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Abstract

Sentences are far more ambiguous than onc might have thought. ‘There may be hundreds, perhaps
thousands of syntactic parse trees for certain very natural sentences of English. This fact has been a maju#
problem confronting natural language processing because it indicates that it may rcquire a long time to
construct a list of all the parsc trees, and furthermore, it isn't clear what to do with the list once it has been
constructed. 'This list may be so numecrous that it is probably not the most convenient representation for
commnunication with the semantic and pragmatic processing modules. In this paper we propose some
methods for dealing with syntactic ambiguity in ways that take advantage of certain regularitics among the
alternative parse trees. ‘These regularities will be expressed as linear combinations of ATN networks, and also

as sums and groducts of formal power series.

We will suggest some ways that practical processor can take advantage of this modularity in order to
deal more cfficiently with combinatoric ambiguity. In particular, we will show how a processor can efficicntly
compute the ambiguity of an input sentence (or any portian thercof). Furthermore, we will show how to
compile certain grammars into a form that can be processed more efficiently. In some cascs, including the
“every way ambiguous™ grammar (c.g., conjunction, prepositional phrascs, noun-noun modification),
processing time will be rcduccd from O(n3) to O(n). Finally, we will show how to uncompile certain hxglely

opumlzcd grammars mto a form suitable for linguistic analysis. X

. N,

.
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Most parsers find the set of parse trees by starting with the empty set and adding to it cach tinie they
find a new possibility. We make the observation that in certain situations it would be much more efficient to
work in the other direction, starting from the universal sct (i.c.. the set of all binary trees) and ruling trees out
when the parser decides that they cannot be parses. Ruling-out is casier when the sct of parse trees is closer o
the universal set and ruling-in is easier when the set of parse trees is closer to the cinpty set. Ruling-out is
particularly suited for “gvery way ambiguous™ constructions such as prepositional phrases which have just as

many parse trees as there are binary trees over the terminal clements. Since every tree is a parse, the parser

duesn’t have to rule any of them out.

In some sensc, this is a formalization of an idea that has been in the literature for some time. ‘That is, it
has been noticed for a long time that these sorts of very ambiguous constructions are very difficult for most
parsing algorithms, but (apparently) not for pcople. This obscrvation has led some researchers to hypothesize
additional parsing mechanisms, such as pscudo-attachment [1: pp. 65-71]l and permanent predictable

ambiguity [14: pp. 64-65], so that the parser could “attach all ways” in a single step.  However, these

mechanisms have always lacked a precise interpretation; we will present a much more formal way of ceping ]

with “cvery way ambiguous” grammars, defined in terms of Catalan manbers [8: pp. 388-389, pp. 531-533).

Certain constructions, including the “cvery way ambiguous™ grammar, will be treated as primitive
objects (modules) which can be combined in various ways to produce composite constructions such as lexical i
ambiguity which are also very ambiguous, but not quite “cvery way ambiguous”. Composite constructions

will be analyzed as lincar combinations of primitive components, in a scnse to be made precise in terms of

formal power scrics. Equi-alently, in ATN notation, composite nctworks can be analyzed as serics and
parallel combinations of primitive networks. This approach has been strongly influenced by lincar systems
theory, a classic engincering notion of modularity.

We will suggest some ways that practical processor can take advantage of this modularity in order to
deal more cfficiently with combinatoric ambiguity. In particular, we will show how a processor can efficicntly
compute the ambiguity of an input sentence (or any portion thereof).  Furthermore, we will show how to
compile certain grammars into a form that can be processed more cfficiently. In some cascs, including the
“every way ambiguous grammar”, processing time will be reduced from O(n’) to O(n). Finaily, we will show

how to uncompile certain highly optimized grammars into a form suitable for linguistic analysis.

1. The idea of pscudo-attachment was first prenosed by Marcus (private communication), though Marcus does not accept the
formulation in (1}.
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1. Ambiguity is a Practical Problem

Sentences are far more ambiguous than one might have thought. There may be hundreds, perhaps
thousands of syntactic parsc trees for certain very natural sentences of English,  For example, consider the

following sentence with two prepositional phrascs:
(1)  Put the block in the box on the table,

which has two intcrpretations:

(2a)  Put the block [in the box on the tablc].
(2b)  Put [the block in the box] on the table.

‘These syntactic ambiguitics grow “combinatorially” with the number of prepositional phrases. For example,

when a third Pp is added to the sentence above, there are five interpretations:

(3a) Put the block [[in the box on the table] in the kitchen].
(3b)  Put the block [in the box [on the table in the kitchen]].
(3c)  Put [fthe block in the box] on the table] in the kitchen.
(3d) Put [the block [in the box on the table]] in the kitchen.
(3¢) Put fthe block in the box] {on the table in the kitchen).

When a fourth PP is added, there are fourteen trecs, and so on. This surt of combinatoric ambiguity has been
a major problem confronting natural language processing because it indicates that it may require a long time

to construct a list of all the parse trees, and furthermore, it isn’t clear what to do with the list once it has been

constructed. This list may be so numcrous that it is probably not the most convenient representation for
communication with the semantic and pragmatic processing modules. In this paper we propose some
methods for dealing with syntactic ambiguity in ways that take advantage of certain regularities among the i

alternative parse trees. ;

In particular, we observe that enumerating the parse trecs as above misses the very important
gencralization that prepositional phrascs are “every way ambiguous”, or more precisely the sct of parse trees
over i PPs is the same as the set of binary trees that can be constructed over i terminal elements. Notice, for

example, that there arc two possible binary trecs over three elements,

(4a) [..block ...[..box ... table ... ]
@b) [ ... block ... box ..] ... table ... ]
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corresponding to (2a) and (2b) respectively, and that there are five binury trees over four clements

carresponding to (3a)-(3c) respectively (sce figure 1),

‘These “worst case™ scenarios occur very often in practice, as indicated by our experience with the 1Qsp
parser [11] on the Mathotra Corpus [10].2 Almost 2% of the Malhotra Corpus has 300 or more interpretations
according to 1QSP. The sentences are given below with the number of parse trees. Note that the [irst sentence

is almost a thousand ways ambiguous.

958 In as much as allocating costs is a tough job I would like 1o have the total costs related to cach
product.

692  For cach plant give the ratio of 1973 to 1972 figures for cach type of production cost and
overhead cost.

654 1o you have a model to maximize contribution to the company subject to production and other
constraints?

556  Give actual and budgeted operating costs for all plants, and actual and budgeted 11anagement
salarics and interest costs.

512 Give me a breakdown of difference between list and average quoted price for cach product for
1972 and 1973.

510 'The intent of my guestion is to find out if you know if your accounting methods ¢in relate the
changes in salcs to changes in your expense structures.

322 Display the difference between list price and actual costs (direct + overhead) divided by list
price for plant 2 for the past four years.

