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ABSTRACT

We study the uniqueness of the solutions to the scalar conservation law

X when the initial datum is a finite measure. The case of a

Dirac mass is particularly emphasized: it is shown how it provides a

description of the asymptotic behavior of the solutions initiated by an

arbitrary integrable function. This behavior is proved to depend on one

parameter in the case when is odd while it depends on two when is

convex.
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SIGNIFICANCE AND EXPLANATION

It is well-known that the solutions of the linear heat equation

(1) Ut - uxx , 0 (t,x) e (0,o) x R

behave for large time in a way that depends only on the total mass f u(0,x)dx
R

of the initial data. This property is also shared by the solutions of the

nonlinear equation modelling the filtration of a gas through a porous medium

(2) Ut - (U2 )xx = 0 (t,x) e (o,m) x R

Although it may seem paradoxical, this property turns out to be strongly

related to the uniqueness of the so-called "fundamental solution" of (I) - or

(2) - when the initial datum is the unit Dirac mass at the origin.

Here we study the same kind of relationship for the scalar conservation

law

(3) ut + SP(u) x  0 (t,x) e (0,-) x R

where 'P:R + R is a given constitutive function. We prove that the above

properties are also valid for (3) when p is odd. However, when p is

convex it is known that the asymptotic behavior of the solutions of (3)

depends on two parameters (rather than just one, namely f u(0,x)dx). This
R

corresponds to the existence of a one-parameter family of fundamental

solutions of (3). The corresponding initial-value problem has then to be

understood in a stronger sense.

In addition to the above motivation and some obvious applications to

physical situations involving initial masses concentrated at some points, this

study also represents a contribution to the theoretical question concerning

the extension of nonlinear semigroups in L1  to the space of measures.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



SOURCE-SOLUTIONS AND ASYMPTOTiC BEHAVIOR IN CONSERVATION LAWS

lai-Ping Liu
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iNTRODUCTION

The main goal of this paper is the study of the uniqueness of the solutions to the

scalar conservation law

(0.1) u + P(u) x = 0

when the initial data is a given finite measure p and its application to the description

of the asymptotic behavior of the solutions to (0.1) with integrable initial data.

Solutions to (0.1) are understood in Krtckov's sense [10] which includes the usual

"entropy" conditions. The initial data is understood in the sense of measures, namely

(0.2) lim f *(x)u(t,x)dx = J (x)dU(x)
t+O R R

for all continuous, bounded functions * on R.

The results turn out to be quite different whether one assumes the nonnegativity of

the solutions or not and whether P is odd or convex. Namely, given a nonnegative finite

measure P, we prove that there exists a unique nonnegative solution to (0.1), (0.2). tut

the problem is not well-posed in general if the assumption of nonnegativity of the

solutions is dropped even if the initial measure is nonnegative. Explicit counterexamples

are known in the literature when is a strictly convex function.

However, one can prove that the problem (U.1), (0.2) remains well-posed if 0 is

assumed to be odd.

This emphasizes a difference in nature between the two typical cases P(u) = u
2

and P(u) = u
3 

which does not appear as long as the initial data is a bounded integrable

function. Actually, this difference corresponds to a fundamental difference in the

ISponsored by the United btates Army unoer Contract No. IAAG29-80-C-U041.

2 This mterial is based upon work supported by the National Science Folindation

under Grd lit No. NCS-7927Ub2.
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asymptotic behavior of the solutions to (0.1). This is one of the motivations of our

study.

Indeed, at least when 0 nomogeneous, there is a strong relationship between the

asymptotic behavior of the solutions to (0.1) (with u(0) Q L1(R)) and the "fundamental

solutions" of (0.1), that is the solutions whose initial data are concentrated at the

origin. Using similarity transformations, we can prove that, when t is large, the

solutions of

Ut + (Iutm )x = 0 or ut + (sign ulul
m )x - 0

are "closed" to a solution of the same problem with the initial datum "6 * f u(O,x)dx"
R

where 6 is the Dirac mass at the origin. In the case when 0 is odd, this solution is

unique: this proves that the asymptotic behavior depends only on one parameter (namely

f Uo). In the case when 0 is convex, the lack of uniqueness corresponds to the fact
R
that the asymptotic behavior depends on two parameters as it is well-known for P(u) . u2k

(see [11, (61, [12), (5] and the references in them). In the latter case, it is necessary

to put more information in the initial data.

The use of similarity solutions to study asymptotic behaviors has already been applied

to parabolic problems like the heat equation ut - Au = 0, or more generally the so-called

"porous media equation" ut - Aum = 0 (see (9], [7]). Related uniqueness questions for

initial data measures have also been treated in [8], (13). Here the same main ideas are

used, but the hyperbolic structure leads to specific difficulties. In particular, it is

interesting to mention how the proof of the uniqueness involves the resolution of a "dual"

lionear problem

t + (0*)x

when a, B are discontinuous coefficients. The built-in property at + Ox 4 0, coming

from the "entropy" condition, insures the existence of solutions to this problem.

Besides the above motivations and some obvious applications to "physical" situations

involving initial masses concentrated at some point, let us mention that this study is also

a contribution to a theoretical question concerninq the extension of nonlinear semiqroups

on L to the space of inetisures. It shows that the answer depends strongly on -P in the
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case at the semi-groups generated by the operators Au "(u) x "  (see 131 for a precise

definition) although they are m-accretive in LI(R) for most continuous P (see 13)).

