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ABSTRACT

'-An i-invertible nontinite totally positive matrix A is shown to have

one and only one :main diagonal". This means that exactly one diagonal of A

has the property that all finite sections of A principal with respect to

this diagonal are invertible and their inverses converge boundedly and

entrywise to A - 
. This is shown to imply restrictions on the possible shapes

of such a matrix. In the proof, such a matrix is also shown to have an

invertible LDU factorization. In addition, decay of the entries of such a

matrix away from the main diagonal is demonstrated. It is also shown that a

bounded sign-regular matrix carrying some bounded sequence to a uniformly

alternating sequence must have all its columns in ce Fo
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SIGNIFICANCE AND EXPLANATION

Spline approximation is often most effective when the breakpoint (knot)

sequence can be chosen suitably non-uniform. At the same time, the standard

approximation schemes (such as least squares approximation, or interpolation

at suitable interpolation points by splines) are so far only known to be

usable and bounded as long as the breakpoint sequence is almost uniform. The

problem of showing existence and uniqueness of bounded spline approximants to

bounded data boils down to showing invertibility of a certain infinite matrix

A. The distinguished feature of this matrix is its total positivity, i.e.,

all minors of A are nonnegative. In this paper we show that an arbitrary

invertible totally positive matrix has a main diagonal and one only. By this

we mean that there is exactly one band or diagonal with the property that

finite sections of the matrix whose main diagonal is a piece of that band are

invertible and their inverses converge to the inverse of the matrix as the

section becomes large. This says that it is possible to approximate the

solution of the infinite system by the solution of appropriately chosen finite

sub-systems.

These results illustrate the power of total positivity, since such

results fall to hold for arbitrary infinite matrices. It is hoped that the

better understanding of total positivity of nonfinite matrices obtained in the

present report and its predecessors will aid in the resolution of certain

outstanding problems concerning the stability of spline approximation schemes.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



STRUCTURE OF INVLRTIbLk; (BI)INFINITE TOTALLY POSITIVE MATRICES

C. de Boor*, Rong-qing Jia** and A. Pinkus***

Introduction. An investigation into the structure of invertible (bi)infinite totally

positive (or, tp) matrices was begun in (B2 ] and [CDMS1 ], motivated by certain questions

[BI] [M] in spline approximation. First results concerned banded matrices [B2 ] [CDMS 2] and

strictly banded block Toeplitz matrices [CDMS1 ] . Somewhat surprisingly, such restriction

to banded matrices was found to be unnecessary in [BFP], where it was proved that a tp (or,

more generally, a sign regular) matrix A mapping 1.(J) to 1_(I) is onto if and only

if it has a uniformly alternating sequence in its range. This latter condition means that,

for some bounded x , supi(Ax)(i)(Ax)(i+1) < 0

A similar result had been proved in [B3] for band matrices, following up a conjecture

in [M]. The argument in [B3] provided much additional information about the inverse of a

banded tp matrix. In the present paper, we obtain the same information for an arbitrary

£ -invertible tp matrix.

We prove (in Section 1) that an £ -invertible tp matrix A Q R
I X J 

has a "main

diagonal". by this we mean that all sufficiently large square submatrices of A taken

from consecutive rows and columns and principal with respect to a fixed diagonal are

invertible and their inverses are bounded uniformly. This implies that A
- 1 

is the

pointwise limit of these inverses. We even show that such convergence is monotone. As a

consequence, DJA-1D
I 

or its negative is again tp, with 0
K 

G R
K x K 

the diagonal matrix

tor which DK(k) (-I)k , all k G K

In addition, we show (in Section 2) the uniqueness of such a main diagonal. For the

proof, we establish a result of independent interest, namely the existence ano uniqueness

of an invertible LOU factorizdtion for A . By this we mean the possibility of writing A
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as the product LDU of bounded and boundedly invertible tp matrices, with L and its

inverse unit lower triangular, D and its inverse diagonal, and U and its inverse unit

upper triangular.

