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ABSTRACT

When are solutions to elliptic or parabolic boundary value problems given

by convex functions? Extending a maximum principle derived in an earlier

paper to a slightly larger class of elliptic equations and to related para-

bolic equations yields some new answers to this question as well as some new

proofs of already known results.

In particular-this paper contains:

(a) A proof that a function on a convex domain 11 -whose graph makes

zero contact angle with the bounding cylinder ag X it -and which

satisfies an elliptic equation of the appropriate type is convex.

(b) A generalization and direct proof of the Brascamp-Lieb result that

the first eigenfunction of the Laplacian on a convex domain is Log

concave (and so has convex level sets).

AMS(MOS) Subject Classification: 35B50, 35J25,

Key Words: convex, maximum principle, nonlinear elliptic, capillarity,
Log concave, concavity

Work Unit Number 1: Applied Analysis
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SIGNIFICANCE AND EXPLANATION

The goal in studying any partial differential equation is to deduce

properties of the solution from properties of the equation. In particular if

one studies a solution u to an elliptic or parabolic equation arising from a

certain physical configuration, one night expect u to be a convex func-

tion. For example if one pours water into a vertical glass tube with convex

cross section is the function describing the meniscus height necessarily

convex?

The problem addressed by this paper is to find a class of boundary

conditions and elliptic (or parabolic) equations for which the solutions are

convex. The technique used is to find a way to measure how convex a function

is (an associated "concavity" function introduced in an earlier paper), to

derive a maximum principle for it that depends on the equation u satisfies,

and then to find appropriate boundary conditions for u that (together with

the maximum principle) imply u is convex.

The method yields qualitative results for when u must be convex. If

u doesn't satisfy the necessary criteria it is sometimes possible to trans-

form u to v = f(u) so that v does. In this case one can conclude that

the level sets of u are convex. (For example we give a new proof that the

level sets of the first eigenfunction of the Laplacian on a convex domain are

convex). With methods similar to these one may eventually be able to study

convexity properties for regions of support of contained plasmas, porous media

flows or for other applied problems.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



CONVEX SOLUTIONS TO NONLINEAR ELLIPTIC

AND PARABOLIC BOUNDARY VALUE PROBLEMS

Nicholas J. Korevaart

When are solutions to elliptic or parabolic boundary value problems given

by convex functions? Extending a maximum principle derived in an earlier

paper to a slightly larger class of elliptic equations and to related para-

bolic equations yields some new answers to this question as well as some new

proofs of already known results.

In particular this paper contains:

(a) A Proof that a function on a convex domain S1 whose graph makes

zero contact angle with the bounding cylinder ag x R and which

satisfies an elliptic equation of the appropriate type is convex.

(b) A generalization and direct proof of the Brascamp-Lieb result that

the first eigenfunction of the Laplacian on a convex domain is Log

concave (and so has convex level sets).

In order to get these results the nature of the maximum principle used

requires strong constraints on the boundary behavior of u. The reason these

constraints are necessary is illustrated with a simple counterexample.

t
Much of the research for this article was completed while the author was at
Stanford University.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-79270b2, Mod. 1.
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The statements and proofs of the maximum principles are given in section

1. They are used in section 2 to prove the convexity results. The counter

example and some related unsolved problems are briefly discussed in section 3.

I have learned that L. A. Caffarelli and J. Spruck have also

(independently and concurrently) extended the results of the earlier paper

[71. Their work will apparently include much of what is presented here, as

well as some further applications [2).
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Section 1: Maximum principles.

We introduce the concavity function and prove several maximum principles

for it.

The concavity function C was first introduced in (71. It is a natural

way to measure how much a function u fails to be convex. Let u be defined

on the closure of a bounded domain 9. Let 0 4 p 4 1. Then for

(1) y1 ,y3 6 s.t. Y2 = ly + (1-)y 1 6

define

(2) C(ylY 3 , P) - u(y 2 ) - Pu(y 3 ) - (1-U)u(yl)-

C(yly 3 , 0) is the height difference between the graph Su of u and the

line segment joining (yl,u(y,)) to (y3 ,u(y3 )), above the point Y2. The

function u is (non-strictly) convex if and only if C 4 0 for all

y,1y2,y3 as above.

