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ABSTRACT

The degree of approximation achievable by piecewise polynomial

functions on certain regular grids in the plane is shown to be adversely

affected by smoothness requirements, - in stark contrast to the univariate

situation. For a rectangular grid, and for the triangular grid derived from it

by adding all northeast diagonals, the maximum degree of approximation (as the

grid size 1/n goes to zero) to a suitably smooth function is shown to be

O(n -2 ) in case we insist that the approximating functions are in Cp .

This only holds as long as P 4 L and P 2r-4 respectively, with r
2 3

the total order of the polynomial pieces. In the contrary case, some smooth

functions are not approximable at all. In the discussion of the second mesh, a

new and promising kind of multivariate B-spline is introduced.
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SIGNIFICANCE AND EXPLANATION

-) One of the important properties of univariate splines is that in most

senses smooth splines approximate just as well as do piecewise polynomials on

the same mesh. This report shows this to be untrue in the multivariate

setting. In particular, it details the cost in approximating power one may

have to pay for the luxury of a smooth piecewise polynomial fapproximant. In an

extreme case, piecewise polynomials of total degree < r on a rectangular grid

with all derivatives of order r CRPcontinuous will fail to approximate certain

smooth functions at all (as the grid goes to zero) unless p is kept below

(r-3)/2

During the analysis of approximation on a certain regular triangular

grid, a novel kind of bivariate B-spline is introduced. This B-spline, in

contrast to the established multivariate B-spline derived from a simplex, can

be made to have all its breaklines in a given regular grid. This makes it a

prime candidate for use in the construction of smooth multivariate piecewise

polynomial approximation, and its properties will be explored further.
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1. Introduction. One of the important properties of univariate splines is that in

most senses smooth splines approximate just as well as piecewise polynomials. As we shall

see, this is no longer the case for multivariate splines where both the smoothness of the

spline and the geometry of the partition can have a limiting effect on the order of

approximation. This type of limitation has already been recognized in certain cases [91,

such as low order splines on a rectangular grid. For example, there is no effective

approximation by C(1)-cubics on rectangular grids. The purpose of this paper is to give a

systematic study of this and related questions. We restrict our inquiry to bivariate

approximation but it will be clear that our techniques extend to higher dimensions.

Let H = (i } be partition of R2 into triangles and/or rectangles. Denote by

n :- {i(n)} the corresponding scaled partition, with wi(n) :- Wi/n , all i . Denote by

S r,P(11 n ) the space of splines of order r and smoothness p on Hn  , i.e., s G

S r,P( ) if and only if s Q Cp(R2) and, on each Ti(n) , s is a polynomial of total

order r (i.e. total degree < r ). We are interested in when nS r,p (H n is dense in

COM(2 ) . We study this problem in detail for two particular partitions: I {a ij)

consisting of the squares aij :- [i,i+lx[JJ+1i , and the partition A which results

when each square of E is divided into two triangles by introducing the northeast

diagonal. The technique developed for these two cases can be used for more general

partitions as well.
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In Section 2, we study approximation on E . This modest example already has then

salient features of the general problem. We show that rP(E ) in effective if and only

if P (LA . Thus, roughly speakinq, only smoothness up to one-half the order of the
2

polynomial pieces is allowable in this case. It turns out that smoothness also affects the

rate of approximation in that certain C-functions can only be approximated to within

O(n
-
r+P+l) . Thus any smoothness condition reduces the achievable order of approximation.

This should be compared with the univariate case where the full order of approximation is

achievable regardless of smoothness.

We study approximation on A in Section 3. Here, the role of the geometry of then

partition becomes more apparent. The splines S r,P(A n ) are effective if and only if

0 . 2r-4 , hence there is a gain over the case Z from roughly r/2 to 2r/3 . It is
3 n

clear from our techniques that this is due to the fact that the partition A has three

pairwise independent directions, viz. (1,0), (0,1) and (1,1), whereas E has only two,

viz. (1.0) and (0,1). More generally, if the partition I is generated by m pairwise

independent vectors (what we mean by this is made precise in Section 4), then Srp ( n ) is

effective if and only if P I r-1 - r Thus the more directions, the higher the

allowable smoothness, but of course at the expense of a more complicated partition.