Some Notations. For ca open set in Rt
n , 

C M() denotes the space of infinitp]y differen-

tiable functions with compact support in w and V'(C) the space at distributions on W.

For simplicity, we will write

f f for f f(x)dx, f f f for f f t(t,x)dtdx
R R 0 R 0 R

f fdM for f f(x)dP(x) if M is a measure on R

R R

Given a function f, we set

+ f(&) it f(4) ? 0 J 0 if f(t) ) 0t+(C) = , f-(C) =

0 if f(C) ' 0 -f(M) if f() 4 0

In the same way, Pi and p are the positive and negative part of a given Radon measure

11 on R.

3t
we will inditterently use fx ;r y- for partial derivatives or a function t.

We set

-1 if r < 0

sign r 0 if r = 0

if r > 0

Some facts about measures. Given a sequence of signed Radon measures ()n)1 0  on R, we

will say that Pn converges narrowly to p it, for all t continuous, bounded on R

lim f fd n  f fd•
n R R

We will use that a sequence 1 is relatively compact tor the narrow convergence if and
n

only if (see (14])

(1) the total mass f d~lp. is uniformly hounded
R

(ii) L.i J ,ju n = 0 unitormly in K.
R- Ixj>K n

-3-



SWrT1ON 1: UNIQUENESS

Throughout this section, we are given

(1.1) O:R * R locally Lipschitz continuous with V(O) = 0

by solution on (0,T) of

(1.2) ut + (u),x = 0

we mean a function u(t,x) satisfying (see 1101)

(1.3) u G L(0,T; LI(R)) n L((r,T) X R) VT G (0,T)

Vk Q R, V* Q C0 ((O,T) x R), , ) 0

(1.4)
T

f f lu - kIVt + sign(u - k)(v(u) - s(k))' x > 0
OR

Theorem 1.1 (Nonnegative solutions). Assume 0([0,0)) C (0, ). Then, for any nonnegative

finite measure m on 3, there exists at most one nonnegative solution u to (1.3),

(1.4) such that

(1.5) lim ess u(t) = narrowly in R

t+0

Remark 1.1. Since u(t) (and u(t)) are not a priori defined for all t G (0,T), by

"lim ess" we mean limit outside a set of zero measure. Actually, using Krrckov's

uniqueness result (applied to u(t) for all t Q (0,T)), we know that any solution to

(1.3), (1.4) belongs to C((O,T); L
1
(R)) the space of continuous functions from (0,T)

into LM(R).

Remark 1.2. The uniqueness result stated in Theorem 1 fails if one drops the assumption of

nonnegativity for the solutions. Indeed when (u) = u 2
, there exists a 1-parameter

family of "source-solutions" to (1.3), (1.4) satisfying

u(t) + 6 (Dirac mass at the origin)

for the narrow convergence on R (see (111, (61, [51 and Section 2). However, this does

not happen if @(u) = sicgn uJulm (m > 1) and it is the purpose of our next result.

Theorem 1.2. Assume is odd and (r) - r ) 0 for all r 6 R. Then, for any

nonneqative finite measure U on R, there exists at most one solution u to (1.3),

-4-



(1.4) such that

jim ess u(t) = narrowly in R
t+0

Remark 1.3. By symmetry, the same result holds for nonpositive finite measures 1. By

combining existence results and the ideas used in the proof of Theorem 1.2, one could also

prove the same result for any finite signed measure.

In order to have uniqueness for more qeneral 0, it is necessary to understand the

initial data in a stronger sense. To illustrate this, let us state one more result which

can be applied to (u) = lulm, m > 1 and which also directly gives informations about the

asymptotic behavior of the solutions (see Section 3).

Theorem 1.3. Assume o ) 0 on R. Let jJ be a finite signed measure on R and v:R + R

dof bounded variation such that -xv(x) = ii and v(- ) = U. Then there exists at most one

solution u to (1.3), (1.4) such that

lim ess u(t) = i narrowly in R
t+0

(1.6)
x

Vx G R, lir ess f u(t, )dt = v(x)
t+0 -W

Remark 1.4. These results show that the solution is determined by v rather than by U.

It P has a mass at x0 l then there are infinitely many choices for v(x0 ). They are not

always arbitrary. Indeed we will see that v is necessarily lower-semicontinuous when

s U. Under the assumptions of Theorems 1.1, 1.2, v is exactly equal to f dj.

But if @(u) = u2, other nontrivial choices of v do occur.

In the proof of the theorems, we will need the following consequences of Kr6ckov's

detinition of solution (1.4).

Lemma 1.1. Let u be a solution to (1.2), (1.4). Then u G C((O,T); L1 (R) and

Vk G R, V* G C ((0,T) x R), J ) 0

T
(1.7) f f (u+ - k)+yt + sign+W(u - k)(P(u + ) - ,(k))Ox ) 0

OR
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T
(1.8) f (u- k) t + sign+(u- k)(C-k) - P(-u-)) x 

) 
0

OR

(1.9) ut + S(u)x = 0 in V'((U,T) X R)

(1.10) Ut + %(U)x 0 in V,((OT) X R)

(1.11) ut - (-u-) x 4 0 in V'((O,T) X R)

Proof. We use the fact proved in [10] that any solution of (1.3), (1.4) is in

C([T,T); L R)) for all T G (0,T) and satisfies: for any H convex on R.

