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. ABSTRACT

- We study the uniqueness of the solutions to the scalar conservation law

Rnt—t_whxkfsb%arwhen the initial datum is a finite measure. The case of a

Dirac mass is particularly emphasized: it is shown how it provides a

description of the agymptotic behavior of the solutions initiated by an

arbitrary integrable function. This behavior is proved to depend on one

¢ is odd while it depends on two when ¢ is

Lhe

parameter in the case when

convex,

N
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SIGNIFICANCE AND EXPLANATION

It is well-known that the solutions of the linear heat equation
(1) u -u. =0 (t,x) € (0,%) X R
behave for large time in a way that depends only on the total mass f u(0,x)dx
of the initial data. This property is also shared by the solutions :f the
nonlinear equation modelling the filtration of a gas through a porous medium
(2) u - (wH,, =0 (t,x) @ (0,@) xR .

Although it may seem paradoxical, this property turns out to be strongly
related to the uniqueness of the gso-called "fundamental solution” of (1) - or
(2) - when the initial datum is the unit Dirac mass at the origin.

Here we study the same kind of relationship for the scalar conservation
law
(3) u + p(u), =0 (t,x) e (0,®) X R,
where ¢:R * R 1is a given constitutive function. We prove that the above
properties are also valid for (3) when ¢ 1is odd. However, when vy is
convex it is known that the asymptotic behavior of the solutions of (3)
depends on two parameters (rather than just one, namely f u{0,x)dx). This
corresponds to the existence of a one-parameter family ofnfundamental
solutions of (3). The corresponding initial-value problem has then to be
understood in a stronger sense.

In addition to the above motivation and some obvious applications to
physical situations involving initial masses concentrated at some points, this
study also represents a contribution to the theoretical question concerning

1

the extension of nonlinear semigroups in L  to the space of measures.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.




SOURCE=~SOLUTIUNS AND ASYMPTOTIC BEHAVIOR IN CONSERVATION LAWS

lai-Ping L1u' and mMichel Pierre"z

INTRODUCTION

The main goal of this paper is the study ot the uniqueness of the solutions to the
scalar conservation law
(0.1) u, + ¢(u)x =0
when the initial data is a given finite measure J and its application to the description
of the asymptotic behavior of the solutions to (0.1) with inteqrable initial data.

Solutions to (0.1) are understood in Kriickov's sense (10] which includes the usual
"entropy" conditions. The initial data is understood in the sense of measures, namely
(0.2) 1im [ vou(e,x)dx = [ wlx)dulx) ,

ttO R R
for all continuous, bounded functions Y on R,

The results turn out to be quite ditferent whether one assumes the nonnegativity of
the solutions or not and whether ¢ 1is odd or convex. Namely, given a nonnegative finite
measure W, Wwe prove that there exists a unique nonnegative solution to (0.1), (0.2). But
the problem 1s not well-posed 1n general it the assumption of nonnegativity of the
solutions is dropped even if the initial measure is nonneqgative. Explicit counterexamples
are known in the literature when ¢ 1is a strictly convex function.

However, one can prove that the problem (U.1), (0.2) remains well-posed 1f ¢ is
assumed to be odd.

This emphasizes a difference in nature between the two typical cases ¢¥(u) = u?

and v¢{u) = ul which does not appear as long as the 1initial data is a bounded integrable

tunction. Aactually, this difference corresponds to a tundamental diffterence in the

‘Sponsoted by the United bdtates Army unaer Contract No. DAAG2Y-80-C-0041,

2This material is based upon work supported by the National Science Foundation

under Srant No. MUS=7927002.




asymptotic behavior of the solutions to (0.1). This is one of the motivations of our

studye.

Indeed, at least when ¢ nomogeneous, there is a strong relationship between the
asymptotic behavior of the solutions to (0.1) (with u(0) € L’(R)) and the "fundamental
solutions® of (0.1), that is the solutions whose initial data are concentrated at the
origin. Using similarity transformations, we can prove that, when t is large, the
solutions of

u + Qu|™)y =0 or ug + (sign uju|™), =0,
are "closed” to a solution of the same problem with the initial datum ™8 ° f u{0,x)dx"
where & is the Dirac mass at the origin. In the case when ¢ is odd, thi: solution is
unique: this proves that the asymptotic behavior depends only on one parameter {namely
f ug)s In the case when ¢ is convex, the lack of uniqueness corresponds to the fact
t:at the asymptotic behavior depends on two parameters as it is well-known for ¢(u) = uk
(see [11], (6], [12), [5) and the references in them). 1In the latter case, it is necessary
to put more information in the initial data.

The use of similarity solutions to study asymptotic behaviors has already been applied
to parabolic problems like the heat equation u, - Au = 0, or more generally the so-called
"porous media equation" u, - M® = 0 (see [9], [7)). Related uniqueness questions for
initial data measures have also been treated in (8], [13]). Here the same main ideas are
used, but the hyperbolic structure leads to specific difficulties. 1In particular, it is
interesting to mention how the proof of the uniqueness involves the resolution of a "dual®
limear problem

(ap), + (BY) =0,
when &, B are discontinuous coefficients., The built-in property ut + Bx < 0, coming
from the "entropy"” condition, insures the existence of solutions to this problem.

Besides the above motivations and some obvious applications to “"physical" situations
involving initial masses concentrated at some point, let us mention that this study is also
a contribution to a theoretical question concerning the extension of nonlinear semigroups

on L1 to the space of measures. It shows that the answer depends strongly on ¢ in the

-2a
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case ot the semi-groups generated by the operators Au = "wu) " (see {3] for a precise
-group x P

detinition) although they are m=-accretive in L](R) for most continuous ¢ (see [3)).

