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I. INTRODUCTION

The reaction zome in cw chemical lasers [Fig. 1(a)] is generally
maintained at pressures of the order of 1 to 10 Torr to permit fast mixing of
the reactants. At these pressures, the spectral lineshape is inhomogeneously
broadened, i.e., the radiation field interacts with only a portion of the
excited molecules. As a result, hole butning1 may occur as the degree of
optical saturation is increased. Hole burning affects laser output power and

the index of refraction of the lasing medium.

A comprehensive theory for inhomogeneous broadening effects in a steady-
state laser oscillator has been developed by Lamb.2 Lamb's theory was gener-—
alized in Ref. 3 to account fé: effects of cross relaxation and streamwise
flow variations in cw cﬁemical lasers. Results were obtained for the case of
a Fabry-Perot (F-P) resonator with a single longitudinal mode. The single
longitudinal mode case corresponds to a mirror separation distance L
[(Fig. 1(a)] up to approximately ! m. For high-power lasers, the mirror
separation can be of the order of 10 m, and many longitudinal modes are
excited. The latter case was treated in Ref. 4 in the limit Avc 1< v, ,

Avh <« Avd where Avh and Avd are characteristic homogeneous and Doppler
widths, respectively, and Avc is the longitudinal mode spacing (Fig. 2). 1In
Refs. 3 and 4, a simplified two—-level model is used, and closed form solutions
are obtained. A numerical code developed by Bullock and Lipk155 treats the
full system of equations that describe inhomogeneous broadening effects in cw
chemical lasers. Results from Refs. 4 and 5 are in agreement in those regimes

where both are applicable.4

Transverse flow expansion (i.e., source flow) can be used in cw chemical

laser96

to reduce the temperature increase in the lasing region. The result-
ing mean motion in the optical path direction (e.g., Fig. 3) modifies the
spectral lineshape of the lasing medium. The effect of source flow on a
Doppler broadened lineshape is deduced in Ref. 6 for the case of small lateral

motion and in Ref. 7 for the case of arbitrary lateral motion.
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In this report, the multiple longitudinal mode F~P resonator theory of
Ref. 4 is modified to account for source flow effects. The primary objective
is to evaluate the power decrement associated with source flow in cw chemical

lasers. Numerical results are presented for cw chemical lasers with laminar
diffusion.




II. THEORY

The model of Refs. 3 and 4 is generalized herein to include non-
Maxwellian Doppler lineshapes. The performance of a multiple longitudinal
mode cw chemical laser, including source flow effects, is then deduced. The
development follows that in Ref. 4. Unless otherwise noted, the notation is
the same as used in Ref. 4. Symbols are defined in Appendix A.

A. REGIME
It is assumed that
Avh <L Avd (la)

Avc << Avh (1b)

where Avh and Avd are characteristic homogeneous and Doppler widths, respec-

tively, and Avc is the longitudinal mode spacing, as illustrated in Figs.
2(a) and (2b). Expressions for these quantities are presented in Ref. 3. The
inequality in Eq. (la) is generally satisfied in cw chemical lasers and )
simplifies the relation between small signal gain and particle number density
distribution.> Equation (1b) is used to simplify the effect of F~P resonator
modes on lineshape.a The present results are believed valida for

Avc/Avh < 0(l). The latter inequality is satisfied for F~P mirror separation
of the order of L > 0(10)m.

B MODEL

A cw HF chemical laser is illustrated in Fig. 1(a). The flame sheet
model of Refs. 3 and 4 1s illustrated in Fig. 1(b). The reactants are assumed
to be premixed but do not react until a flame sheet yf(x) is reached. The
form of the flame sheet is specified, a priori, from diffusion theory. The
streamwise station where the flame sheet reaches the channel centerline,

denoted xp, characterizes the diffusion rate.

15




The reactants (e.g., Hy + F) form upper vibrational level species at the
flame sheet. Characteristic rates are normalized by the collisional deactiva-
tion rate k.4. Streamwise distance is expressed in the form ¢ = k.q x/u,
which is the ratio of a convection time to a collisional deactivation time and
is an order 1 quantity. The quantity &p = kcd xD/u is the ratio of the diffu-
sion time to the collisional deactivation time. It is assumed that CD > ce,
where Ce denotes the station at which lasing is ended.