T u
(1.12) (u)* t + [ V (s)H-s)ds]*x ) 0

0OR k

for all k Q R and nonnegative # Q C((O,T) x R). Applying this successively with

H(r) - (r + - k)+ and H(r) W r - k)
+ 

gives (1.7) and (1.8).

To obtain (1.9), since u G L ((T,T) x R) for all T 9 (0,T), one can apply (1.4)

with * supported in (T,T) x R and successively k > max{u(t,x); t 9 (TT),x G R},

k < minu(t,x); t G (T,T),x G R).

For (1.10) and (1.11), one uses (1.7) and (1.8) with k = 0.

For convenience, we will call subsolution of (1.2) a function u satisfying (1.3) andI k 6 R, V* Q C ((O,T) x R), > ) 0
0

(1.15)

T

f f (u - kl+* t + sign+lu - k)(Wlu) - p(k)) x  0
OR

Remark 1.5. By (1.12) applied with H(r) - (r - k)+, a solution of (1.2) is also a

subsolution. Note that Lmma 1.1 says tat, if u is a solution of (1.2), then u+  is a

subsolution of (1.2) and u- is a subsolution of ut - 0(-U)x = 0.

The first main step in the proof of the theorems is the following lemma due to Krfckov

(see [101 for a proof).
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Lemma 1.2. Let u.u be solutions ot (1.2). Then

(1.16) I- ul + sign(u - u)((u) - o(u)) ( 0 in D'((0,T) x R)

Remark 1.6. The relation (1.15) is the main ingredient in Krfckov's uniqueness proof of

the solutions to (1.2) belonging to C((0,T]; L
1
(R)) r L'((0,T) x R). Indeed, trom (1.15)

one cai prove

a- f Ju(t) - u(t) I  0 ,

by choosing suitable test-functions (see [10]). Then u = u follows if

u.u W C((UTJi L'(R)) and u(O) - u(O). This method does not apply when the initial data

is only a measure. A more sophisticated analysis is then needed which is partly contained

in the next lemma.

Lemma 1.3. Let uu be two solutions to (1.2). For all t G (0,T), we set

x x
(1.17) v(t,x) = f u(tl)d&, v(t,x) f f u(t,C)d.

Then, tor all 6 C0(R), e A 0, and all T G (0,T), there exists a nonnegative
C0

1.. L 0,T) x R) such that

(1.18) a.e. s 6 (0,T), f IU(T) - u(T)l(v(T) - v(T))O = f lu(s) - u(s)l(v(s) - V(s))*(.)
R R

Proof. Let us denote

g(t,x) = v(t,x) - v(t,x), u(t,x) = lu(t,x) - u(tx)j

0(t,x) = sign(u(t,x) - u(tx))[4(u(tx) -(u(t'x)).

Integrating with respect to x the relations

ut + M(u)x = O, ut + P(u)x = 
0

gives

(v - v) t + O(u) - (u) = 0

by multiplying this by Q, we obtain

(1.1)gt + 8x = 0

-7-



Now, I will be constructed as the solution to the dual problem

(1.20) (0)t + ()x= 0, (T) - 8 1

where e 0 C (R), 0 ) U and T Q (0,T) are given. Since a and 8 are not continuous,

it is not a priori clear that (1.20) has a solution. But using (1.16), which says that

(1.21) a + 8 x 0 ,
t x

we are going to prove that (1.20) can he solved.

For this, let us regularize a and 8: set a = P n(a + -1 n), 8 = pn*8 where nn n n n n* Pn

is a sequence ot mollifiers in R x R and n = n(x) is a positive function of

LI(a) ) L(R). Then 4 and 8 are defined on some (E nT) x R with £ + 0 whenn n (n' n

n + I and a > 0. There exists n G C ((C T) x R) solution of

(1.22) (a nn)t + (n*n). = O, On(T) = .

(Note that, by setting 
0

n - Cnn, this equation can be rewritten 'ant + ( - n

n x
0 (T) - a (T)8.

n n

irst e 0 -- > On 0 O.

Then if we expand (1.22), we obtain

(nt + 
8

nx)* n + an*nt + 8n*n = 0.

By (1.21), this implies

8
n + -* ) 0 on (EnT)•
nt Q nx: n'

n

By maximum principle, we then have

(1.23) Vt 9 ( n,), I* (t)I 4 I*n(T)|. . 101.

As a consequence, there exists a subsequence of * n (still denoted by in
)

converging to # Q L ((0,T) x R) in L'*((S,T) X R) for all s G (0,T), i.e.

T

vs. (0,T), Vf Q .I((0,) K R), f f nf - f f
s R s R

One could show that i is a solution ot (1.20). Hut since our purpose is to prove

(1.18), let us rather pass to the limit in the tollowinci equality obtained by multiplyinq

-8-



(1.22) by y and inte~jratinig by parts:

Vs (6 (0, T)f. n mzrg() f Qn(s)g() n~(5) + f f n(n- agt+ (a n-
ft R s R

but 'jt, cj are in L I((S,T) x R), a n n are uniformly hounded on (s,T) x R and

converge pointwise to a,O. Hence the last integral above converges to 0 for all

S 6 (0,T). Now integrating this equality from 0 to P, 0 <0 <P< T, we have at the

limit

(P - 01) f M(T)g(T)8 = JIMrn ids f 0 ~~( ns
Rt n~w R

Since a converges to a in L 1((o,p) x R) and q is bounded on (a,p), this limit is

P
f ds f Mns)g(s)J(s). Dividing by P - a and letting p tend to a yield the relation

a R
(1.18).