Remark 1.1: Although we allow C to depend on varying 1i here, this is not

necessary for the maximum principles of this section. Essentially the same

proofs will hold for fixed 0 < U < 1. We let P vary because it is more

convenient for the applications of section 2.

Notice that C is defined on a closed subset of n x n x [0,11 (1).

Slightly abusing our notation we say that:

Definition 1.2. The triple (ylY 3' ) is "in the interior" if each of

yly 21y3 9 Q. It is "on the boundary" if at least one of y1 1Y2,y3 G a.

The tollowing theorem is the main result of this section for elliptic

equations. It links the concavity function to the elliptic equation that u

satisfies.

Theorem 1.3. (Concavity maximum principle). Let u 6 C2(f) n C(n) satisfy

the elliptic equation

(3) 0 - Lu = aiJ(Du)uij b(xfuDu) in

-3-
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where b satisfies

Db
(4) u 0, b jointly concave with respect to (x,u).

Then if C is anywhere positive, it attains its positive maximum "on the

boundary" (Def. 1.2).

(In equation (3) and throughout this paper subscripts on functions denote

differentiation and Du is the (spatial) gradient of u. Matrices are

denoted with square brackets. We assume [a1j] > 0 and a'j = aji . Repeated

indices are summed. The functions a1 j and b are assumed to depend

smoothly on their arguments, although it is clear from the proof that this is

not necessary if b is strictly increasing in u.)

Notice that since u e c(5), C is defined and continuous on a closed

(hence compact) subset of S1 x Ix [0,11, so that it does attain its maximum

value somewhere.

Theorem 1.3 can now be proven in two stages: The proof is simple if the

3b ab
constraint - > 0 in (4) is replaced by I- > 0. We prove this case

first. (This was essentially the case studied in [7], but we repeat the short

proof here for completeness). A perturbation argument then allows the

extension to au) 0.

Lemma 1.4. Let u Q C2( ) satisfy (3), (4) and the stronger condition

3b
-u> 0. Then C attains no local positive interior maxima (Def. 1.2) and

must therefore attain any positive maximum on the boundary.

Proof: Suppose C attains a local interior maximum at (xl,X 3 P). If

x1,X2 ,x3 are not distinct then C = 0 and we are done. Hence we may assume

they are distinct and in (the interior of) Q. Calculus and u Q C 01) imply

(5) (Vy1C)(x 1 ,x3 ,X) = (Vy3C)(xI,x 3,) = 0.

-4-



But, using (2), (1)

(6) (Vy C)(x ,x ,) - (1-A)Du(x ) - (1-A)Du(x 1

(VY3C)(xlx3,X) - ADu(x ) - ADu(x
3 131 2 3

so that

(7) Du(x 1 ) - Du(x 2 ) - Du(x 3 ).

The fact that the gradient of u is the same at these three points is

crucial in allowing consideration of general nonlinear equations of the form

(3), (4).

Consider now the restricted concavity function C defined near

(X1,X3,A) by translating each of xlx2,x3 by the same vector v:

(8) E(v) = C(xI+v, x 3+v,A) = u(x2+v) - Au(x 3+v) - (1-A)uxI+v).

Since C has a local maximum at v = 0 and since u G C2(0),

(9) V17(0) = 0, [D2C(O)] 4 0.
V v

(The symbols in (9) represent the gradient and Hessian of C with respect

to v). Let aij and b(x,u) be shorthand for a'j (Du) and b(xtu,Du) at the

common values of Du (7). Since [a'ij > 0 and symmetric, (9) and linear

algebra imply

aij [D2e(0)J 4 0,

i.e.