The difference between the net population, per unit volume, in the upper

and lower lasing levels is expressed in normalized form as

AN = N, - N, = (n2 - nl) yf/(nrw) (2a)

where n, is a characteristic reactant number density upstream of the flame
sheet, e.g., F_ in Fig. 1(b). Particles (per unit volume per unit frequency)
resonant with laser frequencies in the range v to v + dv are denoted n(v) and

are normalized in the form

AN = Nz(v) - Nl(v) = [nz(v) - “1(")] yf/(ano w) (2b)
where
P, = [4 (1n z)/w]”z/lwd (2¢)

The variation of ANv with v is 1llustrated by Figs. 2(a) and 2(b) for non~-

lasing and lasing cases, respect:ively.4

The quantities AN and ANv are related by

AN = P, f_. AN, dv 3)
16
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The normalized gain per unit length G(v) equals

G(v) =

L)
. dv”
I F(v=v") AN\’, o
h Y h

where Z(v—=v“) is the Lorentzian (homogeneous lineshape)

(4a)

(4b)

The quantity g(v) in Eq. (4a) is the gain per unit length in the reactive flow

region 0 < y < yg [Fig. 1(b)]. The average value of gain per unit length,

including both reactive and nonreactive flow regions, is

g(v)av = g(v) yf/w

(4c)

Thus, the quantity G(v) is seen to be a normalization of the average gain per

unit length.

At this point, we depart from the development in Ref. 4 and assume a

source flow with a linear variation of transverse velocities in the range

- Ve € V<« Ve where Vo 18 the transverse velocity at the edge of the source
flow (Fig. 3). In the absence of radiation, the particles have a distribu-

tion7

ANv

T " FLE)
where

1/2
F(X,X ) -lz-ie- [erf (X + X)) - erf (X - X))]

17
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= e (Xe = 0) (5¢)

= (wl/Z/ZXe) erf X, (x = 0) (5d)
1/2

X =2 (1n 2) (v - vo)/Avd (5e)

Xe = Ve/a (5f)

The function F(X,X,) is normalized such that '
(]
2/nt2) f F(X,X) & = 1 (5g)
-gD

The quantity Xo is the ratio of maximum transverse velocity Vo to the most
probable particle thermal speed a and is a measure of the importance of the
transverse motion relative to thermal motion., Note that F(X,Xe) is Maxwellian
when X, = O. In the Doppler approximation (Avh <L Avd) , the zero power gain

equals

G(v) = (x/2) AN = (n/2) AN F(X,Xe) . (6)

which is illustrated in Fig. 4(a). Line center gain is decreased and fre-
quency width is increased as X, increases. If we let “j denote the center
frequency for each longitudinal mode in an F-P resonator [Fig. 2(b)], the gain

equal loss condition, for each mode, can be expresseda

(-1) (In R )/ (wn_)
Gv) =G = ——i (7a)
°o nr Avh po

18
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Figure 4(b). Variation of number density with frequency at
: two streamwise stations; in lasing region § > ;i
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where R, is the reflectivity of one mirror and ngw is the net width of the
gain region [Fig. 1(a)]. Equation (7a) follows from the average value of
gain, under threshold conditions in an F-P resonator, i.e.,

(g))

gy = (1)1 R)/Gm_ ) (7b)

For convenience, the mirror separation L is assumed to permit a longitudinal
mode at vo. Lasing is initiated at the streamwise station where G(vo) = Gc'
If we let ANi denote the value of AN and ANv denote the line center (X = Q)
value of ANV at the station where lasing is {nitiated, these quantities are
related by

(2/%) G_ = AN“i = &N, F(0,X)) (8)
Equation (8) defines upstream boundary conditions for the lasing region.

In view of Eq. (1b), the spectral lineshape under laser conditions can be
assumed to have the form [Fig. 4(b)]

AN\)
- 1 1X] < xf (9a)
v
1i
F(X,Xe)
= IX| > X (9b)
fle,xes £

where X¢ is the value of X corresponding to the largest lasing frequency and
IX| € X¢ denotes the lasing region. In Eq. (9a), small departures from 1 in
the lasing region are neglected [e.g., Figs. 2(b) and 4(b)].

