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ABSTRACT

Let t G C be a constant which is not real and negative, t 0 0, t 0 1.

In [4) it was shown that the exponential Euler splines Sn(X) - SnCXt), As

introduced by the author in [2), can be obtained by the following recursive

procedure: We define SI(x) as the cardinal linear spline interpolating the

biinfinite sequence (t ) (v G Z) and then defined recursively

1 1
Sn(x ) -- 2 S (u)du/f2 I (u)du (n - 2,3,...)

1 n-1 n-i
2 2

In (4] this was used to derive all the known properties of these splines and

also some new ones. In the present short note, written for Euler's

bicentenial of 1983, we just show that the resulting Sn(x) are identical

with the splines defined in (21.
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I
SIGNIFICANCE AND EXPLANATION

In'the first paper (41 on the subjectthe new recursive approach to the

exponential Ruler splines was used to derive the known properties- and some

new ones, of these most attractive among cardinal splines. In the present

short note, written for Euler's bicentenial of 1983, we just show that the new

recursive construction leads precisely to the exponential Euler splineso as

-Imtr'oduce& in 121.

I

The responsibility for the wording and views expressed in this descriptive
sutary lies with MRC, and not with the author of this report.
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A NEW APPROACH TO EULER SPLINES II

I. J. Schoenberg

For Leonard Euler's bicentenial of 1983.

1. Introduction. Recently I have written the article [4] on this

subject, but the present note can be read independently of it. Its aim is to

show briefly that the new approach of §3 leads to the exponential Euler

splines introduced in [2]. We need a few definitions.

Let S = {S(x)l (n > 1) denote the class of cardinal spline S(x) of
n

degree n. This means that in each unit interval (V, V + 1) (V G Z)S(x) is

a polynomial of degree < n, with the strong restriction that

S(x) G Cn-1(1). We also need the class of midpoint cardinal splines

S = IS(x); S(x +1/2) G S n. In this case the junction points (or knots)n n

between the polynomial components of S(x) are at V +1/2 (V G Z). Actually

the action will take place within the class

S if n is odd

n
S if n is even
n

A convenient basis for the class S is furnished by the central B-n

splines which are described as follows (see [3, Lecture 2, §11). We define

r 1 if -/2 I x_</2

0 elsewhere ,

and convolute it with itself to obtain

il 1 - lxi if -1 < x < 1

(1.3) M2(x) = M * M ix) 
2 1 1 0 elsewhere

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



Early in this century it was realized that S(x) V cum2 (x-v) is a unique

representation of every element of S - S This extends to S as follows:
n

We form the convolution

n+1 factors
1 n++

(1.4).. n (x) - H1 * M Mx) * * V-n+1 n + 1/ 2)n
(1.4"-(mn+1 1 1 1 -V +

where x+ M max(O,x). This an even bell-shaped function which is positive in

its support (- 1/2 (n+1), 1/ 2 (n+11). Moreover Mn+ x)Q in , and e

S(x) Q S admits a unique representation S(x) - cvMn+ 1 (x-V) and
n

c6nversely [3, Lecture 2, J2].

Let t be a constant such that

Ite
1.5t t- Itle a , -W < a < W, t 0 0, t 0 1,

the objective being to find all solutions S(x) G S of the functionaln

equation

(1.6) S(x+I) - tS(x), (x 9 R)

From [2, Part I, I1] we need the very simple result

I. Setting

(1.7) G nx) = Gn (xt) - tMn+ (x-V)

the most general S(x) 6 Sn Satisfying (1.6) is of the form S(x) - CG n(x).

From [3, Lecture 2, JJ4 and 5] we also need

II. If t ia'tisfies (1.5), then

(1.8) Gn x) - tV4 n+l(X-V) O 0 for all real x
-m

This is evident if t > 0 because Gn(x) > 0 for all x. For complex-

valued t (1.8) follows from the fact that the curve of the complex plane

z - G(X), ( < x <)
n

spirals *convexly" around the origin 0 without ever reaching it.
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2. Euler's generating function. Our actual discussion starts withI mmiBn nli n~~lmin m ~mI

Euler's generating function (1, Chap. VII, 1178]

_ An(4Xlt) z

(2.1) eX 1W I z

t-ez 
0

which defines the Appell sequence of monic polynomials An(x;t) - An(x).

These are the Aiierian poiyromiali. If we differentiate (2.1) with respect

(VI)
to x V times (v > 0) we obtain from Av (xt) - V1 that

V

t- ezV n'n V

t-e z  n=) n| Z vZ + ln

Canceling the factor z and setting successively x - 0 and x = 1 we

obtain

A A(V,) 4 0.; t) A (V)(lit)
1-n ( zn-V t-l z n n-v

t-e n-v+1 t-e n-v+1

Multiplying the first equation by t, we find that the two left sides become

identically equal. Therefore the right sides are identical and show that

(2.2) A (V)(Mt) - tA(V)(0;t) (V - 0,1,...,n-1)
n n

This is a characteristic property of the Eulerian polynomial A n(x;t).