The results just described have two components. First they say that US (11 ) is not
n r,p n

dense in CO(R2) if p is too large. This rests on the fact that S (Hn ) will not
des nC0 r,P n

contain splines of finite support when P is too large. Our approach for this part of the

problem is more or less the same in both cases R = _ and 2 - A . The second half of the

analysis is to show that US (n ) is dense when P is suitably restricted. This
n r,P n

requires the construction of appropriate approximation methods. We develop different

methods for constructing such approximation* in the two cases.

For E it is easy to see that Sn :- S (I ) is effective when P L since Snr,P n 2

then contains the tensor products of univariate splines of order P+2 and smoothness P

The more difficult problem is to show that S approximates any C0 -function f to

within O(n
-r +

P+l) This is done by approximating the derivative D('
1

)f by splines of

-2-



lower order and smoothness, integrating and making local corrections for the approximation

to f

Our construction of approximants from S z= S r,p(A n ) has a completely different

flavor, being based on extensions of the idea of multivariate B-splines. These ideas extend

readily to more general partitions. Recall that multivariate B-splines are defined by

certain cross sectional volumes of simplices. If the simplex is replaced by a more general

polyhedron, the resulting function is still a piecewise polynomial, but now perhaps with

fewer lines of discontinuity. In particular, by a suitable choice of the polyhedron, we can

force the discontinuities of the resulting spline to be contained in the mesh lines of

4 n As mentioned in Section 4, other choices for the polyhedra will handle othern

partitions 1 of 
2 

I We feel that this viewpoint for constructing multivariate splines

may prove to be very useful. For example, some of the standard finite elements can be

described this way (31.

Here are some notational conventions used. C (A) stands for the set of r times
0

continuously differentiable functions on the set A with compact support in A * 11 is

the L.-norm on R
2

, and #*#(A) is the L.-norm over the set A . Further,

Ifl :- If0 1- max ID 0',)fl and Ifi t- max IDla"Olfl
r W a+0- ar r

Laj denotes the largest integer no bigger than a , i.e., the "floor" function, and

Fa1 denotes its companion, the "ceiling" function, which gives the smallest integer no

smaller than a . Further,

2 t- {,2 .... m}

We also need the difference operator Ar defined on the function g by the rule
h

r

p,q=O

This is the tensor product of the univariate r-th order difference operators in the

coordinate directions. Explicitly, = 6 , with

r
6(r g t (x,y) .H ( 1 )r-P(r) g(x+pa,y+pb)

p-0

-3-



2. £rozinution an rectangular grids. Let E :={0 i} with a ,=

(xi,xi+llx~yj,yj+l] and xi :- Yi '= i . We are interested in the restriction of S

SS r,p() to some compact set.

La 1. Every sa S-S r P E) can be represented on

a+ 2 t= ((xy) : x,y a 0)

as a linear combination of the truncated oers in

T :- T (E) :- {(x-x p~y~ y) q i,j,p,q ) O j < r p i i > 0)
r,P i+ j + q

Proof. This is proved by induction, similar to the proof that truncated power

functions are a basis for univariate splines. III

Recall that Z n denotes the partition E scaled by l/n . Let xi(n) :- yi(n) s- i/n.

Set Sn :- Srp(En) 

2boorem1. CS is dnein C0 -2 ) ifand only if P
awl n2

Proof. If P 3 , then S contains all the truncated powers
2' n
P~l P+1

ix,y) -. (x-xi(n))+ (Y-Yn)) + and hence the space SP+ 2 ,p (En) of splines of

coordinate order P+2 and smoothness p . It is known that US+ CEn ) is dense in
n P+2,P n

C0 (1
2

) ; see for example 51 .
Suppose that P > and that f C(3 2 ) it If-s n I - o ( i) as n , for

2 OR)wihl 'n'-ol

some splines *n a Sn . Suppose without loss of generality that f has its support in

. Since P >rE-2 , the only truncated power functions in T (as introduced in Lemma 1)

are of the form t(x,y) _ xp(y-y,) +q or t(x,y) - (x-xi)+ p/yq with p + q < r . Since

