s € 5, for which slo (n) agrees with a polynomial in the span of
1]

{xpyq 1 pdq <r, pg <k}, all i,J . We will prove by induction on p the following

Claim. Por any P and any r with p ¢ 5%2 there is const so that, for any f @
C;(l?) supported in Q and any n , there is an 8 € Er.p(zn) supported in the square
(p+1)%Q  for which
(2.3) 1f - sl < const Il n TP

which in turn gives (ii).

Certainly the claim is true when p = -1 , the case of piecewise polynomial

T

approximation (see, a@.g., [5]). Suppose then that the claim has been established for all

and consider p = p_ ., Take r 8o that p € £3 « Take f @ Ct(l?) supported
] 0

P <P 3

0
(1,1)
in Q, and let g :=D f . Then

£(x,y) = f:f% g(E,n) dakan for all (x,y) € R+2 .

By induction hypothesis, we may choose u @ Er 2,p 1(tn) so that the support of u is in
-2,p-
929 and
E (2.4) Ig -ul < constlgl , po (=20 P-4 o onst en a7k

Our approximation 8 to f 1is gotten by integrating u and making local corrections

b using B-splines.

FPor p = (py,py) . let Hp(x,y) 1= Mp1(x)np2(y) , with Mj the univariate B-spline

with knots xj(n), eeey X (n) . Then Hj is of order p+! and smoothness p-1 , and

4041

is supported on the interval [xj(n), (n)) . It follows that up is in

(2n) . We assume Hj to be normalized to have integral 1.

%5041

P

sr-z,o-l

Consider the spline N_ :

b * H(p+1)p « It is supported on the square

; QP s [x(p+1)p‘(n), x(p+1)(p1+1)(n)] x [y(p+1)p2(n), y(p+1)(p2+1)(n)l

-6 -




T

and therefore the Np's have disjoint support.
For each p , define a, = IQ (g - u) . From (2.4), it follows that
~k+1 -k-1

<
(2.5) |AP| < |Qp| const gl __, n const Ifl_n .

Consider now the spline

For each p , we have
(2.6) [ tg-v) = 0,
QP
Hence, if we set
stx,y) = [y ¥ v(g,n) agan ,

then s will be in Sr (En) and if (x,y) € Qp then

1
£(x,¥) - s({x,y) = I;Ig(g - v){E,n) aEan = IE (g -v)
with

(p+1)p1(n)'xlx[°'y]) .

1= x
E := (10,x] [y(p+1)p2(n),yl) (1=
Now, for any (x,y) € (p+1)Q , we have |E| < const n—1 . Further, fE Np is nonzero for

at most O{(n) values of p . Therefore, (2.4), (2.5) give

p

le4x,¥) - six, ¥} = }IE(g -a - E apnp)\ < tg -ul || + ma; Iap] sz N

(2.7) *®
< const Iflt n .

This proves {2.3) for the approximation just constructed. Also, using (2.6) and the fact
that £ and u have support in sz , it follows that s = 0 outside of

(b2 + (p+1))Q < (p+1)20 , as desirea. /1

3. Approximation on triangular grids, We now show how the results of the lagt section
can be extended to triangular grids. We focus on the partition 4 which is gotten by
dividing each square of I into two triangles by adding the northeast diagonal. It will be
clear, however, that our techniques apply to more general partitions, a point made in
Section 4, We begin by developing methods for constructing smooth spline approximants. This
turns out to be the more significant part of the problem. Our construction will be based on

some variants of the ideas of multivariate B-splines.

-7 -




Let p < m and let P denote the projection of R® onto W , i.e., z = (Pz,y)

for z @R® . If A is a simplex in ®® with vertices Vge eses Vy o then the function
(3.1) M(x) = vol, {z@A:Pz=x} , x6@ RP,

is a piecewise polynomial [4), [8) of order m-p+1 which is, up to a constant (viz.,
vol-(A) ), completely determined by the points BVgr sees Py in RP and has its support
in their convex hull.

