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SIGNIFICANCE AND EXPLANATION

Spline approximation is often most effective when the breakpoint (knot)

sequence can be chosen suitably non-uniform. At the same time, the standard

approximation schemes (such as least squares approximation, or interpolation
at suitable interpolation points by splines) are so far only known to be

usable and bounded as long as the breakpoint sequence is almost uniform. The

problem of showing existence and uniqueness of bounded spline approximants to
bounded data boils down to showing invertibility of a certain infinite matrix
A. The distinguished feature of this matrix is its total positivity, i.e.,
all minors of A are nonnegative. In this paper we show that an arbitrary
invertible totally positive matrix has a main diagonal and one only. By this
we mean that there is exactly one band or diagonal with the property that
finite sections of the matrix whose main diagonal is a piece of that band are
invertible and their inverses converge to the inverse of the matrix as the
section becomes large. This says that it is possible to approximate the
solution of the infinite system by the solution of appropriately chosen finite
sub-systems.

These results illustrate the power of total positivity, since such
results fail to hold for arbitrary infinite matrices. It is hoped that the
better understanding of total positivity of nonfinite matrices obtained in the
present report and its predecessors will aid in the resolution of certain

outstanding problems concerning the stability of spline approximation schemes.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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STRUCTURE OF INVERTIbBLE (BI)INFINITE TUTALLY POSITIVE MATRICES

C. de Boor., Rong-qing Jia" and A. Pinkus"‘

Introduction. An investigation into the structure of invertible (bij)infinite totally
positive (or, tp) matrices was begun in (82] and [CDMS1], motivated by certain questions
[31] [M] in spline approximation. First results concerned banded matrices [82] [CDMSzl and
strictly banded blcck Toeplitz matrices [CDMS1] . Somewhat surprisingly, such restriction
to banded matrices was tound to be unnecessary in [BFP), where it was proved that a tp (or,
more generally, a sign regular) matrix A mapping £,(J) to £ (I) is onto if and only
if it has a uniformly alternating sequence in its range. This latter condition means that,
for some bounded x , supi(Ax)(i)(Ax)(i+1) <0 .

A similar result had been proved in [B3] for band matrices, following up a conjecture
in [M)}. The argument in [83] provided much additional information about the inverse of a
banded tp matrix. In the present paper, we obtain the same information for an arbitrary
ln—invertible tp matrix.

We prove (in Section 1) that an ls-invertible tp matrix A 6 RIXJ has a "main
diagonal™. By this we mean that all sufficiently large square submatrices of A taken
from consecutive rows and columns and principal with respect to a fixed diagonal are
invertible and their inverses are bounded uniformly. This implies that a”' is the

pointwise limit of these inverses. We even show that such convergence is monotone. As a

K X

- Kx ; .
DJA 1DI € R the diagonal matrix

consequence, or its negative 1s again tp, with D
tor which DXk) = (-1)% , allk ¢k .

In addition, we show (in Section 2) the uniqueness of such a main diagonal. For the
proof, we establish a result of independent interest, namely the existence and uniqueness

of an 1invertible LLU factorization tor A . By this we mean the possibility of writing A

* Mathematics Research Center, University of Wisconsin-iadison
** Mathematics Department, University of wisconsin-Madison
***Mathematics Department, Technion, Haita
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as the product LDU of bounded and boundedly invertible tp matrices, with L and 1ts
inverse unit lower triangular, D and its inverse diagonal, and U and its i1nverse unit
upper triangular.

We also follow up some consequences of the existence of a main diagonal for the
matrix A : (i) A can have only certain shapes. Explicitly, we muat have J = I + r for
some r . We settle (in Section 3) the related question of possible choices for 1 and

J 1in case we only know that A is tp and onto. (ii) The main diagonal must be bounded

.away from zero. This leads to the observation (made in Section 4) that the entries of A

must decay at least linearly away from the main diagonal. We leave open the intriquing
question whether, in fact, this decay is exponential, as was shown for arbitrary matrices
with a banded inverse in [D).

In the last section, we settle a conjecture from [BFP] whose consideration gave much
impetus to the present paper. We prove that a sign regular l.-invertible matrix A € RIxJ
must already carry co(J) to co(I) , i.e,, all its columns must vanish at infinity.

We use the ftollowing notation and conventions.