We also follow up some consequences of the existence of a main diagonal for the

matrix A : (i) A can have only certain shapes. Explicitly, we must have J a I + r for

some r . We settle (in Section 3) the related question of possible choices for I and

J in case we only know that A is tp and onto. (ii) The main diagonal must be bounded

away from zero. This leads to the observation (made in Section 4) that the entries of A

must decay at least linearly away from the main diagonal. We leave open the intriguing

question whether, in fact, this decay is exponential, as was shown for arbitrary matrices

with a banded inverse in [D).

In the last section, we settle a conjecture from [BFPJ whose consideration gave much

impetus to the present paper. We prove that a sign regular I -invertible matrix A 9 R
I xJ

must already carry c0(J) to c0 1) , i.e., all its columns must vanish at infinity.

We use the following notation and conventions.

We use lower case letters to denote elements of RI ,i.e., real valued functions (or,

sequences) on some integer interval (or, more generally, some integer set) I , with

x(i) the ith entry, or value at i , of the sequence x . If K is a subset of I,

then xK denotes the restriction of x to K . The i-th unit sequence is denoted by e1

and defined by

ei M ij , all ij.

IFurther, for x Q R

JxJci) :- x~i l , all i

We use the customary abbreviation &a(I) for the normed linear space of all sequences x

on I with

lxI :. nxI, :. sup Ix(i)l
i

tinite, and use c0 (1) for its closed linear subspace ot all bounded sequences x

vanishing at infinity, i.e., for which i Q I Jx(i)J ; a} is finite for all positive

-2-



a . We use L() for the normed linear space of all absolutely summable sequences x

on I , i.e., with

I~xlI  , = Ixli)l
i

finite, and we make use of the fact that 1.(I) is the dual of I(1) , which, in turn,

is the dual of c0 (M)

Let also J be an integer interval (or, more generally, a set of integers). We are

IXJ
interested in A G R which carries 1.(J) to 1.(I) , and we identify such a matrix

A with the linear map from Z_(J) to 1.(1) induced by it. Such A is necessarily

bounded and we denote by SAI its map norm. If A is one-one and onto, it is boundedly

invertible. We will then say that A is A.-invertible, for short. As with sequences,

IAI(ij) ,= IA(i,j)l , all i,j.

We write A(*,j) for the sequence which makes up the j-th column of A , and A(i,-) for

the i-th row. We call the sequence A(-,*+r.) the r-th band or diagonal of A

If KXL c IxJ , then we denote by AK,L the restriction of A to KXL * At times,

it is also convenient to use the alternate notation

A[L := AKL

and even

A[K] AK,K

On replacing square brackets by round brackets, we get to the determinant:

A( ... ) := det AL ... I .

Thus A(i,i) and A(i) both denote the i-th diagonal entry of A , - the latter involving

an abuse of notation since A({i ) would have been correct.

We recall that A is srk (:= sign regular of order k) if, for some

C k {-i1,1} and tor all KxL c Ixa with IKI = ILI k

Cix£ A ) 0

where IKI denotes the cardinality of the index set K . If all c = I , then we use tpk
*I

(:= totally positive of order k) instead of srk . It A is srk (tpk) tor all k , then

A is simply called sr (tp). We intend to make use of Sylvester's determinant identity

(see, e.q., [K; p.31) and madamard's inequality (see, e.q., (K, p.88)).

-3-



1. ftistence of a main diagonal. We establish that any Z -invertible matrix A

must nAve a main diagonal. By tnis we mean that A Is the stable iniit or ,tts fnite

sections which are principal with respect to a particular diagonal. It is this diagondi

that we then call the "maiLn diagonal". We use here the definite aIrticle in anticipation of

the uniqueness established in the next section.

IxJ
Theorem 1. If the matrix A 9 R is tp and Z -invertibie, then, for some r , ann

for all finite intervals M c I , AMM+r is Invertible and (APM+r)-
1  

converes,

monotonely in each entry, to A
- 1  

as M -+ I

Proof. Since A is onto, there exists a bounded sequence x such that

(Ax)(i) = (-1)1, all I .

with this, the argument for Theorem I of [BFP] and, especially, the Claim proveo there,

provide us, for each finite interval L c I , with an index set K j so that

NA I I * (In the Claim, choose S = , hence S* - X_ choose I = L,AL,K 1 x

choose u(i) - (-1)1, all i, and choose for s an extremal for

F *- A(i,') u -': .v(i) with v = u .)