L]
Some Notations. For ® open set in rR", Cu(m) denotes the space of infinitely differen-
tiable functions with compact support in @ and D'(w) the space ot distributions on .
For simplicity, we will write

L]
[ £ for [ f(xyax, [ [t for [ [ t(t,x)dtax ,
R R 0 R 0 R

f tdy for [ f(x)dp(x) if M 1is a measure on R ,
R R

Given a function f, we set

. £(E) it f(§) 2 0 _ 0 if £(§) 2 ©
t (§) = ' £ (£) = .
o if f£(§) €0 -£(§) if €£(§) < ¢
In the same way, u+ and ¥ are the positive and negative part of a given Radon measure

4 on R.

. ! LI
we will indifrerently use tx oroae tor partial derivatives ot a function t.

wWe set
-1 if r <o
sign r = 0 if r =0
1 r>o0.
some facts about measures. Given a sequence of signed Radon measures (3 ) on R, we

n'n»0

will say that un converges narrowly to ¥ if, for all t continuous, bounded on R
lim [ tdu = [ fau .
n+= R R
We will use that a sequence un is relatively compact tor the narrow convergence if and
only if (see {14))
(1) the total mass [ dlunl 1s uniformly bounded
R

(i1) um J dlunl = 0 unitormly in R.
R+® {x|>K

-3-
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SECTION 1: UNIQUENESS

Throughout this section; we are given

(1.1) ¢:R * R locally Lipschitz continuous with v(0) = G .

By solution on (Q,T) of

(1.2) u, + v(u), =0,
we mean a function u{t,x) satisfying (see [10]))

(1.3) ue L.(O,T; L'(l)) n LQ((T.T) x R) Vvt 6 (0,T)

Vk 6 R, WGC;((O,T) x R), $y2>0,

(1.4)

T
J ] fu-xl¥, + sign(u - k)(g(u) - ¢lk))y, > 0.
0 R

Theorem 1.1 (Nonnegative solutions). Assume ¢([0,%)) C [0,®). Then, for any nonnegative

finite measure ¥ on R, there exists at most one nonnegative solution u to (1.3),

(1.4) such that

(1.5) lim es8 u(t) = 4 narrowly in R .
t+0

Remark 1.1. Since u(t) (and ;(t)) are not a priori defined for all t € (0,T), by
"lim ess” we mean limit outside a set of zero measure. Actually, using Krlickov's
uniqueness result (applied to u(t) for all t & (0,T)), we know that any solution to
(1.3), (1.4) belongs to C((0,T); L'(l)) the space of continuous functions from (O,T)
into LY(R).

Remark 1.2. The uniqueness result stated in Theorem 1 fails if one drops the assumption ot

nonnegativity for the solutions. Indeed when ¢(u) = u2, there exists a l-parameter

tamily of “source-solutions® to (1.3), (1.4) satisfying “

u{t) + § (Dirac mass at the origin) ,
for the narrow cunvergence on R (see (11]), (6], [5] and Section 2). However, this does
not happen 1f ¢¥(u) = sign u]ulm (m > 1) and it is the purpose of ocur next result.

Theorem 1.2. Assume ¢ 1s odd and ¢(r) * r » 0 for all r € R. Then, for any

nonneqative finite measure M on R, there exists at most one solution u to (1.3),

-4-




{1.4) such that

lim ess u(t) = u narrowly in R .,
tt+0

Remark 1.3. By symmetry, the same result holds for nonpositive finite measures M. By

combining existence results and the ideas used in the proof of Theorem 1.2, one could also
prove the same result for any finite signed measure,

In order to have uniqueness for more general ¢, it is necessary to understand the
initial data in a stronger sense., To illustrate this, let us state one more result which
can be applied to ¢(u) = |u|™, m > 1 and which also directly gives informations about the

asymptotic behavior of the solutions (see Section 3).

Theorem 1.3, Assume ¢ » 0 on R. Let M be a finite signed measure on R and v:R * R

ot bounded variation such that %; vix) = 4 and v(-®) = U, Then there exists at most one

solution u to (1.3), (1.4) such that
lim ess u(t) = 4 narrowly in R

tt0
(1.6)

R
¥x € R, lim ess | u(t,£)af = v(x) .
t+0 -

Remark 1.4. These results show that the solution is determined by v rather than by u.

It 4 has a mass at Koe then there are infinitely many choices for v(xo). They are not
always arbitrary. Indeed we will see that v 1s necessarily lower-semicontinuous when

¥ 2 0. Under the assumptions of Theorems 1.1, 1.2, v is exactly equal to I du.
But if ¢(u) = u2, other nontrivial choices of v do occur. (7]

In the proof of the theorems, we will need the following consequences of Krilickov's

derinition ot solution (1.4).

Lemma 1.1. Let u be a solution to (1.2), (1.4)s Then u & C({0,7); L'(R)) and

Vk 6 R, V)& c:((o,T) xXR), $20.
T + +
(1.7) f f fu - k) Ve o+ signt(u?t - X)le(u?) - elxnY >0
0O R X
-5




s aDht 4 o

AL

It A

T
(1.8) [ w7 =0, + signtu™ - K)(e(k) - ¢(-uTN¥, > 0
X
0 R
(1.9) u, + ¢(u), =0 in D'({y,T) % R)
(1.10) uf +e(u*), €0 in D'((0,T) X R)
(1.11) ug - ¢(-u”), €0 in D'((0,T) X R) .