(10) a J(u.(x2) - Auj(x 3 ) - (1-X)u. (Xl)) C 0.
ij 2 ij 3 ij 1

Using (10), (3) and then the joint concavity of b yields

(11) b(x2 P u(x2 )) A b(x31 u(x 3)) + (1-A)b(x I U(x)

• b(A(x3Vu(x3)) + (1-A)(Xu(x ))

= b(x ,Au(x 3 ) + (1-A)u(x )).
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The chain of inequalities (11) and b strictly incresing in u imply

u(x 2 ) 2 Au(x 3 ) + (1-A)u(x1 )

i.e.

C(x 1 ,X 3 ,) 0 Q.E.D.ab
In order to prove the result for u ) 0 we need the following

perturbation lemma. (See [4] for the same technique):

Lemma 1.5. Let 01 cc 9, C, Co, u Q C 2 (0) satisfying (3), (4). Then for

small enough 0 < c < C we can solve the peturbed problem

(12)

ij ca (Dv)v b(x,v ,Dv) + Cv in U

v -u on 30'

where aM > 0 so that v has the form

(13) v = u + Cw 1w I < M, independently of C.
c (2, )

Proof: Using (13) to expand (12) in powers of C and using the smoothness

of a'! and b yields:

(14 aiJ (Du)uij + c(aiJDu)wj + (u -- j (Du) b(x,u,Du))wk(1)ii p k p k w

-8 (x,u,Du)wJ) = b(x,u,Du) + Cu + C2 G(w ,Dw CD 2w ).

Here G is a smooth function of its arguments (depending on u) and we

have used p =(p1,...,pn) for the gradient argument in aij and b.

Since u satisfies (3) the expression (14) simplifies to the following
£

almost linear equation for w (and we write w for wC):

Lw.'a~i (Du)w.. + (u. -k a (Du) - - b(xu,Du)wk - (4 (x,u,Du)w

(15)

u + CG(wDw,D 2w).

-6-



Notice that the operator L on the left of (15) is a uniformly elliptic linear

operator on ', and the coetficient of w is non-positive (by (4)). For

operators L of this form it is well known that for a given f, Lw = f can

be solved, and in addition [6]:

Lw - f in O'
(16) j =>I 2 4,1  1w= 0 on an'

(l12,0,91 is the C2 *Q) norm).

Also, the fact that G is C1 implies given any K2  there exists K3

depending on K2  so that

(17) Ivi 2,(,, K2 m=> IG(v,Dv,D 2v)10,la, 4 K3

Using (16) and (17) one can solve for w in (15) by iterating:

Let wI = 0 and solve for k > 1:

-k+I k k 2 k
LW = u + CG(wDw,D2) inn'

k+l t
w = 0 on an'.

It is easy to find an O > 0 and a K4  so that 0 < C < 0  implies

(18) wk2 I K42,a,n' 4P
and using this fact, that ac > 0 s.t. 0 < C < Ci implies
(19) k+rw k  w k-1,1.

- 2,,Gn''-PwI 2 1n

Both steps follow from the estimates (16), (17), first applied (inductively)

k -( k+I k)
to Lw and then to L(w - wk). We omit the straightforward details.

But (18) and (19) imply that the sequence {w converges in

to a solution w of (15) satisfying

w1 2,o LQ K4  Q.E.D.

We can now prove the entire Theorem 1.3: Pick an increasing sequence of

C domains {1m} whose union is 9 and such that d(aM,ad m ) + 0. For any

fixed gm and small enough C > 0, Lemmas 1.4 and 1.5 imply that the
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solution v to (12) attains its maximum concavity (if positive) on the

boundary. As C + 0, v z u uniformly (13). Hence any positive maximum

concavity of u for the domain a is attained on the boundary.

Letting m + 0, and since u Q C(), the maximum concavity of u for

the domain U (if positive) is attained on the boundary. Q.E.D.

