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FOREWORD

» This technical report summarizes the effort performed by
the University of Dayton Research Institute under Materials

‘Laboratory contract F33615-80-C-5140, "Evaluation of NDE Reli-

ability Characterization," Task 24180522, in the area of
characterizing the capabilities of non—deétructive evaluation
systems. The work was performed between July 1980 and August
1981. Dr. Joseph A. Méyzis of the Materials Labofatory was the
Air Force Project Monitor and Dr. Alan P. Berens of the University
of Dayton was.Principal Inveétigator. ' t ‘

A.complete déscription of the methods and results of the
study are contained in Volume I. As part of the study, a com-
puter program was written which simulates NDE experiments.
Volume II comprises a user's manual and the listing for this
simulatibn program.
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SECTION 1
INTRODUCTION

The United States Air Force approach to preventing structural
fatigue failures is based on predictions of potential crack length
as a function of flight time;evPor'each critical area of the struc-
ture: (1) the length of the‘largest crack that could be present
is ascertained; (2) the growth of this crack is predicted for the
anticipated usage environment:; (3) structural strengtﬁ degradation
due to crack growth is utilized to detefmiqevthe safe time period
during which the structure will not fail; and, (4) a repeat inspec-
tion is scheduled at half the flight time required for the crack
to grow to critical size. This'procass is illustrated in Figure 1
which depicts projected potential crack growth in the antizipated
usage environment through the second inspection. The initial
crack lentth, a,, is representative of manufacturing quality while;
the resat craek length at an’inspection, anpE’ is the lcngest
crack that could pass undetected through the non-destructive
evaluation (NDE) system. Sinee crac growth rates are highly
dependent on crack length, the success of this'procedure is
greatly influenced by the correct choice of the initial and reset
crack lengths. i

A characteristic of all current non-destructive evaluation
techniques is fheir inability to repeatedly produce correct indica-
tions when applied by various inspectors to flaws of the =same "size".
The ability and attitude of the operator, the gebmetry and,matefial
of the strucfu:é, the environment in which the inspection takes

place, and the location, orientation, and size of the flaw all

influence the chances of detection. However, since the structural
maintenance actions are scheduled on the basis of potential crack A
lenéth, the other factors are controlled (to the extent possible)

or ignored and the resulting inspection uncertainty is characterized
only in terms of crack length. A probability of crack detection
(POD) for all cracks of a given‘length is postulated as the provor-
tion of cfacks'that will be detected by an NDE system when applied
by representative. inspectors to a population of structural elements

1 .
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in a defined environment. Thus, the capability of an NDE system
is expressed in probabilistic terms and this characterization has
two significant ramifications.

,L-"First, for a given NDE application, the true probability of

. detection as a function of crack length (or for a single crack
' length) will never be known exactly. The capability of an MDE
' system can only be demonstrated through an experiment in which

representative structures with known crack lengths are inspected

"ahd the true POD is estimatad by the observed percentace of correct
- positive indications. The estimated POD is svbject to statistical

variation that results from all uncontrolled factors that can lead

to non-repeatable positive indications for cracks of a particulaf

length. However, statistical methods (which depend on the experi-
mental procedure) are available whiéh yvield confidence limits on the
true probability. Protection against making a wrong decision .on the
basis uf a set of non-typicai results is provided by the confidence
limits but an unknown element of risk will alwcys be present.

Second, in the real world structural integrity problem, no
inspection procedure will provide 100 percent assurance that all
cfacks greater than some useful length will be detected. The current
capabilities and the uncertainty resulting from the NDE demonstration
process at the short crack lengths of interest in aircraft applica-
tions dictate that the aﬁDE value must be specified in terms of a high
confidence that a high percentage of all cracks greater than aypg
will be found. For example, TL-A-83444 indicates that aNpE is
that crack length for which it can be shown there is 95 percent
corfidence that 90 percent of all cracks will be found. (Note that
the chances of a crack longer than aynp Passing undetected depends
not only on the capability of the NDE system but also on the distri-
bution of crack lengths that are present in the structural elementéh

Due to the 1mpqrtance of the statistical characterization of

NDE capabilities, this study was undertaken to: 1) evaluate and
. compare existing methods for determining aNDE,and'the POD as a
 function of crack size; 2) to devise and evaluate different ahalysis
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methods and models: and 3) to evaluate different combinations of
POD and confidence limits as single number characterizations (aypE
values) of NDE sysiems. The essential tools used to achieve these
objectives were the formulation of a probabilistic framework which
recognizes that different cracks of the same length have different
probabilities of detection and the use of this fot@ulation to

simulate NDE reliability demonstration experiments.

Section 2 presents a brxef summary of the different types of
NDE reliability demonstration experiments and the analysis methods
that have been used for the resulting data. Section 3 presents the
new probabilistic framework for modeling POD as well as two methods
for estimating POD's within the framework. Section 4 describes the
simulation process and contains the comparisons of different methods
and dxfferent POD/confidence interval combinations. Conclusions and
recommendations are contained in Section 5.

It should be noted'that in general NDE4reliability comprises
two types of wrong indiqations: failure to give a positive indica-
tion in the_pfesence of a crack and giving a positive indication '
when there is no crack (a false call). Wwhile it is recognized that
both types of error are important, only the former is considered
in this study. Due to the potential safety hazard, failure to find
a crack is considered to be the more critical problem in the
structural integrity épplication.




— A s e

SECTION 2

NDE RELIABILITY EXPERIMENTS

There are three categories of experiments which have been
used to evaluate the reliability of NDE systems: 1) demonstration
of a capability at one crack length; 2) estimation of the POD
function and confidence bounds through single inspections of cracks
covering a range of lengths; and 3) estiration of the POD function

and confidence bounds through multiple inspections of cracksvcover-

ing a range of lengths. Analysis of data from category 1 and 2
experiments have generally beer. based only on binomial distribu-
tion theory. Category 3 data have been analyzed by regression

analyses. Details of the three types of experiments and the analysis

methods used to date are presented in References 1, 2, and 3. The
following paragraphs summarize pertinent features of each current
experiment/analysie combination. In the discussion, it is assumed
that a representative population of inspectors are inspecting
representative specimene in the environment of interest. Also, the

_ question of the number of uncracked specimens submitted for inspec-

tion along with the cracked specimens is ignored even though this
is recognized as an important experimental design condition. As
noted earlier, false calls are Eeing ignored in this study so only
the cracked specimens enter the analysis.

2.1 CATEGORY 1: NDE CAPABILITY AT ONE CRACK LENGTH

This category of experiments can ke vievied as a method for
de onstratlng that an NDE system can detec¢t at least a given
percentage of cracks of a specified - length with a specified con-
fidence limit. For example, this approacn could be used to show'
that there is 95 percent confidence that at least 90 percent of ali
cracks of 1engrh 0.25 in. will be found by a particular system.

~ This category of experiments also serves as an introduction to the
use of the binomial distribution for the analysis of NDE reliability
data.’ ' '
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Out of a large number of specimens to be inspacted, assume
n contain a crack of length a and, at each iﬁspection, there is a
probability, p, of detecting the crack of length a. If r of the
cracked specimens are detected,

; = r/n : | (1)

is an estimate of p and binomial distribution theory can be vsed
to calculate lower confidence limits for the true, but uwaknown,
value of p. The confidence limits depend on both r and n and are
tabulated in many references, c.f., References 1 or 4.

To demonstrate a 90 percent POD at a 95 percent confidence
level, a minimum of 29 specimens at the fixed crack length are
required. If 28 out of 28 cracks are detected, the lower 95 per-

. cent confidence level for p is less than 0.9. Given the number of

cracked specimens testad and the number of cracked specimens found,
a lower confidence level for p can be constructed. If the lower
confidence limit is sufficiently high (as defined prior to the
experiment, e.g., 0.90) the demonstration is complete. If the
lower confidence level for p is below the targeted value, the NDE
system has failed the demonstration at that crackllength.

This category of experiment provides information only at the
crack length inspected and was not evaluated ia this study. A
complete discussion of the experiment and analysis method can be

found in Reference 1.