Remark 1.7. Next, we will have to let s tend to 0 in (1.18). For this, we need some

information about the behavior of v(s) and ;(s) when s + 0. For this, let us prove

another lemma.

Lemma 1.4. Assume P'U0,')) C [0,I). Let u G C((0,T); L 
1
(R)) be a nonnegative

subsolution of (1.2) such that {u(t); t G (0,T)} is narrowly relatively compact. Then

(i) There exists a unique nonnegative measure P on R such that

P = lim u(t) narrowly on R
t+ 0

(ii) When t decreases to 0, v(t,x) f u(t, )dt increases pointwise to the

lower-semi-continuous (I.S.C.) function v(o,x) =f duj.

(--, x

Proot of Lemma 1.4. lrtteqIrating ut + p(u)x < 0 leads to v t + P(u) r 0. Since O(u) > 0

here, it proves that t + v(t) is nonincreaSinq. when t decreases to 0, v(t,*) is

then a nondecreasingc family of continuous, nondecreasing functions whose total variation is

uniformly bounaea (since u G L (o,T; L 1(R)). Hence v(t,*) converges poiotwiso to d

-9-



l.s.c. and nondecreasinq function. Moreover, by compactness, u(t,*) converges narrowlyI d
to M =- v(0,x). The narrow convergence of u(t) implies (see [141)

lim v(t,x) = 0 unitormly for t Q (0,T)

In particular v(O,
-
") = 0 and

(1.24) a.e. x G R v(Ox) = f d!

(--,x)

But v(0,x) is left-continuous, since it is l.s.c. and nondecreasing. Theretore (1.24)

holds for all x Q R.

We now come to the proof of Theorem 1.1.

Proof of Theorem 1.1. Let u,u be two solutions to (1.2) with

lim ess u(t) = Jim ess u(t) = 4 narrowly
t+0 t+O

Let h G (0,T) be fixed. By Lemma 1.3 applied to u(* + h) and u, one has for all

I Q (0,T - h) and 8 G CO(R), G ) o:

a.e. S G '1) f %(T)(v-T + h) - v(t))a 4 f Mts)(v(s + h) - v(s))$(s)

R R

where a(t) = Iu(t + h) - u(t)j, 1+1 . = M < +, ' > 0 and

L ((O,T)xR)

v(t + h,x) = f u(t + h, )a&, v(t,x) = fx u(t,C)dt. by the monotonicity proved in Lemma

1.4, for a.e. s 0 < s < So,

(1.26) f C(T)(v(T + h) - v(T))8 ( f Q(s)*(s)(v(h) - V(s ))
R R

It P(s) = I(S) CS), f p(s) ( M f u(s + h) + u(s). Since u(t),u(t) are uniformly bounded

R R

in L1(3), so is p(s). Moreover, for all R > 0

f P(s) ( M f u(s + h) + u(s)1xi>i lxl>R

by narrow compactness, the rlqht-hand side tends to O uniformly in s G (0,1) when R

tends to 1. These two estimates on p(s) prove that {P(S); S 9 (0,T)l is narrowly

-10-



compact (see [14]). Therefore, one can let s tend to 0 (accordinq to a suitable

subsequence) to find the existence of a nonneqative finite measure p such that

(1.27) VO < s < so , f Q(T)(v(T + h) - v(T))e 4 f (v(h) - v(s0 ))dp

R R

(remember that v(h) and v(s ) are continuous and bounded). Now we let s decrease

to 0 in (1.27). by monotonicity

f U(t)(v(T + h) - v(T))B J f (v(h) - v(O))dp

R R

by Lemma 1.4, v(h,x) ( f dP = f d; = v(Ox) for all x G R. Since 0 is
(-=,x] (-',x]

arbitrary, we obtain

a(T)(v(T + h) - v(T)) 4 0

and by letting h go to 0

JU(T) - u(T)I(v(T) - v(t)) 4 0

By symmetry we obtain

0 = (u(T) - U(T))(v(T) - v(T)) = (V(T) - v(t))X

This proves v = v and u = u.

Proot of Theorem 1.2. Let u be a solution to (1.2) with p = lim ess u(t) narrowly in

t+0

R (u ) 0). By Lemma 1.1 and since 0 is odd, u+(t) and u-(t) are subsolutions to

ut + O(u)x = 0. Since u(t) is narrowly compact, so are u +(t) and u-(t) (see [141).

