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ABSTRACT

We study multivariate B-splines M obtained as "shadows" of

parallelepipeds, and spaces spanned by their translates S = span M( -j).

jrzm
Recurrence relations for M are obtained and a necessary condition for the

stability of the 8-spline basis is given. We further determine the

polynomials contained in S and the optimal degree of approximation from S.
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SIGNIFICANCE AND EXPLANATION

Local support bases for piecewise polynomial spaces are important for

applications such as finite element methods, data fitting etc. In [BH] a

general construction principle for such "B-splines' was described. A special

case are the so called box-splines. They have a particularly regular

discontinuity pattern and coincide in special cases with standard finite

elements.

It is hoped that using translates of box-splines will lead, at least in

two variables, to a unified theory for piecewise polynomial functions on

regular meshes.

This note is a first attempt in this direction and deals with basic

approximation properties of translates of one box-spline such as stability,

degree of approximation etc.
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B-SPLINES FROM PARALLELEPIPEDS

C. de Boor
1 

and K. H6llig
1
'
2

0. Introduction. Following [BH1 1, we define the f-spline M. as the a-shadow of the

polyhedral convex >ody B C Rn , i.e., as the distribution on Rm given by the rule

(1) N f 0 op , all * e D(
B B

Here, P:
n-  

Rm:x a (x(i))m is the canonical projection and fK denotes the

h-dimensional integral over K in case dim K = k , i.e., K spans a k-dimensional flat.

It is obvious that MB is nonnegative, with supp MB C P(B] . It is easy to see

that MB is a piecewise polynomial function of degree 4 n-m once one knows the recurrence

relation [BH I)

(2) DPMB = <zlni>M , all z e Rn

Here,

D f : y(i) Dif
y 1

with Dif the partial derivative of f with respect to its i-th argument. Further, Bi

denotes the typical (n-1)-dimensional polyhedron of which the boundary of B consists, and

ni denotes the corresponding outward normal. Finally, <.I> denotes the scalar product.

In principle, MB can be evaluated with the aid of the stable recurrence [BHI

(3) (n-m)MB(Pz) = . <bi-zlni> MB (Pz) , all z e Rn

with bi an arbitrary point in the flat spanned by Bi .

Cases of particular interest are.

(i) the simplex spline, obtained when B is a simplex. These B-splines were

introduced in [B) following up on [S) and have already been studied intensively, mostly by

W. Dahmen and C. A. Micchelli [M,- 2], [DI_ 4], [DM 1 _3], but alo by Goodman & Lee (GLI,

Hakopian [Hk 1 31, and by H81lig [H11-2]

1
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(ii) the truncated powers or cone splines, obtained when B is a proper polyhedral

cone spanned by some basis for Rn . These were introduced by Dahmen (D21 and further

studied by Dahmen and Micchelli in [DM3] . For example, they show that, near an extreme

point of its support, a simplex spline coincides with a truncated power.

(iii) the box spline, obtained when B is a parallelepiped. These splines were

introduced in [BD1 and are the object of study of the present note.

To be precise, a box spline is, by a definition slightly more general than the one in

(BDI, a distribution 14- on V? given by the rule
r

(4) N: f-' I r + (i).) dA
- [0,11 i.1

for some sequence E= (tr If dim m then

: = MB /VOlrB

with
r

B:= { E Qi). [0,] r }

the parallelepiped spanned by some linearly independent sequence ( )1 in Rn for which

?Zi = ti , all i . We would like, though, to consider M- also in case dim <R> < m

For this, we find it convenient to enlarge the above definition of the B-spline H5

by allowing P in (1) to be an arbitrary linear map on 8 into Ut' . Then (1) defines

M. as the P-shadow of B . One checks that this leaves the recurrence relations (2) and

(3) unchanged (see Sect.1).

In these terms, the box spline M. defined by (4) is the P-shadow of the box 10 ,11 r,

with P the linear map given by
r

Here is an outline of the paper. We discuss P-shadows in Section 1. In Section 2, we

give some basic information about the box spline M. , such as its recurrence relations,

its Fourier transform, and its relationship to the difference operator A. and to the

truncated powers. We show in Section 3 that it is usually possible to make a partition of

unity out of the box spline and certain of its translates in many ways. We use this fact in

Section 4 to show that the box spline and its translates are usually globally linearly
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dependent, thus destroying all hopes for stability or the existence of a set of dual linear

functionals for such sets except in special circumstances. One such is discussed in [BH21.