v i i

Extend each AL,KI to a matrix C L by taking its value to be zero oft

L
KXL . Since, for each i , IC (*,i)I 4 ix1 , we are permitted to choose a sequence of

integer intervals L approaching I for which, for each I G I , cL(,,i) converges

weak (i.e., pointwise on I(J ) to some y I Q (J) . Then, for each n ( I , the

sequence A(m,') oexnq in XI (J) , we have

(Ay' (m) = JIm E A(ms)CL(s,i) _ Jim (m ie()

iI L* 0 , i

snowing that Ay = el , therefore y = A- (.i) , all I . We conclude that C (,,I)

converqes pointwise on X, and so, in particular pointwise, to A-I (,I)

The remainder ot the proot relies on the tOilnwLnq known fact.
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Lemma 1. If 8 f Rn x n  
is tp and invertible, then, tor any interval M c 0,...,nj

so is C B[M] = Bt|, M , and

0 < (-) I+C-Ci,j) 4 (-)+jIb-1
(ij) , all i,j Q m

The nonsinquiarity ot C is a conseQuence of Hadamard's Inequality. The rest ot the

lemma follows by repeated application of the special case M = {I,...,n-I} . For this

case, use the checkerboard nature of the inverse of a tp matrix and the rank-one correction

formula tor an inverse (called the Woodbury-Snerman-morrison formula by Numerical Analysts)

which in this case states that

C-
1
(ij) - B-1(ij) - B-1(i,n)B-

1
(n,j)/B-

1
(n) , i,j=1....,n-1.

Of course, this identity also tollows from Cramer's rule and Sylvester's determinant

identity using b[\i,\n ] as pivot block.

As a corollary, we find that, tor an invertible tp B Rn
xn  

, 1/B(i) 4 B-
1
(i) , or,

1 4 E(i)b-1(1) , all i , hence

JB-1 -1 Bi) , all 1

This shows that the (main) diagonal entries of an invertible tp matrix are bounded away

from zero.

Returning now to the invertible matrices AL,K obtained earlier, we conclude that

their (main) diagonal entries must all be bounded below by 1/IxI . Assuming for simplicity

of notation that 0 9 I , it follows that, rot every L containing 0 , the index jL for

which A(O,j
L
) lies on the (main) diagonal of AL,K must come from the set

{j 6 J : A(Oj) A 1/|x|} , and this set is finite since A(O,) G W * e are therefore

permitted to choose a further subsequence of intervals L increasing to I (and all

containing 0 ) tor which L = r for some tixed integer r . Since J and L are

intervals and AK,L is square, this implies that L+r c J for all such L

Since AL,K , or, more precisely, its extension CL to all of JXI converges

poIntwise to A
-
1 yet C L(,*) = 0 for all j 0 K , it follows that every j 3 is

eventually in every K . Thus, for every interval M c I , there exists L so that M+r c

K By Lepmma 1, AM,Mir is invertible and IA ,+ r  IA L,K 1 1 < Further, by that

it
11 ,



lemma, M c N implies that

0 ( (-)A M+r-1 (i+r,j) (-)i+JANN+r-1 (i+r,j) , for i,j G M.

We conclude that A M,M+r -1, or, more precisely, its extension to all of JXI , converges,

monotonely in eacn entry, to a bounded matrix C Q RJ xI which, by a repeat of the earlier

argument, is necessarily A-'

Corollary 1. The main diagonal of A is bounded below by 1A I M More precisely,

A(i,i+r)A-1 (i+r,i) ; 1 for all i

Corollary 2. The matrix ( (-)i+JA-(i+r,J) ) is tp.

The second corollary improves on Proposition I of [BFP) in which the same conclusion

is only reached under the additional assumption that the columns of A are all in c0 (I)

(See also Section 5.)

Theorem I implies that an I.-invertible tp matrix A has a main diagonal in the sense

introduced in [1 : For some r and for all sufficiently large intervals M , AM,M+r is

invertible and lim sup..IAMM+r-  1 1 < . This means that one can approximate the

solution x of the nonfinite linear system Ax= b by the solution xb = A1 ,14 r-bM of

the finite system AMM+rxM = b14 , at least when b and x are in co . We show in

Section 5 that x Q c o if and only if b Q c o .