Proof. We use the fact proved in [10] that any solution of (1.3), (1.4) is in

c({t,T); L’(R)) for all T 6 (0,T) and satisfies: for any H convex on R.
T u

(1.12) I [ av, + [ eisiwisrasy, > 0,
0 R k *

o
for all k ¢ R and nonnegative V¥ € Co((O,T) x R). Applying this successively with

* gives (1.7) and (1.8).

H(r) = (r¥ - kx)* and H(r) = (r~ - k)
To obtain (1.9), since u € L.((t,T) x R) for all T 6 (0,T), one can apply (1.4)

with § supported in (7,T) * R and successively Kk > max{u(t,x); t € (1,T),x € R},

k < min{u(t,x); t € (1,T),x € R},

For (1.10) and (1.11), one uses (1.7) and (1.8) with k = 0.

For convenience, we will call subsolution of (1.2) a function u satisfying (1.3) and

VKGR, WE c;((o,r) xR), ¥20
(1.15)

T
| | w- k)*wt + signt(u - K)w(u) = @k > 0 .
0 R x

Remark 1.5. By (1.12) applied with H(r) = (r - k}*, a solution of (1.2) is also a
subsolution. Note that Lemma 1.1 says that, if u is a solution of (1.2), then ut is a
subsolution of (1.2) and u~ is a subsolution of u, - ¢(-u), = 0.

The first main step in the proof of the theorems is the following lemma due to Kriickov

(see [10] for a proof).




Ll e &

Lemma 1.2. Let u,u be solutions ot (1.2). Then

(1.16) g-g lu = u| +-g-;aiqn(u - u){¢(u) - ¢(u)) €0 in D'((0,T) x R} .

Remark 1.6. 7The relation (1.15) is the main ingredient in Krfickov's uniqueness proof of

the solutions to (1.2) belonging to C((0,T]; L1(R)) al L-((O,T) X R). 1lndeed, trom (1.15%)

one can prove

g?/ lu(t) = u(e)| €0,
R

by cnoosing suitable test-functions (see [(10]). Then u = ; follows if

u,; e C({u,T]; L'(R)) and u(0) = ;(0). This method does not apply when the initial data
is only a measure. A more sophisticated analysis is then needed which is partly contained
in the next lemma.

-~

Lemma 1.3. Let u,u be two solutions to {(1.2). For all t & (0,T), we set

X Py X a
(1.17) vit,x) = [ u(t,€)dE, v(t,x) = | u(t,§)dE .

-0 -0
Then, tor all 8 & C;(R), 6 >0, and all t 6 (0,T), there exists a nonnegative
¥ € L'({0,T) X R} such that
(1.18) a.e. 8 € (0,1), f Jutt) = u(r)|{v(t) = v(T1))0 = [ [u(s) = uts)|(v(s) - v(s))y(s) .

R R

Proot, Let us denote

glt,x) = v(t,x) - vit,x), a(t,x) = Ju(t,x) - ;(t,x)'
B(t,x) = sign(u(t,x) - ;(t,x))lw(u(t,x) - w(;(t,x))l .
Integrating with respect to x the relations
u, + w(u)x = 0, u_ 4+ w(;)x =0
gives
(v - ;)t +v(u) - w(G) =0.
By multiplying this by &, we obtain

(1.19) ag

-7=




Now, ¢ will be constructed as the solution to the dual problem

(1.20) (ap), + (BW)x =0, ¥(t) =6,

o
where 0 & CO(R), ® 20 and T © (0,T) are given. Since a and B are not continuous,
it is not a priori clear that (1,20) has a solution. But using (1.16), which says that
(1.21) at + Bx €0,

we are going to prove that (1.20) can be solved.

. 1
For this, let us reqgularize & and B: set a = Dn'(u + = n), Bn = Dn'B where P

n
18 a4 sequence of mollifiers in R X R and n = n(x) 1is a positive function of
o
L‘(R) A L (R). Then an and Bn are defined on some (sn,t) x R with € ¥ 0 when
L]
n+*® and an > 0. There exists wn e C ((en,T) x R) solution of
(1.22) (anwn)t + (ann)x = 0, Wn(T) =6. 8
. . . . n
(Note that, by setting n = “nwn' this equation can be rewritten L (;;-wn]x = 0,
v (T) =a (1)6.
n n
First 6 » 0 ==> Wn > 0.
Then if we expand (1.22), we obtain
(unt + an)wn * anwnt + annx =0.

By (1.21), this implies

B
n
+ — b € .
wnt a l"nx 0 on ( n'T)

By maximum principle, we then have
(1.23) ¥t 6 (en,T), lwn(t)lw < 'Wn(T)', = leI. .
As a consequence, there exists a subsequence of Wn {(still denoted by Wn)

"
converying to Y € Ln((O,T) X R) 1in L“ ((s,7) x R) for all s & (0,7), 1i.e.

T T
ve & (0,7}, ¥ 6 L'((0, 1) xR, [ [foE>f [y,
s R n s R

Une could show that § 1is a solution ot (1.20). BHut since our purpose 1S to prove

(1.18), let us rather pass to the limit in the tollowina equality obtained by multiplying

-8-




(1.22) by ¢4 and 1ntegrating by parts:

T
vs 6 (0,1), [ a (T)g(1)8 = [ a (s)g(s)¥ (s) + [ [ ¥ ((a =-a)g + (B =~ Big ] .
n n n n n t n x
R R s R
but g., g, are in L1((s,T) x R), “n' Bn are unitormly bounded on (s,T) X R and
converge pointwise to @,B. Hence the last integral above converges to 0 ftor all
s & (0,T). Now inteqrating this equality from 0 to P, 0 < 0 < p < T, we have at the

limit

[4
(p - 0) f a(T)g(t)6 lim f ds f Gn(s)g(s)wn(s) .
R n+® g R

Since an converyes to & in L1((0,p) x R) and q 1is bounded on (g,p), this limit is

P
. f ds [ a(s)g(s)y(s). Dividing by p - 0 and letting p tend to O yield the relation
o

R
(1.18).