By Lemma 1.4, there exists Ii and p nonnegative finite measures such that+

P+ = lim u + (t), P = lim u-(t) narrowly
+ t+U t+0

x x
Moreover, v +(t,x) = J u+(t,C)d& and v_(t,x) = f u-(t,&)d& converge monotonically to

v +(O,x) = f djI+, v_(O,x) = f dM. One has g+ - I= v. Since the mapping

(-=,x] (-=,xI
P , 0 is not continuous for the narrow converqence, we a priori do not know that

(1.28) P = U, IJ 0
+

We are qoinq to prove it by using Lemma 1.3 aqaln. From this, it will follow that v = U

and u = U. The uniqueness restilt of Theorem 1.2 will then be a consequence of Theorem I.1.
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Let us introduce fh(tx), gk(tx) the solutions to (1.2) with the initial data

fh(0) = u+(h), 900) u-(k) + Uk# where 
11
k 6 LI(R) is nonneqative and sucui that

converges narrowly to p and f dik increases to f dV when k decreases to
(-",x] (--,x]

0. By the results in (10], we know that fh' 9k exist and are unique (in particular, they

are nonnegative). Moreover, for all t G (0,T - h) n (0,T - k)

u(t + h) 4 fh(t), -u(t + k) 9 k(t) I

since it holds for t = U (see [10] or [3]). Taking the positive part, we obtain

(1.29) u+(t + h) 4 fh(t), u-(t + h) g(t) -

Let us prove that fh(t) and k(t) converge in DV(R) to the same measure f(t) for

all t G (0,T) when h and k tend to 0. For this, set

x x
Fh(t,x) = I fh(t, )d , Gk(t,x) = I k

t d

Since Fh(U) = v+(h) increases when n decreases to 0, so does Fh(t) for all

t G (O,T) (one can use Lemma 1.3) for instance. Also Gk(t) increases when k + 0.

Moreover, by Lemma 1.4

(1.30) Fh(tx) < Fh(Ox) = v+(h,x) 4 f dij+

(--,x]+

(1.31) Gk(tx) 4 Gk(Ux) = v_(k,x) + f dUk 4 f dL_ + dp = f dP+
(-',x] (-',x] (--,x]

Hence Fh(tx) converges pointwise to some bounded function F(t,x) when h + 0 and

Gk(t,x) converges to some bounded function G(t,x). Moreover, th(t), gk(t) converge

narrowly to f(t) =rxF(t,*), g(t) =. xG(t,'). Let us prove F = G (so that f = g).

Applying Lemma 1.3 to fh and gk gives (with obvious notations)

Ifh( t ) 
- gk(T)I(Fh(T) - Gk(T))e = I fh(s - gk(s)I(Fh(s) - Gk(S))(s)

R R

Using monotonicity properties of Lemma 1.4, one has with P = ( - CTk()I

-12-



a (F(T) G +2 f (Fh(s) - Gk(s ))P(s)

(1.32)

+ f Ifh(T) - gkT)I(Gk(T) - Fh(T))+e ,
R

for all s 0 k (O,k 0 ). To get rid of the last term, we choose 8 supported in

the set

w x R; 5M) - F h() < 0)

where G(T,X) = G(T,X) a.e. x and x * G(T,x) is right-continuous (note that G(T)

dominates G kT)). Since G(T) is upper-semi-continuous in x and F h(T) continuous

in x, w is open.

As in the proof of Theorem 1.1, we check that Pk (S) is narrowly compact for

s 6 (O,s0 ), k G (O,k 0 ). go that we can let s tend to 0 in (1.32) to obtain the

existence of a nonnegative measure P such that:

(e, a I (Fh(T) - G(T))+
2 )C( )xV,(w) f (Fh(s) - GkO (s))dp

COR
I0

We let so, k0  tend to 0. Since li Gk (0,x) = f dUJ + dp - f dU+, using
kO+0 (-,x] (-,x]

(1.30) we obtain

a-I (F1(T) - G(T))+2( 0

~--C (F0r (w)xV'(w)

a 1 +2 1 2or (Fh(1) - GM)+ 0 in W. Hence if U (F (1) - G(T))
+ , x + U(x) is right-

continuous, lower-semGi-)) (0inu) nce if ~)40o [ hsimle ic
dcontinuous, lower-semi-continuous and - U~x) ( 0 on (U > 0]. This implies U = 0 since

U( = 0. Therefore Fh(T) 4 G(T) (a.e. x). Since h is arbitrary and by symmetry F = G.

We finish the proof by passing to the limit in (1.29) to obtain:

(1.33) u+(t) 4 f(t), u-(t) 4 f(t) in V'(R)

Since u+ * u- = 0, this implies u+(t) + u-(t) 4 f(t). Integrating this and letting

t + 0 leads to

(1.34) f du + dl ( lim f f(t) 4 f dU +
R t+0 R R

This proves V = 0.
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Remark 1.. The main point in the proof ot I = 0 is to reach (1.33). The idea hehind

it is that t(t) is a "solution" of (1.2) with initial value U - U + U and u+(t),

u-(t) are subsolutions of (1.2) with initial value respectively I+ and U_ 4 p + p_.

but we do not know in qeneral if f(t) is a solution in the sense (1.3), (1.4). A priori

f(t) is only a measure. This leads to a more complicated analysis than in Theorem 1

although we deal with nonnegative functions.

Proot of Theorem 1.3. Let u,u be two solutions to (1.3), (1.4) satisfyinq (1.6). Set

v(t,x) = f u(t,C)dt, v(t,x) = f u(t,&)d&. By Lemma 1.1, vt + O(u) 4 0, Vt + V(u) ( 0.