2.2 CATEGORY 2: ESTIMATION OF THE POD FUNCTION WITH ONE

OBSERVATION PER CRACK

In the second category of experiments many speciméds coveriﬁg

.a range of crack sizes are inspected once and the results are used

to estimate the POD as a function of crack length with confidence
limits. Different analysis methods have been used on the results
of these experiments but they are all based on binomial distribu-
tion theory. Since, in general, there are not a igrge number . of
specimenl with cracke of the same length, the specimens are grouped
into intervals of crack length. It is assumed that all cracks
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within a specified interval have approximately the same POD.
The number of detections for the group is modeled by the binomial
distribution, analyzed as described earlier,.hnd the lower confidence

- bound for the POD is usually assigned to the crack length at tha

upper end of the interval.

The essential differencekamong the various methods of
analyzing the data from this categcry of experiments has been in
the method by which the crack length intervals are formed or com-
bined. The following paragraphs present a brief summary of four
analysis methods that have been used. References 1 and 2 present
detailed discussions of these analyses. Reference 2 recommends
the use of the method defined as the Optimized Probébility Method
(OPM) as described in Paragraph 2.2.4. ‘

2.2.1 Range Interval Method

In the Range Interval Method (RIM) crack length
intervals are defined with'equal lengths across the range.of the
data. Due to the somewhat random nature cf the crack lengths in the
specimens being inspected, the intervals constructed by this method
will contain different numbers of flaws, The estimate of the POD
function and its lower confidence limit can exhibit an apparent
erratic behavzor of the confidence limits resulted from.small
sample size. For example, Figure 2 presents RIM analyses of inspec-
tion results for éddy cuvrent inspections of etched fatigue cracks
in 2219-T87 aluminum ‘flat plates, Reference 2, page D~63. The
individual data points are the percentage. of cracks identified in
each interval while the solid line segments connect the lower
95 percent confidence bounds for each POD estimate. ‘The extremely
erratic behavior of the confidence limits resulted from small
sample sizes in some intervals even though all cracks greater than
3.6 mm were detected. For example, the very low confidence
bound at about 6 mm resulted from that particular interval containing

’only one crack and, even though detected, the lower 95 percent con-

fidence bound on p for a sample of size one is 0.05.
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2.2.2 Non-Overlapping Zonstant Sample Size Method

To avoid the problem resultinc from the variable
sample sizes,'the length of the intervals can be varied so that
each interval contains the same number of specimens with,éracks to.
be detected. This method, the non-overlapping constant sample size
method, is discussed in detail in Reference 1. If N represents the
number of points in each interval, the intervals are constructed
as follows. The longest N cracks form the first group. The second
group contains the longest N cracks after the first group has been
removed. The process is continued until all cracks are assigned to
one of “he intervals. Figure 3 shows the results of analyzing the
data »f Figure 2 by this method using a sample size of 60 cracks V
in each interval. As before, the data points represent the
observed percentages of detections in each interval and the line
segments conhect the lower 95 percent confidence bcunds. The daﬁa
points and the lower confidence bounds are plotted at the longest
crack size in each interval which introduces an unknown degree of
conservatism in the NDE capability. Although in this example the
l.wer confidence bound is monotonically increasing, other data sets
could give rise to more erratic behavior; i.e., the monotonicity
is a furction of the data, not the analysis method. This method
reduces the nunber of intervals for analysis which leaves longer
gaps to be filled by interpolation. The number of pbints in each
interval could be reduced but lowering the>sample size in an inter-
val widens the confidence bounds. ' A '

2.2.3 Overlapping Constant Sample Size Method

To obtain narrower intervals with a relatively large
number of speci@eﬁs in each crack length interval, the intervals
are overlapped (Reference 2). Each interval contains'the same
number of specimens but the NDE indication for any particular-
specimen may be analyzed in more than one interval. The intervals
are created by first grouping the largest N cracks. Of these, the
smallest T percent ig grouped with the next largest N-NT cracks.

“This process is continued until all cracks are assigned to at

least one interval. As an example, in Reference 2, a 50 percent .
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overlap was used with a 60 point iIncrement and was referred to as

the overlapping sixty point mechod (OSPM). Figure 4 presents an

example of the method for the data of Figures 2 and 3. Again,
erratic behavior of the confidence bound can result and the bounds
are plotied at the upper end of each interval with unknown conser-

‘vatism. Further, using the results from a particular inspection

in more than one interval results in deriving confidence limits
from ncn-independent data sets with an unknown effect on the total

‘measure of NDE capability.

2.2.4 Optimized Probability Method

An algorithm for grouping experimental results to
achieve the highest possible: lower confidence bound from hinomial
distribution methods is presented in Reference 2. This method was
named the optimized probability method. Initially, groupings are
formed as in the range interval method giving rise to m intgrvals.
For convenience, these intervals will be labeled 1 through m with
the longest cracks in interval 1. The first OPM interval is
selacted as follows. The lower confidence bound on the POD is
calculated for the data in interval 1, then for the data in inter-
vals 1 and 2 together, then for intervals 1, 2 and 3 and so forth
until a lower confidence bound for the POD is calculéted for the
whole data set (intervals 1 through m combined). The group of
intervals that‘gives rise to the highest lower confidence bound is
used as the first intervai in the optimized probabiliﬁy method.
Interval 1 data is then eliminated and the set of intervals 2
through m are analyzed in a similar manner to create the second
OPM interval. This'procesé continues until confidence bounds for
all m intervals are found. Figure 5 shows the results of this

‘ procedure for the same data that was used in Figureé 2 through 4.

Confidence bounds obtained by the optimized probability method
are better behaved than those of the other interval. However,
this behavior is obtained at the expehse of unkhdﬁn statistical
validity of tﬁe POD function across all randes of.crack length.

11
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The overlappihg of intervals reguires inspection results for a
particular crack to be analyzed more than once. Any crack that
falls in an overlap area is used in calculating the confidence
bounds for éll the intervals involved. Thus, there is a correla-
tion between confidence bounds that share data and the influence
of this correlation on the POD as a function of crack length is
unknown. |

In general, the various "interval® methods have
three major deficiencies. First, cince they are based upbn the
binomial distribution, the confidence bounds are greatly influenced
by the method for assigninq cracks to intervals. The confidence

. bounds are as much influenced by the analysis method as they are

the data. Second, the confidence bounds do not approach unity

. and, depeﬁding on the sizes of the cracks in the test specimen,

may not reach the required 0.90 POD level. The entire experiment
may fail to grcvide the desired result. Third, they provide
limited inferences on the entire POD function if this function is
required for further studies such as risk of failure analyses.

2.3 CATEGORY 3: ESTiMATION OF THE POD FUNCTION WITH MULTIPLE
OBSERVATIONS PER CRACK '

This category of experiment resulted from a large NDE
reliability program performed for the Air Force '(Reference 3 and

,Appendix R).  Sections of retired aircraft_and'other specimens

were transported to Air Foxce depots and inspected for cracks'by
representative personnel, using various NDE.systems in a typical
environment. At the completion of the travel phase of the program,
the structures were destroyed to verify the existence and lengths
of the cracks. This experiment. has ofteh'been cailed the "Have-
Crééks-WiileT:avel Program" and the data from the program i often

'referred to as the *Have-cfacks? data.

This method bf collecfing data yields an estimate of a
detection probability for éaéh»individual'crack; For example.
Figure 6 from data of Reference 3; displays the inspection results
of individual cracks emanating from fastener holes in a skin and
stringer wing assembly (3ample A) as inspected by eddy current

~
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surface scans. Each data point in the figure represents the
proportion of times the crack was fbund_when subjected to 60
independent inspections by different inspectors. These data
clearly illustfatelthat not all cracks of the same :ngth have
the same detection probability.