Aht - 0 for such t , we have from Lemma 1 that A h - 0 on R+2 for all s 0 S . This
h h

rfor n-1,2..., from which it follows thatimplies that we also have a sn  0 on U f

Ahf - 0 . If we divide by h
2
r and take the limit as h + 0, we find that D(r'r)f _ 0

Since there are C0-functions for which D(rr)f $0 , we have proved the theorem. IH

0

II i i l IYiamd r -.....-. i-



Theorem I shows that only splines with smoothness less than about one-half the order

r will be effective for approximation. It turns out that even when p 1- , the order of
2'

approximation is affected negatively by smoothness. More precisely, we now show that the

optimal order of approximation achievable with splines of order r and smoothness P is

n-r+O+l

r-3
2heoren 2. Let 0 ( -- and k := r-P-1 . Then

i) there are functions f 6 C (R) for which dist(fSn) # o(n - ) , n-

(ii) for each f 9 C (R
2 ) , dist(fSn) = O(n

- )
0n

Proof. We will show that if f eC CR2 ) and dist(fSn) = o(n-k), then D(r+k'r)f

vanishes at 0 , and this shows (i). Actually, with a finer analysis, we could show that

all k-th order derivatives of D(rgr)f vanish on all of R2 .

Suppose that f G C(K 2 ) and that there are functions sn 6 Sn such that

(2.1) If - S I = o(n-k ) as n +
n

Let m be a positive integer and set h :1 1/m . If n =bm with b an integer, then un

:-Ahs is in Sn and, with . Arf we have

(2.2) Ig - U I = o(n
-
k)

Now any truncated power t(x,y) - (x - xi)+Pyq or t(x,y) _ xP(y - y5) q in T
r +2

T (E) is annihilated by A r Hence, on , un  is a linear combination of ther,p h f..i

splines Aht , with t(x,y) = (x-xi(n))+P(y-yj(n))+q in Sn and i,j > 0 . Such t has

P < p,q and p+q < r , and therefore p,q < k . Thus un is a polynomial of coordinate

order k on each ij(n) S Zn with i,j ' 0 .

For given n > 0 , choose b so that 1/((b+1)m) 4 kn < 1/(bm) . Then the points

(in,O) , 0 4i 4 k , are in ao(bm) and so (6'kn0)u)(O) , 0 . Using (2.1), we have

o))o _ I(,.o)g-%u=)( o)l C conet g-Ubm . = o((bm -k) = o nk

therefore D(kO)g(0) = 0 * If we now let m + and recall that h = 1/ and g r4 f

we find D(r+k'r)f(0) - 0 , as desired.
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We now prove (ii). Without loss of generality we assume from now on that f is

supported in the unit cube Q . (0,11 2 . If P = r-3 then (ii) follows from the fact

that Sn contains the tensor product splines of order k = r-P-1 . For general P , the

argument is more involved. We need a certain subspace of Sn F the space S r,p(E n) of

those s 0 Sn for which sIaij(n) agrees with a polynomial in the span of

(Py q : p+q < r , p,q < k} , all i,j . we will prove by induction on P the following

Claim. For any P and any r with P . r there is const so that, for any f a

r 2C 0R ) supported in Q and any n * there is an s Cr,P(E n) supported in the square

(P+1)2Q for which

(2.3) If - s1 ( const Ifi n-r
+P +  .

r

which in turn gives (ii).

Certainly the claim is true when P = -1 , the case of piecewise polynomial

approximation (see, e.g., (5)). Suppose then that the claim has been established for all

P < P0 and consider P = PO * Take r so that P ( . Take f Q CO(R2) supported

in Q , and let g :- D(1,1)f . Then

f(x,y) - f0f0 g(C,n) d~dn for all (x,y) e R+
2

By induction hypothesis, we may choose u 6 Sr.2,p I (Zn ) so that the support of u is in

P2Q and

-Cr-2)+PIl -k+1
(2.4) Ig - ul C const Iglr-2 n +P 1)+ const Ift r n

Our approximation s to f is gotten by integrAting u and making local corrections

using B-splines.