Finally, Theorem 1 implies that I + r = J for some r * Hence it is no restriction

to assume, after a shift, that I = J • If I has a first or a last element, this then

forces band 0 to be the main diagonal.
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2. Existence of stable W1 factorization and uniqueness of main diagonal. The LDU

factorization or a matrix A of order n is a basic tool in the solution of linear

algebraic systems. The matrix A is written, if possible, in the form LDU , with L

lower triangular, D diagonal, and U upper triangular. Both L and U are required to

be unit triangular, i.e., to have all their diagonal entries equal to 1 , and this insures

uniqueness of the factorization (see the proof of Lemma 2 below). Such a factorization can

be obtained in case all upper left principal minors of A are nonzero. By Hadamard's

inequality, this condition is satisfied for an invertible tp A . Further, if LDU = A

then (DU)(i,-) is the particular linear combination of the first i rows of A which

vanishes at 1,2,...,i-1 and in which A(i,*) has coefficient 1 . Therefore

since the right hand side has the same properties. Also,

A(1, .., ) = L(I... ,I D(I,... i) (1, o., ) = D(1) ... D(i) ,

hence

D(i) = A(I .... i)/A(1. i-I)

Therefore, finally,

L(*,j) = A(1....j- , )/A(1.....j) .

we have recalled these well known facts to facilitate discussion of an LDU

factorization of a nonfinite matrix. We intend to obtain such a factorization by a limiting

process and need therefore to consider the behavior of the LDU factorization of A as we

add rows and columns to A.

IxJ
Let now A Q R x  

We say that the matrices L, D, and U provide a (normalized)

WU factorization for A provided A = LDU , L is unit lower triangular with band 0 as

its rightmost (nontrivial) band, D has band 0 as its only nontrivial band, and U is

unit upper triangular. We call such a factorization (boundedly) invertible it each tactor

is bounded and boundedly invertible, with L
-1  

and U
-  

being again triangular.

We are not certain that having a "good" diagonal (i.e., a diagonal all of whose

principal minors are nonzero) is sufficient for having an LUU factorization; it may not

even De sufficient to have a main diagonal, but it A is also tp, then having a main

-7-



diagonal is sutticient for having a boundedly invertible LU factorization. nis insures

tnat the main diagonal is unique, as we will see.

Lemma 2. If L, U, U andI Li jj and U1 are both invertible normalized LU

factorizations for A (as maps trom A., to Z ,then L = L1 1 D = 1, U = U,

Proof. Let band r be the lettmost band of U ,and band r I the leftmost band ot

U1  and assume without loss that r 4 ri Then, by assumption,

L LD = 1 

and the left hand side is lower triangular with band 0 as its rightmost band and equal to

the interesting diagonal of D , while the right hand side is upper triangular with band

r1 -r as its leftmost band, and equal to the interesting diagonal of Di Since r, ), r

it rollows that r1  r , hence D = D and further L 1 -
1
L = 1 = U 1 U

1

Theorem 2. If A is 2t.-invertible and tp, hence has a main diagonal, say band r

then A has an invertible normalized LOUl factorization L, 0, U , with band r the

leftmost band of U

Proof. Assume first that r = 0 . Further, assume without loss that An

At-n,... ,n] is a typical principal section for that main diagonal of A *Let L n~ n'

Un be the LOUl factorization tor A n Then

nn" n/(n..,j

and, by Loemma 1 and Theorem 1,

and Af-n,...,iJ- I W increases as n grows. We conclude that

-o11< 1
n n

and On decreases monotonely to some invertible diaqonal matrix D for which

ii i) ' 1A all i . Therefore, D is boundedly invertible. Next consi-er D nin we

saw earlier in tnis section that



(DnU)(i,j) = A(-n ..... -, )/A(-n .... .-- 1)
n

Use Sylvester's determinant identity on A[-n-1,...,i-1, i with pivot block)

A[-n,.i-i to conclude that

A A(-n . )A
-n-l,..,i-I -n.

which, by tp, implies that

o 1 (D..IUn+1 )(i,j) 4 (D nUn (ij

We conclude that DnU n decreases monotonely to some matrix V , necessarily tp and upper

triangular, therefore U n converges to the tp unit upper triangular matrix U := D-I .