To analyze the data collected from this category of NDE
experiment, a regression analysis is performed in which a model
curve is fit to data points (as represented by Figure 6) and a
lower confidence limit is placed on the regression equation. In
Reference 3, the model selected as providing the best fit is

* given by

POD (a) = exp [-a a

(1-8), @

'~ where the parameters are estimated by a linear regression on trans-

formations of the crack lengths and observed probabilities of
detection. The curve labeled "mean" in Figure 6 illustrates the
fit of the model to the data points. '

In Reference 3, the viewpoint was taken that the POD at a
particular crack length was a low percentile of the distribution
of detection probabilities at the crack length. To calculate
a lower confidence limit on the POD, a confidence bound on the
population of detection probabilities was used. Such a bound is
also shown in Figure 6 as the "95% Confidence" curve. In this
particular example, the ™95% Confidence" curve is considerably
below all of the data points; It will be shown later that the POD
is actually the mean of the’detectipn probability distributic..
Hence, the POD confidence limits should be placed on' the mean
regreésion line not on the total population of detection probabii-
ities. '

16
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SECTION 3 »
A PROBABILISTIC FRAMEWOPKX FOR POD

Prior to the "Have Cracks' program described invﬂeference 3,
the results of all 1nspections of details with cracks of approxi-
mately equal length were treated as completely rancom samples from
Bernoulli trials with a constant prcbability of successful detection.
This model is an entirely correct approach for completelylindependent'
inspections. In the "Have Cracks" program, the same details were
inspected by a large number of inspectors. The repeated observa-
tions on the same details required a differentfenalysis model which
separately handled the different detection probabilities for
different details. A regression approach was. used to analyze these
data but no rationale other than goodness of fit was presented for .
the approach. 1In the following, a probabi’istic framework is pre-
sented in which it is shown that the POD is the average of all
detectionr probabilities of all cracks of the same length. Thus, the
regression equation provides an estimete of the POD function, but
a regression model must be determined. The "Have Cracks"” data were
used to compare and select an acceptable model from seven candidates.
For the best model, methods of estimating the parameters are also
discussed.

3.1 THE . BASIC FRAMEWORK

In the data of the "Have Cracks” progrem} there are many
examples of two cracks of approximately‘equal'length-having signi-
ficantly different probabilities of being detected (c.f. Figure 6.
and Appendix A). These'results demonstrate that the POD is
influenced by many factors and is only correlated with crack
length. To model the POD, assume that there is a distribution ’
of detection probabilities at each crack length where the scatter
in this distribution is caused by the non-reproducibility of all
factors other than crack length. Examples of such factors are
differences in detectability due to operators, environments,
and crack orientation, geometry or location. The'probability of
detection of a crack selected at random from all cracks of a
fixed length can be calculated as follows.

17
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Lét fa(p) represent the density function of the detection
probabilities for the population of details which have a crack
length of a. Figure 7 presents a schematic'representation of this
distribution. The probability of selecting a crack whose detec-
tic. probakility is between p and p+dp is f (p) dp by definition
of a density function. The probablllty that this crack will be
detected is p. The conditional probability that the detection
probability is p and that a positive indication will be given is
p f,(p}dp. To find the unconditional probability that a randomly
selected crack of length a will be detected, POD(a), the conditional

probabilities are summed over the range of detection probabilities..
Therefore, '

1 ‘ ,

POD(a) = f P fa(p)dp , (3
o ..

In addition to calculating POD(a), equation 3 is also the formula

for the mean of the distribution of detection probabilities at
crack length a.

~ The following simple example illustrates this property.
Assume at some crack length there are oniy five types of cracks
and for each crack type there is a constant detection probability
as given in Table 1. Asﬁume, further, that the five crack types
'are equally represented in the structural details of interest.
Under these conditions, the average of the detection probabilities,
POD(a), is 0.80. If 1, 000 inspections are performed on details '
chosen at random, 200 of each type would be expected in the total

sample. Of the 200 cracks of TYpe'l, (0.65) (200) = 130 would'be

expected to be detected and similarly for the other four crack
types as indicated by the calculations of Table 1. The total
number of cracks that would be expected to be found is 800 or 80
percent of the total number inspected. Thus, the peréantaqe found
would be expected to be the POD as calculated by equation (3).

18
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TABLE 1

XXAMPLE OF POD CALCULATION FROM
DI :TRIBUTION OF DETECTION PROBABILITIES

W~ ——— —— PG -

. Expected
Crack # Times ' Zxpected
Type P in 1000 Trials : # of Detections
1 0.65 . 200 . 130
2 0.75 | 200 150
3 " 0.80 200 , - 160
4 1 0.85 , 20¢. 170
5 0.95 200 | 190
TOTAL B = 0.80 1,000 800 = 80% of trials
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As shown by equation (3), the true POD function is the curve
through the averages (means)of the individval density function of
detection probabilities. Such a curve is also the traditional
regression equation of POD as a function of crack length. Therefore,
regression analysis techniques can be used to estimate POD(a) when
individual estimates of the detection probabilities are available.
Confidence limits on the true POD, however, would be calculated
from the confidence limits for the average of the predlctlons, not
for the 1nd1v1dual detectxon probabxlity estimates.

3.2 SELECTION OF POD(a) MODEL

Althnugh POD(a) has been shown to be the curve through the
mean of detection probabilities, a functional model for this curve
must be determined or assumed before the characterization can be |
used. Since the "Have‘Crackg' data are representative of field
inspection capability for selected structures and inspection methods
and are the largest data set for which detection prcbabilities have
been estimated for many cracks from many inspectors, they were
selected for a study to determine an acceptable model for the POD(a)
function. See Appendix A for a discussion of these da a. Three

¢riteria were established for the definition of "acceptable”:

(1) goodness of fit, (2) normality of deviations from fit, and
(3) equality of variance of deviations from fit for all crack lengths.

‘The latter two criteria are necessary statistiéél assumptions for
‘the validity,of_confideﬁce limits derived from regression analyses.

Seven functional fdtmﬁ were inveétigated as lis*ed in Table 2.
The Lockheed model was derived during the original analysis of the
"Have Cracks” data. The Weibull model was selected since it is
a generally accepted model and is a variation of the Lockheed model.
The other five models were selected because they have been found
useful in angloqous problems in the field of biocassay (References 5
and 6). In particular, the transformations have been derived to
yield the préperties of normality and equélity of variance (the
second and third criteria).. The probit and log probit models used
the normal distribution to transform the observed detection

21
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TABLE 2

POTENTIAL POD FUNCTIONS

Name Functional Form
1-8
Lockheed P(a) = e e (a)
-a(a)B
Weibull Pl(a) = l-e
. *
Probit P(a) = ¢ (a + BRa)
Log Probit P(a) = 2 (a+Ben(a))
Log Odds , eOtBa
-linear scale - P(a) = T+ eu+8a
- Log 0dds aab
~-log scale P(a) = -
. l+aa
Arcsine | P(a) = sinz(a+Ba)
osas L8
- x
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Transformation

* tn (:ﬁﬂéﬂl , X = =in(a)

tn (-&n(l-p)), X = tn(a)

PROBIT (p) , X = a

PROBIT (p), X = &n(a)

Ld(p/(iép». X = a

( = tn(p/(1-p)), & = tn a

= arcsine (Vp), X = a
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] probabilities. A probit is the value obtained by applying the

& ; inverse normal distribution function. ‘he log odds or logistic

; model uses the logistic function to transform the detection
probabilities. The logistic function.is an approximation to the
normal distribution function and, in addition, equalizes variances.
The arcsine model was included because of its use in biocassay even
though there could be practical difficulties in its use as a POD(a)

€t g

model.

Regression analyses were used to fit all seven quels to the
"Have Cracks” data. The "Have Cracks"™ data comprise 13 data sets
with a data set being defined in terms of NDE method and type of
structure. Each model was fit to all 13 data sets. The detection
probabilities,Api, gnd ﬁhe crack lengths, ai,.for each crack were
transformed to Yi and X, in accordance with’the transformations of
Table 2. The transformed X and Y variables were then used in a
linear regtessioﬂ analysis of the form :

R i r——————— <

b

i e R et

-

Y, = A + Bxi. + ey . (4)
For all seven models, B is the estimate of B and, depending on the
model, either A or exp(A) is the estimate of a. The deviations of
§ o the transformed observations from the regression equation, e, were
f analyzed to test the applicability of each model with respect to

i the three acceptability criteria.

The prdbit, log odds-linear and arcsihe models were based on
models which did not transform the crack. length scale. None of
! these models provided adequate ‘goodness of fit in the sense thai
E their patterns of deviations were not randomly distributed about
the model over the entire crack length range (i.e., they were
[' L inconsistent with the linear model,of'equation (4)). These models
were eliminated on this basis. The other four models generally
provided an,adequate fit to the observed data. ‘

I The Bartlett's test and the Shapiro-Wilks W test were used

. to evaluate the equﬁlity‘of_variance and norhality, respectively,

‘ of -the déviations f;om the regression equations (Reference 7). The
variance of the deviation from the log odds-log scale and log

~
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normal models was constant (within random error) across the range

' of crack lengths in all data sets. Equality of variance was

rejected for some crack lgngth/data set combinations for éhe
Weibull and Reference'3 models.