For p = (p1 ,P2 ) , let Mp(xy) := MP1 (x)MP2(y) , with M i the univariate B-spline

with knots xj(n), ..., x J++1(n) . Then H 8is of order P+1 and smoothness P-1 , and

is supported on the interval (x (n), x JP+1(n)] . It follows that 4p is in

S r 2,PE1 ) . We assume M to be normalized to have integral 1.

Consider the spline Np :- K(p+ )p . It is supported on the square

:- tx( )pI(n), x(p+1)(p1 +1)(n)] x y(p+1 (n), y(p+1)(P2+1)(n))

I rm " =--"= '-' ,-, .... . ..



and therefore the Np's have disjoint support.

For each p , define ap -- fp (g - U) . From (2.4), it follows that
-k+1 -k-1

(2.5) Is • IQ const Igir-2 n 4 const M 1 r n--

Consider now the spline

v :- u + E a N
p p

For each p , we have

(2.6) f Q(g - v) - 0

Hence, if we set

s(x,y) := f' V(9,n) d0dn
0 0

then s will be in S r (Z-n ) and if (x,y) G Qp then

f(x,y) - s(x,y) - fxg(g - v)(E,) dndf = f. (g - v)

with

E := ((O'x]x[Yl 0 +1)p 2 (n),y]) ([X(P+l)p1 (n),xlx[0,y])

-1
Now, for any (x,y) 6 (P+1)Q , we have El < const n-  . Further, fE Np is nonzero for

at most O(n) values of p . Therefore, (2.4), (2.5) give

Jf(x,y) - s(x ,y ) -. f(g - u - t aP 1 ,_. • Ig - u, I I + max Ja p I J N

(2.7) p p p

( const If nr

This proves (2.3) for the approximation just constructed. Also, using (2.6) and the fact

that f and u have support in p 2Q , it follows that s = 0 outside of

(P 2  
_ (p+I)2Q , as desired. III

3. Aproximation an triangular grids. We now show how the results of the last section

can be extended to triangular grids. We focus on the partition A which is gotten by

dividing each square of E into two triangles by adding the northeast diagonal. It will be

clear, however, that our techniques apply to more general partitions, a point made in

Section 4. We begin by developing methods for constructing smooth spline approximants. This

turns out to be the more significant part of the problem. Our construction will be based on

some variants of the ideas of multivariate B-splines.

-7-



Let p < m and let P denote the projection of I onto UP , i.e., z - (Pz,y)

for z 0 3m 
. If A is a simplex in VP with vertices v0, .... va then the function

(3.1) M(x) :- vol a-P(z ( A % Pz - x} , x 0 R
P

is a piecewise polynomial [4], [8) of order m-p+1 which is, up to a constant (viz.,

vol,(A) ), completely determined by the points Pv0 , ... , PvI in RP and has its support

in their convex hull.

When p - 2, the piecewise polynomial M has any segment connecting any two of the

projected vertices Pv 0  ,..., Pvm as a mesh line, and is a polynomial on any connected

set not intersected by such a mesh line. For many purposes (including ours), this results

in too complicated a grid in the plane. This can be avoided if we replace the simplex A

in (3.1) by an appropriate a-dimensional convex polyhedron B and so define

(3.2) MB(x) :- volm-p{Z 6 B " Pz - x) , x i
p .

The function MB  so defined is again piecewise polynomial of total order a-p+1 because

B can be decomposed into disjoint simplices and therefore MB is a sum of (simplicial)

B-splines. It has its support in P(B)

A more useful analytic description of M. is given by the identity (used first in the

context of simplicial B-splines by Micchelli, see [8)

(3.3) f *(x) %(x) dx - *(Pz) dz

which holds for any test function ( * S C0 ). The right hand side defines as a

distribution on R
P . One of the advantages of (3.3) is that it can be used to define MB

when B is a convex polyhedron of dimension q < m . The right hand side is then

interpreted as a q-dimensional surface integral. This definition also makes sense when

P(B) has dimension < p . In this case, MB is defined only as a distribution.