21




R -

R o il e R - —
. ; Ll e e

If we let

AN
AN
Yy

= H(Xf ,Xe) (10a)

substitution of ®q. (9) into Eq. (3) yields

@
2 1
H(Xf,xe) : 73 {Xf + m f F(X,Xe) dX] (10b)
L f7e X
f

= X + e -e
L1727 72X F(Xg,X)) | 172
+ (Xf+Xe) erfe (xf+xe) - (Xf-Xe) erfc (Xf-Xe) (10c)
. x2
2 £ : :
‘"—]7-2- Xf + e erfc Xf (Xe 0) (10d)
= 1/F(0,xe) (xf = 0) (10e)

The quantities X; and AN are functions of streamwise distance, which are

evaluated in the course of the solution. *
C. LASER PERFORMANCE

The variation of ANv and AN with normalized streamwise distance gas
deduced in Ref. 4 for the case of a Maxwellian zero power lineshape X%,
These equations are applicable in the present study if e X" 1g replaced by

F(X,Xg). Equations (12a) and (12b) of Ref. 4 then become

22
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dANv

% = F(X,X) [(dNgy/dg) = Np + RAN]

- (14R) ANV - Avh ANv I(v) (11a)
. -
daN T - AN - 2 SP 11b
T T N, - AN zd; ( ) B
where
X
&2, e (11¢)
d;‘"172 h c
[o]

Effects of chemical pumping, collisional deactivation, cross relaxation
(velocity exchanging collisions) and stimulated emission and absorption

as discussed in Ref. 4 are included in Eqs. (1la) through (llc). Here

Np = N; +N;, R = kCt/kéd = cross relaxation rate/collisional deactivation
rate, P = normalized output power extracted up to station f, and T(v) repre-
sents a continuous intensity distribution, which replaces the discrete inten-
sity distribution Ij (i.e., T(v) = Ij/Avc] in accord with the approximation
Avc << Avh.

number of collisions required to deactivate an excited particle, is of the
3

The cross relaxation parameter R, which can be viewed as the

order 10 to 100 for an HF laser.

The variation of Xf with Z can be found by consideration of Eq. (lla) im
the region |X| > K¢, T = 0. Substitution of Eq. (5b) into Eq. (lla), with
1 =0, ylelds

AN

oo [easnyad] & (oo
rexe,x 12 % AN

- ar i NT) + RH(Xf,Xe)
i

(1+R)

” (12&)
: e)

23



where H 1s as defined in Eq. (10b) and, from Eq. (5b)

2 2
dF(Xf,Xe) L _(=1) (xf xe) . (xf+xe)
de 4 xexf
£
The initial condition for Eq. (12a) is
Xf =0 at g = ci (12b)

where ;1 is the station at which lasing is initiated. The use of X: as the

dependent variable in Eq. (IZa) avoids singular behavior near ci. Equations
(12a) and (12b) can be integrated to provide X. as a function of § 1if

NT/ANu is specified. The magnitude of X; increases, reaches a maximum, and
then décreases as [ 1s increased. The corresponding variation of AN/ANv

with { is then found from Eq. (10). 1

The lasing intensity 1 is evaluated by counsideration of Eq. (lla) in the
region |X| <-Xf, dANv/d; = 0, Substitution of the latter into Eq. (lla)
yields

—

mav, T+1+8R <dN’r

F(X,X ) - AN - N;) + RH(X X ) (13a)

The right hand side of Eq. (13a) is independent of X. Hence, at each stream~

wise station, ¥ Av T 1s equal to a term proportional to F(X,Xe) minus the

h
quantity (1 + R). At some streamwise stations, I is negative in the vicinity

of X = Xf. Conditions under which I is negative can be deduced from

24




~ 2
*Av I (-1) £

F(X,X ) 2
e [F(xf,xe)l dx

dF(Xf,Xe) dx

2 dg
f

F(X,Xe) - F(Xf,xe)
+ (14R) F(X,X_) F(X,X) (13b)

which follows from Eqs. (la) and (13a). The coefficients of dxi/d; and 1 + R
in Eq. (13b) are positive quantities. Hence I is positive for all |X| < X
when dX%/d; is nonnegative. At downstream stations where dX%/d; is negative,
1 becomes negative in the vicinity of X = X;. The extent of the negative I
region depends on the magnitude of R (i.e., the larger the magnitude of R is,

the smaller is the extent of the negative region).