Since s A 0, t * v(t,x) and t - v(t,x) are monotone (increasing when t decreases to

0). By Lemma 1.3 applied to u(t + h) and u(t), one has

f a(T)(v(I + h) - v(T))e -C a(s)(v(s + h) - v(s))*(s)
R R

where Q(t) = Iu(t + h) - u(t)j and 8, T, V are specified as in the lemma. By

monotonicity, for all 5 6 (0,s0 )

f G(r)(v(r + h) - v(r))O 4 f (v(h) - v(s0 ))P(s)
R R

where p(s) = m(s)l(s) is narrowly compact for s 9 (0,so) (see the proof of Theorem

1.1). We let s tend to 0 to obtain a nonnegative finite measure p such that

f m(T)(v(T + h) - v(T))O f (v(h) - v(s 0))dp
R R

Finally we let so decrease to 0. Since v(Sox) increases to v(x). (given by

assumption), the right-hand side converges to f (v(h) - v)dp which is nonpositive. Then
R

we finish as in Theorem 1.1 to obtain v(T) = v(T) and u = u.
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SECTION 2: EXISTENCE

We easily check that for 0(u) = Iulm , m > 1, the following functions are solutions of

(1.3), (1.4) with the initial data (q - p)6 where 6 is the Dirac mass in 0, 0 4 p,q.

sign x IxI"-,(mt) 1-m  -Vn(t) 4 x 4 t(t)
(2.1) wpq (t,x)

x < -n(t) or x > (t)

M-1 M-i I

with &( rn-(tm. 11(t)- m inn.1) t When t tends to 0,
x

v(t,x) =f w(t,g)dg converges to

0 if x< 0

v(x) -p if x = 0

q- p if x >0.

If S(u) - sign ululm , the unique fundamental solution (u(0) = 6) is the one

corresponding to p - 0, q - 1.

These explicit solutions are known as ON-waves" and were already known as describing

the asymptotic behavior of any bounded solution with compact support in the case
1 u2k

(u) = _L u (see (5) and the references in it).

In order to obtain solutions to (.2) with initial data a signed measure M, a

natural way is to approximate U by Mn Q L1 (R) r L"(R) for which the problem (1.2) has a

solution un in the sense (1.3), (1.4). In order to pass to the limit, it is necessary to

have a uniform estimate of lu (t)1. in terms of EM I and some compactness property
n n L I(R)

for A(Un). This is realized as soon as an estimate

f iutl 4 C(t,f luo()
R

is valid for the solution to (1.2). For instance, using the results proved in [4], one can

prove the tollowing.

Proposition 2.1. Let 0:[(,) + (0,-) be increasinq, p(0) = 0, and such that

(2.2) 3 a (i (0, 1), r + % 1(r) is convex on (0,I)
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Then, for any nonnegative finite measure p on R, there exists a unique solution u to

(1.3), (1.4) with T - m such that

(2.3) lim u(t) = P narrowly in R

t+0

Remark. The condition (2.2) is obviously satisfied if v(r) = r
m
, m > 1, with

a - = -- .m

Proof. Let P G L
i

(R) f Lw(R), U n 0 converging narrowly to V. It is well-known thatn n

there exist a unique un G C([O,-); L()), nonnegative, solution of (1.3), (1.4) (see

(10]). Thanks to (2.2), we have as proved in [4]

(2.4) u (t + h) - un(t) l  CIL)
( h t--- n
R R

(The results in [3] can be used to prove that our particular case falls under the scope of

the abstract setting in [4]). From the estimate (2.4) together with (1.3), (1.4), one

easily obtains

(2.5) f lI(Un(t,x + h)) - o(u,(t,xl))( h C±f Un

R t Rn

(2.b) IO(u(t'x))I I C(C f U
t Rn

The condition (2.2) implies that lim O(r) = +. Since p is strictly monotone, (2.6) can

be rewritten

(2.7) Un (t)I (- 
1(l(C(2) f U) = h(t)L (R) R

Finally

(2.8) f I (un t + h,x)) - (u n(tx))I M(t) f Iun(t + h,x) - Un(t,x)I

R R

where M(t) = sup[p'(r); 0 4 r ( h(t)).

By (2.5), (2.8), (un(t,x)) is relatively compact in Lo((0,) x 3). here exists

a subsequence of P(u.), still denoted by P(un), converqing in L,0 ((1,I) x R) and
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a.e. (x,t) W (0, ) x R. Since 0 is strictly monotone and u n is locally bounded on

(0,46) x R,. we can also assume that u~ converges in L1(CO,0) x R) to u. Hence wen 10c

can pass to the limit in (1.4) to say that u is a solution of (1.2).

It remains to check that V - lrn u~t) narrowly. For this let us assume we have

chosen a sequence M n such that f ti ( )dt increases to f do. Then we easily
-M X (--,X]

verify (tar instance by using Lemma 1.3) that vn(t'x) =f u n(t,F&)dt increases with n
nW

to some v(t,x). On the other hand, by monotonicity we have (see Lemma 1.4)

x
vn (tlx) 4 vn(O1 X)=f V n dU.

x
In particular, this implies that v(t,x) f u(t,t)d (since v(- U),

f u(t) - laim f U(t) Idoi and

(2.9) v(t,x) 4 f dli

Using the monotonicity of v(t) in t, the fact that u(t) is uniform~ly bounded in

L 1 (R) and (2.9), we conclude that {u(t); t 9 (O't )) is narrowly relatively compact. By
0

Lemma 1.4, o = lim u(t) exists and by (2.9)

(210+~0 f d; 4 f doi

but also, for all t > 0

f U (t) f u(t) f dli ==£ 0 un(O) f dii.