Suppose then that B is a convex polyhedron of dimension q 1 a . As is pointed out

in (21, it is easy to check the smoothness of MB by using the differentiation formula

(3.4) D MB = _ (z.ni)4Bi

proved there. Here, the Bi are the facets of B , i.e., the faces of dimension q-1

--



which make up the boundary of B , and ni are their respective normals. Repeated

application of (3.4) shows that D(0'0)M can be written as a linear combination of

M.'s where each F is a face of B of dimension q - a - 8 . In particular, if dim P(F)

(a48)p for all faces, then D MB is again a piecewise polynomial. Thus MB is in
BB

Cq -d - 2 , with d the largest integer for which there is a face F of B of dimension

d with P(F) of dimension < p . Note also that the discontinuities of K. occur across

the (p-1)-dimensional sets P(F) , with F a face of B .

We now turn to the construction of spline approximants on the triangular partition A
of R2  Let ei : (5.j). be the unit coordinate vectors in 0m  and define

Let e i ) j=1

vI = ,v 2 := e2 ,

e1 + ej , if j l(mod 3)

vj :=( 2 + ej , if j 2(mod 3) , j = 3,4.... m.

e1 +e2 + ej, if j 3(mod 3)

The vectors v1 , ..., v. determine a parallelepiped B with vertices Em v i  where
1 ii

C. 6 {0,i , all i . The translated parallelepipeds Bij := ie1 +je2 + B have pairwise

disjoint interiors and fill out the slab R2 x [0,1]m-2 , hence form a partition for that

slab.

Consider the functions M :- MB and Mij(x,y) := M(x-i,y-j) M Bij (xy) defined by

(3.3) (or, equivalently, by (3.2)) with p - 2.

Lema 2. (i) E Mij = 1 on R
2 

.

(ii) M. . S (A) for r :- m-1 and P 2r-4 1
13 r,P - L.3.J

Proof. The identity (i) follows from the representation (3.2) and the fact that UBij

= R2 x [0, 1]m
- 2 , with the Bij having pairwise disjoint interiors.

We have already noted that M is a piecewise polynomial of total order m-1 = r . To

check the smoothness of M , note that any face F of B is of the form

F - {v + E av. 0 a 4. 1}
iGI

with v some vertex of B and I c a . If P(F) is a segment, i.e., P(F) has dimension

-9-



1, then all i 0 1 are congruent modulo 3 , hence Ii 4 rm+21 Therefore, N has
3

smoothness P - r-+- . 2 - •2r4 Such a seguent P(C) must lie on the line33

P(v) + xP(vj) < x <

with j - i(aod 3) , all i a I , and j 6 2 . This is one of the mesh lines which form the

partition A . Since N is discontinuous only across such segments P(M) , it follows

that m is in S r,(A) , and therefore so are all the Nij

2r-4 +2
Imma 3. If P > 2 , then every s S (A) can be represented on an.a

3 r,P

linear combination of the truncated powers in

T :- Tr,P(A) :- {xpyq, (x-x )+py q , XP(y-y )+q , (x-y-xi )+P(x+y)q p,q)O p+q<rl

pq > P whenever they exponentiate a truncated function)

Proof. Denote by 0 and 0+ the left, respectively right, triangle in A whichij ii
make up the square 0 *j Let s 6 S and let t0  be the polynomial of order r which

agrees with s on 0 .Then s - t o - 0 on the line y - x . Therefore s - t o - u on

o00 , with

u(x,y) - rip cpq (x-y)P(x+y)q

p+q<r

Set ti :- t0 + E cpq(x~y)+P(x+y)q . Then 9 - t1 on 0 * We now continue in this

manner, moving to the right, using the truncated powers (x-x 1 )+PYq and

(x-y-xi)+(x+y)q to construct a function t in the span of T which agrees with s on

a 0 1 i0,1,2,.... On the first column (oi)i: 1 of squares, this t is just the

polynomial t o . Proceeding now up that column, we further modify t by the addition of a

suitable linear combination of the truncated powers xP(yyi)+q and (x+y)P(x-y-yj) q

(note that (x-y-yj)+q w (x-y-xi)+q for suitable xi ) and so obtain a new t in the span

of T which agrees with a on the first row and first columnn of squares, i.e., on

U 0 oUOo

We claim that now s-ton all of W We prove this by shoving that s t on O ,

i,j > 0 , using lexicographic ordering and induction.