Further, UnUn 4 A n , hence

1U I 4 1A HID - ( IA iIA 1 , thus 1UI IAIIA-In n n n n

The corresponding argument shows that Ln converges to some tp unit lower triangular

matrix L with LI r MAOA-IM M . Finally, An I = Un- n-IL n-1 , hence also

IL -1i , MU n 1 IA nA n - iAIIA-li . Indeed, I in-l is aqain tp and , becausen n n n

of the checkerboard nature of inverses of tp matrices, IUn'I, IDn-I , and ILn-I I give

the UDL tactorization for JAn- 1 , i.e., the factorization obtained by startinq Gauss

elimination at the lower right corner rather than the upper left, hence satisfy the same

bounds. For, if B*(i,j) := b(-i,-j) , all i,j, i.e., the order of both the rows and the

columns is reversed, then tp is preserved as well as the max-rowsum norm while, with M, E,

V an LUU ractorization for B , the matrices M* , U* , and V* provide a UDL

factorization for B* . This shows that also L and U (and, of course 1) ) have band 0 as

main diagonal, and are, in particular, invertible.

It now r Ik 0 , then we obtain such an LDU factorlzation (with eacn tactor navlnq nadnn

0 as main diagonal) tor the matrix A 
- r 

, with E the shitt, (Ea)(i) := a(i+1) , all .

but then A = LD(UE
r
) does it . H

Corollary. If also toall S of A iS a oain lidlondl tor A , -r s= r

-9



Proof. By Theorem 2 , A has an invertible normalized WDU factorization with band r

as the leftmost nontrivial band for the upper triangular factor, as well as one with band s

as the leftmost nontrivial band of the upper triangular factor. but, by Loemma 2, these two

factors must be the same. Iji

3. The shape of a nomfinite tp matrix. The fact that any invertible tp matrix

A Q gtXJ has a main diagonal implies that I + r - J for some r . In particular, it

rules out certain combinations of I and J which might, offhand, be possible. For

example, the choice I - is not possible in conjunction with the choice J = N . If we

merely know that A is onto or one-one, certain other combinations, though certainly not

all, are possible.

In this context, the only properties of the integer intervals I and J which matter

are whether or not they have a first and/or last element. In effect, there are just four

choices for I and J:

finite, N, -K, Z

If J is finite then A cannot be onto unless IJI > III . The same conclusion holds in

spirit when J is nontinite.

IxJ
Theorem 3. Let A f9 R be tp and carry (J) onto £_CI) . Let I and J each

be one of N, -N, or Z ..Then I c J.

Proof. There is nothing to prove unless J = N or -M • Assume without loss of

generality that J = N . Assume by way of contradiction that I = -N or X . A being onto,

we may pick a bounded x for which Ax - ((-I)
i
) . Pick any i Q I • Then, since

A(i,-) G £ (J) , we may pick n so that

j > n implies A(i,j) < lx1-

Since I -N or Z , the interval L := [i-n,il is in I By (BFP] (as used at the

beginning of the proof for Theorem 1 above), we may pick a subset K of J for which

1A L,K- 1 1x| but then, with K =: k0 < ... < k , we must have

-10-



F-1

A(i,k n XU yet k n> n

and this is a contradiction to our choice of n

4. Decay away from the main diagonal, The fact that an AK,-invertible tp matrix A

has a main diagonal insures, by Corollary I of Theorem 1, that it has a diagonal whichl is

bounded away from zero. This implies at least linear decay away from that diagonal. More

precisely, we have the following

Theorem 4. Let A Q R I be tp, and carry 1. to itself. If d :=inf Aft) > 0

then supi Ati,i+s) = 0(I/fsi) as is) ~

Proof. Let s ), 0 . Since A is tP2 ,we have

A(l,i+k)A(i+k,i+s) )- A(i,i+s)A(I+k,i+k), k=1,.... Is

or

EAji,i+k) max A(i+k,i+s)
k=I k=1,... ,s ) sAxis

min A(i~k)

This implies that lAIM UAI/d > ) u A(i,i+s) ,using the fact that mx'I~~)