Negative values of 1 correspond to power absorption by the lasing medium
[Eq. (11l¢)]. The absorption is needed at downstream stations (dxi/d; < 0)
to nmaintain the constant gain boundary condition [Eq. (7a)] for longitudinal
nodes near X = Xc. Negative values of T are unrealistic and arise at the
downstream stations because of the a priori choice of lineshape in the region
Ixt > X¢. The present solution is valid for those cases where negative values
of T are absent or negligible. The net power liberated up to station 7 is,
from Eq. (11b)

c -
N, Z N
2P T , T
" | - X f o+ B X )| da (14)
Vi Vi 8

&

A similar expression, deduced from Eqs. (llc) and (13), indicates the self

consistency of the present solution. The total output power from the laser Po
is found by evaluation of the upper limit in Eq. (14) at the station %o where |
dP/dg = 0 [Eq. (11b)].

The performance of a cw chemical laser, including source flow effects, is
defined by Eqs. (12) through (14).
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D. LAMINAR DIFFUSION

We now consider the case in which the flame sheet in Fig. 1(b)
corresponds to laminar diffusion. Arbitrary values of the parameters R and G,

are considered, and analytic solutions are then obtained for limiting cases.

For laminar diffusion, the flame sheet has the form

/2

yeha = (xixp)t (15)
and Ny is approximated by3’4
1/2 - F1/2
¢p NT 9 (16)

The rate of chemical pumping is defined by Eq. (16), in which it is assumed
that the pumping reaction goes to completion at the flame sheet.
Equations (12) through (14) can now be solved.

L. ZERO POWER (g < ;i)

Integration of Eq. (1lb) in the absence of lasing and substitution of
Eq. (6) ylelds

eg/2 an = 2/m) ¢}/? siFax ) = 2y - 22 (17a)
where D ( ) 1s the Dawson integral
2
2 X X
=X o
D(X) = e j; e ®ax_ (17b)
26




In the absence of lasing, the net inversion AN is independent of Xe, whereas
the gain G(v) depends on Xe. The quantity AN reaches a maximum at = 0,3051.
At this stat.om,

;;/2 8N, = 0.3528 (18)

where subscript mzp denotes maximum zero power value. Equation (18) can be
used to convert normalized variables to physical variables for cases where the
maximum zero power value of average line center gain for the case Xe = 0,
which is denoted by 3mzp’ has been evaluated numerically or experimentally.
Then, from Eqs. (4a) and (18)

1/2

g, B P, Avh/;D = 1.804 gmzp (19a)
(8 ) /g = 1.804 ;11)/2 G, (19b)

c’av’ "mzp

where 1.804 = (2/7)/0.3528 and

Eazp z {[g(vo)]av’ 'xe - o}mp

Equations (19a) and (19b) apply for the case of a laminar diffusion flame if
¢p > 0.3051.

The zero power gain decreases to zero at = 1.1301, so lasing is
restricted to the region 0 < ¢ < 1.1301, Lasing is initiated at the station
vhere the threshold gain is reached. Thus,
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&y © AN, = Ec - ZD(;;/Z) - cilz (20a)
where
~ 2 célz Gc
Gc = ; —-———F(o’xe) (ZOb)

For a given value of Ec’ &y is obtained from Eq. (20a) by iteration and must

lie in the range 0 < &y < 0.3051. Note, from Eqs. (18) and (20), that
Ec‘ 0.3528. The laser is saturated when Ec/0.3528 <{ 1. 1In this region

1/2 _ =~ ~2 ~d
5" =G, [1 +(4/3) G_+ 0 (cc)] (20c)
2. POWER ON (Z > g,)

The variation of Xf with 7 in the lasing region ¢ > ;1 is found by sub~-
stitution of Eq. (16) into Eq. (12). The result is '

2 2
dX [F(X_,X )] - 992
= - —t o |2 ok, x) - AR (21a)
(-1) dF/de Gc F(O,xe) f7e
with boundary condiﬁions
xf =0at zZ = Zi (21b)
vhere Z = ;1/2. The variables are taken to be X? and Z in Eq. (21), to avoid

f
a singularity at Z,. At Z,, Eq. (2la) becomes
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<%

2
e
£-—= (1- 222 -2z T) (22)
G, F(0,X)

dx
d

which is independent of R. A numerical integration of Eq. (21) is generally

required.