The log odds-log scale model was consistent with the assump-

. tion of normality of deviations in all but two data sets. Consis-

rency was defined as the failure to reject the hypothesis at the
0.1 level of significance. In the two cases for which normality
was rejected for the log 6dds-log scale model, the probability of
the type I error was between 0.05 and 0.10. - None of the other
models performed as conszstent‘y. Therefore, it was concluded that
the log odds-log scale model provided an adequate fit to the POD(a)
function for the "Have Cracks® data (see Appendix A). This model,
hereafter referred to as the log odds model, was adopted for the
simulation analys;s study.

3.3 ANALYSiS METHODS FOR NDE CHARACTERIZATIONv

The analysis framework of the previous‘section demonstrates
that the POD function is the mean of all detection probabilities
at each crack length. This framework indicates that NDE capabili-
ties can be characterized by regression analyses if a functional
form is assumed for POD(a). In particular the equation

: o .exp (a + 8 2n a)
P°9!°’- 1l + exp (a + B ina) ‘ ' (3)

was shown to fit the “Have Ctacké“ data and may be an acceptable
model for other NDE appl;cations.

The . following paragraphs present methoda for estimating the -

_POD and confidence limits on the POD. The regression analyses of
this section are based on any POD model which can be transformed

to a linear equation in detection probability and crack length. 1In

addition, a maximum likelihood estimation method is presented but
the equationh are strictly dependent on the model of equatidn (5).
A different model would require different equations for the esti-
mates of the parametera.
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3.3.1 Regression Analysis

Equation (3) indicates that the parameters of the
POD(a) function can be estimated through a regression analysis.

 Further, it has been shown that for the "Have Cracks" data,

equation (5) is a model of POD(a) for which the. assumptions of
normality and equality of variance of the residuals, is acceptable.

’Therefoxe,'equation (5) can be fit to the data and standard

statistical regression methods can be used to find a lower confi-
dence bound on the true POD(a).

If the data are from the category 3 type of experiment
in which the detection probability for each crack is estimated through
multiple inspections, the (aj, pj) data pairs can be input directly
into the transformat1ons required by the analysxs. If the data are
from a category 2 type of experiment in which each of many cracks

'is inspected once, the cracks will have to be ‘grouped into intervals

of crack length and the proportion of detections assigned to a single
crack length representative of the interval. Since the detection
probability for an interval is more likely to be representative of
the middle of the interval than the endpoints, the middle is
recommended. ‘However, using the upper endpoint as a conservative
measure could be employed, but tbe probabili;y level of the result-

ing confidence bound would not‘necessarily be correct.

Given the n pairs of (aj, p;) data points to be fit
by the regression’ analyszs, the appropr1ate transformatxons are

vperfqrmed. For 'the model of equation (5), the transformations are
‘defined by ' '

Yi =.1?g (Pi/(l-pi))j A ' v . (6)
and

X; = log (a;) L ‘ _ (7)

- 25
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3 The variables X and Y are then used in a linear regression analysis
. resulting in estimates A and B for a and B, respectively. The
' formulas for A and B are
n n
. I X, I Y,
A R LI
o S i=l i n
- n -
2 I X
; 151 xi R i
t. n
K
| o s .
E A=Y-BX (9)
f - where ¥ and. X are given by
2 n n
: - P S I K -
. 'i Y = n ,x=.-—-——;——. ] (10)

§ : The formula for a lower confidence bound on the mean uy for a
given value is

2 | My T ABX =t o)ySyx 885X (11)

where

Y is the cjnfidence coefficient

t, is the yth percentile of a t distribution
(n=-2),vy ' )

with n-2 degrees of freedom

Vi Gupemsxp? oan
Sy.x = V53 izl(yiA'B"xi) | 4
T .2
n LIy
ssx = | 'xi - A=l i (13)
X
g ,
26
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Since the log odds tranéfqrmation is monotonic, the reverse trans-
formation of the confidence bound on Y(a) will be the confidence
bound on POD(a). Although somewhat complicated algebraically, an
inverse to the confidence bound function can be derived explicitly.

'This formula can be used to calculate the single poinc NDE capability
. characterizations expressed in terms of a POD/confidence level.

Figure 8 presants the results of the regression
analysis of the "Have Cracks" data of Figure 6 using the log odds
model of equatlon (5). The solid line represents the lower 95
pezvent confidence bound on the true POD(a). The results of this
analysis should be cbntrasted'with those of Figure 6 which were
caiculated using the aﬁalysis methods of Reference 3. The mean
or best estimate curves are essentially the same in both figures
as the functional forms of both the Lockheed and log odds model's
fit the data reasonably well. The significant difference in the.
95% confidence curves results primarily from the method of calcu-
lating the confidence limits from the mean curve and, consequently,
different interpretations of the 95% cdnfidencg curves are required.

4 As shown in subsection 3.1, the probability of
detection of a randomly selected crack of a fixed length is equal
to the mean of all detection probabilities for cracks of that
length. The mean curves of Figures 6 and 8 are both regression
estimafes of this average'as a function of crack length. The

' confidence limit curve o= Figure 8 was calculated such that, there
~is 95% confldence that the mean detection probability (PCD) 1lies

above the curve for any 51ngle crack length. The confidence limit
curve of Figure 6 was calculated such that a randomly selected

crack at a‘fixed length will have a 95% chance of having a detec-
tion probability grezter than the indicated value, i.e., that 95% -

of the individual data points would lie above the confidence bound.
Since confidence bounds on individual elements of a population are
always wider than equivalent bounds on the mean, the confidence

limit curve of Figure 6 must be lower than that of Figure 8. The
diffe:ence between the cpnfidence bounds is determined'by the amount. :
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of the scatter of the individual data points about the mean.
While both of these analyses characterize NDE capability, the
confidence bound of Figure 8 is the regression equivalent of 'the
classical’confidence bounds using binomial methods. The apwvroach
of Figure 6 does not yield confidehce limits on the POD and, if
used, another name should be given to this type of more conserva-
tive characterization.

A problem in the use of regreséionAanalysis arises
when the observed proportion of detected cracks at a crack length
is zero or one. In either‘of these cases, the most useful trans-
formations can be undefined. To circumvent this problem, there are
several alternatives. 1In Referénce 3, the values of 0.01 and 0.999
were substituted for 0 and 1, respectively. However, the regression
results are sensitive to the arbitrarily defined values. A more

écceptable solution is to use a different estimator for the detection
probability.

The usual (maximum likelihood) estimator for the

. detection probability is taken as

p = i/n , (14)

wtere i is the number of detections and n is the number of specimens
with the crack of.the fixed length. Other estimates of the propor-'
tion which have gcceptable‘statistical properties are' the mean
estimate

. p = i/n+l" Ny ' (15)
.and the median ésﬁimatez -
§,h'%§%f% ' - (16)

In this study, equivalent mean estimates were used if ﬁiao or

"p.=1. If a crack was detected by a . inspectors .=1), the
91 1 f‘ k 4 d d b 11 (@l 1) h

detection probability was set equal to n/n+l. If a crack was .
never detected (pi=0), the detection probabilify was set equal to
1/(n+l) which is the equivalent result that would be obtained if
the definitions of suc¢ess and failure were reversed. (If the
median estimates, p. were used when i=0 or n, a similar equivalen:
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formula for the i=0 case would be required.) These substitutions
were judged to have no significant effect on the results of this
study.

3.3.2 Maximum Likelihood Estimates

Given the POD(a) model of equation (5), an entirely
different method for estimating the paremeters uses the principal
of maximum likelihood. 1In this type of estimation the parameter
estimates are the values which maximize the probability of obtaining
the observed data. The maximum likelihood estimates do not require

' grouping of data when the experiment is the sxngle inspection per

crack of category 2. Instead, they are based directly on the

_observed outcomes of 0 for a non-detection and 1 for a detection.

This paragraph presents the eguations for the maximum likelihood
estimates of the log odds model and confi&ence limits when each
crack is inspected only once. Maximum likelihood estimates for
multiple inspections of each crack could alsoc be developed. Further,
maximum likelihood estimators for parameters of models other than
equation (5) could be developed, but the solutions would not
necessarily be in closed form.