Remark 1.7. Next, we will have to let s tend to 0O 1in (1.18). Ffor this, we need some

N

information about the behavior of v(s) and v(s) when s + 0., For this, let us prove

another lemmae.

Lemma 1.4. Assume ¢([0,®)) C [0,%). Let u & C((0,T); L‘(R)) be a nonnegative

subsolution of (1.2) such that {u(t); t € (0,T)} 1s narrowly relatively compact. Then
(i) There exists a unique nonnegative measure ¥ on R such that
M = lim u(t) narrowly on R .

t+0

x
(ii) when t decreases to 0, v(t,x) = f u(t,5)dé increases pointwise to the
00

lower-semi~-continuous (l.s.c.) function v(0,x) = f du.
(==,x]
Proot of Lemma 1.4. Inteqrating u, + \p(u)x € 0 leads to Ve t ¢(u) € 0. sSince ¢{u) 2 0

here, 1t proves that t * v(t) is nonincreasinqg. Wwhen t decreases to 0, v(t,*} 1s
then a nondecreasing family ot continuous, nondecreasing functions whose total variation 1is

o
unitormly boundea (since u € L (0,T; L’(R)). Hence v(t,*) converges pointwise to d

~9-
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l.s.c. and nondecreasing function. Moreover, by compactness, u(t,®) converges narrowly
to U= g;-v(o,x). The narrow convergence of u(t) implies (see [14}])

lim v(t,x) = 0 unitormly for t & (O,T) «
x’-ﬂ
In particular v(0,-®) = 0 and
(1.24) a.e. X 6 R v(o,x) = f dy .
(-'lx)
But v(0,x) 1is left-continuous, since it is l.s.c. and nondecreasing. Theretore (1.24)
holds for all x & R.
We now come to the proof of Theorem 1.1.

-

Proof of Theorem 1.1. Let u,u be two solutions to (1.2) with

lim ess u(t) = lim ess u(t) = 4 nparrowly .
tto tto

-

lLet h & (0,T) be fixed. By lLemma 1.3 applied to uf{* + h) and u, one has for all
16 (0,T-h) and 86 c;(n), 8> 0:
3.es 8 € (0,T) [ o(TI(V(T + h) - v(1® < [ als)lvis + ) - vis))¥(s)
R R
where a(t) = |u(t + h) - u(t)}, Syt =M<+, y 20 and
L ((0,T)xR)
x - X
vit + h,x) = f u(t + h,§)d§, vit,x) = f ul(t,£)dE. By the monotonicity proved in Lemma
- -}
1.4, for a.e. s 0 < s ¢ Sgr
{1.26) [ a(t)tvlt + h) - v(1))0 < f a(s)¥Y(s)(v(h) - visgy)) -
R R

It pl(s) = a{s)yis), f p(s) € M f u(s + h) + u(s). Since u(t),u(t) are uniformly bounded
R R
in LY(R), so is p(s). Moreover, for all R > O
f p(s) €M f u(s + h) + u(s) .
|x|>k [x|>R

BY narrow compactness, the right-hand side tends to ¢ uniformly in s € (0,T) when R

tends to ®. These two estimates on p(s) prove thet {p(s); s € (0,1T)} is narrowly




— .

compact (see [14])). Theretore, one can let s tend to 0 (according to a suitable
subsequence) to rind the existence of a nonneyative finite measure o such that

(1.27) VO < s < sg, [ @(T)v(T + h) = v(1))0 < [ (v(h) - vis))dp
R R

-

(remember that wv(h) and v(so) are continuous and bounded). Now we let Sg decrease
to O in (1.27). By monotonicity

J @t (v(T + h) - v(1))8 € [ (v(h) - v(0))dp .
R R

By Lemma 1.4, v{(h,x) € f dy = f dy = v(0,x) for all x € R. Since 8 is
(—=,x] (=2,x]
arbitrary, we obtain

-

a(t)(v(t + h) - v(1)) €0
and by letting h go to O
[u(t) = u(T)|(v(T) - v(1)) €0 .
By symmetry we obtain
0 = (U(T) = w(T))(V(T) = v(T)) =§;% vt - v(tn?.

~

This proves v =v and u = u,

Proof of Theorem 1.2. Llet u be a solution to (1.2) with M = lim ess u(t) narrowly in

t+0
R (4 2 0). By Lemma 1.1 and since ¢ 1is odd, u*(t) and u~(t) are subsolutions to

ue +v9(u), = 0. Since u(t) is narrowly compact, so are ut(t) and u~(t) (see [14]).
By Lemma 1.4, there exists u+ and M nonnegative finite measures such that

u = lim u*(t), b = 1lim u~(t) narrowly .

t4o t+0

x b3
+ - .
Moreover, v _(t,x)} = [ u'(t,E)dE and v_(t,x) = J/ uT(t,E)dE converge monotonically to
- -0
v+(0,x) = f du+, v_{0,x) = f du. One has u+ - M_ = M4, Since the mapping
. (==,x]) (-=,x)
[T ] is not continuous for the narrow convergence, we a priori do not know that

(1.28) H o= U, W =0.