382  What was the numbcer of units of product 2 produced at plant 2 in 1973 times the unit price of
product 2?7

These sentences show that syntactic constraints are not always very restrictive. This fact has been a
major problem confronting natural language processing because it indicates that it may require a long time to
construct a list of all the parsc trees, and furthermore, it isn't clear what to do with the list once it has been
constructed. The list of parse trees can be so numerous that it is probably not the most efficient repre-
sentation for communication with the semantic and pragmatic processing modules. A list representation fails
to take advantage of certain generalizations among the alternative parse trecs, especially the “every way

ambiguous” gencralization,

2. Malhotra gathered approximately 500 sentences in an cxperiment which fooled businessmen into believing that they were interacting
with a computer when they were actually communicating with a person in an another room,
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Fig. 1. Binary Trees Over Four Terminals

Over four terminals, it is possible to construct five binary trees. ‘These five trees are illustrated below in
solid lines.

the block in the box on the table in the kitchen

E the block in the box on the table in the kitchen

the block in the box on the table in the kitchen

- -
-
-

—

l the block in the box on the Gble in the kitchen

the block in the box on the table in the kitchen
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The “every way ambiguous”™ generalization is missed by most parsing algorithms currently in practice
including our own EQSP. These algorithms all construct the sct of possible parse trees by starting from the
empty set and adding to it cach time they find a new set of analyses. We make the observation that there are
certain situations where it would be inuch more efficient to work in the other direction, starting from the
universal set and ruling trees out when the parser decides that they cannot be parses.  Ruling-out is easier
when the set of parse trees is closer to the universal set and ruling-in is casier when the set of parse trees is
closer to the cmpty set. Ruling-out is particularly suited for “cvery way ambiguous™ grammars like pps
because there are no trees to exclude. Similar comments hold for other “cvery way ambiguous” constructions

such as adjuncts, conjuncts, noun-noun modification, and stacked relative clauscs.

‘These constructions, which will be treated as primitive objects, can be combined in various ways to
produce composite constructions such as lexical ambiguity which may also be very ambiguous, but not
necessarily “every way ambiguous”. Composite constructions can be analyzed as linear combinations of
primitive components. Lexical ambiguity, for example, will be analyzed as the sum of its senscs, or in flow
graph terminology [13], as a parallel connection of its senses. Structural ambiguity, on the other hand. will be
analyzed as the product of its components, or in flow graph terminology as a serics connection. FFor example,

the scntence
(5)  Was the block in the box on the table?

is structurally ambiguous. The “box™ can be associatcd with cither the “block”™ or the “table”™. We will
analyze this sentence as a product of two polynomials, the first corres; onding to the subject noun phrase and
the sccond corresponding to the complement noun phrase. ‘The standard definition of polynomial
multiplication correctly accounts for the two possibie attachments of “box”. We prefer this lincar systems
view to heuristic scarch strategics (c.g. [6]), because linear systems can capture gencralizations that hold across
alternative interpretations, whereas scarch strategies tend to probe only a single interpretation (context) at a
time. At the very least, our approach is an improvement over cnumerating each tree individually, which

consumes exponcntial time in the worst case,
2. Formal Power Series

This section will make the lincar systems analogy more precise by relating context-free grammars (o
formal power scrics (polynomials). Formal power scries are a well-known device in the formal language

literature (e.g. [15]) for developing the algebraic propertics of context-free grammars. We intreduce them

here to cstablish a formal basis for our upcoming discussion of proccssing issues.




lonnal Power Series -9- Seetion 2

The power scries for grammar (6a) is (Gb).

(6a) NP —+ John | NP and NP

(6b) NP = John + John and John -+ 2 John and John and John
+ 5 John and John and John and John
+ 14 John and John and John and John and John + ...

Fach term consists of a sentence generated by the grammar and an ambiguity cocfficient® which counts how

many ways the scntence can be generated. For example, the sentence “John™ has one parse tree

(Ta) [John] I tree

because the zero-th cocfficient of the power scrics is one. Similarly, the sentence “John and John™ also has

one tree because its coefficient is also one,

[ (7b) [John and John] { tree

and *“John and John and John™ has two because its coefficient is two,

(7¢) {lJohn and John] and John], {John and {John and John]) 2 trees
E and “John and John and John and John™ has five,
i (7d) [John and [{John and John] and John]], [John and [John and [John and John]]), S trees
] {[[John and John] and John] and John], [[John and [John and John}] and John],

[[John and John] and {John and John]]

and so on. 'The reader can verify for himself that “John and John and John and John and John™ has fourteen

trees.

Notc that the power serics encapsulates the ambiguity response of the system (grammar) to all possible

input sentences. In this way, the power series is analogous to the impulse response in electrical enginecring,

which encapsulates the response of the system (circuit) to all possible input frequencies. (Ambiguity
coefficients bear a strong rescmblance to frequency coefTicients in Fourier analysis.) All of these transformed

representation systems (c.g., power scries, impulse response, and Fouricr series) provide a complete

3. The formal language literature [5. 15] uses the term support instead of ambiguity coefficient.
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description of the system with no loss of information® (and no heuristic approximations (c.g., scarch strategics
[6]). Transforms are often very uscful because they provide a different point of view. Certain observations

arc morec casily seen in the transform space than in the original space, and vice versa,

‘This paper will discuss several ways to generate the power serics. Initially let us consider successive
approximation. Of all the techniques to be presented here, successive approximation most closely resembles
the approach taken by most current chart parsers including FQSp. 'T'he alternative approaches take advantage

of certain regularitics in the power scrics in order to produce the same results more cfticiently.

Successive approximation works as follows. IFirst we translatc grammar (6a) into the cquation

(8) NP = John + NP-and - NP

[ORT

where *“+ connects two ways of gencrating an NP and - concatenates two parts of an NP. In somc scnse, we

want to “solve” this cquation for NP, This can be accomplished by refining successive approximations. An

initial approximation NPy is formed by taking Np to be the empty language.
(9a) NP, = 0

Then we form the next approximation by substituting the previous approximation into cquation (8), and
sinplifying according to the usual rules of algebra (c.g. assuming distributivity, associativi[y,5 identity

clement, and zero element).
(9b) NP, = John + NP, - and - NP, = John 4+ 0-and - 0 = John
We continue refining the approximation in this way.

(9c) NP, = John + NP, -and - NP = John + John and John

4. This nceds a qualification. 1t is true that the power serics provides a complete description of the ambiguity response to any input
sentence.  However, the powcer series representation may be losing some information that would be useful for parsing. In partticular,
there might be some cases where it is impossible to recover the parse trees exactly as we will see, though this may not be too scrious a
problem for many practical applications. That is, it is often possible to recover most (il not all) of the structure, which may be adequate
for many applications.