In the remaining sections, we consider the space

S_. { v a(j)M a e RV)

wi th

M. m.(--j) , all j Q V := 2,

and under the assumption that C V and that <E> = In Section 5, we determine all

polynomials in S. as well as the largest k for which all polynomials of (total)

degree k or less are contained in S., . We use this information in Section 6 to construct

a quasi-interpolant from S., and thereby to obtain statements about the degree of

approximation obtainable from S., := [x I f(x/h) : f Q S-) as h - 0

We could have obtained our results concerning S. with the aid of the general theory

of spaces spanned by translates of a fixed function developped by Fix and Strang [FS],

particularly if we had been content to discuss only L2 . We chose to derive our results

directly since it seems no more effort to do this than it is to verify that the general

conditions qiven in IFS) are satisfied for our specific examples.

(d)We point out in Section 2 that S= C L6 ,with

d :- max { r : < \ = Rm  for all Z C z with IZI - r I

(see Section 2 for how we treat the sequence as a set). This raises the question of the

relationship of S. to the space of all pp functions in Ld) on the same mesh and of

degree 4 I1-m . We study this difficult question in [BH 2 ] just for m - 2 and mainly

only for the 3-direction mesh, i.e., for ran {e e 2 , e 1 +e I.
2P 2

Notation. With A C Rm ,we denote by (A) the convex hull of A and by <A> its

linear span. We use x(r) for the r-th entry of the vector x . For x 9 R and

j . +m , the number xJ  is computed as

x
j  

:= W(1OM
i 

... x(m)
j (m ) ,

as usual. We denote by I the class of all polynomials (on Rm ), and by 'k  its subspace

made up of those of total degree no larger than k . Thu,,

:= [x - a(j)x
j}

SIjJl,-k



with II: j(1) + + j(m) We also use D : DI j(1) ... Dmj (m ) and, more

k k
generally, p(D) k- E a(k)D in case p:x l- Eka(k)x . Here, we use again the

notation D i or the partial derivative with respect to its i-th argument of the

function f with domain in Rm  We also use the notation Dy :. E y(i)Dif
yo

For a sequence of vectors in 3m , such as r ( .... ) , we use

D - := ... D
t1 4r

We also use A: A . A and V :=V V ,with
1 r 1 -r

A f : f(+y) - f , V f :- f - f(*-y)
y y

Finally, we denote by D(IP) the space of tempered distributions on Rm

-4-



1. P-shadows. As defined in the introduction, the P-shadow of a convex polyhedron B

in Rn is the distribution M on Rm given by the rule

M : OO *op , all 0 e D(m) ,

with P:R
n --- 

R
m 

an affine map.

We claim that the recurrence relations for B-splines established in (BH1;Theorem 21

remain valid for these more general B-splines and state this in the following theorem, for

the record. For this, we make the assumption that P is a linear map, i.e., PO = 0 . This

can always be achieved by a translation in Rn . Further, we assume that B is proper,

i.e., n-dimensional. If r := dim B < n , then this can be achieved by restricting P to

the affine hull of 8 and identifying this hull with Rr . Given that B is a proper

convex polyhedron, its boundary is made up of (n-1)-dimensional convex polyhedra Bi , with

corresponding outward normals ni , and b. denotes an arbitrary point in the affine hull

of Bi . Further, D stands for the first order differential operator given by the rule
r

Df := E O.D.f
i=1

in case f has its domain in Rr ,with

(*bf)Cx) := x(i)f(x)

Thus (Df)(x) = (Dxf)(x) and the adjoint of D is -Z D1. .x I1

Theorem 1. Let B be a proper convex polyhedron in Rn and let M be its P-shadow

in R
m  

under the linear map P:Rn -+ R . Then

i) DpzM = - 1i<zlni> Mi  , all z G Rn

(ii) (n-m)M(Pz) = (<bi-zlni
> 
Mi(Pz) , all z G Rn

(iii) DM = (n-m)M - E1 <bilni> M.