The intensity distribution is obtained from

m AV, T + 14R
h

1 1
= = - z) + RH(X,,X ) (23)

The output power to station Z equals, from Eq. (14),

z
w2, _[,_2.3_=
2 ' P [z 5 2 G, F(o,xe) H(xf,xe)] .
i
~ z .
- 28 FO,x) §, zH(X,X) d : (24)

i

Numerical results, presented in Tables I through III and Figs. 5 throhgh 7,

are discussed in Section III,
3. LIMITR D> 1, R&'c >1

The limit R » 1, R Ec ?> 1 is now congidered. It is clear from physical

considerations that X¢ decreases as R and Ec increase. The present limits

ensure that terms of order x§ can be neglected compared to 1.
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Table 1II. Downstream station at which Xf = 0 and
corresponding output power

— —
Xe = 0,001 xe = 1.0 Xe = 2,0
P P. P
X 1/2_. (a) L L L
7% G R q, P L P L P
€,8 e,s e,s
3.530-3 1 0.978 0.727 0.977 0.722 0.975 0.713

10 0.786 0.964 0.786 0.957 0.783  0.949
100 0.724 0.985 0.724 0.981 0.720 0.971
1000 0.710 0.988 0.710 0.984 0.707  0.974
» 0.705 0.989 0.705 0.985 0.703  0.975

7.06073 1 0.977 0.706 0.977 0.696 0.972  0.677
10 0.789 0.946 0.790 0.936 0.785 0.917

100 0.724 0.973 0.725 0.965 G.718  0.945

1000 0.710 0.976 0.709 0.969 0.704 0.948

* 0.704 0.978 0.701 0.970 0.699 0.949

1.76572 1 0.974 0.650 0.971 0.628 0.960 0.585
10 0.795 0.898 0.795 0.875 0.784 0.827

100 0.725 0.936 0.723 0.916 0.711  0.867

1000 ©0.706 0.942 0.704 0.923 0.694 0.872

® 0.698 0.944 0.695 0.925 0.687 0.874

3.53072 1 0.966 0.572 0.960 0.531 0.937 0.454
10 0.798 0.825 0.796° 0.783 0.777 0.689

100 0.720 0.877 0.716 0.839 0.696 0.741

1000 0.700 0.886 0.693 0.848 0.677 0.748

* 0.690 0.889 0.684 0.851 0.668. 0.750

7.060"2 1 0.949 0.441 0.934 0.374 0.882 0.244
10 0.796 0.693 0.790 0.615 0.753  0.437 :
100 0.710 0.764 0.701. 0.690 0.665 0.501 i
1000 0.684 0.776 0.674 0.703 0.641 0.509 ;
e 0.673 0.779 0.661 0.706 0.632 0.512

SSuperscript denotes exponent of ten (e.g., 3.530‘3 = 3,530 x 10'3).
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Numerical solution of Eqs. (10), (21), and (24) for
cage of laminar flame sheet R = 1, X, = 0.001, and
10 G, = 0.353, 1.765, 7.060; frequency width, X
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Substitution of the identity

-

1 - HE.X ) FOKLX ) = 28— 3 [1 + o(xz)] (25)
£7e £f*e 31172 f £

into Eq. (21a) indicates Rxg is of the order 1l in the present approximation.
Neglect of terms of the order X% compared with 1 in Eq. (2la) indicates that
the derivative term is negligible therein. Equation (2la) becones

3_3 x ef 1 ~ 2
=3 e (ﬁ-z-cc>[1+o(xf] (26a)

-xi
2 2
. e X -X
AN £ 4 e 3 4
— =1+ - e ~X.+0 (X (26b)
AN, F(O,Xe) 31r1/7 £ £
I
mav, G T = St e (x2 - xz) [1+0 (xz)] (26¢)
h c TF(O,X)) f £ !
1/2 dP oy o= 992 _ 5 2
2y gt -2t -238 Z[l + o(xf)] (26d)
2¢2p202-223-% 22 [1+0(x}) : (26e)
% >~ 3 c £]0, e
. | :
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The station Z, at which dP/dz = 0 {is
] BN
z, = [(2+ &) 812 (27)

Net output power 1is obtained by using 2, as the upper limit in Eq. (26e).