5. The careful reader may correctly object to this assumption. We include it here for expository convenicnce, as it greatly simplifics the
derivations though it should be noted that many of the sesults could be derived without the assumption  Furthenmore, this assumption is
valid for counting ambiguity. That is, |A - B] # |C1 = |A| # |B- C|. where A, B and C are sets of trees and |A| denotes the number of
members of A, and # is integer iultiplication.

PRI EA~P - 0t
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(9d) NPy = John + NP, and NP,
= John + (John + John and John) - and - (John + John and John)
= John + John and John + John and John and John + John and John and John
+ John and John and John and John
= John + John and John + 2 John and John and John
+ John and John and John and John

Eventually, we have NP cxpressed as an infinitcly long polynomial (6b) above. This expression can be
simplificd by introducing a notation for exponentiation. Lct x' be an abbreviation for multiplying x - x - ... -

X, i times.

(10) Np = John + John and John -+ 2 John (and John)?
+ 5 John (and John)® + 14 John (and John)? + ...

Note that parcntheses are interpreted diffcrently in algebraic cquations than in context-free rules. In context-
free rules, parentheses denote optionality, whercas in equations they denote precedence relations among

algebraic operations.
3. Catalan Numbers

Ambiguity cocfficients take on an important practical significance when we can modcl them directly
without resorting to successive approximation as above. This can res':it in substantial time and space savings
in certain special cascs where there are much more cfficient ways to compute the cocfficients than successive
approximation (chart parsing). Equation (10) is such a special case; the coefTicicnts follow a well-known
combinatoric scries called the Catalan Numbers [8: pp. 388-389, pp. 531-533].6 This section will describe
Catalan numbers and their rclation to parsing.

The first few Catalan numbers are: 1, 1, 2, 5, 14, 42, 132, 469, 1430, 4862, ... They are gencrated by the

closed form exprcssion:7

w = (1) (,2,

6. This fact was first pointed out to us by V.Pratt.  We suspect that it is a gencrally well-known result in the formal language
community, though its origin is unclear.

7 (g) is known as a binomial coefficient. It is equivalent to F’(—aal_b—)' where a! is equal to the product of all integers between 1 and a
Binomial coefficients are very common in combinatorics where they are interpreted as the number of ays to pick b objects out of a set
of a objects.

o r—t—————




Caralan Numbers -12- Scction 3

‘This formula can be explained in terms of parenthesized expressions, which are equivalent to trees. Cat o 8
the number of ways to parenthesize a formula of length n. There are two conditions on parenthesization: (a)
there must the same number of open and close parentheses, and (b) they must be properly nested so that an
open parcnthesis precedes its matching close parenthesis. The first term counts the number of scquences of
2n parentheses, such that there are the same number of opens and closes. The second term subtracts out cases

violating condition (b). This cxplanation is claborated in [8: p. 531).

It is very useful to know that the ambiguity cocfficients are Catalan numbers because this observation
cnables us to replace cquation (10) with (12), where Cati denotes the i® Catalan number. (Al summations

range from 0 to oo unless noted otherwise.)

(1) N = 2, Cat, John (and John)'
i

The i Catalan number is the number of binary trces that can be constructed over 7 phrases. This model
correctly predicts EQSP's behavior with prepositional phrases. That is, the £QsP parser [11] found cxactly the

Catalan number of parse trees for cach sentence in the following sequence:

It was the number.

It was the number of products.

It was the number of products of products.

It was the number of products of products of products.

14 1t was the number of products of products of products of products.

N BN s e

These predictions continue to hold with as many as nine prepositional phrases (4862 parse trecs).
4. Table Lookup

We could improve EQSP’s performance on Pps if we could find a more cfficient way to compute Catalan
numbers than chart parsing, the method currently employed by EQSP. Lct us propose two altcrnatives: table
lookup and evaluating expression (11) directly. Both arc very cfficient over practical ranges of n, say no more
than 20 phrascs or 50 In both cascs, the ambiguity of a sentence in grammar (6a) can be determined by

counting the number of occurrences of “and John” and then retrieving the Catalan of that number. These

8. The table lookup scheme ought 10 have a way to handle the theoretical possibility that there are an unlimited number of prepuositional
phrases. The table lookup routine will employ a more traditional parsing algorithm (e.g., Farley's Algorithm) when the number of
phrases in the input sentence is not stored in the table.
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approaches both take lincar time (over practical ranges of n).q whercas chart parsing requires cubic time to

parse sentences in these grammars, a significant improvement,

So far we have shown how o compute in lincar time the number of ambiguous interpretations of a
sentences in an “every way ambiguous” grammar, However, we are really interested in finding parse trees,
not just the number of ambiguous interpretations. We could extend the table fookup algorithin to find trees
rather than ambiguity cocfficients, by modifying the table to store trees instcad of numbers.  For parsing
PUrposcs, Cat.i can be thought of as a pointer to the ith cntry of the table. So, for a sentence in grammar (6a)
for example, the machine could count the number of occurrences of “and John™ and then retricve the table

cntry for that number,

index trees
0 {[John]}
1 {{John and John}}
4 2 {[Bohn and John] and John], [John and [John and John]]}

The table would be more gencral if it did not specify the lexical items at the leaves. Let us replace the table

above with
inde trees
0 {Ix]}
1 {lx x]}

2 {l[x xI x]. [x [x x1}

and assume the machine can bind the x's to the appropriate lexical items.

There is a real problem with this table lookup machine. The parse trees may not be exactly correct
because the power series computation assumed that multiplication was associative, which is an appropriate
assumption for counting ambiguity, but inappropriate for constructing trees. For example, we observed that
prepositional phrascs and conjunction are both “every way ambiguous” grammars because their ambiguity

cocfficients are Catalan numbers. However, it is not the case that they generate exactly the same parse trees.

9. ‘The linear time result depends on the assumption that table lookup (or closed form computation) can be performed in constant time,
This may be a fair assumption over practical ranges of n, but it is not true in general.
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Nevertheless we present the table lockup pscudo-parser here because it scems to be a speculative new
approach with considerable promise. It is Hften more cfficient than a real parser. and the trees that it finds
may be just as useful as the correct one for many practical purposes. For example, many speech recognition
projects ecmploy a parser to filter out syntactically inappropriate hypothceses. However, a full parser is not
really necessary for this task; a recognizer such this table lookup pseudo-parser may be perfectly adequate for
this task.

Furthermore, it is ofien possible to recover the correct trees from the output of the pscudo-parser.. In
particular, the difference between prepositional phrases and conjunction could be accounted for by modifying
the interpretation of the PP catcgory label, so that the trees would be interpreted correctly even though they E
arc not exactly correct. In short, the table lookup pscudo-parser is worth exploring even thoug:: the results
arc not always correct. The results are close enough for many applications (c.g., speech recognition) and the

mistakes can often be corrected.