Proof. The proof is a slight extension of the arguments for Theorem 2 of [BR14]. The

proof of (i) only needs the additional observation that

(1) y (Oop) = Dpy)oP

This also implies that

(2) (D)[Px) = (D Px )(Px) = (D(CoP))(x) = (D(oP))(x)
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of use in a mom'ent. The recurrence relation (ii) follows from Mi and (iii). As to (iii),

observe that

D 1 + 0.D.

therefore

- =) 
1B( E D #.+)OP 0 m4# + fB(D)op

and
n

f B Z Difi(*oP) =nM* + 'B D(#OP)

Here, the last integral in the first line equals the last integral in the second, by (2).

Thus

(D14)# - (n-M)M# f BDi0 (*Op)

and the argument now finishes as in (BH1I.



2. Basic properties of the box spline. The box spline M_ defined in (0.4) (with

_____n__n other words, M. =- for
n) is a symmetric function of the sequence In ote wods M". =- fo

any rearrangement E' of the sequence E . For this reason, we find it excusable and, in

any case, convenient to treat : in the sequel as if it were a set, of cardinality n

rather than a sequence, even though the set [&.: i=1,...,n) may well have fewer than n

elements. Thus, we write

n
E A(U)K instead of E A()

or

~ instead of -)

for the appropriate subsequence s(i), ..., s(n-1) of 1, ... , n . In the latter example,

this abuse of notation stresses the fact that it doesn't matter which one of the possibly

several occurrences of the vector in the sequence R is being omitted.

It is clear that M., is nonnegative and that

(1) supp M.. = ( 1A( ) A 6 [0,i]1-

Further, from (0.4),

(2) IMI = 1

as a linear functional on C(Rm) . Also,

(3) MZ C L. iff <->R
m

The recurrence relations of Theorem 1 for general B-splines simplify for the box

spline as follows.

Proposition 2.1. If z = E.. A(E) , then

(4) DzM = . A(&)(M\ - M-(.-)),

(5) (n-m)M-(z) = W A(l)M.\ (z) + (I - A(U)IM\ (z-))

Proof. The typical facet (i.e., (n-1)-dimensional face) of S = [0 ,I]n has the form

B Q( [0,1]: ( ) = 01

or else the form e + B& , for some E e i . Further, B and e + II have the outward
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normal -eC and e( , respectively. Thus

opn > . : ,Bj- B
, Bi e C

and (4) and (5) now follow from Theorem 1.(i) and (ii) II

Smoothness. We associate with E the number

() d - max ( r = Rm for all Z C S with IZI r I

and say for short that ' is d-epanmimg. (We take d - -1 in case <2> $ Rm ). The

number d is of interest here since it follows from (4) and (3) that all r-th order
derivatives of M. are in as long as <HNZ> = Rm  for all Z C S with ZI-r.

Thus

M. e L(d) c C(d-1)

Obviously, d cannot be bigger than - m which is the total degree of the polynomial

pieces of which M. consists. Precisely, on each connected component of the complement of

{C[NZ) + E n H C Z , Z>
H

M. agrees with some polynomial of degree ( I - m

amples. i) For m = 1 and F a eI , all G B , ML is just the forward cardinal

B-spline, i.e., K_ = M(*;O,1,...,n) . For m > I and containing only el, ..., em

(each at least once), M_ is the tensor product of such univariate B-splines.

(ii) For m - 2 and IZI n - 3 , with d - 1 , we obtain a standard linear finite

element.

(iii) For m - 2 and S- (e, e2, eI+e 2 , e1 -e2) , M.; is a piecewise quadratic

function first studied by Zwart [Z] and independently derived by Powell (P] and Sabin [PS].

Its support is shown in Figure 1 together with its "mesh", i.e., its lines of transition

from one polynomial piece to a neighboring piece. The dotted mesh lines occur in the above

references. Our construction makes clear that they do not appear in actuality since they do

not lie in some one-dimensional image P[F] of some face F of [0 , 1 ]n

(iv) Further examples for R containing only ae, e2, e1 +e 2 and/or e1 -e2 can be

found in Sablonniere's study (SlI] of smooth finitely supported pp functions on regular

-8-



Figure 1. Support and meshlines for a C -quadratic box spline

meshes. The "generalized triangular splines" of Frederickson [F can now be recognized

as spanned by the box spline M.. , with i containing each of the three vectors el, e 2,

and e3  the same number of times.