As was kindly shown to me by L. C. Evans (in the form of a proof of

Theorem 2.8 for the heat equation), the concavity maximum principle extends

naturally to parabolic equations. Given a function u(x,t) defined on

x [0,T], define C(t,yl,Y3,1) to be C(yy3,P) for the function

u(x,t) of the section S x {t. Then if u satisfies an appropriate

parabolic equation, the maximum concavity is attained either initially or on

the boundary:

Theorem 1.6. (Concavity maximum principle for parabolic equations) Let

u G C(a x [0,TJ) be such that

u(x,t) G C2 (S) V t G (0,T]

u(x,t) Q C ((0,T]) V x G .

suppose u satisfies the equation

(20) ut = Lu

in 9, where for fixed t L has the form (3), (4). (In other words,

a'i j  and b may have any t-dependence). Then if C(t,y 1 y3,p) is anywhere

positive, its positive maximum value is attained at some (t0 ,x 1 x3 ,X)

satisfying

(21) to = 0 or one of x1 ,x2 ,x3 G .

ab 3b
Proof: We first give the proof for y > 0, then extend to - 0. The

extension for parabolic equations is much easier than for elliptic ones.
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Let u satisfy (20) with > 0. Let C have a local maximum at

(t0,x1 ,x 3) not satisfying (21). As in Lemma 1.4 we show that this maximum

value cannot be positive. We may assume

(22) x1rx2 ,x3 Q n, distinct, 0 < t0 C T.

Arguing exactly as in Lemma 1.4, from (5) - (10), and using the fact that u

satisfies (20) instead of (3) one arrives at the analog of (11):

ut (x) - Au t(x - (1-A))u t(x1 )

(23)

+ (b(x2 ,u(x2 ))-Ab(x3 ,u(x3)) - (1-A)b(x 1 ,u(xl))) 1 0.

(t0 and Du = Du(xi) = Du(x2 ) = Du(x 3) are suppressed as before).

But 0 < t 0 T implies

utCx2) - Autlx3) - (1-A)utl 1  Ctx~3X
ut (x2 A (x3 (IAUt(x 1  =- C(t,x 1 x 3 X) > 0

so that

(24) b(x2 ,u(x2)) - Xb(x 3 ,u(x3)) - (1-A)b(x1 ,u (x1 )) ( 0.

Hence as in (11)

(25) C(t0,x1 ,x3 ,A) 4 0,

as was to be shown.

As in the elliptic case C attains its maximum somewhere, so any

positive maximum must therefore be attained at points satisfying (21).
ab

If b(x,u,Du) only satisfies ) 0 consider the function
-T t

(2b) v(x,t) = e u(x,t)

for small positive C. (20) and (26) imply that v satisfies

Vt = a) (e etDv)vij - (e-b(xe'tve'tDv) + ev)

which is of the form just discussed. Thus the maximum concavity of v, it

positive, is attained at some (t0,xlf,x3,A) satisfying (21). As

E + 0, v + u uniformly, implying that Theorem 1.6 holds for u. Q.E.D.

-9-



Remark 1.7. The same proof of Theorem 1.6 holds for the more general equation

(27) f(t,x,u,ut,Du) - a'l(tDu)uij

where (ai j] > 0, aiJ - Ji and
af af

(28) 0, - > 0, f jointly concave with respect to (x,u,ut).

There is also no need to restrict to "tubularn domains x (0,TJ in the

(x,t) plane.

-10-



II
Section 2. Boundary conditions and applications.

In order to prove convexity for solutions of the equations discussed in

section 1 we must find boundary conditions for u that prevent C from

attaining its (positive) maximum on the boundary. As a first step we require

9, which was only bounded in section 1, to be (smooth and) strictly

convex. This prevents x2 from being a boundary point.

If u is C1 then it is convex if and only if its graph Su  lies above

all of its tangent planes. Conversely, the lemma below shows that if this

property can be verified for all "boundary" tangent planes I1 (planesx

tangent to Su above x G 3Q), then C cannot attain a positive maximum on

the boundary.

Lemma 2.1: Let 9 be strictly convex, smooth and bounded. Let u be such

that Su has tangent planes I V x G M. If each of these boundary planesx

lies beneath Su (contacting it only at (x,u(x))), then C does not attain

any positive maximum concavity on the boundary (Def. 1.2). (We also allow

W1 to be vertical as long as Su makes contact angle zero with aO x Rx

there, and not contact angle w).