The table lookup approach works for primitive grammars. The next two scctions will show how to

decompose composite grammars into series and parallel combinations of primitive grammars.
(13a) G =G;,-G, . sertes
(13) G=G, +G, parallel .
5. Paraliel Decomposition
Paralle] decomposition can be very uscful for dealing with lexical ambiguity, as in

(14) ... to total with products near profits ...

where “total” can be taken as a noun or as a verb, as in:

(15a) The accountant brought the daily sales to total with products ncar profits organized according to
the new law. ‘ noun

(15b) The daily sales were ready for the accountant to total with products near profits organized
according to the new law., verb

The analysis of these sentences will make usc of the additivity property of lincar systems. That is, each
case, (15a) and (15b), will be treated separately, and then the results will be added together. Assuming “total”
is a noun, therc are three prepositional phrases contributing Cat ; bracketings, and assuming it is a verb, there
are two prepositional phrases for Cat , ambiguitics. Combining the two cases produces Cat ;+Cat, = 5+2
= 1 parses. Adding another prepositional phrase yields Cat -+ Caty = 14+5 = 19 ambiguitics. (1:Qsp
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behaved as predicted in both cases,)

This behavior is generalized by the following power serics:

{PN

16 {,v} 2 (Cat, | + Cat)) (P N)
1

which is the sum of the two cases:

(172) 2, Cat,(°N)i = PN 2, Cat . (b N noun
i>0 i
(17b) to v 2 Cat, (P Ny verb
i

This observation can be incorporated into the table lookup pscudo-parser outlined above. Rccall that
Cat, is interpreted as the i™ index in a table containing all binary trees dominating i leaves. Similarly, Cat, +

Cat,  , will be interpreted as an instruction to “append” the i'® entry and i+ 1% entry of the table.
(18) (ADD-TREES (CAT-TABLE i) (CAT-TABLE (+ i 1))

(This can be implemented efficiently, given an appropriate representation of sets of trees.)

Now suppose there were an oracle that disambiguated the word “total”. How could we incorporate this
information once we have alrcady parsed the input sentence and found that it was the sum of two Catalans?
The parser can simply subtract out the inappropriatc interpretations. 1If the oracle says that “totz;l" is a verb,
then (17a) would be subtracted from the combined sum, and if the oracle says that “total” is a noun, then
(17b) would be subtracted.

Furthermore, supposc that we wanted to evaluate the uscfulness of a particular oracle. For example,
sunposc that there was a semantic routine that could disambiguate “total”, but this semantic routine is very
expensive to execute so that we don’t want to run it unless we are very sure that it has a desirable cost/benefit
ratio. We nccd a way to cstimate the uscfulness of the semantic routine so that we don’t waste time working
on secmantic constraints when they won't help very much. ‘This analysis provides a very simple way to
estimate the benefit of disambiguating “total”. If it turns out to be a verb, then (17a) trees have been ruled

out, and it it turns out to be a noun, then (17b) trees have been ruled out.
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6. Scries Decomposition

Suppose we have a non-terminal § which is a serics combination of two other non-terminals, Ne and VP,

By inspection, the power serics of S is:
(199 S=NP-VP

‘I his result is ecasily verified when there is an unmistakable dividing point between the subject and the
predicate. For example, the verb “is” scparates the pps in the subject from those in the predicate in (20a), but
not in (20b).

(20a) ‘e number of products over sales of ... is near the number of sales under ... clearly divided

(20b) /s the number of products over sales of ... near the number of sales under...?  nof clearly divided

In (20a), the total number of parse trees is the product of the number of ways of parsing the subject times the
number of ways of parsing the predicate. Both the subject and the predicate produce a Catalan number of
parscs. and hence the result is the product of two Catalan numbers, which was verified by EQse [11: p. 53],

This result can be formalized in terms of the power serics:

@1) ( N Z Cat, (b NY )( is 2, Cat (PNY )
j
which is formed by taking the product of the two subcases:
* () N 2.: Cat, (P N)' subject
(22) is 2, Cat, (PN predicate
j

The power serics says that the ambiguity of a particular sentence is the product of Cat, and Cat i where
i is the number of PPs before “is” and j is the number after “is”. This could be incorporated in the table

lookup parser as an instruction to “multiply” the i entry in the table times the i entry. Multiplication is a

cross-product operation; 1. X R gencrates the set of binary trces whose left sub-trec ] is from ], and whose

right sub-tree [ is from R.

2) LxR={(ln|lelL&reR}
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This is a formal definition.  FFor practical purposes, it may be more uscful for the parser to ouput the fist in

the factored form;
(24)  (MULTIPLY-TREES (CAT-TABLE i) (CAT-TABLE j))

which is much more concise than a list of trees, 1t is possible, for example, that semantic processing can take
advantage of factoring, capturing a semantic generalization that holds across all subjects or all predicatcs.
Imagine, for example, that there is a semantic agreement constraint between predicates and arguments. For
cxample, subjects and predicates might have to agree on the feature thuman. Suppose that we were given
sentences where this constraint was violated by all ambiguous interpretations of the sentence. In this case, it
would be more cfficient to employ a feature vector scheme [3] which propagates the features in facored form.
That is, it computces a feature vector for the union of all possible subjects, and a vector for the union of all
possible VPs, and then comparcs (intersects) these vectors to check if there are any interpretations which meet
the constraint. A system such as this, which keeps the parscs in factored form, is much more efficient than
onc that multiplies them out. Even if semantics cannot take advantage of the factoring, there is no harm in
keeping the representation in factored form, because it is straightforward to expand (24) into a list of trees

(though it may be somcwhat slow).

This example is relatively simple because “is™ helps the parser determine the value of i and . Now let
us return to example (20b) where “is” docs not separate the two strings of PPs. Again, we determine the

power serics by multiplying the two subcases:

@5) is(N zCati(PN)i) ( > Catj(PN)i) =isn 2 2, Cat, Cat, (@ N
: i i P

However this form is not so useful for parsing becausc the parser cannot easily determine ¢ and j, the
number of prepositional phrases in the subject and the number in the predicate. It appears the parser will
have to compute the product of two Catalans for each way of picking i/ and j, which is somewhat cxpensive.10
Fortunately the Catalan function has some special propertics so that it is possible algebraically to remove the
references to 7 and j. In the nexc section we will show how this expression can be reformulated in terms of n,

the total number of pPs.

10. Earley's algorithm and most other context-frec parsing algorithms actually work this way.
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6.1 Auto-Convolution of Catalan Grammars

Some readers may have noticed that expression (25) is in convolution form, We will make usc of this in
the reformulation. Notice that the Catalan serics is a fixed point under auto-convolution (except for a shift);
that is, multiplying a Catalan power series (ie. 1 + x + 2x2 + 5x3 + 14 + .. Catixi ..} with itself

produces another polynomial with Catalan coefficicnts.”! The multiplication is worked out below for the first

few terms.
1+ x4+ 23+ 53+ 14x* + .
X 14+ x4+ 2+ 3+ ax* + .
1+ x4+ 22+ 5x3+ 14 + ..
x4+ 2+ 2+ st o+
2+ w3+ a4
s+ st o+
+ 4t + .