We use lower case letters to denote elements of RV si.e., real valued functions (or,

sequences) on some integer interval (or, more generally, some integer set) I , with

x(1) the ith entry, or value at i , of the sequence x . If K is a subset of I ,

then XK denotes the restriction of x to K . The i-th unit sequence is denoted by el

and defined by

et(j) = 613’ , all i,j.
Further, tfor x 6 RI '

|x}(i) = [x(i)| , all i .
We use the customary abbreviation l_(I) for the normed linear space of all sequences x
on I with

Ixl :e Ixl i s:p fx(1)]

tinite, and use co(l) for 1ts closed linear subspace ot all bounded Sequences x

vanishing at intinity, i.e., for which {i € I : |x(i)] » a} is finite for all positive

-2-
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a . We use 21(1) for the normed linear space of all absolutely summable sequences x

on 1, i.e., with
Ixt, = ;|x(i)|
i
finite, and we make use of the fact that la(I) is the dual of 11(1) , which, in turn,
is the dual of co(I) B
Let also J be an integer interval (or, more generally, a set of integers). We are
interested in A € RIxJ which carries 2,(J) to 2 (I) , and we identify such a matrix
A with the linear map from l“(J) to l_(I) induced by it. Such A is necessarily
bounded and we denote by $Al its map norm. If A 1s one-one and onto, it is boundedly
invertible. We will then say that A is £.-invertible, for short. As with sequences,
jalti,gy = |A(i,3)) , all i,3.
We write A(°*,j) for the sequence which makes up the j-th column of A , and A(i,*) for
the i-th row. We call the sequence A(*,°*+r) the r-th band or diagonal of A .
If KXL c 3y , then we denote by AK,L the restriction of A to KXL . At times,
it 1s also convenient to use the alternate notation
A[ E] 1= AK,L
and even
A[K}] := AK,K .
On replacing syuare brackets by round brackets, we get to the determinant:
Al eee ) = deta| .oo ]
Thus A(i,i) and A(i) both denote the i-th diagonal entry of A , - the latter involving
an abuse of notation since A({i}) would have been correct.
we recall that A 1is STy (:= sign regular ot order k) if, for some

€1 sees €, 6 {~1,1} and tor all KkxL < Ix3 with |K| = JL} <X,

‘l
3
€A >
Ix| (L) o,
where |[K| denotes the cardinality of the index set K . 1f all € =1, then we use tp,
(:= totally positive ot order k) instead of sr, . It A is sr (tpk) tor all k , then

A 1s simply called sr (tp). We i1ntend to make use of Sylvester's determinant identity

(see, €.ge., [K; p.3]) and Hadamard'’'s inequality (see, e.q., [K; p.88)).

-3
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1. Existence of a main diagonal. We estahlish that any 1¢~1nvertxble viomatrix A

nust have a main didagonal. By tnis we mean thdat A 1s the stable limit of :1ts tinite

sectlons which are principal with respect to a particular diagonal. It 1s this diagohal

that we then call the "main draqgonal”. We use here the definite article 1n anticipation of

the unlqueness establlished in the next section,

IxJy X
is tp and la-1nverC1bLe, then, tor some r , anda

Theorem 1. If the matrix A 6 R

. -1
\
is 1nvertible and (AM,M+r' converges,

for all finite intervals M < 1 , AM,M+r

monotonely in each entry, to A™Y as M~ 1,

Proof. Since A 1is onto, there exists a bounded sequence x such that

(ax){(i) = (-1, all i .

with this, the argument for Theorem 1 of [BFP] and, especially, the Claim provea there,

provide us, for each finite 1nterval L ©€ I , with an index set K ¢ J so that

w
choose S =& , hence 8§ = &, , choose I =1,

~1
ia b < ixh « (In the Claim, 3

L, X
choose u(i} = (-1)1, all 1, and choose for s an extremal for

F: ZQiA(l,') — Zuiv(i) with v =u .)

- Jx
Extend each AL K ! to a matrix ¢ & R 1 by taking 1ts value to be zero oft
’

. . L
KxL . Since, for each i , #¥C (*,1)f <€ Ix0 , we are permitted to choose a sequence of

integer intervals L approaching I for which, for each i1 e 1 , CL(',x) converges

. ;
weak (1.e., pointwise on l](J) } to some yl & ED(J) . Then, for each m &€ I , the

sequence A(m,*) peing 1n 11(J) , we have

(e (m), nGLB .