Results for a saturated laser can be obtained by considering the limit
R+ =, Ec + 0, R&'c > 1. It is found that

1/2

Z, =0 Ze = 1/2 (28a)

12, o112,

2 CD e,s

(28b)

where | s denotes net saturated output power and is a convenient reference.
?

In the present limit, the dependent variables Xf, AN/ANi, and E; I depend
on Z, X,, and EcR' The parameters Z;, Z,, and C;/zPe depend only on Ec- The
medium acts like a homogeneously broadened medium, i.e., Xf + 0, and lasing
occurs at line center. Equations (26b) and {26c) are the same as those
obtained for a homogeneous medium with lasing at line center and with zero
power line center gain reduced by the factor F(O,Xe) to account for the effect

of spreading.
4. LIMIT R > 1, R&'c = 0(1)

The present limit R >> 1, REC = (1) implies Ec << 1 and, therefore,
implies a saturated laser. Moreover, because of the conflicting influence of
R and Ec on Xf, the 1limit REC = 0(1) ensures that X; is of order 1.

If terms of the order Ec and R-l are neglected, the derivative term in
eq. (21a) is again negligible, and Eq. (2la) becomes

.
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z = (2 + 85122 gy/2 (29a)

where

B = Gc R [1 - F(Xf,xe) H(Xf,xe)] F(O,Xe)/F(Xf,Xe) (29b)

An implicit solution for X; in terms of Z is provided in Eq. (29). It is
found that Xf decreases monatomically as Z increases from Z = 0 to Z =1/Y2.
In the vicinity of Z = 0 and Z = 1/¥2, respectively,

2 ~
| Xz = (-1) 1n [2F(0,X)) G RZ] (30a)
2
X
1/2 e
3 _3r e 1 [ 2
X, = = -z} |1+ o(x ]] (30b)
£ 2 ccav(zlﬁ ) £

Thus, Xf +® 38 Z + 0, and xf +0as 2+ 1//2. The derivative dxf/dz becomes
infinite as Z + 0 and as Z + 1//5, and, therefore, should be retained in Eq.

(21a) when these regions are considered. Lasing is initiated at

station Z1 = Ec < 1. The boundary condition Xf = 0 at 2y is not satisfied

because of neglect of the derivative term in Eq. (21). Lasing intensity is
found from

F(X,Xe)

!AVthI-GcR[ﬂx—’x—y‘l] (31)

£




The intensity is proportional to zero power lineshape, and I + 0 as X + Xeo
Since Ec << 1, the laser is saturated and output power is obtained from
!q'.~(28¢) and (28b). Equations'fZB), (30), and (31) indicate that Xe, dPidz, !
¢ad T all become zero at Z = 1/¥Y2. In more general cases, neither X¢ nor I j
is zero at the station where dP/dZ = 0 (i.e., at Z,).

In the present limit, the variables Xg, AN/AN

i and Ec i depend on Z, X,,
and ECR. The quantities 2, Z,, and c;/Z Pe’ however, are constants in the
limit Ec « 1.