+ -
We are going to prove it by using Lemma 1.3 again. From this, it will follow that v_ = 0
and u~ = U. The uniqueness result of Theorem 1.2 will then be 4 consequence of Theorem 1.1.

~11-




{et us introduce fh(t,x), qk(t,x) the solutions to (1.2) with the initial data

fh(o) = u*(h), g (0) = u“(k) + uk, where B (4 L'(R) is nonneqgative and sucu that uk
converges narrowly to M and [ duk increases to f dy when k decreases to
(--Ix] (=»,x]

0. By the results in [10]), we know that fh' 9 exist and are unique (in particular, they
are nonnegative). Moreover, for all t € (0,T - h) N (0,T - k)
ult + h) € £, (t), -u(t + k) € gt} ,
since 1t holds for t = 0 (see {10) or [3)). Taking the positive part, we obtain
(1.29) u*(t + h) € £ (), uT(t +h) Sg(t).
Let us prove that £, (t) and g, (t) converge in D'(R) to the same measure f(t) for

all t e (0,T) when h and k tend to 0. For this, set
X x
Folt,x) = [ £, (6,608,  Glt,x) = [ g (t,6)aE .
- -
Since Fh(u) = v+(h) 1ncreases when h decreases to 0, so does Fh(t) for all

t € (0,T) (one can use Lemma 1.3) for instance. Also Gk(t) increases when k + 0,

Moreover, by Lemma 1.4

(1.30) Fp(t,x) € ¥, (0,x) = v (h,x) € [ au, ,
(-mlx]
(1.31) G (t,x) € G(0,x) = v_(k,x) + [ aw < [ du_ +du = [ du, .
(==, x] -%,%) (-=,x])

Hence Fy(t,x) converges pointwise to some bounded function F(t,x) when h ¥+ 0 and

G (t,x) converges to some bounded function G(t,x). Moreover, f,(t), gy (t) converge
] ]

narrowly to f(t) = 5;-F(t,'), g(t) = 'y G(t,*)s Let us prove F =G (so that f = g).

Applying Lemma 1.3 to f, and g, gives (with obvious notations)

{ [£,(T) = g ()| (F, (T) - G, (1)) = £ [£h,(8) = gy (s)|(Fp(s) = G (s))¥(s) .

Using monotonicity properties of Lemma 1.4, one has with pk(s) = W(s)|fh(s) - qk(s)l




9 1 +2
[ 8573 (F() - G (T)TF < | (F (s) - G (33))p, (5)
R R o]
(1.32)

+ [ g, 1) - g (DG (T) - F (e,
R

for all s @ (0,30), k 6 (O,RO). To get rid of the last term, we choose 8 supported in
the set
w={xeR G(T) - F (1) <0},

where G(T,x) = G(T,x) a.e. x and x " G(T,x) is right-continuous (note that G(T)
dominates Gk(r)). since G(T) is upper-semi-continuous in x and Fh(T) continuous
in x, W is open.

As in the proof of Theorem 1,1, we check that pk(s) is narrowly compact for
8 € (0,30), k € (0,k°). 80 that we can let 8 tend to 0 in (1,32) to obtain the

existence of a nonnegative measure ¢ such that:

3 1 +2
(8, x— = (F_(1) - G(1))"“) < [(F (s) -G (s ))dp .
™2 h ColwixDt(w) R h Gko °
We let 8,5, kg tend to 0. Since lim Gko(O,x) = ] du_ + du = f du+, using
koio (-=,x] (==,x]
(1.30) we obtain
3 1 +2
(8, %32 (Fh(t) - G(Tt)) <0

Colw)xD* (@)
or %—-1 (F, (1) - 6(1)*2 € 0 in w. Hence if U = %-(Fh(T) - &(t*?, x » ulx) is right-

x 2

continuous, lower-semi-gontinuous and g; U(x) €0 on (U > 0]. This implies U = 0 since

U(-®) = 0. Therefore Fh(r) € G(T) (a.e. x). Since h is arbitrary and by symmetry F = G.
Wwe finish the proof by passing to the limit in (1.29) to obtain:
(1.33) ut(e) € £(t), uT(e) < £(t) in DUR) .

* ¢ u” =0, this implies u*(t) + u”(t) < £(t). Integrating this and letting

Since u

t + 0 leads to

(1.34) [au_ +au_<1im [ ge) < Jau .
R t+0 R R

This proves u_ = 0.

-13-




o auR k.

Remark 1.8. The main point in the proof ot U = 0 is to reach (1.33). The idea hehind

1t is that t(t) 18 a “solution” of (1.2) with initial value u+ = U + U_ and ut(e),
u~(t) are subsolutions of (1.2) with initial value respectively n, and u_ S U+ ¥_.
But we do not know in general if f(t) is a solution in the sense (1.3), (1.4). A priori
f(t) is only a measure. Thls leads to a more complicated analysis than in Theorem 1
although we deal with nonnegative functions.

Proot of Theorem 1.3. Let u,u be two solutions to (1.3), (1.4) satisfying (1.6). Set

X - X - -
vit,x) = [ u(t,£)dE, v(t,x) = [ u(t,£)dé. By Lemma 1.1, vy + #(u) €0, ve * v(u) € 0.
- -0 ~
Since ¢ 2 0, t * v(t,x) and t ** v(t,x) are monotone (increasing when t decreases to
0)s By Lemma 1.3 applied to u(t + h) and u(t), one has
J a(T)v(T + n) = v(1))8 € [ a(s)(v(s + h) - v(s))¥(s) ,
R R
where a(t) = lu(t + h) - u(t)| and 6, v, ¥ are specified as in the lemma. By
monotonicity, for all s € (0,30)
J (vt 4 h) = v(1))8 < [ (v(h) - vis ))e(s) ,
R R
where p(s) = a(s)Y(s) is narrowly compact for s € (0,80) (see the proof of Theorem
1.1)e We let s tend to O to obtain a nonnegative finite measure P such that
J et + h) = v(1))8 € [ (v(h) - V(s ))ap «
R R
Finally we let 8o decrease to 0. Since v(so,x) increases to vi{(x). (given by
assumption), the right-hand side converges to f (v(h) « v)dp which is nonpositive. Then

~R -
we finish as in Theorem 1.1 to obtain v(t) = v(T) and u = u.