!
(Aay*Jtm) = fam ESA(m.s)CL(s,l) = lim(
L*1 L*I1|{ v , nL|

/

1

showing that Ay1 = e , therefore yl = A”(',x) , all 1 ., We conclude that CL(',l)

-1
converges pointwise on l] and $0, 1n particular pointwise, to A (°*,1) .

The remalnuer ot the proot relies on the tollowing known ract,

-4~
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lemma 1, If B & R n 1$ tp and invertible, then, tor any interval M E'(l,...,n} ’

so is C := B[M] = BH,M , and

0o < (-3¢, ¢ oG, L all i,jem .

The nonsinqularity ot C 1is a consequence of Hadamard's 1inequality. The rest ot the
lemma follows by repeated application of the special case M = {1,.ee4n=1} . For this
case, use the checkerboard nature of the inverse of a tp matrix and the rank-one correction
tormula tor an inverse (called the Woodbury-Sherman-Morrison tormula by Numerical Analysts)
which in this case states that

-t,. . % PR -1, -1 . ~1 o
C"'(i,j) = B (i,j) - B” (i,n)B” '(n,j}/BT'(n) , i,j=1:ce.,n=1,
Of course, this identity also tollows from Cramer's rule and Sylvester's determinant

\j,\nj

. i "
1dentity using \iL\n

as pivot block.

n

_ : . nx . -1,.
As a corollary, we find that, for an invertible tp B 6 R + 1/B(1) € B 1(1) , or,

1< B(i)B—‘(l) , all 1 , hence

77" < By, a11 4 .
This shows that the (main) diagonal entries of an invertible tp matrix are bounded away
from zero.

Returning now to the invertible matrices AL,K obtained earlier, we conclude that
their (main) diagonal entries must all be bounded below by 1/Mxl . Assuming for simplicity
of notation that 0 & I , 1t tollows that, tor every L containing O , the index jL for
which A(O,jL) lies on the (main) diagonal of AL,K must come from the set
{; 63 : A(0,3) > 1/1xl} , and this set is finite since A(O,*) € L, . we are therefore
permitted to choose a further subsequence of intervals L increasing to I (and all
containing O ) tor which JL = r for some tixed integer r . Since J and L are
intervals and AK,L is square, this implies that L+r cJ for all such L .

Since AL,K-1 s, or, more precisely, its extension CL to all of JxI converges

. - L . . . .
pointwise to A 1 yet C(3,*) =0 for all j @ K, it follows that every j € J 1s
eventually in every K . Thus, for every interval M c I , there exists L so that M+r <

. -1 -1
> > a ] 1< 1 < .
X « Hy Lemma 1, AM,M+r 1s 1nvertible and AM,M+: ‘AL,K x| further, by that

-5-




lemma, M ¢ N implies that

-1, . . 143 -1 . N
o< "’“j"n,m: (aee,3) € (Mg V(i+r,§) , for i,j € M.

We conclude that A 1, or, more precisely, its extension to all of JXI , converges,

x
monotonely in each entry, to a bounded matrix C € Rg I which, by a repeat of the earlier

M, M+r

argument, is necessarily A~' . [|]

-1

Corollary 1. The main diagonal of A is bounded below by IA l_‘I . More precisely,

A(i,a+r)A”T(i4r,i) > 1 for all i .
. ivy, =1 .
Corollary 2. The matrix ( (=)"""A "(i+r,3) ) is tp.

The second corollary improves on Proposition 1 of [BFP) in which the same conclusion
18 only reached under the additional assumption that the columns of A are all in cO(I) .

(See also Section S.)

Theorem 1 implies that gﬂ_l_-invertible tp matrix A has a main diagonal in the sense

introduced 1in [B,l : For some r and for all sufficiently large intervals M , AM,M+r is

-1

A < ® , This means that one can approximate the
M, M+T

invertible and 1lim suph‘ll
solution x of the nonfinite linear system Ax = b by the solution xM t= AM Mﬂ_"bM of
’
the finite system AM,M+tx" = bM , at least when b and x are in Co * we show in
Section 5 that x & So if and only if b € Co *
Finally, Theorem 1 implies that I +r = J for some r . Hence it is no restriction

to assume, after a shift, that I =J . If I has a first or a last element, this then

forces band 0 to be the main diayonal.