This together with (2.10) proves i i
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SECTION 3: APPLICATION TO THE ASYMPTOTIC BEHAVIOR

We state here two results, obtained as a consequence of the Section 1, which say that

the asymptotic behavior of the solutions to 01.2) depends only on

f u0  if o(r) - sign rir", m > I

R
x +W

p - -min f u0 ( )d and q - max f u0 l)d,

if 
o(r) 

- Irl', 
a > 

1

The fact that the invariants p,q describe the asymptotic behavior in the case when V

is convex is not new (see [il, 16), [121, [51 - see also (21 for other results). Here the

method is different: it directly applies to Ll-functions and treats as well the non-convex

case.

we set luk - (f Iu(x)lrdr)r
r

R

Theorem 3.1. Let .PCr) - sign rirm, m > 1 and u0 6 LI(R). Then the solution u to

(1.3), (1.4) with u(O) = u 0  satisfies

r- 1

(3.1) lia t Ar lu(t) - W(t)r a 0 V 1 4 r <-
rt++"

where w - w 0 'f U if f uO ) 
0 and w - w- uO if I u 0 ( 0 as given by (2.1).

it R

Theorem 3.2. Let v(r) - Irlm, a > 1 and u0 6 LI(R). Then the solution u to (1.3),

(1.4) with u(O) - u0  satisfies

r-1

(3.2) lim t ar lu(t) - w(t)I - 0 V I ) r < ,
rt+"

4 x

where w wp,q sith q - max f 4 o= uo(Wd, -p - nin f uo luo()d
xOR x x6R ,
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As an application of our general uniqueness result of Theorem 1.2, one can in fact

study the asymptotic behavior for more general A that behave like a power near the

origin. Here we borrow from [91 where the same kind of assumptions (but weaker) are

introduced to study the behavior in the large of the solutions to ut - (U)xx = 0.

Theorem 3.3. Let u0 6 L (R) n LM(R) and let 0 @ C
2
(R) be increasing, odd and

satisfying

(3.3) 3 0 < a < a < v(r)v"(r) V r C-Eu I.,Iu 1
o'(r)20 

0

(3.4) lim-__1 LLr M > 1.

r+0 mr

Then (3.1) holds.

Remark. As we saw in Section 2 (see (2.2)), the condition (3.3) insures the existence of

solutions to (1.2) originated from a Dirac mass. Here we will use again the estimates of

type (2.4) established in (41 to provide some compactness argument. Note that, if

u > 0, only the existence of a is needed. The condition (3.3) is then equivalent to

the convexity of 101- (r) on (-u ol.,Iu 1.) (see [41).
0 04

Note that (3.4) implies

(3.5) s(r) = (sign r)Irlm(1 + c(r)), lim C(r) - 0
r+0

(3.6) 3 a,b > 0, Vr 6 (-u 0 1.,IU0 1), alri
m 

4 J (rl < brl
m

Proof of Theorem 3.3. For X ) 1, let us consider

uA(t,x) = Au(Amt,Ax)

where u is the given function. We are going to prove that uA converges to w defined

by (3.1) when A tends to .. Going back to (1.4), one easily checks that uX is a

solution (in the sense (1.3), (1.4)) to

uA + PX(uA)x = 0
t

with (r) 
=

m,(r) This new function o. also satisfies

-19-
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(3.7) Vr G [-Alu01 ,Alu1 (r)(r 2 4 8, aIri m ' I A(r)j bit •

by the results in [41, we have

IuAlt + h) - uAlt)I _
(3.8) huJ tu(0)l for some C = C1a,1•

R R

Since J luA(0)I = f {u0l, this qives an estimate uniform in A. As in Section 2, we then

R R
obtain

(3.9) f IJA(uX(t,x + h)) - 0,(u (t,xl)I f C h R lu01,
R R

(3.10) 10) X A
R

This together with (3.7) proves that

(3.11) ux(t'x) 4 t-G /mc( luol) - C(t)
R

we then obtain

(3.12) f lixluX(t + h)) - OX(ux(t))l 4 M(t) lUX(t + h) - UA(t)I
R R

where #(t) = sup{(o(r); Ir f C(t), A ; I is finite tor all t > 0. Indeed

and, by (3.4), for s small enough

0 4 S'(s) < . mIsIln
1

The estimates (3.8), (3.9), (3.12) imply that A(uA) is precompact in

Lloc((O,i) x R) for A ) 1. There exists a subsequence A + - such that 0. (u)" n n n

converges in LI  ((0, ) x R) and a.e. (x,t) to some p*(x,t). But, by (3.5)
loc

(3.13) SA(UP ) = (sign uX)lulm(1 + C( ) X

This implies that u (x,t) converges tor a.e. (x,t). Let w(x,t) = lim uA (x,t).
n n

Then (3.1j) says that P*(x,t) = (sign w)jwl
m .

-20-



Now, using the dominated convergence theorem, one can pass to the limit in (1.4)

(applied with uA,'A ) to obtain that w is a solution of (1.3), (1.4) with

O(w) - (sign w)Ilwm.