Maximum likelihoo&.estimation is based on the concept
that the data will take on values which are most likelj to occur
under the chosen probability model. For example, in a simple
Bernouili trial (which is the probabilistic representation of a
singie inspection) the propability of success is p. If p > % a
success would be more likely than a failure. Conversely if a
success were observed in one trial, it is more likely that p>k.
In following the philosophy of maximum likelihood estimation, the
value of the unknown parameter that would give rise to the highast
probability of obtaining the observed data is used as the estimate.
In the simple Bernoulli experiment if p were equal to 1 the proba-
bility of observing a success would be 1. Since probability cannot
exceed 1, the maximum likelihood estimate of p when a success is
observed in a single Bernoulli trial is 1.
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To find the maximum likelihood estimates of equation '
(5) ¥ om a sample of single inspections of n cracks, the following
procedure adopted from Reference 5 éan be used. The maximum likeli-
hood estimates @ and B of a .and B satisfy the simultaneous equations.

7. - g exp(a+Bin(aj))
17 =1 1+exp(&+§zn(ai))

i

o
[}
3 -l

o
]

t . jn(ay)- z tn(aj)exp(a+fen(ai))

i=1 i=l j+exp(G+B8Ln(aj))

- where z, = 1 if the flaw is detected and 0 if it is not.

~
variances and covariance of the estimates 4 and B are

2 exp (a+Bin{a;))
i=l (l+exp(a+B&n(aj))

Var (q) =

var (3 = 3 —{n(2i))’exp(atsin(aj))

i=] (1+exp(a+81n(ai))z

Cov (;'a)'= ; | zn(ai)exp(a+eln(a%))
i=l (l+exp(a+Bin(aj)))

(17)

(18)

iThe

(19)

(20)

(21)

Estimates of these variances and covarzance are calculatéd by

substituting ‘the estimates, a and 8, in equat;ons (19),
(21) .. ' :

(20), and

The maximum 1ike11hood estimate of the POD fuhctxon
is calculated by substituting a and 8 for a and B in equation
(5).. The change of varjables must be made using the’ same trans-
formation that was used for the log odds model in Section 3 2 to |

obtain

log  (p(a)/(1-p(a))) = ¥Y(a) = a + 8 in (a)

31
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For very large sample sizes, estimates of the variances and co-
variances of o and 8 can be used to calculate a lower confidence
bound on Y(a) as given by '

Yo(a) = o+8in (a) = 2VsT o0n(a) 535 + (ln(a))zsg (23)

where
Y is the confidence level,
2 satisfies P(Z < zY ) = y for the standard normal

distribu;ion

Sg is the estimate o£4Var aj,

a?a is the estimate of Cov (;.E).

o

sg is the estimate of Var (g).

Since the lo§ odds transformation is monotonic, the reverse trans-
formation of the confidence bound on Y{a) will be the confidence
bound on P(a). - '

An example of the use of the maximum likelihood
estimates to obtain a lower bound on POD(a), is presented in

‘Figure 9. In this figure, the lower 95 percent confidence bound
~ from the maximum likelihood analysis is plotted along with the

optimized probability method (binomial model) that was previously
presented as Figure 5. This .nalysis was based on the results of
the inspections of 361 cracks and.'with this large sample size,

the 95 percent confidence limit is very closed to the mean POD(a).
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SECTION 4
EVALUATION OF NDE ANALYSIS METHODS

To evaluate and compare the various methods for analyzing
data from NDE capability demonstration programs, results from a
large number of expefiments under known conditions are necessary.
Since such tests are expensive and the experimental conditions
are difficult to hold fixed over the long intervals necessary to
repeat experiments, experimental' NDE data were generated in a
computer simulation of inspections. The simulation process enabled
the generation of a large number of NDE experiments under a “known
capability” and under selected changes in experimental conditions.
In the following paragraphs, the simulation process is described
and the results of the evaluat'on of the analysis methods are
presented. ' "

4.1 SIMULATED NDE CAPABILITY EXPERIMENTS

A computer prcgram was written to simulate the NDE inspection
capabilities that were present in the "Have Cracks” dafa of Reference
3. The following paragraphs present a general description of the
program and describe the NDE experiﬁental conditiqns which were
simulated. The simulation program comprises Volume II of this report.

4.1.1 Simulation Program

Figure lo.ptesents a flow diagram for the process of
simulating NDE experiments. The process simulates one NDE

experiment by simulating the results of one inspection of each

of 400 details with cracks of different lengthsi The simulation
of the inspection of each detail requires three steps:

1) To reflect the random nature of the crack sizes .
that may be present in the details to be inspected, a distribution
of crack sizes is assumed. A simulated inspection is initiated
by selectidg a crack size at random, a a;, from this distribuﬁion.
The assumed crack size distribution is considered to be an experi-
mental condition as will be discussed later.
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Figure 10.  Flow Diagram of NDE Reliability Simulation.
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2) A detection probability is randomly determined
for the crack of length a; using the regression relation between
transformed crack sizes and detection probabilities for the log
odds model. 1In particular, for the log odds model, a; and p; are
related by the expression:

in (pi/(l-pi)) =qa + 8 &n a, +¢; (24)

where a and B are constants which specify'the POD function and ¢,
is' the difference between the average POD values at crack length-
a; and the P; value for a particulaf crack. It was shown that

for the log odds model, the €; can be considered to come from a
normal distribution with a:common standard deviation, S(e), at-all
crack lengths. To randomly determine a detection probatility for
the crack length a; (and given POD as defined by a and 8), €; is
selected at random from a normal distribution with standard devia-
tion S(c) and added to a + 8 2n a;- The value of P; iz given by:

exp (a+8 in a; + )

Pi * T+exp (a+8 in ai+e) (25
(For the .simulations of this study, a, 8, and S(c) were taken as
the values estimated for the AET, AUT, and BET data sets of the:

"Have Cracks Will Travel®” Program.)

3) Given the detection probability, éi' for the
crack, a simple Be;noulli trial is simulated with probability P;
of successfully detecting the crack and (l—pi) of failing to
detect it. The result of the "inspection®™ is recorded either as
(ai, 1) if the "crack" was "detected” or (ai,'O)';f the fcr;ck'

‘was not "“detected."

) After“the‘above steps are repeated 400 times to
complete an entire experiment, the data were analyzéd by seven
analysis pfocedu:es. These includéd the four interval methods based
on the binomial distribution {60 points per interval and 50 percent 1
overlap), a slightly modified version of the Lockheed analysis of
Reference 3, and the regtession"and ﬁaximum likelihood analyses
using the log odds ‘model. Lower confidence limits on probability
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of deteccion (upper POD/CL limits) were calculated using all com-
binations of POD equal to 0.5, 0.75, 0.9, 0.95, and 0.99 and confi-
dence limits for 90,95, and 99 percent. In selected runs a 50 per-
cent confidence limit was also calculated as a method of generating
the mean POD curve. These estiﬁates were recorded for later analysis
while fhe results of the individual “inspections" were discarded.

The above procedure was repeated as part of the simu-
lation process to generate a large number of repetitions of the basic

.NDE reliability experiment and the associated estimates of the POD.

These data form the basis for the comparison and evaluation of the
various methods of estimating the capability of an NDE system.

Volume II contains a complete description of the simu-
lation program, instructions for the use of the program and a complete
source listing. Input pafameters and output format are also described.
The output comprises a file of the POD/CL limits for all samples gen-
erated in the run and tables which. summarize the performance of the

' various POD/CL limits. TFurther analysis of cthe POD/CL limits was

performed using a standard statistical program package.

4.1.2 Experimental Conditions and Results

Table 3 summarizes the experimental conditione which
were simulated. Each condition is identified as an experimental
"environment"” which is defined in terms of a POD capability, a crack
size distribution ana a standard error, S(e). The o and 8 values
of POD curves were those which resulted from the analysis of the .
indicated "Have Cracks data sets. These capabilities are dlsplayed
graphically in Figure 11. Crack length distributions B and A were
the empirical .istributions observed in the 'sample B and sample A
specimens of the "Have Cracks" study.

In order to generate data that was more compatlble.
thh the interval analysis methods, it was necessary to introduce
a distribution of longer cracks. Thls distribution is 1dent1f1ed
as L and was defined as a lognormal distribution with a median of
12.7mm and the 90th percentile at 76.2mm. The long cracks were
used only with the AET capability. L '
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TABLE 3

DEFINITION OF EXPERIMENTAL CONDITIONS
USED IN SIMULATED NCE EXPERIMENTS

e ————— e w—

"POD CURVE

i Environment Crack Length Parameters ' Percentiles
: 'i Code Distribution a B ap.9 a0.95
Fv .

| et ‘1) B -0.65  0.88 25.4  59.4
| aur (2) A -3.9 1.8 29.6 . 44.8
o zr(3) A -2.9 1.7 20.1  3l.1

f AET-L.C. L -2.9 1.7 20.1 3.1

' AET-L.C. - L -2.9 1.7 20.1. 31.1

Low Scatter

(1) Représentative of eddy current surface scans around countersunk
fasteners, skin and stringer wing segments (Sample B).