-6~




2. Existence of stable LU factorization and uniqueness of main diagonal. The LDU
tactorization of a matrix A of order n is a basic tool in the solution of linear
algebraic systems. The matrix A 1s written, if possible, in the form LDU , with L
lower triangular, D diagonal, and U upper triangular, Both L and U are required to
be unit triangular, i.e., to have all their diagonal entries equal to 1 , and this insures
uniqueness of the factorization (see the proof of Lemma 2 below). Such a factorization can
be obtained in case all upper left principal minors of A are nonzero. By Hadamard's
inequality, this condition is satisfied for an invertible tp A . Further, if LDU = A ,
then (DU)(i,') is the particular linear combination ot the first i rows of A which
vanishes at 1,2,+.4s,i-1 and in which A(i,*) has coefticient 1 . Therefore

(ou)(i,) = A(1,eeen-1, 2 )/A01, 000 1m1)
since the right hand side has the same properties. Also,
A(l,00e,1) = L{1,00e,1)D(1,000,1)U(1,004,i) = D(1)e..D(i) ,
hence
D(i} = A(1,0ee,1)/A(1,000,2=1) .
Theretore, finally,
L(*3) = A(1,.00,3-1, J VA, eeali) .

We have recalled these well known facts to facilitate discussion of an LDU
factorization of a nonfinite matrix. we intend to obtain such a factorization by a limiting
rrocess and need therefore to consider the behavior of the LDU factorization of A as we
add rows and columns to A .

Let now A € RIxJ . We say that the matrices L, D, and U provide a (normalized)
LDU factorization for A provided A = LDU , L is unit lower triangular with band 0 as
its rightmost (nontrivial) band, D has band U as its only nontrivial band, and U 1is
unit upper triangular. We call such a factorization (boundedly) invertible if each tactor

1s bounded and boundedly invertible, with L' ana ¢!

being again triangular.
We are not certain that having a "good" diagyonal (i.e., a diaqonal all of whose

principal minors are nonzero) 1s sutficient for having an LLU factorization; 1t may not

even pe sufticient tu have a main diaqonal. bBut it A is also tp, then having a main

-7-
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agiagonal is sutticient for having a boundedly invertible LLU factorization. lhis insures

that the main diagonal is unique, as we will see.

lemma 2. If L, D, U and L1, U1 and U1 are both invertible normalized LUU

factorizations tfor A (as maps trom %  to £ ), then L =1

1

Proof. Let band r be the lettmost band of U , and band r the leftmost band of

1

U, , and assume without loss that r < £y . Then, by assumption,
t,"o = pyuu!

and the left hand side is lower triangular with band 0 as its rightmost band and equal to

the interesting diagonal of D , while the right hand side is upper triangular with band

r,~r as its leftmost band, and equal to the interesting diagonal of D, . Since r, >r ,

1t rollows that r; =r , hence D = D, , and further L1"L =1 = U1U'1 A

Theorem 2. It A is & -invertible and tp, hence has a main diagonal, say band r ,

then A has an invertible normalized LDU factorization L, D, U, with band r the

leftmost band of U .

Proof. Assume first that r = 0 , Further, assume without loss that An =

Al-n,...,n] 1is a typical principal section tor that main diagonal of A . Let L.+ Dpne

U, be the LDU factorization tor A, . Then

Ua(1) = A(-N,eees2)/Al-N,een,izt) = 1/A(-n,eee,i]™ (1)

and, by lemma 1 and Theorem 1,

Al=n,eee,il™t(i) < An"(iy < 2"

and A[-n,...,i]"(x) increases as n dJrows. We conclude that

w "< 1
n n

and Dn decreases monotonely to some invertible diaqonal matrix D for which

. -1 -1 : . :
(L) > A , all 1 . Therefore, D 1is boundedly invertible, Next consider Dn“n . We

saw earlier in this section that

-8-
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i
'

(DnUn)(x,j) = A(=N,eensl-t, ; )/8(-n,00v,-i=1)

Use Sylvester's determinant identity on A[-n-1,...,1-1, ; J wlth pivot block
Al-n,.e¢,i-11 to conclude that
1 : 1
Al-n-1,..4,1-1, ; JA(-n,eve,i=1) = A(-n=1,ces,i=1)A{-n, .00, 11, ) )

~N sess, 1 “n=1,40,1-1
(—n—I,..,i-l (-n ,:.., 3 J

which, by tp, implies that
< i,3 < 1,9 .
0 (Dn+1un+1)(l'3) (Dnun](l'J)
we conclude that DnUn decreases monotonely toc some matrix V , necessarily tp and upper
triangular, theretore Un converges to the tp unit upper triangular matrix U := D"V .
Further, DnUn < ALy hence
- - -1
Il < 4A D' < 1A 1A T'E, thus BUL € BALIATH .
n n n n n