(Recall that the contact angle at the intersection of two surfaces is

defined to be the angle between their normals there. In particular, the

contact angle between Su  and the cylinder a x R at a point of contact is

the angle between the downward normal to Su and the exterior normal to

x R).

Proof: Let C attain a positive maximum at the (therefore distinct) points

x,,x 2 ,x 3 ° Since 9 is strictly convex we need only show that neither x 1

nor x 3 G ag. Suppose x1 G M, Consider the graph of u above the line

segment x1x3. By hypothesis (x3 1u(x 3)) lies above the tangent line to this

curve through (xl,u(x1 )). Thus by keeping x2 and x 3 fixed and moving

-11-



x1 to x,, a little nearer x3 on the same line segment, the height u

will be roughly the height of the tangent line through (x1,u(xl)). Thus

(at x2) the line segment joining (x1 ,u(xI )) to (x3#u(x3)) will be lower
than the one joining (xlfu(x )) to (xU(x3 )). Thus the concavity for

{x MX2 ,x 3 1 will be greater than the concavity for {x1 ,x 2 ,x 3 1. This is a

contradiction. The 3ame argument shows that x3 is not in a9. Q.E.D.

Combined with the results of section I (Theorems 1.3 and 1.6) Lemma 2.1

immediately yields:

Theorem 2.2: Let S be a C , strictly convex bounded domain. Let

u G C(1) n C2 () satisfy an equation of the form (3), (4). Suppose Su

makes contact angle zero with 8a x R. Then u is a convex function.

Theorem 2.3: Let 9 be as in Theorem 2.2 and let u satisfy the hypotheses

of Theorem 1.6. If for every fixed 0 < t 4 T the graph of u makes zero

contact angle with its bounding cylinder and if u0 - u(x,O) is convex,

then u(x,t) is a convex function of x for every fixed 0 4 t 4 T.

A natural example of Theorem 2.2 applying is in capillarity, where the

contact angle boundary condition is natural. In this case [a'j] is a

multiple of the mean curvature operator.

[aij(p)J = 1 (1+Ip,21 - p pt]
(1.IpI2) /

and

Ku + M K > 0 in a (downward-pointing)
b(x,u,Du) =gravitational field

I in no gravitational field.

In [7) we mentioned this result for capillary surfaces in gravitational

fields. With the strengthened maximum principle we get it for the constant

mean curvature case too.

-12-



J. T. Chen and W. Huang (31 have recently found a cute comparison

technique to prove the constant mean curvature result in two dimensions. It

does not seem to generalize to more dimensions or other equations, however.

In [7] we showed that if the constant contact angle is not zero, there

exist convex domains for which the solution to the (gravitational) capillary

problem is not a convex function. Finn has recently found a counterexample

for the constant mean curvature case [5].

What other boundary conditions on u do enable one to verify Lemma

2.17 The counterexamples for constant non-zero contact angle that were just

mentioned, as well as the counterexample for constant Dirichlet data that is

discussed in section 3 indicate that for general convex domains there aren't

too many suitable boundary conditions.

At least some do exist though. They arise by transforming functions with

constant Dirichlet data and lead to a new proof that the first eigenfunction

of the Laplacian on a convex domain is Log concave (i.e. its logarithm is a

concave function). (Theorem 2.5 below).

Lemma 2.4: Let A be smooth, bounded and strongly convex (i.e. all the

principal curvatures of 30 are positive). Let u G C2(0) satisfy

(29) u=0 on ai, u>0 in 11, Du V>0 on al,

where V is the interior normal to 30. Let

(30) a6 = x G 9 s.t. d(x,aQ) > 6)

and let v = -logu. Then for small enough 6 > 0 the function v satisfies

Lemma 2.1 on the domain QV" More generally, this holds for any smooth

transformation v - f(u) where f is defined for positive u and satisfies

Mi f' < 0, (ii) lim +f'(u) -- ,(Iii) f" > 0,

u +
(31)

f, f
(iv) lim + ---'0, (v) lim 0.

u O u+O

-13-



Proof: Let x Q6 and let Ax be the set of points y for which wx

does not lie beneath Su:

A - ty 6 s.t. T (y) ) u(y)1.
x

We must show that for small enough 6, Ax - V x a an6. First we show that

for points x near enough an, A is also near an:x

Fact 1: Given C > 0 3 6 > 0 s.t. for 0 < 6<6 and x Q ea 6, we have0 0

A n n -0.
x C

Since v f(u),

(32) Dv(x) = f'(u)Du(x).