An inproved estimate for output power can be obtained by using a mean

value for H(Xg,X,) in the integral of Eq. (24). The result can be expressed

Z
p __3 _2.3 _x )2 ~ AN _
ey feodeen e[ (@) o
e,s 2 i z

i

where the error term tends to become small as Z + Za (e.g., Fig. 7). Net out-

put power is obtained by utilizing 2o from Eq. (27) as the upper limit in

Eq. (32). Equation (32) is equivalent to Eq. (26e), and both provide accurate
estimates of laser output power for R > 1.
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III. RESULTS AND DISCUSSION

In a typical cw chemical laoer.3 R = 0(10) - 0(100) and Ec = 0(0.01).
Hence, the limiting solutions in Sections II.C.3 and 1I1.C.4 include most cases
of practical interest. The intensity 1 1s positive for all values of { and
xf, and, therefore, these limiting solutions are physically realistic. The
negative values of T encountered at lower values of R can be avoided if the
lineshape in region lx/xfl > 1 is not sﬁecified a priori. The regime where

negative values of T occur is of less interest, and realistic solutions for

this regime are not pursued herein.

Numerical results have been obtained for the case of a laminar

flame sheet [Eqs. (10), (21), and (24)]. Parameters in the range 0.00353 <

(2/1);;/2 Gc < 0,0706, 0.001 < Xg < 2.5, and 1 € R < » were considered. The
first of these inequalities corresponds to 0.0l < (8c)av/8mzp < 0.2
[Eq. (19)]. Results are presented in Tables I through II1 and Figs. 5

through 7.

In Table I, the values of Z; at which lasing is initiated are indicated.
These are independent of R and increase as~xe and Gc increase. In Table II is
presented the station Z, at which dP/dZ = 0 and the correqponding output power
P, normalized to the saturated laser output power Pe,s' The ratio Pe/Pe,s
decreases as Xe and Gc increase and is relatively insensitive to R for R > 0 !
(10); therefore, Eq. (26e) provides the output power for cases of practical
interest.’ The results for R = 100 are also indicated in Fig. 5. The down-
stream station at which X; = 0 is denoted Z;. Values of Z; and the corre-
sponding output power P; are indicated in Table III. The values of P; depart €
significantly from the corresponding values of Pe in Table II only for R = 1,
The difference 1s the result of negative values of I. Thus, the data of
Table III.illustrate the nature of the present solution for R = 0(l) and are

primarily of academic interest.
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The variation of xf, AN, and P with Z 18 indicated in Fig. 6 for R = 1.0,
xe = 0,001, and several values of Gc' Results from the numerical integration
of Eq. (21) for R = 100 are compared with results from the limiting solution
of Section II.C.4 in Fig. 7. The agreement is good except for points in the

vicinity of Z; and Z, vhere poor agreement 1s expected because of neglect of
the derivative term in the limiting solution.
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IV. CONCLUDING REMARKS

In Table II laser output power is demonstrated to depend primarily
on Ec and Xe and to be relatively independent of variations in R for the
practical range R > 0(10). Hence, solutions in the limit R + @ provide useful
estimates for the effect of gain saturation Ec and source flow Xe on the out-

put power from multiple longitudinal mode cw chemical lasefs.

A number of complex multitransition-multichemical reaction numerical
codes have been developed (e.g., Ref. 8) that can be used to evaluate cw
chemical laser performance with the assumption of a single longitudinal mode
at line center for each lasing transition. In the present model, Xg + 0 as
R+ o {.,e., the limit R + ® corresponds to a single longitudinal mode at line
center. Therefore, numerical codes in which this assumption is made provide
reasonable estimates for the effect of gain saturation and source flow on
multiple longitudinal mode cw chemical laser output power if the correct zero
power line center gain is used [Eq. (5)], and the conditions in Eqs. (la) and
(1b) are satisfied. '

It is also seen, from Fig. 7, that the limit solutiomn R >> 1 and EcR -
0(1) provides reasonably accurate simple-closed-form analytic expressions for
laser performance in the regime of interest.
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D( )
F(X,X,)

G(v), G.

o

g(v)
gc)gmzp
H(X¢,X,)

Ij,T(v)

kcd’kcr

N,Np,Np, Ny
N(v),Nv

AN,ANv
n,n(v)

sc
P,P

|

Most probable particle thermal speed

Dawson integral, Eq. (17)

Zero power lineshape, Eq. (5)

Normalized gain and threshold gain, Eqs. (4a) and (7a)
Threshold gain parameter, Eq. (20)

Small signal gain, Eq. (4)

Threshold gain, maximum zero power gain, Eqs. (7b) and (19)
Net inversion AN/ANvi, Eq. (10)