(2) Representative of ultrasonic shear wave scans around countersunk
fasteners, skin and stringer wing assembly (Sample A).

b L

i C (3) Representative of eddy current surface scans around countersunk
fasteners, skin and stringer wing assembly (Sample A).

f 4 "A reduced value of the standard error of deviations
from the transformed model was introduced to demonstrate the effect
‘of a stronger correlation of detection probability with crack
length on the estimates of POD/CL. This comparison was made only
for the AET long cracks environment. In particular, it was i
assumed for the AET-L.C.-low scatter environment that S(e) was

one-fourth of the value observed in the AET 'Have Cracks" data.

4.2 EVALUATION OF RESULTS

' The initial objectives for the evaluatxon of the data from
the simulated experlments were to -compare the various methods of
analyzing NDE rellabllxty data and to determine the effect of the
choice pf,POD/CL combination on the reliability characterization.-

These evaluations are in the following paragraphs. However,
during the. study, it was observed that the length of cracks in, the
NDE experlment can influerice the characterlzatlon and that the

‘39
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strength of the correlation of detection probability with crack
length does not have as much effect as would be expecced. These’
latter evaluations are also presented in the following.

4.2.1 Cbmparison of Analysis Methods

In a preliminary evaluation of the seven analysis
‘methods, 25 experimehts_were simulated under the AET environment
which is based on the distribution of crack lengths that were
présent in the "Have Cracks" data. Table 4 presents percentages of
three categories of events derived from the 25 simulations:
1) the percent of times the confidence bound was greater than'the
true values; 2) the percent of time the confidence bound crossed
.the POD more than once; and 3) the percent of times the confidence
_bound never reached the POD value. For this crack length distri-
‘bucion, the'interval methods always failed to yield estimates of
the 90/95 and 95/90 crack length. Thaf is, for the range of crack
lengths in the experiment and the capability determined for the
AET POD function, it was ektremely unlikely to obtain any interval
which would yield sufficient detections to have 95 percent confi-
dence that 90'percent of all cracks of that length would be found.'

To effect a compariscn between the interval and
regiession model approaches to the analysis, a distribution of
longer craéks was introduced into the simulation. In particular,
it‘was'assumed that the crack lengths that woqid be present in the
NDE experiment were from a lognormal distribution with a median
crack length of 12.7mm and a 90th percentilé of 76.2mm. The
particular choice of lognormal family was judged to be inconse-
quential and the percentilés were selected to yield much longer
‘cracks than those of the original "Have Cfacks"'Sample A data.

All cracks in the Sample A data were .less than 26mm and appfoxi-~
mately 90'pércent were less than the 12./mm assumed for the median
of the lognormal crack size distribution. Table 5 presents
percentages analogous to those of Table 4 but with the lonnar
cracks size diétribution and for 75 simulated experiments.
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Even with the longer crack Size distributions, the
binomial analyses of the interval methods often do not provide
a limit. Note that the true 96 and 95 percent POD values for this
experimert are 20.1 and 31.1mn, respectively;.as these were pre-
determined by the manner in which the'Simulation'was perfotmed.
Double values occurred in the interval estlmates, even for the
Optimized P*obablllty Method (OPM) which is de 51gned to produce
a better behaved POD function. '

All of the methods except the log odds-maximum
likelihood produced POD/CL estimates which were always greater
than the true POD value. The row labeled ideal indicates the
expacted ﬁercéntages higher than ‘true. While the calculated
values are conservative, the fact that all exceed the true value
indicates that they are not true‘cohfidence limits on the POD
value. The log odds-maximum;likelihood analysis on the other
hand produced too many samples which were below the true value.
The cause of these lower than desired values is unknown but it is
postulated that .this result is due to the transformatiou in the
simulation procedure generating the correct median POD functlon
rather than the correct mean POD functxon.

A more detailed method forx comparing the POD/CL
estimates from the,different analysis methcds is to compare the
cbserved distributions of the estimates that were obtained during
thée simulated experiments. Figures 12 and 13 present the observed
Cumu;ative distributions of the 90/95 and '95/90 values, respecﬁively,
for the OPM, log odds-regression, and loq;odds-maximum likelihood
analysis methods. These.figures are based on the AET-iong cracks
environment and clearly demonstrate that the OPM estimates of the.

- 90/95 and 95/99 are generally much‘greatet than thoée'ofﬁtheflog :
- odds regression estim;teé which are in turn much greater than those

of the log odds-maximum likelihood estimates. The failure of

the OPM diatributions,to,rehch unity reflects the préviously noted’
percentage of exéeriments for which no estimate of the POD/CL
combination is reached using thé binomial distribution.
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The slope of the distribution functions reflect

the scatter that can be expected in future estimates using the

various analysis methods. The smaller the slope, the greater
is the scatter and lack of precision in the estimates. For
example, ceferring to the OPM curve of Figure 12, the likely range

~of a future 90/95 limit is quite large. For example, there is

a 50 percent chance that a future estimate would be either less 4
than 47mm or greater than 100mm (a factor of 2). From the log odds- '
maximum likelihood curve, however, the corresponding middle of 50
percent 'spans the range of 2lmm to 25mm, a range of a factor of 1.2.
'The preﬂlslon of log odds- regressxon analyses is between these two.

The regression approach to estlmatlng confidence
llmlts for high level POD values yields limits that are both cloeer
to the true limit and provide a more precise (in the sense of
less scatter) estimate. This is clearly demonstrated for the
OPM method which has been shown to be the "best” of the interval
methods.

Figures 14 through 19 compare the distributions of
90/95 and 95/90 limits for the log odds-maximum likelihood, log
odds-regression, and Lockheed analysis methods for the BET, AUT,
and AET environments. These environments have the shorter crack
size distributions that were present in the Sample B and Sample A
"Have Cracks” data. 'All of these figures dxsplay that the Lockheed
analysis yields significantly larger estimates of the 90/95 and
95/90 eatimatés and that these esifmates.have leés precision than
those of the log odds analysis model. This result was expected
since the underlying simulation model was the log odds equation
and since the Lockneed analyses placed confidence'bounds on the
individual detection probabilities at a crack. length rather than
on the mean of the detection probabilities.

The log odds-maximum likelihood estimates are smaller
and have greater precision than those of the log aJids-regression for
all six combinations of Figures 14 through 19.  For these shorter
crack simulationa. the confidence limits are closer to true in the
sense that they are less than the true value in the carrect

4
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proportion of experiments. However, the precision of the esti-
mates for any of these analysis methods is poor‘and will be
discussed later.

4.2.2 Comparison.of POD/CL

The choice of the POD/CL combination to be used in
deflnlng the capablllty of an NDE system has been rather arbltrarlly
defined as 90/95. To evaluate various choices from the viewpoint
of their estimates in an'NDE evaluation eXperiment, the crack 1engths
corresponding to several combinations of POD and confidence level
were calculated for each siﬁulated experiment. The statistical pro-
perties of these POD/CL limits under fired conditions provided con-'
siderable insight into the practlcaL usefulness of various comblnd-
tions.

Tables 6, 7, and 8 present the mean (X), standard
deviation (S), and coefficient of variation (CV = 100 S/X) of the
estimates of POD/CL limits for the BET, AUT, and AET environments
obtained using the log odds model for analysis. The statistics
are based on a sample of 100 estimates ("experiments") in each of
the-ehvironments. The "true" crack length corresponding to a POD
value (Equation 5 or Figure 11) is listed as the ap value.

The coefficient of variation columns of the tables
display that estimation precision decreases rapidly with increasing
POD and‘with incréasing level of confidence. Further, the average
of the calculated POD/CL limits increases as the degree of confi-
dence increases as would certainly be expecte@. The combination
' of these facts indicates that considerable real scatter is present
in the estimate of NDE capabllxty at high values of POD and
confidence.