When p = 2, the piecewise polynomial M has any segment connecting any two of the l
projected vertices PVy 4 eeey Pvy as a mesh line, and is a polynomial on any connected
set not intersected by such a mesh line. For many purposes (including ours), this results
in too complicated a grid in the plane. This can be avoided if we replace the simplex A

in (3.1) by an appropriate m-dimensional convex polyhedron B and so define

(3.2) Mp(x) := vulm_p{z @B:Pz=x} , x6R,

The function M, so defined is again piecewise polynomial of total order m-p+1 because
B can be decomposed into disjoint simplices and therefore My is a sum of (simplicial)
B-splines., It has its support in P(B) . .
A more useful analytic description of My is given by the identity (used first in the
context of simplicial B-splines by Micchelli, see [8})
(3.3) £p $(x) uo(x) ax = [ ¢(Pz) az
-

which holds for any test function ( ¢ @ Co

distribution on RP . One of the advantages of (3.3) is that it can be used to define My

)o The right hand side defines My as a

when B is a convex polyhedron of dimension q < m . The right hand side is then
interpreted as a g-dimensional surface integral. This definition also makes sense when
P(B) has dimension < p . In this case, Mp is defined only as a distribution.

Suppose then that B is a convex polyhedron of dimension q € m . As is pointed out

in (2], it is easy to check the smoothness of M, by using the differentiation formula

(3.4) Dp, Mp = -I (z'ni)MB
i

proved there, Here, the By are the facets of B, i.e., the faces of dimension gq-1 ,




A yqerad

which make up the boundary of B , and n; are their respective normals. Repeated

application of (3.4) shows that D(Q'B)MB can be written as a linear combination of
MF's where each F 1is a face of B of dimension q - a - 8 . In particular, if dim P(F)

(a,B)
’ MB

= p for all faces, then D is again a piecewise polynomial. Thus My is in

c9-a-2 , with d the largest integer for which there is a face F of B of dimension
d with P(F) of dimension < p . Note also that the discontinuities of My occur across
the (p-1)-dimensional sets P(F) , with F a face of B .

We now turn to the construction of spline approximants on the triangular partition A

2 = (6, ).
of R® . Let ei H ( ij)j=1

be the unit coordinate vectors in R™ and define
v, 1= e, v, 1= e, ,

if j = 1(mod 3)

5 = e +e. , if j = 2(mod 3) sy J = 3,4,...,m.

e te, + ej, if j = 3(mod 3)

The vectors Vi eses Vg determine a parallelepiped B with vertices E? eivi , where

€, {0,1} , all i . The translated parallelepipeds Bjj := le,+je, + B have pairwise
disjoint interiors and fill out the slab RZ x [0,1]“‘-2 , hence form a partition for that

slab.

Consider the functions M := My and Mij(x,y) := M(x-i,y-j) = My (x,y) defined by
1)

(3.3) (or, equivalently, by (3.2)) with p = 2,

Lc-az.(i)tuij=12k2.
(ii) M.. € s (A) for r := m-1 and p := L;gi:i;J .
1] r,p — * —_— 3

Proof. The identity (i) follows from the representation (3.2) and the fact that UBi.

]
= R% x [0,1)™2 , with the Bj; having pairwise disjoint interiors.
We have already noted that M is a piecewise polynomial of total order m-1 =r . To
. check the smoothness of M , note that any face F of B is of the form

F o= {vse Lav :0<ac<)
ier
with v some vertex of B and I cm . If P(F) is a gegment, i.e., P(F) has dimension

-9 -




1, then all i @ I are congruent modulo 3 , hence |[I] € ri!§371 « Therefore, M has

smoothness p := m - ff:§2'1 -2= 3§:2;J « Such a segment P(F) must lie on the line

Plv) + xP(vj). - x<™,

with j = i(mod 3) , all 1 €I, and j @ 3 . This is one of the mesh lines which form the !
partition 4 . Since M is discontinuous only across such segments P(F) , it follows

that M is in S (8) , and therefore so are all the M, . 1
’

2r-4
3

linear combination of the truncated powers in

Lesma 3. If o0 > s then every s € Sr p(A) can be represented on n*z as a
’

T := Tt'p(A) 1= {xpyq, (x-xl)’pyq, xp(y-yj)*q, (x-y-xi)+p(x+y)q : p,q®0 ; p¥q<r;

P,q > p whenever they exponentiate a truncated function} .

Ij and cIj the left, respectively right, triangle in 4 which

« Let 8 @ S and let ty be the polynomial of order r which

Proof. Denote by 0O

make up the square ¢©

i3
agrees with s on 0;0 » Then s ~ ty = 0 on the line y = x . Therefore 8 - to=u on
+
000 , with
)P q
uix,y) p§p cpq(x y)* (x+y)
p+a<r

set t, := t; + I cpq(x-y)+p(x+y)q » Then s = t, on ooo . We now continue in this

wmanner, moving to the right, using the truncated powers (x-xi)*pyq and
(x-y—x1)+p(x+y)q to construct a function t in the span of T which agrees with 8 on

-
°oi)i-1 of squares, this t is just the

polynomial t; . Proceeding now up that column, we further modify t by the addition of a