Associated difference operator. It follows from (4) that

D MZ = M.\; - (.-) = 

therefore

(7) D zM = ZM,\ Z , for Z C .

In particular,

DzM.; = V_6,

since M= 6 := point evaluation at 0 . Therefore

(8) f m;D.._ = (A;,)(0) , for all e CIl:I(Rm)

This close association between the box spline and the forward difference operator brings to

mind the well known association

f M(x;t 0 .... tn) (n)(x)/nL dx = (to .... tn

between the univariate 8-spline and the divided difference.

The Fourier transform of M. is quite simple,

(9) A-(x) = FT

From this we see that

(10) M. *MZ = MUZ

Symetries and local structure. We pointed out earlier that M- does not depend on

the order of the vectors in the sequence E . This is due to the fact that any linear map

.n Rn which permutes the unit vectors leaves the hox [0,I
n  

invariant. Multiplication

of some of the unit vectors by -1 will change [0,1In , but [0, 1 ]n can be restored by a

subsequent shift. Therefore

-9-



(tl) H: = M.(-_. - )()-

in case z is obtained from E by multiplying each C a S bj a(&) g {-1,i) . A

symmetry of a different sort occurs when S' is the image of H under some invertible

linear map Q on Precisely,

(12) M- = Idet Qj NQ;OQ

This implies certain symmetries for M-. in case Q S

The box spline is particularly simple near an extreme point of its support.

Proposition 2.2. If e is an extreme point of supp M. , then, in a neighborhood

of e , M. agrees with some truncated power of degree - m . In particular,

M-(" + e) is homogeneous of degree - near 0

Proof. We pointed out earlier that

supp M: = { X C : Ae[O,1-}

Thus any extreme point e of the (closed) support is necessarily of the form

for some Z C E for which, further, there exists n g so that <Til> > 0 for all

4 G Z with

() .{-1 , CeZ

Therefore, from (11),

M..(-e) M-

showing that it is sufficient to consider the case that e - 0 and, for some n Q and

all & e S , <YIC> > 0

In this case,

:= dist(0, (SED > 0

Therefore, for all test functions * with supp * C B E(0) :- ball of radius e and

center 0 ,

4 - n' *f z ).€()t) dX f *n X(C)4) dX.

[00,
n  R n

-10-



3. Partition of unity. In this section, we show that appropriate translates of an

appropriately scaled version of the box spline

M :- M_

form a partition of unity. By a standard argument, this implies that the space spanned by

these translates can, at least, approximate continuous functions (as the mesh size is

reduced by scaling).

Proposition 3. Suppose ' contains the basis Z (for R ). Then

(1) Y- M(- - Z j( ) ) = I/Idet zl
jesz  cez

Proof. Since 0m is the essentially disjoint union of the sets

Z (A( )j(C)) : x Q [0,1]
z
) , j e Z

Z 
,

cez
we find that

Z M(. - f - n-f( m A(Cz€)C + Z-\zp [ t )&) dA) dui
jZ

Z  Z (0,1 R

The change of variables A - E AZA(CM) carries this to

In-r m f.~ + Z9\Z MM4 ) dx/Idet ZI )dii
[0,1] R

and this equals

f I vol [Oln-m,/Idet ZI . III
im n-rn

Corollary. If z C Z' and <;> , then X M('-j) -

Proof. Let Z C be a basis (for R' ). Then

A := {Z j() : j Q ZZ)

is a subgroup of Zm  and its factor group G := Zm/A has (finite) order Idet ZI

Therefore

Z M(-j) = E M(.-g-j) = Ilu/Idet ZI -1 11

jeZ gG jQA

-11-



4. Linear independence of translates. For any particular subset V of R , we

consider the collection of translates MV := 14(-v) , v 6 V , of the box spline

M :- M..

Such a collection is always (algebraically) linearly independent: Indeed, if f

:= EV a(V)14V with W :- supp a a finite nonempty set, then

(supp %w)\U (supp Kv ) 9
VSW \w

for some w G W , hence f 1 0.

We are interested in considering nontrivial sums of infinitely many translates. ror

this, we make the assumption that V has no finite limit points. Then only finitely many

of the translates have any particular point in their support and thus, for a 6 RV with

suitably controlled growth at infinity,

f : V a(v) v

defines a distribution on Rm .