The corresponding argument shows that Ln converges to some tp unlt lower triangular

-1 - - - -
matrix L with WLl € ¥alldA "¢ . Finally, AL 1. Un 1Un 1Ln ! , hence also
- - -1 - -
ILn 1! , lun ‘I < IAnlllAn i < Iania 1I « Indeed, IAn 1| 1s again tp and , because
of the checkerboard nature of inverses of tp matrices, |Un'1| , an-'| , and ]Ln"l give

_1| , 1.e., the tactorization obtained by starting Gauss

the ULL ractorization tor |Aj,
elimination at the lower right corner rather than the upper left, hence satisfy the same
bounds. For, 1f B#*(i,j) := B(-i,-3}) , all i,3j, i.e., the order of both the rows and the
columns is reversed, then tp is preserved as well as the max-rowsum norm while, with M, L,
V an LLU ractorization for B , the matrices M% , E* , and V* provide a UDL
tactorization tor bB* . This shows that also L and U (and, of course D )} have band 0 as
main diagonal, and are, in particular, invertible,

It now r # 0 , then we obtain such an LDU factorization (with each tactor having bana

r

0 as main diaegonal) tor the matrix AL™" , with E tnhe shite, (Ba){(1) := a(1+1) , all 1 .

but then A = LD(UET) does 1t . |||

Corollary. If also band s of A 18 4 mdln diaqonal tor A , *ien s = r .,

-Y-
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Proof. By Theorem 2 , A has an invertible normalized LDU factorization with band r
as the leftmost nontrivial band for the upper triangular tactor, as well as one with band s
as the leftmost nontrivial band ot the upper triangular factor. But, by Lemma 2, these two

factors must be the same. |||

3. The shape of a nonfinite tp matrix. The fact that any invertible tp matrix
A G RIKJ has a main diagonal implies that I +r = J for some r . In particular, 1t
rules out certain combinations of I and J which wnight, offhand, be possible. For
example, the choice I = -M 1is not possible in conjunction with the choice J = N . If we
merely know that A 1is onto or one-one, certain other combinations, though certainly not
all, are possible.

In this context, the only properties of the integer intervals I and J which matter
are whether or not they have a first and/or last element. In effect, there are just four
choices for 1 and J :

finite, N, =N, 2 .
If J 1s finite then A cannot be onto unless |[J| » |I| . The same conclusion holds in
spirit when J is nontinite.

Theorem 3. let A & RIxJ be tp and carry £,(J) onto £, (I) . let I and J each

be one of N, -N, or 2 . Then I ca.

Proof. There is nothing to prove unless J =N or -N . Assume without loss of
generality that J = N . Assume by way of contradiction that I = -NM or % . A being onto,
we may pick a bounded x for which Ax = ((—1)1) « Pick any i € I . Then, since
A(i,*) & 21(J) , we may pick n so that

3 >n implies A{(1,j) < Mxd”' .,
Since I = -N or 2 , the interval L := [i-n,i] is in I . By [BFP) (as used at the
beginning of the proot for Theorem 1 above), we may pick a suhset K of J for which

-1
1A I < ixl , But then, with K =t {k_< «es < X_} , we must have
L,K 0 n

«10-




. -1
A(x,kn) > Ixt yet kn >n,

and thilis is a contradiction to our choice of n . |||

4. bLecay away from the main diagonal. The fact that an ln-invertible tp matrix A
has a4 main diagonal insures, by Corollary 1 of Theorem 1, that it has a diagonal which is
bounded away from zero. This implies at least linear decay away from that diagonal. More
precisely, we have the following

x
Theorem 4. Let A € RI 1 be tp, and carry l- to itself, If d := inf A(i) > 0,

then sup; Ali,i+s) = O(1/|s]) as |s| —> = ,

Proof. let s » 0 ., Since A 1is tp, ,we have
A(1,i+k)A(i+k,i+s) 2 A(i,i+s)A(i+k,i+k) , k=1,.4.,8

or

Afi,i+k) max A{i+k,i+s)
1 K=1,440,8

min  A(i+k)
k=1,00e,S

[ K]

k

> s A{1,i+8) .