-+

1+ 2x + 5x2 + 14x3 + 4%’

‘This property can be summarized as:

(26) Z Cat, x ? Catj X = ; Cat "

where n equalsi + j.

Intuitively, this equation says that if we have two “every way ambiguous™ (Catalan) constructions, and
we combine them in every possible way (convolution), the result is an “cvery way ambiguous™ (Catalan)

construction. With this observation, cquation (25) reduces to:

QN s ( N, Cati(PN)i) ( > Calj(PN)i) =isN D, Cat_ (N
i j n

Hence the number of parses in the auxiliary-inverted case is the Catalan of one more than in the non-inverted
cases. As predicted, FQSP found the following inverted sentences to be more ambiguous than their non-

inverted counter-parts (previously discusscd on page 12) by one Catalan number.

11. The proof immediately follows from the z-transform of the Catalan series [8: p. 388]: m(/,)2 =Kz2) -1
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1 Was the nuinber?
Was the number of products?
S Was the number of products of products?

14 Was the number of products of products of products?
42 Was the number of products of products of products of products?

It was the number.

1t was the number of products.

It was the number of products of products.

It was the number of products of products of products.

14 It was the number of products of products of products of products.

N DN e

How could this result be incorporated into the table lookup pscudo-parser? Recall that the pscudo-
parser implements Catalan grammars by returning an index into the Catalan table. For example, if there were
i PPs, the parser would rcturn: (CAT-TABLE i). We now extend the indexing scheme so that the parser
implements a scrics connection of two Catalan grammars by rcturning one higher index than it would for a

simple Catalan grammar. That is, if there were n pps, the parser would return: (CAT-TABLE (+ n 1)).

Serics connections of Catalan grammars are very common in cvery day natural language, as illustrated
by the following two sentences which have reccived considerable attention in the literature because the parser

cannot separate the direct object from the prepositional complement.

(28a) Isaw the man on the hill with a tclescope ...
(28b) Put the block in the box on the table in the kitchen ...

Both examples have a Catalan number of ambiguities because the auto-convolution of a Catalan series yields
* another Catalan scrics.!2 This result can improve parsing performance because it suggests ways to re-organize
(compile) the grammar so that there will be fewer references to quantitics that are not readily available. This
re-organization will reap benefits that chart parsers (e.g. Earley’s algorithm) do not currently achieve because
the re-organization is taking advantage of a number of combinatoric regularities, especially convolution, that

are not easily encoded into a chart. Scction 9 will present an example of the re-organization.

12. There is a difference between these two sentences because “pul” subcategorizes for two objects unlike “see”. Suppose we analyze

“see” as lexically ambiguous between two senses, one which selects for exactly two objects like “put” and one which selects for exactly
one object as in “I saw it.” The first sense contributes the same number of parses as “put” and the second sense contributes an additional
Catalan factor.
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6.2 Chart Parsing

Perhaps it is worthwhile to reformulate chart parsing in our terms in order o show which of the above
results can be captured by such an approach and which cannot. Traditionally chart parsers maintain a chart
(or matrix) M, whose entrics Mij contain the sct of category labels which span from position i to position j in
the input sentence. This is accomplished by finding a position k in between i and j such that there is a phrase
from i to k which can combine with another phrase from k to j. An implementation of the inner loop looks
something like:

(29 M;:={}

loop for k from i to j do
Mij = Mij UM, * Mkj

Fssentially, then, a chart parser is maintaining the invariant

(30 Mij = g Mik-Mkj
Recall that addition and multiplication were previously defined over polynomials. We can praserve these
definitions if we modify the contents of th> chart. Let us replace the set of category labels in Mij with a set of
factored polynomials. That is, let M;} denote the polynomial describing the ways to parsc a phrasc of category

x from position i to position j. For example, the notation
S _ MNP VP NP M VP
Gl Mgy =My - M)y + Mgy - My,

indicates that there are two ways to combine an NP and a VP to form an S from position 0 to position 4.

‘This formulation of the chart can be compared with scrial and parallel decompusition. Note that
MYF - MT is cssentially the same as (MULTIPLY-TREES Moif M7). Similarly, adding matrix clements
corresponds to ADD-TREES. Hence, chart parsing is more similar to serial and parallel combinaticns than one
might have suspected. When the grammar is factored appropriately, chart parsers will be able to take

advantage of scrial and parallel decompositions discussed above.

How cver, the examples above illustrate cases where chart parsers are incfficient. In part.cular, chart
parsers cannot take advantage of convolution and the “every way ambiguous™ gencralization. That is,
Earley's algorithm performs convolution the “long way”, by picking cach possible dividing point k, and
parsing from i to k and from k to j. [t is incapable of reducing the convolution of two Catalun as we did
above. Similarly, I<arley’s algorithm is incapable of using the “cvery way ambiguors™ gencralization. That is.

it requires O(n’) time to parse Catalan grammars because there are no constraints on the choice of 1, j and k.
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‘The algorithm will eventually enumerate all possible values of i, j and k. We suggest that a processor ought to

be able t notice the lack of constraints, and thus avoid enumerating the space as Farley's algorithm docs.

Finally, in passing, we have one constructive suggestion for chart parsers. We obscrve that it is possible
to count the number of ambiguous interpretations in 0(n3) time. ‘This is an improvement over the obvious
algorithm which multiplies out all the trees just as if they were being printed. (Such an exponential algorithm
was actually implemented in £QSP.) We suggest keeping a sccond matrix A, where /\:} holds the number of
ways of deriving a phrase of catcgory x between i and j. The two matrices, A and M. are almost identical,
cxcept that A holds integers and M holds polynomials. Accordingly, addition and multiplication are defined
slightly differently on the two matrices. In A, they map integers into integers in the obvious way; in M, they
map polynot.ials into polynomials as discussed above. Note that both matrices, A and M, can be computed
with cxactly the same scquences of multiplications and additions. Hence, it is possible to compute the

number of ambiguous interpretations in cubic time.
6.3 Auto-Convolution of Unit Step Grammars

L.et us return to the discussion of convolution. This section will illustrate a second practical example of

convolution. Consider the following grammar (“A™ denotes the empty string):13

(32) A—aAjA
We call this grammar a unit step grammar because all of its ambiguity coefTicients are 1.

) A=l+at+a+ad+al+ad+. = D a
n

In other words, the grammar is unambiguous.“ Embedded sentences are a typical example of (32) in English.
(34) Ibelieve you said he thought you were ...

Sunpose for the sake of discussion that we choose to analyze adjuncts with a right branching grammar. (By

convention, terminal symbols appear in lower case.)