_i aio , i=0,1,2,4¢¢ « On the first column (

suitable linear combination of the truncated powers xP(y-y,).9 and (x+y)9(x-y-yj)+q
(note that (x-y-yj)+q = (x-y—xi)+q for suitable x; ) and so obtain a new t in the span

of T which agrees with 8 on the first row and first columnn of squares, i.e., on
w

U g, .ug .
=0 io ]

we claim that now s = t on all of 1’5 +» We prove this by showing that s = t on cij '

i,5 > 0 , using lexicographic ordering and induction,

- 10 =




(xi,yj) AN

Agssume that 8 = t on Ouv for all uy < i and for all (u,v) with py =4i and
Vv <j (as is the case for (i,j) = (1,1) ). Then u := s-t is a piecewise polynomial
function of total order r and smoothness p which vanishes for 0 < x < x4 and for 0 <

y < yj . If now u were nonzero somewhere in o , then, on restricting u to some

i3
line x+y = ¢ , with xi+yj <c < xi+1+yj , we would obtain a univariate piecewise
polynomial function v of order r and smoothness p which vanishes outside some

interval {a,b] and has just three knot locations, viz. the points a , (a+b)/2 , and b .

Further, v would be nonzero somewhere in [a,b] . This would imply that the sum of the

multiplicities of the knots a , (a+b)/2 , and b is at least r+1 , which would imply

that at least one knot has multiplicity <« £§l , therefore p € r-1 - riE%l_] = L;3§:2;J

, a contradiction. This advances the induction hypothesis and so finishes the proof. |||

2 s 2r-4
. v < .
Theorem 3 Y St'p(An) is dense in Co(l ) if and only if o 3

Proof. By Lemma 2, Sr p(A) contains the local and positive partition of unity
’

2r-4 . This implies the density of Us (A ) Dby the following

3
standard argument: The simple approximation map

. <
(HiJ) as long as o Vs, (&

Tf := L f(xi'yj )Hij
i,3

carries f into Sr p(A) and satisfies
’

- - . = L ' Y)= )M
| (£-T£) (x,¥)| Ii’j(f(x YI-E0x, ,¥) )M ()|

. < max |£(x,y) - f(xi-Yj)l
Mij(x,y)fo

Consequently, 0If - Tfl € w(f; diam supp M) . Now scale.
' 2r-4
3

Por the converse, assume that p > « Consider the difference operator




£, 4T r r
Ay 2= 8,08,y « Since &, and &, .,

span of Tr p(A) defined in Lemma 3 ., Therefore, by Lemma 3, Ahs =0 on ‘*2 for
’

commute, we have Aht = 0 for all t in the

s a) .
every 8 @ t,p( )
Suppose now that f € C;(lz) and that If - sn' +0 (as n + @) for some s, @
Sr p(A ) , n=1,2,... « Assume without loss of generality that f has its support in l+2.
14
Since An is obtained from A by scaling, it follows that Ahsn =0 on l+2 , therefore

Ahf = 0 . Dividing by n3  and taking the limit as h + 0 shows that

(b o D ) e = o
% e %1%, !

-»
which shows that £ is not an arbitrary function in Co(lz) o |1

Next we consider the approximation from Sr p(An) to smooth functions. For this, we
’
need to consider the B-splines associated with faces of B . Any I cm is associated with

a face, viz. the face
F := Fy 1= {iéxaivi= 0<a <1},
This is a face of dimension |I| , or, a |I|-face, for short.
Denote the corresponding B-spline MPI by ML . We are particularly interested in
faces for which
2c1 and |1/ > 2.
For such a face, set

Q = {Tav :0<a <1}.
ggr L1 i

Then, for any test function ¢ ,
I
In’ e = foor = [0,

using the facts that ¢(Pz) = ¢(Pz;) in case z @ z5 + Q, and that the (m-|I|)-
dimensional volume of Q is 1 . This shows that, for such a face,

I . -
(3.5) Mi(x,y) = vol, {z @ F+Q : ¥z = (x,y)} = v°1|I|-2{zo : Pzy = (x,v)} .

Now define




with Fiy = (i,3) + F the face F translated. The F; have pairwise disjocint interiors

p) J
and form the set RZXC with C:i={ L av, : 0€a €1} . Hence it follows from (3.5)
i1 i
ier\2
that
I
(3.6) T Hij = v°1|I|-2(c) = 1,

i,3
Our next lemma is a special case of a result in [3].