Assume that M is a function, i.e., that contains a basis (for Rm ). Then

Sv :- span (M) v  :. {Zv a(v) M : a G R)

is a space of piecewise polynomial functions, possibly quite smooth, and it becomes of

interest to find out to what an extent (My)v is a basis for this space or one of its

subspaces. We call (Mv) (globally) linearly independent if the linear map
V

(1) a&- Eva(V) M
V , , v

is 1-1 on RV  Such linear independence is a first necessary condition for other

properties of interest to hold. One such property is stability of the basis (MV)V for

S;,v , i.e., the property that the map (1) is bounded ani bounded below on L(V) into

L.(R) . Another is the possibility of interpolation from S.,V , i.e., the existence of

points pv , typically with Mv(pV) $ 0 , all v 6 V , so that, for any function f in

some class K , there exists one and only one a 6 Sz ,)K which agrees with f at

(pv)V . We make clear below that this (global) linear independence is usually not present.

Yet, as is pointed out in [BDI, if Zv a(v)Mv . 0 and a 0 0 , then there exists r > 0

so that, for all v 6 V , a changes sign on V Br(v) . This implies that the map (1) is

1-1 on W IV

-12-



The space S,V - span (MV)V becomes interesting when V is related to E By

assumption, M is a function, i.e., E contains a basis Z (for eD ). Therefore,

according to Proposition 3.1, the collection MV , V 6 VZ 6Z j(C): j e z }  forms a

partition of the constant 1/Idet zj . This suggests consideration of V of the form V

for some basis Z in * We go one step further, though, and consider from now on only

the following normalized situation:

(2) mC V Zm

This is the same, up to an affine transformation, as the assumption that VC V for all

bases Z in * We abbreviate

S. := S.,m.

Proposition 4. Under the assumption (2), (Mj)V is linearly dependent unless

Idet ZI = 1 for all bases Z C S

Proof. By assumption, - contains a basis Z for Rm , therefore (Idet ZIm,)V

provides a partition of unity as does (Mj)V r by Proposition 3 and its corollary. If

now Idet Zj 0 1 for some basis Z in E, then V. # V , yet

Ev Idet ZIM - 1 = MV I

Remark. It would be nice to know whether the converse of this proposition holds.

-13-
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5. The polynomials in S. In this section, we determine S3'w . This information

is important in the discussion of the degree of approximation to smooth functions

attainable from S. We continue to use the abbreviations and assumptions introduced in

Section 4.

lemma 5.1. wrker D. - wn ker A-.

Proof. Recall from (2.8) that

(A-f)(x) = f M D-f("+x)

Therefore w n ker a_.. w n ker D-.. For the converse, observe that A f - 0 implies

fM(-x) D.f - 0 for all x * Since N is nonnegative and of compact support, this

cannot hold for a polynomial f unless the polynomial Df vanishes identically. III

We also note that (2.7) together with summation by parts gives

(1) oZ(z a(j) M) - S (Vza)(j)A.Mz(.-j) , all ZC .

Theorem _. Let K n ker D with . : {ZC 3 <'NZ> H m} * Then

()ZE WS - - r)( 2) Ins. . = IK.

Proof. Let

E a(j) -: p e TknS=

If Z CE , then, by (1), the polynomial Dzp can be written

Dzp. E (Vza)(j) M .Ez(*-j) .

If also <3 \Z> * R! , then supp M. Z has zero measure, hence the polynomial D~p must

vanish identically.

For the converse statement, we prove by induction on k that

(3)1 S- D Wkr)K,

it being trivially true for k = -1 . For the induction step, we show now that

-14-



(4) p 0 WknK implies q :p E E p(j)M. e C1 )K

Since p blonqs to K , so does E p(j)Mj , by Lemma 5.1 and (1) (making use of the fact

that ker A. - ker V, ). Thus it remains to show that q e wk-I This is established once

we show that, for any y i R
m

,

(Dy)kq - 0

For this, we note that, whenever Z 9 , then

(Dy) sz = (Dy )S - 1 a(M) DZ\t

(with y = Z-&6\;a(\) ). Repeated application of this formula justifies the claim that

(D )k . a(z)( O -lzlD + E a(Z)Dz

ze, Izlk Ze-Z. z *,IZI-k

It follows that

(Dy)kq E a(z) Z p - E(VZp)(j)m.\Z('-j))

and this is zero since, for each Z C with Z 9 , we have E Mz (--j) = 1 by the

corollary to Proposition 3, while IZI = k implies that Vzp = Dzp is some constant,

since p G Nk •

It is now easy to complete the induction step. If p w lk (K , then, by (4), p e

S= + W n K , hence p G S= by induction hypothesis.