= AE while sup Z ~ ~ ) = 1A1 . An analogous argument proves the inequality for

negative s .H

Corollary. If A G R IJis tp and I -invertible, then, for some r

A~i~is) ' AE iCA) /fs-rI , all i, s

Proof. By Corollary 1 to Theorem 1, we may choose d = 1A I hence

IAS/d = 1A51A ~I =:ic(A)

In case A- is also banded, we know from [D) that the entries of A decay

exponentially away trom the main 1acondl of A E xplicitly (bb1

OWN1



(K(A) - lj[s-rl/m
A(ii+sl ' conlstCK(A),m K(A) + 1

in case A- 1 m-banded. In such a case, A
-  

also decays exponentially, in a trivial

way. It would be nice to know whether, in tact, all 9.-invertible tp matrices decay

exponentially away from their main diagonal.

S. Invertible sr matrices. It is not possible to extend the above results concerning

main diagonals to invertible sr matrices. This is illustrated by the particular matrix B

xzobtained from the identity matrix in R Z  by reversing the order of the rows. Svery band

has singular principal minors of arbitrarily large orders. Of course, one could weaken the

notion of main diagonal to demand only that there be some sequence of principal submatrices

converging stably to A . It is possible to show that an 9 -invertible sr matrix has such

main diagonals. For the particular matrix B , though, every band becomes main in this

weaker sense, i.e,. the distinction becomes empty. This is, of course, not surprising

since, for B , there is really nothing to distinguish one hand from another.

Some of the work reported on in the preceding sections was initially based on the

realization that the following conjecture is true.

Conjecture ((BFPI). The columns of a tp L -invertible matrix are already in co

Indeed, this conjecture is now a simple consequence of Theorem 4. It is pointed out in

(BFPJ that the discussion there ot the inverse of a sr matrix could be considerably

shortened if this conjecture were to hold for sr matrices. We now prove the following

generalization of the conjecture.

Theorem 5. Let S c R be a normed sequence space whicn contains the unit vector ej

ror all j Q J and contains' JxJ it it contains x , and let A:S - &.(I) be bounded

and sr. If Ax uniformly alternates tor some x Q S , then Ac0 c CO , i.e., the columns

ot A are already in c0.

-12-



Proof. We have to prove tnat

K Q I : IA(i,k)I A a)

is finite for all k ( J and all Q > 0 . By considering -A and/or inverting the order of

the rows of A it necessary, we can ensure that A is tp2 . Then, tor j < k , i' 4 , we

nave

A(i,j)A(il,k) 4 A(i',f )A(i,k)

or, for i' Q K

A(i,j) 4 Ai'k) A(i',j)

Therefore,

Z Ix(j)I sup A(i,j) I iA(l,k)l E A(i',))Ix(j)l < IA(.,k)l IA~xIl

j]k ii j4k

or

SIx(j ) iA( ",3) [K] I < ,

j4k
with

[K] := [inf K, sup K]

by inverting the order ot rows and ot columns of A (which preserves tP2 ), we obtain the

same inequality for the sum over j > k , hence altogether

1: IA(',j) [K]llx(j)t <

Since E JA(-,J)x() uniformly alternates, this implies that we can find some tUnite

index set L so that A(KJ,L already maps xL to a uniformly alternating sequence, and

this, by a standard sr result (see, e.g., [K; Chap.5, §1] or the beginning of the proot of

Theorem 1 in [BFP]), implies that IKI 4 ILI , thus IKI < 1 Ii1

This theorem makes it possiole to give a shorter proof of

Theorem 2 of [BFPI. It A 6 R
IxJ  

I r and L-invertible, then D A- D
I  

is also sr.

by mimicking the proof ot Proposition I ot IL3FPj, since tne assumptions all'w tine

conclusion that A maps c,(J) to co(1) . Hence Corollary 2 to Theorem I ot ILbFPJ stiows

-13-



that A- 1 
is the pointwise limit of certain matrices EL as the index interval L

converges to I . Explicitly, EL equals AK,
1  

on KxL and vanishes off KL with

K some index set depending on L * This implies that EL is sr, hence so is its pointwise

limit, A
- 
1

-14-
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