Lemma 4. let r := m-1 and Kk := L_Z%iZ;J . Then, for a+f < k , there are
a

X
polynomials QaB of the form QaB(x,y) = ET%T + Ras(x,y) with RGB of coordinate order

(a,8) such that

a B
X

(3.7) I Qdﬂ(i'j) Hij(x,Y) - 181 °*
’

i,3

Proof. The proof is an adaptation of the argument in an early draft of (3] to our
particular context. It is essentially an inductive proof on the number |I| of the

following

Claim. let 2cIcm .Let h:=h :» |I] -d, with d the largest integer for

which there is a d-dimensional face G of F = F; := {zieIcivi : 0<ai<1} with dim P(G) <
2 . Then, for any a+8 < h , the function 008 , given by
a.B I
’aB 1= itj i3 Mij'
r
is a polynomial of coordinate degree (a,B) with leading coefficient 1 , i.e.,
(3.8) Oas(x,y) - xuyB + terms of order (a,B) .

To prove this claim, consider first the case |1| =3, Let I={1,2,ul . If u =1

or 2 (mod 3) , then d = 2 , hence h = 1 and the claim is just (3.6), If u = 3(mod 3) ,

then ul vanishes at all mesh points (i,j) except that HI(1,1) =1, while L, .a .H?

ijij ij
is continuous and piecewise linear. Therefore

L f(ie1,9+1) Hij = f
1,3

for all linear functions £ , and the claim follows also for this case.

i
I
I
'
|
1
i
!




Lat now 8 > 3 , assume the claim proved for all [I| < s , and consider some I
with |I| =8 .

1f 4 =]I| -1, then h = 1 and the claia reduces once again to (3.5). Otherwise,
d < |1] - 1 . In this case, consider ¥ € I \2 and set u := v, We calculate DPu’aB
for some G+ < h . By (3.4),
I

(3.9) Dy, M

Pu = -z(u°ni) L 3

where the F; are the (|1]|-1)-faces of F; and the n:. are the corresponding outward
normals. This implies that (“'"1) = 0 for any face Py parallel to u . There are only
two faces which are not parallel to u , viz. the faces F; and Fj+u , with

J = I\{u}.

Since their normals sum to zero and |(u'n1)| = 1, (3.,8) becomes simply

b SR S
DPu" MY + HP“ .

This implies that

J
(3.10) Dpu’as - i!':jtua(i.,j) "1)
with fcs(x,y) 1= x“yB - Ecns and (§,n) = (x,y) - Pu , More explicitly, - ‘

e, a 48
a, -1
if Pu = e, then taa(i.j) ={ Bl j o
o v, a® 1384 818"

since h; > h -1 and |J| < |1| and f,3 18 of coordinate degree < (a,B) , wa may apply

the induction hypothesis to conclude that DPu’ca is a polynomial; more precisely, that

cx°'1ya e,

D_ ¢ .(x,¥) = Bxaye.1 + lower order terms, if Pu = e

Pu'ap "’ ' 2 .
axa_1y6+ Bxays-1 e te,

Integrating back up, we find that 1
a B
Qua(x.y) = xy + lower order terms + qaa(z‘x+zzy)

with g a univariate function and 2z € Rz perpendicular to Pu .

But now, since |I| >3 and d < |I| - 1, it is possible to choose u in different
ways, say u=v and u =w , so that Pv and Pw are linearly independent. This allows

the conclusion that actually (3.8) holds and so advances the induction hypothesis.

- 14 -




This finishes the proof of the Claim. Taking now, in particular, I =g , we find
that d = r_gr] . hence h; = m - r-§f1 - L_%EEJ = k , and we conclude that (3.8) holds for
all a+f < k . Repesated application of this fact gives us, for each a+B <k , a
polynomial Qaﬂ of coordinate degree (a,8) with leading coefficient 1/(aiBl) such

that

3 Qaa(i.j) M,

(X-Y) = .
14 3 atfr * ||

We conclude that, for any r , 8 , and any a+8 < k ,

a 8
(x-xr) (y-8) - I ch(i‘fvj") "
i.j

(x-r,y~s)

al B1 i-r,j-s

= L9 (i-r,j-s) M__(x,y) .
Ly

Consequently, for any p € Pk '

a B
(x-r) (y-s) (a,B)
(3.11a) pix,y) = % ____%___ (D ’ p)(r'g) = L gq 1,j) M, (x,y)
a+B<k ar &t i,3 rs 1)
with )

a,B)

(3.11b) q!s(x,y) t= S Qaa(x-r,y-s)(b( p)(r,s) .

a+B<k

The next lemma implies that L is, in fact, independent of r and s .