~ "As' an example of the effect of scatter in the esti-
mates, assume an ay,. value is to be determined for the BET
environment and the data will be analyzed using the log odds-
regression approach. Figure 20 displays the distribution of
potential estimates of a\pE if aNDE is defined as either the
90/95 or 95/90 limit. The result of the future experiment in the
BET environment is equ;valent to drawlng a number at random from
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either of these cumulative distribution functions. For this
environment, the "true” 90th percentile is 25.4mm (Table 6} but
% there is a 50 percent chance that the eatimaté will exceed 7lmm,
i a 25 percent chance that the estimate will exceed 150mm and a

; 10 percent chance that the estimate will exceed 380mm. These
values were obtained from the 90/95 curve of Figure 20. Similarly,

- the "true” 95th peréentile is 59.4mm while there is a 50 percent
chance that the 95/90 estimate will exceed 160mm and a 28 percent
chance that this estimate will exceed 400mm. Similar examples

i . could be presented for the other environments and the log odds-

maximum likelihood analysis.

e 4

In general, the scatter in the eatimates is suffi-
ciently large as to cast considerable doubt on the validity of any
single POD/CL limit if the POD is 0.9 or greater and the level
of confidence is 0.9 or greater. It should be noted that the
scatter in the limits gives rise to excessively large estimates
of aNDE'and the estimates are conservative. However, the degree
of conservativeness would be unknown in a particular application.

4.2.3 Comparison of Crack Size Distributions in the
Specimens of an NDE Capability Experiment

To compare the interval and ragression model methods
of analysis, it was necessary to introduce a distribution of long

ﬁ o cracks for the representative “spécimens' of the simulation.

-When the resulting POD/CL estimates from “he long cracks simula-
tion were compared to those of the short cracks (i.e. the crack
sizes of the “Have Cracks data) simulations, it was observed that
signifxcantly ditferent distributions resulted. Examples of apch
comparisons for the AET environmznt are presented in Figures 21 and
22 for the log oddn-tegrealion and log odds-maximum likelihood
analysis methods, tespectivaly.

———.
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In the four cases considered tbe long crack experi-
ments had less scatter in the estimates of the POD/CL limits than
did the short crack experiments. In the log odds-maximum likeli-
hood analysis (Figure 22), the long crack experiments tended to
provide estimates closer to the true POD value (i.e. smaller)}

In the log odds-regression analysis, however, this trend was
reversed. '

While the effect of specimen crack size distribution
has not been sufficiently determined, these comparisons definitely
indicate that the sizes of the cracks in-a NDE capability demon-
stration program should be considered as an expei’mental control

to the extent possiblé.

4,.2.4 garison of Scatter in Detection Probabilities at
a Fixed Crack Length

In an effort to isolate the causes of the large
degree of scatter in the estimates of the POD/CL limits, it was

- postulated that this scatter could be caused by the relatively

poor correlation of crack detection with crack length that was
present in the "Have Cracks” data. . To test this hypothesis,

NDE simulations were performed for the AET-long cracks environment
but with standard error of deviations about the POD function '
reduced by a factor of 4. Figure 23 depicts two sets of 95 percent
confidence bounds on the detection probabilities from the AET
environment. The outside bands would be expected te encompass
approximately 95 percent of the .individual crack detection
probabilities (c.f. Figure 8).—The inside bands were generated
diViding the "Have Crack" standard error by 4. As can be seen,
the detection probabilities for the reduced standarxd error are
much better correlated with crack size.
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Figures 31 through 34 present the distributions of 90/95
and 95/90 limits obtained from the simulations for bbth degrees
of variability in the AET-lony cracks environment. Increasing the
correlation of crack detection probabilities with crack length
(i.e., reducing the scatter of individual crack detection proba-
bilities about the POD function) produced two changes. First,
smaller POD/CL estimates were obtained from the less scattered
detection probabilities even though the true POD was constant in
both sets of experiments. Second, the variability of the POD/CL
estimates was reduced but not by an amount that would have any
real practical significance. Thus, it was concluded that improving
the degree of correlation of detection probabilities with crack
length will not have a practical effect on the precision of the

estimates of the POD/CL limits.

4.3 DISCUSSION

| Analysis of the results of the simulated NDE experimenés
lead to three major conclusions: - :

1) The large degree of variability in the POD/CL crack
length estimates for POD values of 0.9 and greater
indicates that such estimates are not reproducible if
an NDE capability experiment would be repeated.

2) Both the magnitude and scatter in the POD/CL estimates
- are significantly influenced by the crack sizes in the
.experiment.

3) The variability of the POD/CL estimates is not primarily

due to the lack of a strong correlation of detection '
probabilities of individual cracks with crack length.

These conclusions imply that the scatter in tﬁe POD/CL eéﬁimates
is inherent to the analysis procgdure and oaly indirectly to the .
NDE capability. : '
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i To further explbre the instability of crack length estimates
corresponding to high POD values, consider the shape of the model
for POD as a function of crack length.' Available data from NDE
reliability experiments indicate that at least some of the longer
length cracks fail to be detected. Realistic POD models will
account for these misses by asymptotically approaching one. Simple
geometric considerations lead to the conclusion that estimates

of crack lengths corrésponding to POD values in the flat portion
of the curve are very sensitive to “errors® in the POD value.

See Figure 1ll1. Since the POD value is being estimated statisti-
cally, very large sample sizes would be required toc reduce the
"error" in the POD estlmate to yield a precise corresponding

crack length.

It is theoretxcally possxble to have an NDE system for
whzch the slope of the POD curve is sufficiently steep, that
reasonably precise estimates of the crack length corresponding to
a POD of 0.90 or 0.95 can be obtained. Such POD curves have not
yet beer shown to occur in field applications since human factors
as well as inspection hardware influence the capabilxty of the’
system. Even if such a system were available, however, attempts
to characterize it in cerms of higher POD levels (say 0.99 or
0.999) ‘would lead to the same lack of precision in the POD/CL
estlmates._

Assuming,the,simulations are a reasonable approximation
—;mwu~4——to NDE capabilityidemonstratiohs, the preceding discussion indi-
cates that POD/CL crack length estimates are guite unstable and,
therefore, unacceptable for use as s:‘_.ngle number crack length .
characterizations. Actually, the 90/95 limit. is commonly quoted
by the Air Force because the analysi§ methods could more often
provide tnis estimate rather than a desire to determine the
crack length for which 90 percent of the cracks will be detected.
It was generally assumed that the 90/95 limit was “"conservative"
E : for a system but no measure of the conservativeness was quoted}
Further, this charac;erization'of NDE capability is extremely
difficult to use in a»me;ningfu; risk analysis. |




In the structural maihtenande.syétem application, the
quantity of real interest is the probability that cracks longer
than a fixed value will pass.undetectedQ This probability depends
on both the POD distribution and the sizes of the cracks that are

present in the structure. In-particular, iet H (a) represent the
probability of having a crack greater‘than or equal to a in the
structure and failing to detect it.durihg an inspectionlﬁhose
probability of detection is given by POD(a); Then

w .

H(a) =f [1 - POD(‘x)] £(x)ax - (26
a - L

where f(x) is the probability dehsity function of the crack -
sizes in the structure to be inspected.

To illustrate this calcﬁlation, Figure 28 presents H(a)
for two crack size distributions and .the NDE capability as
determined for the AET environment (a = -2.9, 8 = 1.7). The
crack sizes were assumed to have Weibull distributions with
shape parameter equal to 2.73. The scale parameters were
selected to yield median crack sizes of 12.7mm and 25.4mm. The
cunmulative. dlstrlbutlon of the crack sizes are shown as F (a)
and F (a) for the small and large cracks, respectively. The
resultlng probabilities of havxng a crack larger than a and:
missing it during the inspection are plot*ed as H {a). and Hz(a)
for the small and large cracks, respectlvely. ?he plot for H (a)
indicates that in a random 1nspect10n from the large cracks
dlstrlbutlon, there is a 2 percent chance of hav1ng a crack longer
than 25mm and not detecting it. On the other hand H (a) for the
small cracks zndlcatas there is practically no chance (within
. plotting accuracy) of having a crack greater than 25mm and failing
to detect. Note that in the small crack distribution there 15
only a 1 percent chance of having a crack greater ‘than 25mm.