(35) ADIS — adjADIS | A

13. Note that the empty language { } is distinct from the language of the empty string {A}. In particular, { A} is the identity clement
under serics connection and { } is the identity clement under parallel connection. Thus, {A} is modeled as 1 in the power series
representation, whereas { } is modeled as 0.

14. Unit step grammars are not exactly the same as unambiguous gramimars. The ambiguity coefficients of a unit step grammar arc all 1,
whercas the ambiguity cocfficients of an unambiguous grammar are cither 1 or 0.
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so that
(36) Wil you go to the store tomorrow in the morning about 10:00 after .7

has one parse, independent of the number of adjuncts. A similar analysis of adjuncts is adopted in [7). This
analysis can also be defended on performance grounds as an cfficiency approximation. (This approximation

is in the spirit of pscudo-attachiment [1].)

The power scries is

(37 ADIS = z adj!

1

Now, how many ambiguities will there be if we add a second clause to (36) as in:
(38) 1 will ask if you will go to the store tomorrow in the morning about 10:00 after ...7

Some of the adjuncts will attach to “go™ and the rest will attach to “ask”. The number of parscs is determined

by multiplying the two subgrammars,

(39) ADIS:ADIS = 2 adj' 2 adf = 2 2 adji i
i i i

"This equation has the same problem as cquation (25); because there is no clear dividing line between
the adjuncts that attach to “go™ and the ones that attach to “ask™, it is not very casy for the parser to determine

i and j. Again, it might appear that the parser will have to try all possible valucs of i and j, a moderately

. expensive process. However, there are some special properties of the step function that enable us to remove
the references to i and j in equation (39). In engincering jargon, the convolution of two steps is a ramp. ‘That
is, the product of two polynomials with step cocfficients is a polynomial with increasing cocfficients [8: pp. 89,

cquation 16]. We have multiplicd out the first few terms below.

1+ x+ 2+ 2+ x4+ .
X 1+ x4+ x4+ X+ x*+ .

1+ x+ 2+ 2+ &+
x+ x4+ X+ 1+

2+ X+ A4

e+ A+

+ x4+..
L+ x4+ W+ a3+ sx* + .




it §

Auto-Convoluticn of Unit Step Grammars -23- Scetion 6.3

‘The general result is;

@) 2 xddd= D m+D
P

n

MNow cquation (39) can be simplified so that the references to i and j are replaced with n, the total number of
adjuncts. ‘This is much casicr for the parser to deal with because for a given input sentence there is a single

value for n, whereas there arc multiple values for iand J.

@y D ad D, adf = D @+ Dag
j n

i

This says that a string of # adjuncts induces n+ I parsc trees, because there are n+ I ways to cut the string into

two substrings.l> Now suppose there were three matrix clauses instead of just two,
(42) T will ask if he will persuade you to go to the store tomorrow in the morning about 10:00 after ...?

The number of parses in this case is the convblution of three steps.

(43) 2 adj' 2 adj 21: adi®
i j

Again this form is ill-suited for parsing because there is no easy way to determine i, j and k. However, it is
possible to remove the references to the offending variables by taking advantage of some special properties of
the step function. In particular, there is a closed form for the convolution of d+ I step functions [8: p. 90,

equation 20):

(44) (in)dn: 3 (“:d 0

Now we can remove the references to i, jand k:

(45) ( z adjt )3 = z (H;Z adi® = 2, 3(n+1) (n+2) 2
1 n n

15. The string can be cut between any two words (n— 1 places) or at cither end (2 places).
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These examples show that standard well-known combinatorics can be used to determine the number of

ambiguitics in many common cases.
7. Computing the Power Serics Directly from the Grammar

In fact, the result derived in the previous section can be computed directly from the grammar itsclf.
First we translate the grammar into an cquation in the usual way. ‘That is, ADJS is modcled as a parallel
combination of two subgrammars, adj ADIS and A. (Recall that A is modcled as 1 because it is the identity

clement under series combination.)

(46a) ADJS — adj ADIS| A
(46b) ADIJS = adj- ADJS + 1

We can simplify (46b) so the right hand side is expressed in terminal symbols alone, with no references to
non-terminals. This is very uscful for processing because it is much easier for the parser to determine the
presence or absence of terminals, than of non-terminals. That s, it is casicr for the parser to determine, for
cxample, whether a word is an adj, than it is to dccide whether a substring is an ADJS phrase. The

simplification movcs all references to ADJS to the left hand side, by subtracting from both sides,
(46c) ADIS — adj- ADJS =1

factoring the left hand side,
(46d) (1 — adj)ADIS =1

and dividing from both sides.
(46¢) ADIS = (1 — agj)~}

This result is equivalent to the step formulation (37), as can been seen by performing the long division:
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The purpose of this section was two folded.  First, we presented a simpler derivation of the power series
for a unit step grammar. Sccondly, and more importantly, we have introduced the notion of division. We

now have four combination rules:

(47a) serics combination (multiplication)
(47b) parallel combination (addition)
(47c) inverse of serics combination (division)

(47d) inverse of parallel combination (subtraction)

Series and parallel combinations are frequently found in many grammars formalisms currently employed in
the literature (c.g. context-frec grammars, ATNs), and consequently, they required very little motivation.
Subtraction was introduced as a “ruling-out” opcration. The next scction will provide an intuition for

division in tenns of ATNS.
8. Computing the Power Series from the ATN

‘This section will rc-derive the power series for the unit step grammar directly from the ATN
rcpresentation by treating the networks as flow graphs [13]. The graph transformations presented here are

dircctly analogous to the algebraic simplifications employed in the previous section.

First we translatc the grammar into an ATN in the usual way [16).

(48) ADIS — adj ADsS| A

49) ADS: Catagj o) PushADS Pop
B e e

Jump

This graph can be simplificd by performing a compiler optimization called fail recursion ([2] and references
therein). This transformation replaces the final push arc with a jump:

Jump

(50) ADIS: <|(f cnd ﬁé ?__Pi)

Jump

[,
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‘Tail recursion corresponds dircetly to the algebraic operations of moving the ADIS terms to left hand side,

factoring out the ADSS, and dividing from both sides.

Then we remove the top jump arc by serics reduction. This step corresponds to multiplying by 1 since a

jump arc is the ATN represcntation for the identity element under series combination.

Cat adj

(51) ADIS: ?_Pﬂ)
l .

Jump

The loop can be treated as an infinite series:
(52) 1+ adj + adi® + ad® + ..

where the zero-th term corresponds to zero iterations around the loop, the first term corresponds to a single

iteration, the second term to two itcrations, and so on. Recall that (52) is cquivalent to:

With this observation, it is possible to open the loop:

17(1-adj) Jump Pop
N \f\ \f\
(54) ADIS: O > >O—>
After one final series reduction, the ATN is equivalent to expression (46¢) above.
. 1/(1-adj) o~ Pop
(s40) apss: (O)— . >O—>

Now we can motivate division in intuitive terms. Division is a loop in an ATN.