Lemma 5. The map Pf—_' span(Hij) : gb—* L q(i,3) Mij is one-one.

3]

Proof. Suppose q € Pk\(o}. Then, for any r > 0 , there exists c¢ € Rz so that q
is of one strict sign on the ball Br(c) of radius r and center ¢ . Choose r =
diam supp(M) . Since
(i,j) e supp(Hij) = (i,3) + supp(M) ,

it follows that fq(i,j)Mij(c) : Mi (c) # 0} are all of one strict sign, hence

3

Laqi,jm % 0. |||
1,4 1

We conclude that g in (3.11) does not depend on r , 8 . In particular,

- 15 -




T

(a,B)

qethed) = a3 = T 04(0,00(07 p)(d,3) .

a+B<k

Corollary. Por any p€ PR , p= I A(pleti,o+3)) My with
i,

Ae 1= I 90,00 (0'*®)e)0,00
a+f<k

We use the linear functional A to define an approximation from sz p(A) in the now
’
standard quasi-interpolant fashion. First, we modify A so as to make it applicable to

any f 6 Co(lz) . For this, let U be a bounded extension of 1A from B, to C(oo;) .
Then U can be taken to be a bounded linear functional on all of Co(lz) + In this way, we
obtain a linear map

LE 3= I u(g(e+i,43)) M
’
on co(nz) to sr p(A) which is local, reproduces Py and is bounded by flul since
L[4
xij"ij = 1, This implies that

- <
(3.12) 1£f - LEL(A) (dut + 1) dllt“(n)

1j)z supp(nij)i1n # g} . Scaling by 1/n to get to the partition

(£, !i)

with N(A) := U {supp(M

An gives the map L, to S p(An) for which we have the following
’

Theorem 4. Set m :=r-1, p = Lz—‘;‘-i_] and k = Li"slz-_]-m-z.g £ @ Co(m?),

then L.f € sr,p(An) and

(3.13) £ - Lnfl < conatk wk(t, 1/n) , n=1,2,...

with

X the k-th order modulus of smoothness of f . In particular, if f @ c:(n?) . then

-x
(3.14) 1f -L £l < const, Iflk n .

Proof. Let A = °1j(n) and, correspondingly

N(A) := lJ{supp(Mpqn): supp(Hpqn)l1A L )
By (3.12),

(3.15) £ = Lhtl(A) < (constr+1) dist

N(A)(f' Pk) ’

- 16 -




while, e.g., from [5],

ai (t.rk) < const, €

LA TTY)
vith ¢ = (£, i/n) or €= |£|kn.k since diam N(A) = O(1/n) « |||

4. Concluding remarks. The constructior. of smooth multivariats spline interpolants
developed in Section 3 can be extended to more general partitions (see also {3]). Suppose
that I 4is a partition of ®? which can be obtained as follows. Starting with a regular
partition no » associated with the two independent directions 4, and d2 s, wa add mesh
lines through all the vertices of Ro in the directions of the vectors ds, YY) dp P
with these di" nonzgero vertices of ﬂo other than 4, or dz , and pairwise linearly
independent.

Thus L is associated with the directions e, and e, , 4 is assaciated with the
directions e,, ., and eyte, , while the four directions ey, &, o,t8;, e,-e, are
associated with a partition in which both diagonals are drawn into every saquare.

Given such a partition N and m > p , define vectors V,, .ee, Vp, in B® by v, :=
d, , v, 1= d, , and , for i > 2, v; 1 dj +e , with j € g and j = i(mod p)

Set B = (t: a,v,
order r := m~1 and smoothness p = r-1 - f7£§171 o If (x;,y;) are the vertices of no

: 0<ai<1} + Then the corresponding B-spline M, given by (3.3) is of

, then the translated splines M; given by Hi(x,y) 1= MB(x-xi,y-yi) , all 1 , form a
local partition of unity. Using arguments like those for Lemma 4 and Theorem 4 , they can
be used to construct a local and bounded quasiinterpolant on Co(l?) into sr,p(nn) which
reproduces polynomials of total order k := p+2 , hence approximates C:(lz)-functiona to
within o(n7%) .

The particular choice dj tm (co- %1 s sin %1) s+ §=1,2,3, results in a partition
of & into equilateral triangles. We have recently learned that P, Frederickson (6], (7]
has studied spline approximation on this partition and has shown the existence of spline
intexrpolants from st.p(nn) in the case p = 2;-‘
accomplished by using a partition of unity given as translates of a fixed finite support

and r = 2(mod 3). This i=m

spline obtained by a certain convolution.

- 17 =
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