From (29) and (31) it follows that for x near an, T is practically verti-x

cal and its gradient practically points in the exterior normal direction.

(Extend V smoothly in a neighborhood of ag and you may talk about normal

directions in the entire neighborhood). Fact 1 now follows from elementary

geometry, the convexity of 0 and equations (29), (31(ii)(v)), (32).

Now we show that v is convex in a boundary strip about ai:

Fact 2: 3C > 0 s.t. x 9 Q\Qr Mu> [D 2v(x)] > 0.

To show this we study the two terms comprising [D2v J:

(33) [D2v] - f'(u)[D 2u] + f"(u)[(Du)(Du)t].

The matrix C(Du)(Du)t ] is positive semidefinite. If x 6 an, Du is a

positive multiple of the interior normal v(x) (29). Hence for x G 3n,

[(Du)(Du)t] is positive in a direction n if and only if n is non-

tangential (to 30).

On the other hand, if x & an the matrix [D2uj is negative definite in

all tangential directions. (This follows from the strong convexity of a

and conditions (29). The calculation is straightforward.)

-14-



Extending the normal vector field V(x) smoothly into a strip about 3f

one can continue to talk about tangential (V(x) * n - 0) and non-tangential

directions. Since D2u is continuous it follows that for directions n

sufficiently close to tangential and for x in a sufficiently narrow strip

[D2u) is negative in those directions n. Hence f'(u)(D 2u] is

positive in those directions.

Because D2u is continuous one may then pick a possibly narrower strip

on which f'(u)/f"(u) is small enough (31(iv)) and on which Du is

close enough to the normal direction, so that for all other directions n

f"(u)nt [(Du)(Du)t in > f'l(u)l t[D2 un.

On this strip we have shown that (D] is positive in any direction n.

Taken together facts 1 and 2 imply Lemma 2.4: Pick C > 0 so that

(D2v(x)I > 0 for x Q 0\9 . For that 6 pick 60 so that for

0 < < 6 0 and x a6? Ax n 1,- 91. But because [Dv] is positive in

A n (0n ) 0= too. Thus for 0 < 6 < 60 Ax = as was to be
e xC

shown. Q.E.D.

In particular we consider the transformation v - -logu and show:

Theorem 2.5 Let 0 be a smooth, bounded, strongly convex comain. Let

u Q C2(a) be a non-negative solution to the generalized eigenfunction

equation

(34) aij (-)u -u b(x,-logu,-),u ij u

where the function b(x,v,p) satisfies (4) and where u satisfies the

boundary conditions

(35) u > 0 in , u - 0 on an

(36) u V > 0 on an.

Then v - -logu is a convex function.

-15-



Proof: u satisfies (34) if and only if v satisfies

a' (-Dv )v i - ai 3 ( - Dv)viv j + b(x,v,-Dv)

which is of the form (3), (4). From (35), (36) Lemma 2.4 applies, so that for

small enough 6 and the (convex) domain 06, no positive maximum of

concavity can occur on the boundary. Hence v is convex in 16. Hence v

is convex in 9. Q.E.D.

Remark 2.6: Equation (34) is in general form. It applies in particular to

equations like

(37) AU W -U(A +V(x)) A > 0, V concave

(38) Au = -ug(u), g'(u) ( 0 and g"(u)u + g'(u) 4 0.

(e.g. g(u) - A - iuP  p,U > 0).

Note too that condition (36) is implied by (35) and the H~pf boundary

point lemma [91 provided that b(x,-logu,--) is non-negative for the solu-

tion u. This is true for (37) if V ) -A and is also true for (38) as one

can see by noting that Au 4 0 at the maximum value of u.