How can division be implemented? We have two answers. First, division can be implemented as an
ATN loop. Alternatively, we can employ the table lookup scheme discussed above. That is, we formulate

division as an infinite sum:

69 ig= 2
1
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‘I'hen we construct a table such that the i* entry contains the ith ambiguity cocfficient. Tn other v ords, the it
location in the table tells the parser how to parse i occurrences of adj. The table loukup scheme is sumewhat
more gencral than the ATN loop, because the table allows the it coefficient to take on arbitrary valucs whercas
the ATN loop restricts the cocefficients to 1. For example, the Catalan grammar (56a) could be implemented
with a table (56b), but not with an ATN loop.

(56a) A= AAla Catalan Grammar

(56b) 2 Cat, a table implementation
i

However the table has the theoretical problem that it requires an infinite amount of memory. This is not a
problem in practice since the regions of interest are not that large. It is unlikely, for example, that a sentence

would contain more than twenty prepositional phrascs.

So far we have discussed five primitive grammars: Catalan, Unit Step, 1, and 0, and terminals, and four
composition rules: addition, subtraction, multiplication and division. Furthcrmore we have outlined three
implcmentation strategies: successive approximation (chart parsing), table lookup, and ATNs. We have secn
that it is often possible to cmploy these tools in arder to re-organize the grammar so that these
implementations will perform more cfficiently. We have idcntiﬁcd certain situations where the ambiguity is
combinatoric, and have sketched a few modifications to the grammar that enables processing to proceed in a
more cfficient manner. In particular, we have observed it is important for the grammar to avoid referencing
quantities that arc not casily determined such as the dividing point between a noun phrase and a prepositional

phrase.
9. An Example

Suppose for example that we were given the following grammar:

(57a) S — NP VP ADJS

(57b) s — Vv NP (PP) ADJS ADIJS
(57c) VP — V NP (PP) ADIJS
(57d) pP—PNP

(57¢) Np — N(PP)

(57) ADIS — adj ADIS | A

(In this example, we will assume no lcxical ambiguity among N, V, P and adj.)
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By inspection, we notice that NP and Pp are Catalan granunars and that ADJS is a Step gramnar.

(58a) rp = 2 Cat, (P N)
i20

(58b) NP =N 2, Cat, (¢ N)
i

(58) ADIS = D adf

With these obscrvations, the parser can process PPs, NPs and ADJS by counting the number of occurrences of
terminal symbols and looking up those numbers in the appropriate tables. We now substitute (58a-c) into
(57c)

(59) VP = VNP(1+PP)ADIS =V ( N 2 Cat, (P N) ) ( 2 Cat, (P N) ) ( 2 adj )
i i i

and simplify the convolution of the two Catalan functions

60) vp= V(N ZCatM(PN)‘) ( ?aﬂj‘)

so that the parser can also find VPs by just counting occurrences of terminals symbols. Now we simplify
(57a-b) so that S phrases can also be parsed by just counting occurrences of terminal symbols. First, translate

*(57a-b) into the equation:
(61) S = NP VP ADJS + V NP (1+4PP) ADJS ADJS
and then ex~and vpP
(62) s = NP{V NP (1+PP) ADIS) ADIS + V NP (14 PP) ADJS ADJS
and factor

(63) s = (NP + 1)V NP(l+PP)ADIS?

This can be simplified considerably because
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(64 Ne(l+pr)=N z Cat, (P N) 2 Ciili(PN)i =N z Cat; | (e Ny
i i i
and

. . Al .
(65) ADIS? = adj' z adj' = (i+1) agj’
i

so that

6 s=(nDca,eni+1)vn D ca,, @ D6+ D
i i i

which has the following ATN realization:

N Xcaeny vV N Dca, @GN DG+ D
©7) s: —) >(®)

Jump

The entire cxample grammar has now been compiled into a form that is easier for parsing. This formula says

that scntences are all of the form:
68) SS(NEN)VNEN) adf®

which could be recognized by the following finite state machine:

Jump

Furthermore, the number of parse trees for a given input sentencc can be found by multiplying three
numbers: (a) the Catalan of the number of P N's before the verb, (b) the Catalan of one more than the number
of P N's after the verb, and (c) the ramp of the number of adj’s. For cxample, the sentence

an
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(70) The man on the hill saw the boy with a tclescope yesterday in the morning.

has Cat  Cat, s 3 = 6 parscs. That is, there is onc way to parsc “the man on the hill”, two ways 1o parse
“saw the boy with a telescope™ (cither “telescope™ is a complement of “sce™ as in (71a-c) or it is attached to
“boy™ as in (71d-f)), and three ways to parse the adjuncts (they could both attach to the s (71a.d), or they
could both attach to the VP (71b,¢), or they could split (71c,f)).

(71a) [The man on the hill [saw the boy with a telescope] [yesterday in the morning.])
(71b) The man on the hill [[saw the boy with a telescope] [yesterday in the morning.]]
(71c) ‘The man on the hill [[saw the boy with a telescope] yesterday] in the morning.
(71d) {ihe man on the hill saw [the boy with a tclescope] [yesterday in the morning.]]
(71e) 'The man on the hill [saw [the boy with a telescope] [yesterday in the morning.]]
(710) 'The man on the hill [saw [the boy with a telescopc] yesterday] in the morning.

All and only thesc possibilitics are permitted by the grammar.
10. Lexical Restrictions .

Now suppose there were an oracle (c.g.lexical restrictions) that disambiguated some of these
possibilities. How could we incorporate this information once we have already pars=d the input sentence as
above? For example, the verb “sec” has two lexical forms, a predicate of two arguments as in “] saw it” and a
predicate on three arguments as in “I saw it with a telescope™. Now suppose we had an oracle which

disambiguated these two possibilitics. How could we take advantage of this information?

Consider the two argument case first. The previously assumed VP grammar (72a) simplifies to (72b)
with the two argument restriction.

(72a) VP — Vv NP (PP) ADJS
(72b) vP — VNP ADIS

If we re-derive the power series for S, we obtain:

(M) s= (N ZCati(m)i +1)VN ZCati(PN)i D (i + D
i i i

This cquation is the same as (66) except that Cat, _ , in (66) has been replaced with Cat . The Cati +1 resulted
from convolving the PPs gencrated in object position with those generated in complement position. Under
the two argument restriction, it is no longer possible to generate any PPs in complement position, and hence
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all the pps must be in object position. ‘There are Culi ways to put them in object position as we have

discussed.

With this formula, we sce that three of the six parses given in (71) meet the two argument restriction,
That is, there is still only one way to parse “the man on the hill” and three ways to parsc the adjuncts, by the
same the rcasoning applicd previously. However, there are now only Cal1 ways to parse “saw the boy with a
telescope™ whereas there were Cat, ways before. The complement interpretations (71a-c) have been

cxctuded by the two argument restriction.