- 10-



(xifyj)

Assume that s- t on 0 for all U < i and for all (U,v) with V i andliv

v < i (as is the case for (i,j) - (1,1) ). Then u :- s-t is a piecewise polynomial

function of total order r and smoothness p which vanishes for 0 < x < xi  and for 0 <

y < yj . If now u were nonzero somewhere in a j , then, on restricting u to some

line x+y - c , with xi+y j < c < xi+1+yj , we would obtain a univariate piecewise

polynomial function v of order r and smoothness P which vanishes outside some

interval (a,b and has just three knot locations, viz. the points a , (a+b)/2 , and b

Further, v would be nonzero somewhere in a,b] . This would imply that the sum of the

multiplicities of the knots a , (a+b)/2 , and b is at least r+1 , which would imply
r+1 r+l1 2r-4that at least one knot has multiplicity 4 r-1 therefore P r r-1-r

a contradiction. This advances the induction hypothesis and so finishes the proof. I

Tho . U S (A ) is dense in ifAleore 3 n Sr,(P n C0(i
2) f and only if p . 2r-4

Proof. By Lemma 2, S rp(A) contains the local and positive partition of unityr4

(Mij) as long as p 4 2 . This implies the density of 
U S (An ) by the following

ij3 n r~p n

standard argument: The simple approximation map

Tf :a E f(xi,yj)mij

i,j
carries f into S r,P(A) and satisfies

l~f-Tf)(X,y) I E (f(x~y)-f~x ± y i )M±j (xsY)I
ij

( max If(xoy) - f~xi,yj)I
M.. (x,y)0o

Consequently, If - Tf 4 w(f; diam supp M) * Now scale.
2r-4

For the converse, assume that P > ° Consider the difference operator

- 11 -



A : r.r Sinc Ar and r commute, we have At -0 for all t in the
h h (h,h) * h (h,h) h

span of T (A) defined in Lemma 3 . Therefore, by Lemma 3, s - 0 on M+2  for
r,P A

every a 0 Sr (A)

p wthat f e ( 2 ) and that If - S + 0 (as n + .) for some an e

SrP(A) n-1,2,... Assume without loss of generality that f has its support in a+

Since An is obtained from A by scaling, it follows that AhOn - 0 on R+2 , therefore

Ahf - 0 . Dividing by h3r and taking the limit as h + 0 shows that

(DlDe2D 2)r f - 0,(DeI e 2 e 1 4e

which shows that f is not an arbitrary function in C( 2 ) III

Next we consider the approximation from S, (A n ) to smooth functions. For this, we

need to consider the B-splines associated with faces of B . Any I c I is associated with

a face, viz. the face

F :- F1  - { Gv : 0 a, 1)

This is a face of dimension IzI , or, a lIt-face, for short.

Denote the corresponding B-spline F by ft4I We are particularly interested in

faces for which

a c I and III > 2

For such a face, set

Q - { aivi : 0 4 1 .

Then, for any test function # ,

f 2 #M1 - f F -oP - fF+Q *op

using the facts that *(Pz) - #(Pz O) in case z Q zO + Q , and that the (m-Ill)-

dimensional volume of Q is I . This shows that, for such a face,

(3.5) MI(x,y) - volm 2(z a F+Q : Pz (x,y)) - vol 11 1-2 zo : Pz0 - (x,y))

Now define

M :
ij 

i

-12-



with Fij :- (i,j) + F the face F translated. The Fij have pairwise disjoint interiors

and form the set R2 xc with C E- a i av 0 4 ( 1} 1 Hence it follows from (3.5)j6 1\2 i

that

(3.6) 1. 1i1 =

(3.6) M i V1 11 1 -2 (C) - I

Our next lemma is a special case of a result in (31.