Lasing intensity, Eq. (11)

Longitudinal mode index

Collisional deactivatifn and cross relaxation (molecular

- collision) rates, sec

" Mirror separation

Normalized population denmsity, Eqs. (2), (11), and (16)

Normalized population in frequency interval v to v + dv,
Eq. (2)

Normalized population difference, Eq. (2)
Population demsity, Eq. (2)

Number of semichan;els, Fig. 1

Output power liberated up to statiom g, Tg Eq. (11)
Output power for saturated laser, Eq. (28)
Reciprocal of Doppler width, Eq. (2)

kcr/kcd
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Yf(X)

Zy8p

v
Avc,Avd,Avh

g

Subscripts

1,2

av

Velocity in x direction, Fig. 1

-Transverse velocity at edge of source flow, Fig. 3

Channel semiwidth, Fig. 1

Normalized frequency, Eq. (5)

Source flow parameter, Ve/a

Value of X corresponding to largest lasing frequency
Streamwise and lateral distance, Fig. 1
Characteristic diffusion distance, Fig. 1

Flame sheet location, Fig. 1

Normalized streamwise distance, k.4x/u, k.4xp/u
Frequency, sec™l

Characteristic frequencies, Eq. (1)

Stimulated emission cross section, Eq. (4)

Line center value

Levels 1 and 2

Average value, Eq. (4)

Related to cavity

End of positive lasing region (statibn at which dP/dgz = 0)
Associated with final (highest) lasing frequency

Value at start of lasing

Longitudinal mode index




T T

-

Downstream station at which Xf =9

Pertaining to frequency v

Pertaining to highest lasing frequency
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting exper-
imental and theoretical investigations necessary for the evaluation and applica-
tion of scientific advances to new military space systems. Versatility and
flexibility have been developed to a high degree by the laboratory personnel in
dealing with the many problems encountered in the nation's rapidly developing
space gystems. Expertise in the latest scientific developments is vital to the
accomplishment of tasks related to these problems. The laboratories that con-
tribute to this research are:

Aerophysics Laboratory: Launch vehicle and reentry aserodynamics and heat
transfer, propulsion chemistry and fluid mechanics, structural mechanics, flight
dynamics; high-temperature thermomechanics, gas kinetics and radiation; research
in environmental chemistry and contsmination; cw and pulsed chemical laser

development including chemical kinetics, spectroscopy, optical resonators and
beam pointing, atmospheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions, atmo-
spheric optics, light scattering, state-specific chemical reactions and radia-
tion transport in rocket plumes, applied laser spectroscopy, laser chemistry,
battery electrochemistry, space vacuum and radiation effects on materials, lu-
brication and surface phenomena, thermionic eamission, photosensitive materials
and detectors, atomic frequency standards, and bioenvironmental research and
monitoring.

Electronics Research Laboratory: Microelectronics, GaAs low-noise and
pover devices, semiconductor lasers, electromagnetic and optical propagation
phenomena, quantum electronics, laser communications, lidar, and electro-optics;
communication sciences, applied electronics, semiconductor crystal and device
physics, radiometric imaging; millimeter-wave and microwave technology.

Information Sciences Research Office: Program verification, program trans-
lation, performance-sensitive system design, distributed architectures for
spaceborne computers, fault-tolerant computer systems, artificial intelligence,
and aicroelectronics applications.

Materials Sciences Laboratory: Development of new materials: metal matrix
compogites, polymers, and new forms of carbon; component failure analysis and
reliability; fracture mechanics and stress corrosion; evaluation of materials in
space enviromment; materials performance in space transportation systems; anal-
ysis of systems vulnerability and survivability in enemy-induced environments.

Spsce Sciences Laboratory: Atmospheric and ionospheric physics, radiation
from the stmosphere, density and composition of the upper atmosphere, aurorae
and airglow; magnetospheric physics, coemic rays, generation and propagation of
plasma waves in the magnetosphere; solar physics, infrared astronomy; the
effects of nuclear explosions, magnetic storms, and solar activity on the
earth's atmosphere, 1ionosphere, and wmagnetosphere; the effects of optical,
electromagnetic, and particulate radiations in space on space systems.




