!
~" AD=A114 472  WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER Fre 12/1 AN
A NEW APPROACH TO EULER SPLINES II, (U}
DEC 81 1 J SCHOENBERG ouszo-so-c-uou
UNCLASSIFIED MRC-TR-2313




-

DTIC FILE Copy

MA11447%

MRC Technical Summary Report # 2313

A NEW APPROACH TO EULER SPLINES IX

I. J. Schoenkerg

s’

Mathematics Research Center /
University of Wisconsin—Madison

610 Walnut Street
Madison, Wisconsin 53706

December 1981

(Received October 28, 1981)

Approved for public release DTLC.

Distribution unlimited ELECT‘
MAY 181982

Sponsored by

U. S. Army Research Office

P. 0. Box 12211 E
Research Triangle Park
North Carolina 27709

[ L Y P P LV At A 5 -




—

DTAC
orY
NSPEOTED Accession Por
2 NTIS GRA&I
DTIC TAB
UNIVERSITY OF WISCONSIN - MADISON Unannounced O
MATHEMATICS RESEARCH CENTER Justification

A NEW APPROACH TO EULER SPLINES II By. |
Distribution/

I. J. Schoenberg Availability Codes
Avail and/or
Dist Special

Technical Summary Report #2313

December 1981

ABSTRACT ‘ ’

Let t € C be a constant which is not real and negative, t ## O, t ¢ 1.

In [4) it was shown that the exponential Euler splines Sp(x) = S (x;¢t), &as
introduced by the author in [2], can be obtained by the following recursive
procedure: We define S,(x) as the cardinal linear spline interpoiatinq the
biinfinite sequence (tv) (v € 2) and then defined recursively

1
X+ =

l-n

Sn(x) = ! 3 sn_.' (u)dll/fz 1 Sn-1 (u)du (n = 2,3,000) .
K= = -
2 2

In [4] this was used to derive all the known properties of these splines and
also some new ones. In the present short note, written for Euler's
bicentenial of 1983, we just show that the resulting sn(x) are identical

with the splines defined in (2],
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SIGNIFICANCE AND EXPLANATION

1

In\the-fitat;pﬁpet (4} én the subject.the new recursive approach to the

. exponential Euler splines was used to derive the known properties, ;nd some
new ones, of these most attractive among cardinal splines. In the present
short note, written for Euler's bicentenial of 1983, wetjnstﬁshow that the new

recursive construction leads precisely to the exponential Euler splineé;as ~

“Tintroduced- in (2]). -

The responsibility for the wording and views expressed in this descriptive
susmary lies with MRC, and not with the author of this report.




A NEW APPROACH TO EULER SPLINES II
I. J. Schoenberg
For Leonard Euler's bicentenial of 1983.
1. §2§£gg‘=‘.§§=i__2’_l‘ Recently I have written the article (4] on this

subject, but the present note can be read independently of it. Its aim is

show briefly that the new approach of §3 leads to the exponential Euler

splines introduced in [2]. We need a few definitions.

to

Let Sn= {s(x)} (n > 1) denote the class of cardinal spline S(x) of

degree n. This means that in each unit interval (v, Vv + 1) (v € 2)S(x)
a polynomial of degree < n, with the strong restriction that

S(x) € C™V(R). we also need the class of midpoint cardinal splines

*
Sn = {s(x); s(x +BQ) € Sn}. In this case the junction points (or knots)
between the polynomial components of S(x) are at Vv +-V§ (v 6 2). Actual
the action will take place within the class
S if n is odd ,
(1.1) S =
S; if n 1is even .,

A convenient basis for the class Sn is furnished by the central B~

splines which are described as follows (see [3, Lecture 2, §1]). We define

1 if dp cx g
(1.2) M1(x)= B

0 elsewhere ,
and convolute it with itself to obtain

1o x| it -1 <xg<r o,
(1.3) Mz(X) = M1 * M1(x) =
0 elsewhere .

is

ly
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Early in this century it was realized that S(x) = Z cvnz(x-V) is a unique