-14-




SECTION 2: EXISTENCE

we easily check that for ¢(u) = |u|™, m > 1, the following functions are solutions of

(1.3), {(1.4) with the initial data (q - p)8 where 6 is the Dirac mass in 0, 0 € p,q.

1 1

sign x |x|m-‘(mt)1-m -n(t) € x < £(t)
(2.1) Hp'q(t'x) =
0 x < -n(t) or x > &(t) ,
il 1 3
with £{(t) = m(;J:—‘) m tm, nit) = m(;;L‘] o™, When t tends to O,
x
vit,x) = f w(t,§)d§ converges to
-
0 if x <O
vi(x) = -p if x =0

q-p if x> 0.
If ¢(u) = sign ululm. the unique fundamental solution (u(0) = §) is the one
corresponding to p =0, q = 1,
These explicit solutions are known as "“N-waves" and were already known as describing
the asymptotic behavior of any bounded solution with compact support in the case

2k

¢(u) = L u (see [5) and the references in it).

2k
In order to obtain solutions to (1.2) with initial data a signed measure ¥, a
L]
natural way 18 to approximate u by un [+ L‘(l) N L (R) for which the problem (1.2) has a

solution u, in the gense (1.3), (1.4)s. In order to pass to the limit, it is necessary to

have a uniform estimate of lun(t)l“ in terms of Iunl 1 and some compactness property
L (R)

tor w(un). This 1s realized as soon as an estimate

{ fug| < ce,f luol).

is valid for the solution to (1.2). For instance, using the results proved in [4]), one can
prove the tollowing.
Proggsitxon 2.1, let ¢:[0,®) *+ {0,%) be increasing, ¢(0) = 0, and such that

(2.2) Taec (V,1), r* ¢1-a(r) is convex on (0,®) .

-15-




Then, tor any nonnegative finite measure M on R, there exists a unique solurion u to
(1.3), (1.4) wath T = +° such that
(2.3) lim u(t) = 4 narrowly in R ,

t+0

Remark. The condition (2.2) is obviously satisfied if ¢(r) =™, m > 1, with

«®
Proot. Let un (4] L‘(R)fﬁ L (R), un ? 0 converqging narrowly to u. It is well-known that
there exist a unique u, € c([0,®); L‘(R)), nonnegative, solution of (1.3), (1.4) (see
[10]). Thanks to (2.2), we have as proved in [4]

lu (t +h) - un(t)l cla) [

(2.4) f <
R h t R D

(The results in [3] can be used to prove that our particular case falls under the scope of
the abstract setting in [4)). From the estimate (2.4) together with (1.3), (1.4), one

easily obtains

(2.5) I |¢(un(t,x + h)) - ¢(Un(t,x))l <h Ciu) I u
) R
c(a)
(2.6) fotug(e,x))] ¢ = £ W .

The condition (2.2) implies that 1lim ¢(r) = +®, Since ¢ is strictly monotone, (2.6) can

r”
be rewritten
(2.7) et < (G ) - nee
L (R) " R
Finally
(2.8) £ letu (e + hx)) = wlu (£,x))] € M(t) { lupte + hyx) = w (e,x)]
where M(t) = sup{y'(r); 0 € r € h(t)}. ]

. 1
By (2.5), (2.8), wlu (t,x)) 1is relatively compact 1in Lloc((o,') x R)e There exists

a subsequence ot w(un), still denoted by v(un), conver4ying 1in Llnc((n.") x R) and

-1b-




a.es (x,t) & (0,%) X R. Since ¢ 18 strictly monotcne and u, 1is locally bounded on
(0,*) x R, we can also assume that u, converges in L;OC((O,*) X R) to u. Hence we
can pass to the limit in (1.4) to say that u is a solution of (1.2).

It remains to check that § = lim u(t) narrowly. For this let us assume we have

t+0

x :
chosen a sequence nn such that f un(E)d£ increases to f du. Then we easily

-0 x {=%,x])

verify (tor instance by using Lemma 1.3) that v _(t,x) = J un(t,E)dE increases with n
-

to some v(t,x). On the other hand, by monotonicity we have (see Lemma 1.4)

X
valt,x) € v (0,x) = f u < I/ du .
-0 (_.’x’

x
In particular, this implies that v(t,x) = [ u(t,E)dE (since v(-®) = yu),

-l
j u(t) = lim f u (t) = f ds  and
R n+e g " R
(2.9) vit,x) € [ du .
(-»,x)

Using the monotonicity of v(t) in t, the fact that u(t) is uniformly bounded in

LY(R) and (2.9), we conclude that {u(t); t & (O,to)} is narrowly relatively compact. By
Lemma 1.4, ¥ = lim u(t) exists and by (2.9)
t+0

(2.10) J du € f dw .
(=2,x] (-=,x]
But also, for all t > 0
/ u te) < f u(e) < f du ==> | w o=/ u (o) < [ du.
(==,x] (=, x} (-®,x] (==, x]) (-%,x} (-=,x)

This together with (2.10) proves u = y.