The answer to when solutions of (34), (35), (36) exist is not known in

general, however. If the solutions arise from variational problems in which

the candidate functions can be taken to be non-negative, positive results are

known (e.g. the first eigenfunction of the Laplacian).

Theorem 2.5 was first shown for (37) by H. J. Brascamp and E. H. Lieb [1)

using completely different techniques. Extending their method, P. L. Lions

has recently (concurrent to this work) shown it for (38).

Remark 2.7: One might at first suspect that the first (positive)

eigenfunction of the Laplacian is itself concave. This is false for any

domain: If 30 is strongly convex at x, then u - 0 and u 0 V > 0 on

aU imply that DA is negative in all tangential directions. Since Au - 0

at x, it follows that D2u must be positive in the normal direction.

Thus u is not concave.
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The method of Brascamp-Lieb and Lions employs the parabolic equation

corresponding to (34). They use the following theorem in the special case of

the heat equation (proving it by an unrelated method):

Theorem 2.8; If 11 is a smooth, bounded, strongly convex domain and if

u(x,t) Q C(O x [0,T]) is such that

u(x,t) Q C2 1 - V 0 < t 4 T

u(x,t) Q C (IO,T)] V x G 0

and such that (35), (36) are satisfied by the functions u(x,t) V 0 < t 4 T.

If u satisfies ut = Lu with L as in (34) and if u 0 - u(x,0) is Log

concave, the u(x,t) is Log concave V 0 4 t I T.

Proof: Argue as in Theorem 2.5, using Theorem 1.6. Q.E.D.

Remark 2.9: I do not know of any other transformations of the form (31) that

can be applied to any other natural boundary value problems. It would be

interesting to find such problems. Unfortunately, once a function u satis-

fies an equation of the form (3), (4), a transformation v - f(-u) of the

form (31) will no longer satisfy such an equation. (The eigenfunction

equation (34) does not satisfy (4) but its transformed equation does).

-17-



Section 3: Counterexamples, related questions.

We briefly describe a counterexample for constant Dirichlet data anal-

ogous to the one discussed in (71 for constant contact angle. In both cases

convex domains with sharply rounded corners breed non-convex solutions to

reasonable elliptic equations.

2
Specifically, consider a convex domain 0 c R I symmetric about the x-

axis, lying to the right of the y-axis, so that 3A is smooth except at

(0,0), where it has corner. Let , also symmetric about the x-axis, be

the same as 0 except with the sharp corner rounded off inside B2 (0), and

with the left-most point of 81C at (CO). Let A denote the (positive)

curvature of 31 at (C,0). We round off fi in such a way that theC £

A + . as C +0.
e

Let uC G C2(aC) be zero on 3fl and non-positive inside 2 C. A

straightforward computation yields

(39) Uyy (CIO) u A (CI0).

C
Assume now that u has positive bounded Laplacian in Q (This example

would also work for mean curvature and practically any solution of (3) with

b positive in

As C + 0, equation (39) implies that either some of the u (C,0)yy

approach infinity, or else the u approach zero (since the A + -). In the
x C

first case some of the ue (CO) must approach -* since AuC is bounded.xx

In particular they would become negative and u wouldn't be convex. In the

second case the tangent plane to the graph of u at (CO) becomes hori-

zontal which, if the u were convex, would imply that u C 0 uniformly on

(the bounded) 0 C. But one can easily construct barriers (e.g. a paraboloid

with less Laplacian that u whose zero height level is a circle contained in

all the A.'s) that lie above u to show that the u do not approach
. c

zero. Hence some of the u are not convex.

-is



(If the original corner in fl has an angle e> ir-2y then this example

can give an easier proof than is found in (7] that there exist convex domains

with non-convex solutions to the capillary problem in a gravitational field.

It also works for the no gravitational field case.)

This example indicates that what is needed to find convex solutions to

elliptic boundary value problems in general is some relation between the

boundary curvature of "Z, the boundary data of u and the elliptic

operator L. This appears to be a difficult question, especially for

nonlinear operators L.

Another interesting problem is to find natural conditions which force the

level sets of u to be convex even though the function itself may not be.
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