- - ~
representation of every element of SH - 81. This extends to Sn as follows:
We form the convolution

n+1 factors
A - n+l
-’ *
Mg () =M, * M

(1.4) . 1 nl

where x, = max(0,x). This an even bell-gshaped function which is positive in

+

its support (-‘Vz(n+1), Vh(n+1)). Moreover Mn+1(x) (] Sn' and every

™
S(x) € gn admits a unique representation S(x) = z- c M, (x-V) and
conversely [3, Lecture 2, §2). )

Let t be a constant such that
(1.5) telt]el® mcacm, o0 tEgT ,
the objective being to find all solutions S(x) € §n of the functional
equation
{(1.6) S(x+1) = tS(x), (x 6R) .

From [2, Part I, §1] we need the very simple result

I. Setting
[ ]
v
(1.7) G (x) = G_(x;t) = E. tH L (x=V)

the most general S(x) € Sn satisfying (1.6) is of the form S(x) = C*G (x).

From [3, Lecture 2, §§4 and 5) we also need
II. If t satisfies (1.5), then

(1.8) G(x) =] t'M _(x-V) p 0 for all real x .
n - — ——————t———

n+1

This is evident if t > 0 because Gn(x) > 0 for all x. For complex-
valued t (1.8) follows from the fact that the curve of the complex plane
zZ = Gh(x)' (=® < x ¢ ™)

spirals “"convexly" around the origin O without ever reaching it.

-2-

~ 1 vrn+l n
L H1(x) - — 2 (=1) ( v )(x -V +1/2n +‘/2)+ ’




2. Buler's generatin function. Our actual discussion starts with

Euler's generating function (1, Chap. VII, §178]

(2.1) * t 12 exz = —n—n!— z
! t-e 0

which defines the Appell sequence of monic polynomials An(x;t) = An(x).

These are the Eulerian polynomials. If we differentiate (2.1) with respect

to x V times (v 2 0) we obtain from Aiv)

(x;t) = v!I that

: (v) (v)
. . -« . 3L .
' t=1 xz Vv A Txit) v T M {x;t) n
e z = —_—z =2z + ) —_—z -
t-e n=v n=v+1

v
Canceling the factor 2 and setting successively x = 0 and x =1 we

obtain
(v) (v)
. L @
t=1 Ay (05¢) n-v t-1 z An (15¢) n-v
‘ mre L S—e S 1 S
t-ez n=V+1 t-e n=v+1

. Multiplying the first equation by t, we find that the two left sides become
identically equal. Therefore the right sides are identical and show that

A(v)(1;t) -tV

(2.2) n n

(O,t) (V = 0,1,.-.;“-1) .

This is a characteristic property of the Eulerian polynomial An(x;t).

The definition of the exponential Euler spline sn(x) as I defined it in
{2) is now immediate: We set
(2,3) sn(x) = An(xst)/bn(Ott) if o¢x<1 ,

and extend its definition to all real x by the functional equation

(2.4) sn(x+1) = tsn(x) (x R) .
From (2.4) and the boundary property (2.2) we find that sn(x) (-] c““(n) and

therefore

(2.5) sn(x) S Sn .

From (2.3) and (2.4) we obtain that

(2.6) s (V) = Y vesz .
3=
. - - e o 2




[

. * * . . .
The exponential Euler spline sn(x) of Sn is now obtained as

* 1 1
(2.7) sn(x) = sn(x +-§)/sn(30 (x € R? .
It satisfies
* * R
(2.8) sn(x+1) = tsn(x) (x € R)
and therefore
* v

(2.9) sn(v) =t (ve z) .

Is A (0;t) # 0 in (2.3)? It is, for if A (0;t) = 0 we could define a
cardinal spline 8(x) by setting 8(x) = An(x;t) in [0,1) and extend it to
satisfy 8S(x+1) = t8(x). By I. it follows that 8(x) = CeG_(x) (C # 0),

and now sg(0) = An(oxt) = 0 would contradict 1II.