SECTION 3: APPLICATION TO THE ASYMPTQTIC BEHAVIOR
We state here two results, obtained as a consequence of the Section 1, which say that

the asymptotic behavior of the solutions to (1,2) depends only on

/ uy if @(r) = sign r|r|®, n>
R
X L
p=-nin [ uy(E)aE and q = max [ ug ()€,
XGR - x6R x

if w(r) = |z|® m > 1.
The fact that the invariants p,q describe the asymptotic behavior in the case when ¢

is convex is not new (see [11], [6], [12], (5] - see also (2] for other results). Here the |

method is different: it directly applies to L'-functions and treats as well the non-convex
case. 1

We set tul_ = (f |u(x)|Far)® .
S

Theorem 3.1. Let ¢(r) = sign r|x|®, m > 1 and u, e L'(R). Then the solution u to

{1.3), {(1.4) with u(0) = u, satisfies

r=1
(3.1) 1im t ™ lu(t) - w(e)_ =0 vV 1<zr¢e>,
trem r
i!
1 > - .
where w = wO,f a if f u, 0 and w w‘[ u.,0 if f uy € 0 as given by (2.1).
R [+] R R 0 R

Theorem 3.2. Let ¢(r) = |z|® m > 1 and y, € L'(R). Then the solution u to (1.3),

3 (1.4) with wu(0) = u, satisfies
r-1
mr
(3.2) lim ¢ fu(t) = w(t)l_ =0 ¥V 12r¢e,
trm o
o x
where w = Yo.q with q = max [ uo(E)dE. ~p = min [ uo(E)dE .
X8R x X6R -®




As an application of our general uniqueness result of Theorem 1.2, one can in fact
study the asymptotic behavior for more general ¢ that behave like a power near the
origin. Here we borrow from [9] where the same kind of assumptions (but weaker) are 3
introduced to study the behavior in the large of the solutions to u, - \o(u)xx = 0,

Theorem 3.3, Let u, & JANT V) L-(R) and let vy € Cz(l) be increasing, odd and

satisfying
(3.3) 30<ac<B, ac@rlerln) (g vr e (-tul_,tul ], ’
¢'(r) 0 0
i (3.4) g T
1 r+0 ar

Then (3.1) holds.

Remark. AsS we saw in Section 2 (see (2.2)), the condition (3.3) insures the existence of
solutions to (1.2) originated from a Dirac mass. Here we will use again the estimates of

type (2.4) established in (4] to provide some compactness argument. Note that, if

u > 0, only the existence of a 1is needed, The condition (3.3) is then equivalent to
. 1-a
the convexity of |¢ '~ (r)| on (-tugl_,lujl,) (see [4]).

Note that (3.4) implies

BE Lkt Al I b B, L I e o ]

(3.5) ¢(r) = (sign ©)|r|™(1 + e(r)), lim €(r) =0 ,
! r+0
5
!
- (3.6) 3 a,b >0, vr & (-lugh,tul), alr|® < |e(r)] <blr|® .
F Proof of Theorem 3.3. For A > 1, let us consider
i ux(t,x) = Au(A™t,Ax)

where u is the given function., We are going to prove that u, converges to w defined
by (3.1) when A tends to +*, Going back to (1.4), one easily checks that u, is a
solution (in the senge (1.3), (1.4)) to

' ' SYRLIUNIE L

with vx(t) = meb;)‘ This new function 2 also satisfies

| ' -19-
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vy ()0
(3.7) vr 6 [-uuol_,uuol_l, a¢ 2> —— <8, alrj™c« WA-(”' <blc|™.
vi(t)
By the results in [4], we have
[u,(t + h) = u,(t)]
(3.8) J A A « < [ lu,(u)| for some C = C{a,B) .
h t A
R R
since [ IuA(O)l =/ jugls this gives an estimate uniform in A. As in Section 2, we then
R R
obtain
h
(3.9) J 10y tuy(tx + h)) - ¢y (uy (e, x))| € C -t-f fugl «
R R
(3.10) [@4Cu, (t,x))] ‘SIIuI
. AT, ta ol °
This together with (3.7) proves that
(3.11) luy tex)| < e RS lugl) = cte) .
R

we then obtain

(3.12) l{ @y (uyle + h)) - ey luy ()] € mee) 1{ luy(e + h) - uy (e) ) o
g where M(t) = sup{wi(r); [r| € ctt), A » 1} is finite tor all t > 0. Indeed
! ' m=-1 Y

WA(I) = A w'(xo and, by (3.4), for s small enough

. 0<vp'(s) ¢ %—mlslm'1 .
3
f’ The estimates (3.8), (3.9), (3.12) imply that vx(ux) is precompact 1n

’ Lioc((o,ﬁ) x R) for A 2> 1, There exists a subsequence Xn + ®» guch that 2 (“A )
n n

converyges in Lloc((o,') x R) and a.e. (x,t) to some ¢*{x,t). But, by (3.5)

u
(3.13) ¢y(uy) = (sign ux)luxlmﬁ + s(—;:-)) .

This i1mplies that u: (x,t) converyes tor a.e. (x,t). Let wix,t) = lim uy (x,t)e
n Xn*' n

Then (3.13) says that ¢*(x,t) = (8ign w)]wlm.