The definition of the exponential Ruler spline sn(x) as I defined it in

(2) is now immediate: We set

(2.3) s (x) - A (xlt)/A (O;t) if 0 < x <1n n *n -

and extend its definition to all real x by the functional equation

(2.4) Sn(x+l) - tsn(x) (x G R) .

From (2.4) and the boundary property (2.2) we find that sn(x) Q Cn- 1 (R) and

therefore

(2.5) S(x) Sn

From (2.3) and (2.4) we obtain that

(2.6) a (v) - tv  (V 9 Z)

-3-



The exponential . uler splin. a * x) of S* is'nov obtained as
In I- n

(2.0) a n x) - sa x+T s C7 (x 9R)

It satisfiesn

(2.8) sn(* i ts (x) (x Q R)

and therefore

(2.9) 5n (V) -tv (V r. Z)

Is AnCOit) ~i0 in (2.3)? It is, for if AnCOit) =0 we could define a

n

satisf aS+1 t2(x). By I. it follows that S(x) - COG (x) (C $A 0),
n

and now sCO) - A (Ogt) - 0 would contradict II.

3. The new approach to epntilEuler splines. As we are going to

alternate between the classes S and S* we find it convenient to definen n

(3.1) 5n -if iod
iS if nis even.n

The corresponding splines we denote by

8 (x) if n is odd

(3.2) n (x) 8 { (x) if n is even .

We now define a new sequence of functions

(3.3) Sn Cx) - Sn (xit) Cn - 1,2...)

by first setting

(3.4) S 1 (X) I s(x) - s 1 (x) - 1 tv 2 (x-V)

and determine the functions (3.3) by the recurrence relation

n1 - 1 n-

-4-



our main result is

Theorem 1. The sequence of functions (3.3) defined by (3.4) and (3.5) is

identical with the exponential Euler splines of the classes S , hence
n-

(3.6) S n(x) - S n(x), (n = 1,2,...)

Let us first establish for the functions (1.7) the relation

1
2 G (u)du (n = 2,3,...) •
2

'I
x+-

Indeed, from (1.4) we have M1(x) = M1 * M(x) = f 2 M(U)du, whence
x--

1

f 1 M n (u-V)du = n+1 (x-V)
X- 72

Now (1.7) implies

1 1
X+X+

f n-G(u)du = tv  f Mn (u-V)du= tM+(x-V) = Gn u)
x-g V x-7  V

proving (3.7).

We observe next that Mn 1(x) Sn ; also that by I. and II. we have

(3.8) 5n(x) G n(x)/G n(0)

However, from (3.7) we obtain

1

(3.9) G n(0) G n_ I G uldu

and therefore by (3.7) and (3.9)

1 1~ X+ - -

(X)  I f n2 (uldu/f2 G - (uldu

x-.--

'i 5-



If we define here the terms of the fraction on the right by Gn-l(O) we find

from Gn-l(u)/Gnl(O) n n(u) that

1 1

(3.10) W (u)du/)n i Cu~du (n a 2,3,...)
x- 

--

Since s - SI(x), the relations (3.10) clearly imply that Sn(X) - SnX)

and Theorem I is established.

Remarks. 1. Notice that (3.4) and (3.5) have produced only one half of

the exponential Euler splines, i.e. only those described by (3.2). If we

retain the relations (3.5), but start from S(x) - sCx), we would get the

other half: Sn(x) - a n(x) if n is odd and Sn(x) - sn(X) if n is even.

2. If we retain (3.4), but modify (3.5) to

SnlX) - f'+ Sn (Uldu/f Sn(u ldu, (n - 2,3,...)

we would obtain that Sn(x) - sn(x) for all n.

3. So fare we have excluded the case when t is real and negative.

Actually, the case t < 0 leads to the so-called eigensplines of the classes

and S*, which are fundamental for the problem of cardinal splinenn

interpolation (see (3, Lecture 41). Exceptional is the case of the Euler

splines which arise if t = -1. In this case our Theorem 1 again holds, as

shown in [4, J61.

4. In [2, ill) and again in 14,S51 I have recommended the use of the

exponential Euler splines for the programming of the exponential function on a

computer. Especially for t - 2 this would produce, by a simple algorithm,

very smooth and close approximations to 2x .

5. We hope to have shown in this note the fundamental nature of Leonard

Euler's contribution to cardinal spline interpolation.

-6-
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ABSTRACT (continued)

1 1
X+-

x+ (u)du/f2  S (u)du (n - 2,3,...)-i
2- 2

In [4] this was used to derive all the known properties of these splines and

also some new ones. In the present short note; written for Euler's

bicentenial of 1983, we just show that the resulting S (X) are identical

with the splines defined in [2].

ja