Lea 4. Let r "- r-1 and k -- .2 Then, for a+O < k , there are

polynomials Q60 of the form Qa (x,y) = + RI (x,y) with R of coordinate order

(a,O) such that aB

(3.7) QCa'(ij) l4ij(x,y) -~ipj

Proof. The proof is an adaptation of the argument in an early draft of [31 to our

particular context. It is essentially an inductive proof on the number III of the

following

Claim. Let 3_C I c:
9 

. Let h :- h I z- III - d , with d the largest integer for

which there is a d-dimensional face G of F - F1 :- {ZEieaiv i : O(ai(1} with dim P(G) <

2 . Then, for any a+ < h , the function ,given by

Eij MiJ "
ii'

is a polynomial of coordinate degree (a,B) with leading coefficient 1 , i.e.,

(3.8) * (x,y) - xay + terms of order (a,O) .

To prove this claim, consider first the case III - 3 . Let I - {1,2,u} . If u a I

or 2 (mod 3) , then d - 2 , hence h - 1 and the claim is just (3.6). If u = 3(mod 3)

then MI vanishes at all mesh points Ci,j) except that M I(1,1) - 1 , while EijQ. j 14

is continuous and piecewise linear. Therefore

E f(i+1,j+1) 1 ! I f
i,j ij

for all linear functions f , and the claim follows also for this case.

-13-



Lot now s > 3 , assume the claim proved for all III < a , and consider some I

with III - .

If d = III - 1 , then h = 1 and the claim reduces once again to (3.5). Otherwise,

d < III - 1 . In this case, consider P 6 1 \, and set u s- v * We calculate Dpu*.

for some 0+0 < h . By (3.4),

(3.9) DpuM - -E(u n ) KFi

where the Fi are the (111-1)-faces of FI and the ni are the corresponding outward

normals. This implies that (u'ni) - 0 for any face Fi parallel to u . There are only

two faces which are not parallel to u , viz. the faces Fj and FJ+u , with

J ,- I\{u •

Since their normals sum to zero and I(uoni)I - 1 , (3.8) becomes simply

DpUM1 -NJ + u

This implies that

(3.10) D (i, j) N

with fGo(x,y) xy - ENO and ( ,f) :- (x,y) - Pu . More explicitly,

mi C-

if aU = 2  then f,,(i,j) -

I+6 lala i + 01aj s
iPu -leij1

Since hi ; h - 1 and IJI < III and fas is of coordinate degree < (a,O) , we may apply

the induction hypothesis to conclude that 0Pu #G is a polynomial; sore precisely, that

ax y 1

D.U*o(Xy) - Ox y y y + lower order terms, if Pu -Dpu-i ((x, Y}
(Gxa'l-1y 0+ Ox GyO" 

•) + 2

Integrating back up, we find that
a6

*a(x,y) - x y + lower order terms + gaO(zlx+z 2y)

with g a univariate function and a 6 R
2 

perpendicular to Pu

But now, since I11 > 3 and d < II-i, it is possible to choose u in different

ways, say u - v and u - w , so that Pv and Pw are linearly independent. This allows

the conclusion that actually (3.8) holds and so advances the induction hypothesis.

- 14-



This finishes the proof of the Claim. Taking now, in particular, I - g • we find

that d-F 3 , hence h1 . _ " Lmi " k , and we conclude that (3.8) holds for

all G+O ( k . Repeated application of this fact gives us, for each a+. < k , a

polynomial of coordinate degree (a,$) with leading coefficient 1/(lBI ) such

that

E gQ(i,j) N ij(x,y) = -11i'j

We conclude that, for any r , s and any e+A 4 k

(x-)= X: Q (i-r,j-s) N r x-ry-s)
Siji-rj-s

= E Qa 8Oi-r,j-*) Nij (xY)i, j

Consequently, for any p e Pk

(3.11a) p-xFy) - ]; (x-rls)
8 

(Dla'O'lp)(rs) = E qrsli,j) (x,y)
G+<k i•j ii

with

(3.11b) q rsl(X,y) .= Q,,x-r,y-sl(D (l, 0)p)lr~s).