Note also that the 90/95 limits for the AET environment were
generally greater than 20mm. ‘Therefore, whether or nc the 90/95
limit was sufficiently large depends nct'cnly on the particular
estimate obtained from the NDE ‘experiment but also on the crack
sizes in the structure to be xnspected. ‘
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A second calculaticn that may prove of interest .in structural
maintenance plans is the probability of not detecting a crack given
that its length is greater than a fixed valve, a. This quantity is

given by the expression’

- H(a) |

and is calculated quite simply from the cumulative crack size
distribution, F(a), and H(a) as yiven by equation (26).
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SECTION 5
CONCLUSIONS

This program comprised two distinct phases. The conclusions
drawn from each of the phases are presented below.

5.1 POD ANALYSIS FRAMEWORK AND REGRESSION MODEL SELECTION.

The objectives of this phase of the study were to formulate
and demonstrate an-aﬁalysis framework for quantifying the results
of NDZ experiments and to select an appropriate POD model based
on the data of the "Have Cracks Will Travel®” Program. The follow-
ing conclusions were reached. ‘

1. All cracks of the same length do not have the same detec-
tion probability. The strength of the correlation between detection
probability and crack length depends on the NDE system (including
inspection environment and human factors), crack geometry, and the.
structural element being inspected.

2. The probability of detection for cracks of a fixed length
in a population of details is the mean (average) of the detection
probabilities of the individual cracks.

3. Since the POD as a function of crack length is the curve
through the mean values, standard regression techniques of statis-
tics can be used to estimate and place valid confidence limits
on this POD function. Care must be téken.in the determination of
a regression model to ensure not only that the equation "fits"
the data but also that ﬁhé deviations from thé predicted averagé
values are normally distributed with équal variance for all crack

lengths.

4. The log oqu model met the three acceptability criteria

.when applied to the eight data sets of the "Have Cracks Will

Travel” program that had sufficient data for meaningful analysis.
Six other models which have found wide use in problems of a similar
nature did not perform as well on the same data.' Since the log

‘odds model was designed to yield both equal variance and normality

of deviations from the equation, this model is conditionally
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recommended for regression analysis of POD data. However, due to
the limited experience in the regression analysis of POD data,

the applicability of the loé odds model should be verified whenever
possible. If necessary, more appropriate models should be used.

5. A method for estimating the parameters of the log odds
model using maximum likelihood was derived for the NDE experiment

" in which each crack is inspected once. , A method for placing confi-

dence bounds on the POD function was also established using
asymptotic properties of the maximum likelihood estimates. This
maximum likelihood method does not require grouping cracks into
ranges ¢ similar length and is distinct from the least squares
estimates of a regression analysis.

5.2 RESULTS OF SIMULATION STUDIES

'In the second phase of the program, NDE demonstration programs
were simulatcd usiné representative capabilities and scatter in
detection probabilities as determined for the "Have Cracks Will
Travel" data. The objectives of this phase were to compare analysis
methods and capability characterizations as expressed by combinations
of POD and confidence level. . The following conclusions were reached.

1. Given an acceptable model for the regression function,
the regression estimates of NDE capability expressed in terms of a -

‘confidence limit on a high probability of detection value (i.e. a

POD/CL value) are supericr to those derived using binomial distri-l
bution theory. The regression estimates are closer to the true POD,

- exhibit less scatter in the distribution of the estimates, and,

contrary to binomial me*hods, always provide an estimate of the
desired limit.

2. The ragnitude and scatter of the POD/CL values are
szgnificanti' ‘influenced by the crack sizes employed in the NDE
capability experiment. :

3. The degree of scatter of the detection probabilities of.
individual cracks about the PCD function has only a saecondary
effect on the scatter in the POD/CL estimates.
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4. Sihgle number characterizations of NDE capability ex-
pressed in terms of a probability of detection and a confidence
level (POD/CL) display a degree of scatter (i.e. non-reproducibility)
that make these characterizations ofllimited practical use in the
evaluation of NDE systems. | '

5. A more complex. characterization of capability will be
required for use in the evaluation of NDE systems.
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APPENDIX A
"HAVE CRACKS WILL TRAVE_L" DATA BASE

Under an Air Force program entitled "Reliability of Non De-
structive Inspections,"” personnel from the Lockheed - Georgia Com-

pany transported fatigue damaged structural samples to Air Force

bases and depots. The samples were inspected by representative
inspectors at each fecility using current, standard NDE technology
The results of each inspection along with a large body of concomit-
ant data were stored'in_a data base which has been commonly identi-
fied as the "Have Cracks Will Travel®™ data. At the conclusion of
the inspection phase of the progfam. the cracks in each structural
element were found and measured and these data were also incorpq-
rated into the data base. '

The "Have Cracks" data base contains the results of approxi-
mately 22,000 inspections that were made on 174 cracks. Each crack
was inspected by 2 or 3 procedutes appropriate to the structure
and by as many as 107 different inspectors. Since different NDE
capabilities were antlc;pated for the different NDE methods and
structures, the data were partitioned into 13 sets as defined by
structure type and inspection method. Table A.l identifies the

'13 data sets and lists the number of cracks and number of inspec-

tions of each crack of the data sets. Figures A.l1 through A.13

" present plots of. the detection percentages for each crack in each

data set.
‘There were two. ob)ectlves in the analysxs of these data:

‘1) to determine a regression model which best flt the data as

defined by three criteria, and 2) to determine estimates of the
pararneters of the model and variability of POD values about the
model_as,representetive input to a simulation etudy; The good-
ness of fit criteria were: 1) the pattern and magnitude of the
individual deviations from the regresszon curve (the residuals),
2) the equality of variance of the residuals for all crack lengths;
and, 3) the normality of the residuals. The first criteria con- '

‘cerns the ahility of the model to adequately represent the observa-

tions. The last two criteria are necessary assumptions for deter-
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mining confidence limits on the POD curve and also provide the dis-
tributional framework for performing the simulation studies of this
program. It should be noted that since detection probabilities are
always betweéen zero and one, candidate regression models required
transformations of the observed POD and crack length values. Thus,
the goodness »f fit and residual .analyses were performed in the
domain of the transformed values.

The sample type E specimens (data sets EEA and EEH) contain
only 6 cracks. Although these data were fit to the various'regres-
sion models, they were ignored in the determination of the best
fit. Similarly, the AUA, BEO, and FEA data sets were judged to
contain *oo few inspections per crack to be permitted to influence
model selection. The standard deviation of an estimated percen-
tage due only to sampling error is vp(i-p)/n. Those data sets
which have few inspections per crack would have significantly
greater variability in the estimates of individual POD values than
those with 50 or more inspectibns per crack. The CUT and FUT sets
with 32 and 27 inspections per crack, respectively, were not elimi-
nated as these were considered the transitional sample sizes. Thus,
the selection of the POD model was based on 8 of the 13 data sets.

Also included in Figure A.1 through A.13 are the POD curves
derived from the log odds model which demonstrate the goodness of
fit 'of this ﬁodel. Data sets AET, AUT, and BET were selected to
rep esent the "typical® inspection capability for the simulation
phase of the study. These choices'represent three reasonable
- degrees o% NDE capabilify and two degrees of scatter of the indivi-
dual detection probabilities abou; the mean POD function.
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Figure A.1 Detection percentages and mean log odds model. for cracks

of AET data set - Have Cracks Will Travel Data Base.
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Figure A.2 Detection percentages and mean for log odds model for
cracks of AUA data set - Have Cracks Will Travel Data Base.
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Figure A.3 Detection percentages and mean log odds model for cracks
of AUT data set - Have Cracks Will Travel Data Base.
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Figure A.4 " Detection percéhtaﬁés,and mean log 6dds‘mode1 for cracks
S e of BEO data set - Have Cracks Will Travel Data Base.
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Figure A.5 Detection percentages and mean log odds model for cracks
of BET data set - Have Cracks Will Travel Data Base.
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Figure A.6 ' Detecfiou percentagés and mean log odds model .for cracks of
. BRT data set - Have Cracks Will Travel Data Base.
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Figure A.7 Detection percentages and mean log odds model for cracks
of CPT data set - Have Cracks Will Travel Data Base. .
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Figure A.9 Detection percentages and mean log odds model for cracks
of EEA data set - Have Cracks Will Travel Data Base.
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Figure A 10 Detecrion percentages and mean log odds model for craciks
of EEH dara set - Have Cracks’ Will Travel Dai.a Base.
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Figure A.1l1 Detection percentages and mean log odds model for cracks
of FEA data set - Have Cracks Will Travel Data Base.
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Figure A.12 Detection peréeﬁtaﬁeq and wean log odds model for cracks
of FEH data set =- Have Cracke Will Travel Data Base.
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