Now, using the dominated convergence theorem, one can pass to the lamit in (1.4)
(applied with ux,wx) to obtain that w 1s a solution of (1.3), (1.4) wath
¢(w) = (sign w)|w|™,

Let us now identify the initial data of the limit w. For all A 21 and t 20
3 t
- = i ' o
(3.14) u,(t) - u,y(0) +-5-;£ ¢5(uy) = 0 in D'(R)
In order to pass to the limit in (3.14), let us remark that
t t n
[ de,tupd) <b f [ tu,ts)|"ds
ATTA A
RO RO

and, by (3.11)

[ luy(s)1"as < (f Juy(s)]) == « == [ [yl «
R A R A m-1 n-l R 0
Sm Sm

Hence

1

t —

(3.15) 1 deytan) <c(f jugh)e™ .
ot A

Thanks to (3.15) and to the fact that ) (uA ) converges to ¢{(w) in L1 c((O,"') x R"),
n n

lo
t t
we obtain that é wA(ux(a))do converges 1in LIOC(R) to g v(w(o))do.
Now we can pass to the limit in (3.14)., Using that ux(o) = AuD(Xx) converges in

P'Y(R) to & [ u, we have
R

t
)
{3.16) wit) - & o l{ Uy +3;£ e(w(0))d0 = 0 in D'(R) .

Let us prove that w(t) converges narrowly to § * f ug when t ¥+ 0. Assume first
R

ug, » 0, so that uA(t) ? 0 and w(t) ? 0. Set

x
vit,x) = [ w(t,£)dE, vlx) = (f uo) . s .
o R (-2,x1]
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Integrating (3.16) gives

t
(3.17) v(t) - vg + [ w(w(o))do =0 .
o}
Using the estimate (3.15) (also true for v(w)) we deduce trom (3.17) that v(t)
. 3 . ]
increases to v, and that w(t) = > v(t) converges narrowly to § £ Uy = 3% Yo (we
use that by (3.16) f wit) = f ug)e.
R R
For general u,, we use the fact that u_(t) € u(t) < u,(t), where u_(t), u_(t)
are the solutions to (1.2) with the initial data “3 and '“5' Since the corresponding
w (t), w_(t) are narrowly convergent when t + 0 by the previous proof, w(t) is

narrowly compact. The only possible limit is § ° f u, by (3.16).
R

We now can use our uniqueness Theorem 1.2 to say that w is the function defined by

(3.1). (Note that we a priori do not know the sign of w.)
The last step is to prove that ux(t) converges in L‘(R) (rather than in
Lioc(R) to w(t).

If > 0 (==> ux(t) 2 0) this is obvious since

Yo
vA >, fue) = [ug,
R R

and by Fatou lemma and (3.19):

] w,_ = f w(t) € lim j u,(t) = f u_. .
Roll X*le RO

3 For general Uy, we use again that
<
u_x(t) ux(t) < u+x(t)
where u,, u_ correspond to the initial data “6 and '"5‘
So, in any case, for all t > 0
. . m
: (3.18) lim f JAu (At Ax) - wit,x)|dx = 7 .
i A+® R

Using the invariance of w by the similarity transformations (Aw(A™¢, Ax) = wit,x)),
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choosing t =1, and T = A" in (3.21) yields
lim [ ju(1) - w(T)| = 0,

T+® R

which 1s (3.1) for r = 1. For r > 1, one has:

(3.19) [ lutny = wm|F < um - wo D [ ju - e .

R L (R) R
But by (3.11) applied to u and the definition of w
C
(3.20) u(t) - w(T)! < =5
L,(R) =
m

T

where C( depends on m and f |u0|. Then (3.19) and (3.20) give (3.1).

Proot of Theorem 3.1. Note that if ¢(r) = sign r|r|m, (3.3) holds on R with

a=8= E—iiln Theorem 3.1 is then a consequence ot Theorem 3.3. The assumption

]
u, € L (R) can be easily dropped.

Proof of Theorem 3.2. Except for the uniqueness part, the proof is exactly the same as for

Theorem 3.3. The fundamental estimate {3.8) is also true in this case thanks to the
homogeneity of ¢(u) = |u|m as proved in [1}. (Again one can use [3] to verify that our
case talls under the scope of the abstract setting in [1}.) The only extra wWork is to

identify the limit when t ¥+ 0 of

x
vit,x) = f wit,8)dE

1n order to apply Theorem 1.3. Since w(t) converges narrowly to § f ug, we have
R

(3.21) ¥x < 0, lim v(t,x) = 0
ti0

(3.22) w > 0, lim v(t,x) = [ u, .
t4o R
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1t remains to determine lim v(t,0). Note that, since w(u) = [uj™ > u, t + v(t,u) 1s
¥ 0
1ncreasing when t + 0 so that =& = lim v(t,0) exists.
t+0
Thanks to (3.21), (3.22), (2.1) and the uniqueness Theorem 1.3, we necessarily have

w = 7o tinish the proof, it is sufficient to prove £ = p. But & is

w .
£,2+Iu0

characterized by

x
% =min [ w (¢, §)d§ .
XGR l,l+fu0

$0, we are reduced to prove

X
(3.23) -p = min [ w(t,£)dE .
XGR -

X
Since ux(t) converges to w(t) 1n LI(R), f ux(t.E)dE converges unitormly tor x & R
o

x
| to f w(t,E)dE when XA ¢ %, In particular
00

X X X
(3.24) min [ w(t,£)d€ = lim min [ u,(t,£)df = lim min [ ua™e, )48 .
XGR - At® xGR % A*® xGR -*

But, since ¢(u) = |u|™ is convex (see (5] ana references)

X X
(3.25) min [ u(A"t,£)d§ = min /| u(0,£)dE = -p .
XGR -* XER -

The relations (3.24), (3,25) yield (3.23).
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