- k-i inhpthss J

Corollary 1. For each k , the map T:p -- Z p(j) M. carries vk S. i-I onto

itself.

Proof. We mentioned already in Section 4 that T is 1-1 on i . Thus it is

sufficient to show that T carries w kfnSl into itself. But that is obvious since, by

(4), even (1-T)(1 1S.;: C Rk_ n S .

Corollary 2. As in (2.6), let

d := maxtr: <-\Z> Rm  for all Z C with IZI -r)

Then wk C SR if and only if k 4 d.

Proof. From the theorem

-15-
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W C S a iff N I CK: . ker D

Further, the differential operator Dz decreases the total degree of any polynomial by at

least IZI and, for some polynomials, by exactly IZI Finally,

d+1 - min IZ i

* *

This shows that wd C ker DZ  for all Z 6 -* It also showe that, for some Z Q , IZI

d+1 ,hence DZp 1 0 for some p * v
d+ 1

-16-



6. Degree of approximation from S., . In this last section, we discuss the degree of

approximation from S, to a sufficiently smooth function, as h -+ 0 . Here, hzh

indicates a scaling of the mesh, i.e.,

S.= : { {x - f(x/h) : f 6 S= }I

Theorem 6. If k 4 d (with d given by (2.6)), then there exists a linear

functional A on wT so that p Z- Ap(.+j) M. for all p 6 ik"
kk

Proof. By Corollary 2 of Theorem 5, vk C S= , while, by Corollary 1 of Theorem 5,

the map T:p -- Z p(j) M. is 1-1 onto w k . Thus

p = M * (T-p)(j} m all p 6 1k

with T-1 := (TI)- . Further, with Ti  the shift by the vector i , i.e.,

(Tip)(X) := p(x+i) , all x

we have

E (Tip)(j)M = E p(j+i)Mj = p(j)M(+i) = Ti(Z pj)m) ,

showing that T commutes with Ti , hence so does T- 1 . This proves the theorem, with

Ap :- (Tf1p)(0

The theorem implies statements about degree of approximation to smooth functions from

S- in the now standard quasi-interpolant fashion: Let K be the class of functions which

belong locally to some function space K0 , e.g., to L1 . Extend the linear functional X

of the theorem to a continuous linear functional 0 on K0  and with support in supp M.

The quasi-interpolant scheme

Q:K - S.: f E I f(-+j)M.

then reproduces Irk and is local. This implies that

f - Qf = (f-p) - Q(f-p) , for all p 6 wk

and that

I(Qg)(x) l = NZlgl.+j)M : (M x) O}.

Therefore

-17-



(f- Qf)(x)I f dist (f, V

with

p(g) : l Ig(x)j + I" max{IgIsupp .- Mi (x) * 0)

This shows that Qf approximates to f locally as well as local polynomial approximation.

Here is a particular result along these lines.

Corollary. Let v be an extension of X to a continuous linear functional on

L.lsupp M) and let Qh := ShQS1/h with Q:f -E f(-+J)Mj and (Shf)(x) :- f(xh)

Then, for f eL(k+l) If - QhfI = O(hk+l

Sharpness. The order O(hd+l) is, in general, best possible for the approximation
*

from S- to smooth functions. To see this, choose Z G 3 (cf. Theorem 5) with IZI =

d+1 and a polynomial p 6 vd+1 with Dzp - 1 . If, for some approximating sequence sh

a S= Rh we have

Is h - PlLl(O,11" = o(hd+l)

it follows from the standard Narkov inequality for piecewise polynomials that

(1) IDzSh - DZPIL [0,1m - 0(h)

for any Z' C Z with IZII - d . Set z - Z\Z' . Since the support of Dz(DZsh) is

contained in hyperplanes, (DzSh) is piecewise constant on lines in the direction z . On

the other hand, DZ,p restricted to these lines is of the form (Dzp)(x + tz)

(Dzp)(x) + t which contradicts 1). JH

,I
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