3. The new aggroach to _exponential Euler Egiiggg. As we are going to

*
alternate between the classes Sn and Sn we find it convenient to define

'sn if n is odd .,
(3.1) S = *
n Sn if n is even .

The corresponding splines we denote by

sn(x) if n is odd ,

‘3.2) Sn(x) =
sn(x) if n is even .

We now define a new sequence of functions

(303) sn(x) = Sn(x;t) (n = "2100.) ’
by first setting
- -
v
(3.4) S,(x) = 8, (x) =8 (x) = g_ t M, (x-v) ,

and determine the functions (3.3) by the recurrence relation

1

2
S 4 (u)du/f-l S, _y(wdu  (n=23,...) .
2

x4+
(3.5) s (x) = [

1
2
1

X-E

-4~
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Our main result is

Theorem 1. The sequence of functions (3.3) defined by (3.4) and (3.5) is

identical with the exponential Euler splines of the classes Sn, hence

(3.6) Sn(x) = Sn(x)p (n = 1,21..0) .

Let us first establish for the functions (1.7) the relation

x+ 3
(3.7) 6 (x) =f G _juldu (n=23,...) .
x- —
2
1
X+ 3
Indeed, from (1.4) we have Mn+1(x) =M, * M (x) = f 1 Mn(u)du, whence
x- 3
1
X+ -5'
/ P M (u-vidu = M (x=V)
x- —
2
Now (1.7) implies
X+ l X+ .1_
2 v 2 v
J {6 _qwau=F¢ [ TM(u-viau=]tH  (x-v) =G (u) ,
x- 3 v X= - v

proving (3.7).
We observe next that Mn+1(x) (<] Sn; also that by I. and 1Il. we have
(3.8) sn(x) = Gn(x)/Gn(O) .

However, from (3.7) we obtain
(3.9) G (0) = /

and therefore by (3.7) and (3.9)

- X
s (x) = [

1
t2
x- +

2




——

If we define here the terms of the fraction on the right by Gn_1(0) we find

from G, _,(u)/G,_,(0) = sn_l(u) that
. X+ % - .
(3.10) 8 (x) = f 2 8 (u)du/f2 . 8 .{ujdu (n = 2,3,eee) .
n x= 4 = _1 'n=1 e
2 2

Since ;1(x) = S,(x). the relations (3.10) clearly imply that Sp(x) = ;n(x)
and Theorem 1 is established.
552=£§g. 1. Notice that (3.4) and (3.5) have produced only one half of
the exponentialkzuler splines, i.e. only those described by (3.2). If we
retain the relations (3.5), but start from $,(x) = s:(x). we would get the
other half: S (x) = s;(x) if n is odd and S (x) = s,(x) if n is even.
2. If we retain (3.4), but modify (3.5) to

xX+1 1
s (x) = Ix Sn_1(u)du/f0 S (u)du, (n = 2,3,0es)

n-1
we would obtain that S,(x) = s,(x) for all n.

3. So fare we have excluded the case when t is real and negativé.
Actually, the case t < 0 leads to the so-called eigedsglines of the classes
Sn and S;, which are fundamental for the problem of cardinal spline
interpolation (see (3, Lecture 4]). Exceptional is the case of the Euler
splines which arise if t = -1, 1In this case our Theorem 1 again holds, as
shown in {4, §6].

4, In [2, §11) and again in (4,§5] I have recommended the use of the
exponential Euler splines for the programming of the exponential function on a
computer. Especially for t = 2 this would produce, by a simple algorithm,
very smooth and close approximations to 2%,

5. We hope to have shown in this note the fundamental nature of Leonard

Euler's contribution to cardinal spline interpolation.
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ABSTRACT (continued)

1

2
Sn_l(u)du/f_ 1 Sy {Wdu  (n=2,3,...) .
2

In [4] this was used to derive all the known properties of these splines and

x X+
s, (x) = /

X-

D= D=

also some new ones. In the present short note; written for Euler's

1
i bicentenial of 1983, we just show that the resulting S, (x) are identical
; with the splines defined in [2].