Let us now identity the initial data of the limit w. For all A J 1 and t 0 0

(3.14) u t) - U (O) + a f A(uA) = 0 in DIR).
0

In order to pass to the limit in (3.14), let us remark that

t t
f f I 4u b f f lu ,s)Ir ds
RO RO

and, by (3.11)

f luXs)jmds 4 (f IuX(s)l) C , C f luol

R R M =-R
m m

S S

Hence

t
(3.15) f fS lx(uA)l c(f 00 )tm .

R0 R

Thanks to (3.15) and to the fact that oA (uA) converges to (w) in Loc((0)x Rn),
t n n t

we obtain that S ~ A~O((u ))do converges in Lloc(R) to f V(w(O))da.

0 0
Now we can pass to the limit in (3.14). Using that uA(O) = Au (AX) converges in

D'(R) to 6 f u0  we have
R

t
(3.16) w(t) - 6 • f uo + -S (w(0))dO 0 in '(R)

R 0

Let us prove that w(t) converges narrowly to 6 f Sun when t + 0. Assume first
R

u 0 0, so that uA(t) > U and w(t) > 0. Set

x
v(t,x) = f w(t.)d, v0(x = (f "o) " f 6 •

-" R (-,x)
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Integrating (3.16) gives

t
(3.17) v(t) - v 0 + f (w{0))da = 0

0

Using the estimate (3.15) (also true for (w)) we deduce from (3.17) that v(t)

increases to and that w(t) = a v(t) converges narrowly to 6 f u a v0  (we
R

use that by (3.16) f w(t) f I u0 ).
R a

For general u0 , we use the fact that u_(t) 4 u(t) • u+(t), where u+(t), u_(t)

are the solutions to (1.2) with the initial data u and -u O. Since the correspondinand -uhe Sinelhecoresonsn

w+(t), w_(t) are narrowly convergent when t + 0 by the previous proof, w(t) is

narrowly compact. The only possible limit is 6 f u0  by (3.16).
R

We now can use our uniqueness Theorem 1.2 to say that w is the function defined by

(3.1). (Note that we a priori do not know the sign of w.)

The last step is to prove that uA(t) converges in L(R) (rather than in

LioCl)) to w(t).

If u0 A 0 (C-> uA(t) > 0) this is obvious since

f 1, fux(t) = f u0
R R

and by Fatou lemma and (3.19):

R w0  f w(t) iM J uX{t) - f u0R R ) O 0t R

For general uO , we use again that

u_ lt M u xtM • u +Xlt)

where u+, u correspond to the initial data u+ and -u0 .

So, in any case, for all t > 0

(3.18) lim f tXu(AmtAx) - w(t,x)Idx =

A+- R

Using the invariance of w by the similarity transformations (xw(Amt,Ax) = w(t,x)),
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choosing t = 1, and T =M in (3.21) yields

uiM f lu(T) - w(T)j = 0
T+

" 
R

which is (3.1) for r = 1. For r > 1, one has:

(3.19) f ju(T) - w(Tl)r 4 nu(T) - w(T) r - 1  f ju(r) - w()I
R L (R) R

But by (3.11) applied to u and the definition of w

(3.20) Iu(T) - w(T) L ( CC_
L(R1 1'

m
T

where C depends on m and f 1u0 j. Then (3.19) and (3.20) give (3.1).

Proof of Theorem 3.1. Note that if s(r) = sign rlr
m
, (3.3) holds on R with

= = - . Theorem 3.1 is then a consequence of Theorem 3.3. The assumption

uU Q L"(R) can be easily dropped.

Proof of Theorem 3.2. Except for the uniqueness part, the proof is exactly the same as for

Theorem 3.3. The fundamental estimate (3.8) is also true in this case thanks to the

homogeneity of t(u) = lul
m  

as proved in (1). (Again one can use [3] to verify that our

case talls under the scope of the abstract setting in [1].) The only extra work is to

identify the limit when t + 0 of

x
v(t,x = Iw(t,&)d

in order to apply Theorem 1.3. Since w(t) converges narrowly to f J u0 , we have
R

(3.21) Vx < 0, lim v(t,x) = 0

t+0

(3.22) V&x > 0, lum v(t,x) = I u 0
t+0 R
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It remains to determine im v(t,O). Note that, since O(u) = lIm > U, t * V(t,u) is

t+0

increasing when t + 0 so that - - lim v(t,0) exists.

t+0
Thanks to (3.21), (3.22), (2.1) and the uniqueness Theorem 1.3, we necessarily have

W = w££+ u To finish the proof, it is sufficient to prove £ = p. But I is

characterized by

x
- =mn f wL,+fUo(t,{)d •

xQR 0

So, we are reduced to prove

x

(3.23) -p = min f w(t,C)d •
xQR -M

x
Since u X(t) converges to w(t) in L1(R), f u X(t,U)d converges uniformly for x Q R

x _m

to f w(t,t)d& when X t -. In particular

x x x

(3.24) min f w(t,&)d& = im min f u(tA)d& - lim mn I u(A't,&)d .

xGR - ~ A'xGR - ~ knxGR

but, since O(u) = lulm is convex (see (5] and references)

x x

(3.25) min f u(t,C)d = min f u(0,9)d& = -p

xGR - xGR -

The relations (3.24), (3,25) yield (3.23).
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