Now suppose the oracle had sclected the three argument form of “sce”. How could we take advantage

of this information? In this case, the power series for S is the difference between (66) and (73).

dy s=(nZcaenia1)vn D ca,,, - Coyent D+ o
i i i

We hope to generalize this approach to handle sclectional restrictions and agreement facts.
11. Inverse Transforms

(Inverse transforms are a fairly sclf-contained topic which can be left for a second rcading of this paper.)

The previous few scctions have outlined how it might be possible to use formal power series to compile
a grammar into a form for more efficient processing, This section will discuss the inverse process. That is,
given a compiled representation of the grammar, how can we recover a form suitable for linguistic analysis?

This scction will present a partial solution which we found very uscful for analyzing EQSP.

. Let us consider an anccdotal example based on our expericace with the EQSP conjunction mechanism.
Deep inside the code, there was a function called syntactically-parallelp which decided whether or not to
conjoin two constituents. Over the years, this function had acquired so many special casc heuristics that it was
no longer understandable. However, we were able to determine the ambiguity coefficients by running £Qsp

on the following sequence of conjunction sentences:

It was.

It was actual products.

It was actual products and actual products.

It was actual products and actual products and actual products.

It was actual products and actual products and actual products and actual products.

(- -V S P

It was actual products and actual products and actual products and actual products and actual
products.
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13 It was actual products and actual products and actual products and actual products and actual
products and actual products.

21 It was actual products and actual products and actual products and actual products and actual
products and actual products and actual products.

'T'o our surprisc the ambiguity coc:Ticients did not follow the Catalan sequence as pradicted, but rather they
followed another well-known scquence calicd the Fibonacci numbers [8]. The first few Fibonacci numbers
are 1, 1, 23,5, 8, 13, 21, ... The ncxt valuc is formed by taking the sum of the two previous values, or more

precisely:

(75) Fib, = Fib, =1
Fib, = Fib__, +Fib__,

We can model the sentences above with the following power scries (ignoring the word “and™ which

complicates the analysis in ways that arc irrelevant to the current discussion):
(76) s = Itwas z Fibi (actual products)i
i -

We were then able to recover the grammar from the power scrics because the Fibonacci series has a well-

known inverse transform. That is, a power series with Fibonacci coefficicnts obeys the following identity.

1-x-—x

a2 Fibx = —1—;

The reader can verify that this identity is correct by performing the long division. We were fortunate in this
case that the inverse transform for the Fibonacci numbers has a well-known closed form. In general, such
closed forms are very difficult to discover (if they exist at all), and for this reason, it can be very difficult or
even impossible to find a linguistically attractive grammar for an arbitrary processor. Nevertheless, closed
forms do exist for a large number of interesting cases. With some practice and a few cducated guesses based
on partial knowledge of what the machine is doing, one can successfully “crack™ quite a number of

constructions. At least, this has been our experience with BQSP.

Returning to the conjunction sentences, we now have a closed form of the power serics:

1

(78) s =1Itwas

1 — (actual products) — (actual products)2
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‘This has the following ATN reatization:

Jump

actual product
It was

(79) S: O___.

o>
actual product “N\_/" actual product

We obscrve that 1:QSP employs a heuristic which prevents conjuncts from attaching more than two phrases
back. A full non-heuristic conjunction mechanism would permit conjuncts to “fold back™ arbitrarily far. In

which case the conjunction mechanism would be a Catalan grammar,

In this way, we were able to perform the inverse transform on the ambiguity coefficients in order to
recover the underlying behavior of the EQSP conjunction mechanism. We are now in a position to rewrite

syntactically-parallclp to be more comprchendable and more cfficient, without disturbing the external

behavior.
12. Conclusion

We began our discussion with the obscrvation that certain grammars arc “every way ambiguous” and
suggested that this observation could lead to improved parsing performance. Catalan grammars were then
introduced to rcmedy the situation so that the processor could delay attachment decisions until it discovers
some more useful constraints. Until such time, the processor can do little more than note that the input
scntence is “every way ambiguous”. We suggested that a table lookup scheme might be an effective method

to implement such a processor.

In some sense, this approach is a formalization of a very old idea. That is, it has been noticed for a long
time that it might be advantagcous to enrich a processor with the capability to attach certain ambiguous
constituents to several places in a single step. Pscudo-attachment [1: pp. 65-71] and permanent predictable
ambiguity [14: pp. 64-65] are two such proposals. However, these mechanisms have always lacked a precise
interpretation; Catalan grammars provide a much more formal way of coping with “every way ambiguous”
grammars. '

We then introduced rules for combining primitive grammars, such as Catalan grammars, into composite
grammars. This lincar systems view “bundles up” all the parse trecs into a single concise description which is

capable of telling us everything we might want to know about the parses, (including how much it might cost

to ask a particular question). This abstract view of ambiguity cnables us to ask questions in the most

ebiiadh i ESCLI s ooy
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convenient order, and to to delay asking until it is clear that that the pay-off will exceed the cost.  This

abstraction was very strongly influenced by the notion of delayed binding.

We have presented combination rules in three different representation systems: power serics, ATNSs, and
context-free grammars, cach of which contributed its own insights. Power series arc convenient for defining
the algebraic opcerations, ATNs are most suited for discussing implementation issues, and context-free
grammars cnable the shortest derivations. Perhaps the following quotation best summaries our motivation for

alternating among these three representation systems:

(80) ™A thing or idca scems meaningful, only when we have several different ways to represent it —
different perspectives and different associations. Then you can turn it around in your mind, so to
spcak: however it scems at the moment, you can see it another way; you never come to a full
stop.” {12: p. 19]

In cach of these rcpresentation schemes, we have introduced five primitive grammars: Catalan, Unit
Step. 1, and 0, and terminals, and four composition rules: addition, subtraction, multiplication and division.
We have scen that it is often possible to employ these analytic tools in order to rc-organize (compilc) the
grammar into a form morec suitable for processing cfficiently. We have identified certain situations where the
ambiguity is combinatoric, and have sketched a few modifications to the grammar that cnables processing to
nroceed in a more cfficient manner. In particular, we have obscrved it is important for the grammar to avoid
referencing quantities that are not easily determined such as the dividing point between a noun phrase and a
prepositional phrase as in

(81) Put the block in the box on the table in the kitchen ...

*We have scen that the desired re-organization can be achicved by taking advantage of the fact that the auto-
convolution of a Catalan serics produces another Catalan series. This reduced processing time from O(n’) to
O(n). Similar analyses have been discussed for a number of lcxically and structurally ambiguous
constructions, culminating with the example in section 9 where we transformed a grammar into a form that
could be parsed by a single left-to-right pass over the terminal elements. Currently, these grammar re-
formulations have to be performed by hand. It ought to be possible to automate this process so that the re-

formulations could be performed by a grammar compiler. We Icave this project open for future research.
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