This implies that lal _lal/d > |s| sup; Ali,i+s) , using the fact that max; le(i,j)l
4 ’
=1
Al o

while sup; ZkIA(i,k)l = IAl . An analogous argument proves the inequality for

negative s . |||

J

x
Corollary. If A € rY is tp and 2.-invertib1e, then, for some r ,

Ali,its) € Bl _k(A) /ls-x| ., alli, s .
L

Proof. By Corollary 1 to Theorem 1, we may choose d = 1! , hence

IAt/a = IARIATE =: k() . il

in case a”!' 1s also banded, we know from [D] that the entries of A decay

exponentially away trom the main diagonal of A . Explicitly [b‘] ’

-11=
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K(A) - 1)ls-r|/m

A(1,1+4s8) € CO"StK(A),m(K(A) 3

' 1s m-banded. In such a case, A" also decays exponentially, in a trivial

1n case A~
way. It would be nice to know whether, in tact, all 1w-invettible tp matrices decay

exponentially away from their main diagonal.

5. Invertible sr matrices. It is not possible to extend the above results concerning
main diagonals to invertible sr matrices. This is illustrated by the particular matrix B
obtained from the identity matrix in Rsz by reversing the order of the rows. Every band
has singular principal minors of arbitrarily large orders. Of course, one could weaken the
notion of main diagonal to demand only that there be some sequence of principal submatrices
converging stably to A . It is possible to show that an l~-invertible sr matrix has such
main diagonals. For the particular matrix B , though, every band becomes main in this
weaker sense, i.e,. the distinction becomes empty. This is, of course, not surprising
since, for B , there 1is really nothing to distinguish one band from another.

some of the work reported on in the preceding sections was initially based on the

realization that the following conjecture is true.

Conjecture ({BFP]). The columns of a tp l_-invertible matrix are already in Cg *

Indeed, this conjecture is now a simple consequence of Theorem 4. It is pointed out in
[BFP] that the discussion there ot the inverse of a sr matrix could be considerably
shortened if this conjecture were to hold for sr matrices. We now prove the following

generalization of the conjecture.

Theorem 5. let S S_Rg be a normed sequence space which contains the unit vector eJ

tor all j € J and contains |x| 1f it contains x , _and let A:S —+ & _(I) be bounded

and sr. If Ax uniformly alternates tor some x € S , then Aco < Co ¢ i.e., the columns

ot A are already in Cpe

-12a=




Proof. We have to prove that

K := {ie1: |a(i,k)} > a}
is finite for all k € J and all @ > 0 . By considering =-A and/or inverting the order of
the rows of A 1f necessary, we can ensure that A 1S thye Then, tor j €k , 1' €1 , we
have

A(i,3)A(1',k) <€ A(i',3)A(i,k)

or, tor i' € K ,

AGL,3) ¢ BEEE) g
Therefore,
) . 1 . [ | . 1
L (x(3)] sup Afr,j) ¢ 2L i xG)] < _.ﬁ_?.mfxll
i<k i2it j<k
or
T |x(3)]8A(*,3) I ¢ =
Sék (K]
with

[K] := [inf K, sup K] .
By inverting the order ot rows and ot columns of A (which preserves tpz), we ohtain the
same inequality for the sum over j ? k , hence altogether

DN FYE

jeJ
Since ZJGJA(':J)X(J) uniformly alternates, this implies that we can find some tinite

B x(7 ®
)[K] |x¢3)] <

1ndex set L so that A(K],L already maps X, to a uniformly alternating sequence, and
this, by a standard sr result (see, e.g., [K; Chap.5, §1] or the beginning of the proot of

Theorem 1 in [BFP]), implies that |[[K]| € |L} , thus |k} <= , |]]

This theorem makes 1t possipble to give a shorter proof of

X -
Theorem 2 of ([BPP]. 1 A€ RI J 1s sr and lm—invertihle, then DJA 1DI is also sr.

by mimicking the proot ot Proposition 1 ot [BFP], since the assumptions allow thne

conclusion that A maps cU(J) o cu(l) . Hence Corollary 2 to Theorem 1 ot {tFP) shows

-13-




that A~! is the pointwise limit of certain matrices El as the index interval L

{
converges tuv I . Explicitly, BL equals AK'L'1 on KXL and vanishes off KxL , with
K some index set depending on L . This implies that EL is sr, hence 8o is its pointwise *

1imit, A”'.
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