a+o<k

The next lemma implies that qrs is, in fact, independent of r and s

Jioa S. The map Pk--- span(M ij) q- I q(i,j) 14 j is one-one.
i,

Proof. Suppose q 6 Pk\{0l. Then, for any r > 0 , there exists c 6 R
2 

so that q

is of one strict sign on the ball B r(C) of radius r and center c . Choose r =

diam supp(M) . Since

(i,J) G sUpp(Mij) - (iJ) + supp(M)

it follows that (q(i,J)M ij(c) : Mij(c) * 0) are all of one strict sign, hence

E q(ij)Mi * 0 I

We conclude that qre in (3.11) does not depend on r , s * In particular,

- 15-



qr(ij) - qij(ioj) E QoB(0,o)(D(a )p)(i,i)rs 42 0<k

Corollary. For any p 9 Pk E - r )L(p.+i,.+j)) Mij with
ioj

Af I QaO(OO) (D(G°O)f)(00)"

a+8<k

We use the linear functional X to define an approximation from Sr, (A) in the now

standard quasi-interpolant fashion. First, we modify X so as to make it applicable to

any f a CO9L2) . For this, let U be a bounded extension of A from Pk to C(O0)0

Then P can be taken to be a bounded linear functional on all of C0 (3 2 ) . In this way, we

obtain a linear map

Lfj Mij

on CO(t2) to S r,(A) which is local, reproduces Pk , and is bounded by II1 since

zijMij = 1. This implies that

(3.12) If - LI(A) 4 (Ijl + 1) distN(A)(f, Pk
)

with N(A) t- U(supp(Mij): sup(I ij)f A * 9} . Scaling by 1/n to get to the partition

An gives the map Ln  to S rp(A n ) for which we have the following

2beorm 4. Set m :- r-1, 0 2r- 4 and k - - p+2 . If f 6

then Lnf ( Srep(An ) and

(3.13) If - L n constk (k(' 1/n) , n-1,2....

with k the k-th order modulus of smoothness of f . In particular, if f 6 O2 then

(3.14) If - LfV < consK 1f'k nk

Proof. Let A -= j (n) and, correspondingly

N(A) :- U{supp(M pn): supp(Mtn ) A $ })

By (3.12),

(3.15) If - LnfI(A) 4 (constr+1) distN(A)(f, Pk )

- 16-



while. e.g., from (S],

dietu(A)(fePk) con mt C

with c - Wk(f, I/n) or € , Iflkn 'k  since diam N(A) - 0(1/n). I II

4. Cmalading remarks. The oonstructior of smooth maultivariate spline interpolants

developed in Section 3 can be extended to nore general partitions (see also 131 ). Suppose

that R is a partition of R2 which can be obtained as follows. Starting with a regular

partition Ito , associated with the two independent directions d1  and d2 1 we add mesh

lines through all the vertices of A0 in the directions of the vectors d3 ..., d

with these di's nonzero vertices of A0 other than d or and pairwise linearly
0 d1 ord

independent.

Thus E is associated with the directions a, and •2 1 A is associated with the

directions a1, *2 and e*+e 2 , while the four directions e1 , e2 1 e1 +e2 1 e1-e 2 are

associated with a partition in which both diagonals are drawn into every square.

Given such a partition H and m O p , define vectors v1 , ..., va in I by v1 :-

d1 , v2 j- d2 , and , for i > 2 ,V, s- d + eL , with j jp and j - i(od p) .

Set B I- (EM i v I  0< a1 41) . Then the corresponding B-spline B  given by (3.3) is of

order r :a n-1 and smoothness P :- r-1 - .r+l7 , If (xi,yi ) are the vertices of R
p ii0

, then the translated splines 
TM  

given by Mpix,y) a- MB(x-xi,y-yi) , all i , form a

local partition of unity. Using arguments like those for Lemma 4 and Theorem 4 , they can

be used to construct a local and bounded quasiinterpolant on C0(R2) into S r,P(Hn ) which

k 2reproduces polynomials of total order k t- 0+2 , hence approximates Ck(R )-functions to

w i th i n O (n Ak ) .

The particular choice dj :- (coo sin , J-1,2,3, results in a partition

of *
2 

Into equilateral triangles. we have recently learned that P. Frederickson (61, (71

has studied spline approximation on this partition and has shown the existence of spline
2r-4

intrpolants from S (H ) in the case p - 2-4 and r = 2(mod 3). This is
rP n 3

accomplished by using a partition of unity given as translates of a fixed finite support

spline obtained by a certain convolution.
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