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FOREWORD

This technical report summarizes the effort performed by

the University of Dayton Research Institute under Materials

Laboratory contract F33615-80-C-5140, "Evaluation of NDE Reli-

ability Characterization," Task 24180522, in the area of

characterizing the capabilities of non-destructive evaluation

systems. The work was performed between July 1980 and August
1981. Dr. Joseph A. Moyzis of the Materials Laboratory was the

Air Force Project Monitor and Dr. Alan P. Berens of the University

of Dayton was Principal Investigator.

A complete description of the methods and results of the

study are contained in Volume I. As part of the study, a com-

puter program was written which simulates NDE experiments.

Volume II comprises a user's manual and the listing for this

simulation program.
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SECTION 1

INTRODUCTION

The United States Air Force approach to preventing structural

fatigue failures is based on predictions of potential crack length

as a function of flight time. For each critical area of the struc-

ture: (1) the length of the largest crack that could be present

is ascertained; (2) the growth of this crack is predicted for the

anticipated usage environment; (3) structural strength degradation

due to crack growth is utilized to determine the safe time period

during which the structure will not fail; and, (4) a repeat inspec-

tion is scheduled at half the flight time required for the crack

to grow to critical size. This process is illustrated in Figure 1

which depicts projected potential crack growth in the anticip.ted

usage environment through the second inspection. The initial

crack lenith, ao, is representative of manufacturing quality while,

the reset crack length at an inspection, aNDE, is the longest

crack that could pass undetected thr'ugh the non-destructive

evaluation (NDE) system. Since crac'- growth rates are highly

dependent on crack length, the success of this procedure is

greatly influenced by the correct choice of the initial and reset

crack lengths.

A characteristic of all current non-destructive evaluation

techniques is their inability to repeatedly produce correct indica-

tions when applied by various inspectors to flaws of the same "size".

The ability and attitude of the operator, the geometry and material

of the structure, the environment in which the inspection takes

place, and the location, orientation, and size of the flaw all

influence the chances of detection. However, since the structural

maintenance actions are scheduled on the basis of potential crack

length, the other factors are controlled (to the extent possible)

or ignored -and the resulting inspection uncertainty is characterized

only in terms of crack length. A probability of crack detection
(POD) for all cracks of a given length is postulated as the pro-.or-

I tion of cracks that will be detected by an NDE system when applied
by representative inspectors to a population of structural elements

H _ 1,'•
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in a defined environment. Thus, the capability of an NDE system

* is expressed ia probabilistic terms and this characterization has

two significant ramifications.

First, for a given NDE application, the true probability of
detection as a function of crack length (or for a single crack

length) will never be known exactly. The capability of an r.DE

system can only be demonstrated through an experiment in which

representative structures with known crack lengths are inspected

and the true POD is estimated by the observed percentaqe of correct
positive indications. The estimated POD is srbject to statistical

variation that results from all uncontrolled factors that can lead

to non-repeatable positive indications for cracks of a particular

length. However, statistical methods (which depend on the experi-
mental procedure') are available which yield confidence limits on tht
true probability. Protection against making a wrong decision on tht

basis tAf a set of non-typical results i3 provided by the confidence
limits but an unknown element of risk will alwcys be present.

Second, in the real world structural integrity problem, no
inspection procedure will provide 100 percent assurance that all
cracks greater than some useful length will be detected. The current
capabilities and the uncertainty resulting from the NDE demonstration
process at the short crack lengths of interest in aircraft applica-

tions dictate that the aNDE value must be specified in terms of a high
* confidence that a high percentage of all crazks greater than aNDE

will be found. For example, MNL-A-83444 indicates that aNDE is

that crack length for which it can be shown there is 95 percent
cor•idence that 90 percent of all cracks will be found. (Note that,

the chances of a crack longer than aNDE passing undetected depends
not only on the capability of the NDE system but also on the distri-
bution of crack lengths that are present in the structural elements).

Due to the importance of the statistical characterization of
NDE capabilities, this study was undertaken to: 1) evaluate and

compare existing methods for determining aNDE and the POD as a

function of crack size; 2) to devise and evaluate different analysis

3



methods and models- ind 3) to evaluate different combinations of

POD and confidence l1imits as single number characterizations (aNDE

values) of NDE systems. The essential tools used to achieve these

objectives were the formulation of a probabilistic framework which

recognizes that different cracks of the same length have different

probabilities of detection and the use of this formulation to

simulate NDE reliability demonstration experiments.

Section 2 presents a brief summary of the different types of
NDE reliability demonstration experinent3 and the analysis methods

that have been used for the resulting data. Section 3 presents the
new probabilistic framework for modeling POD as well as two methods

for estimating POD's within the framework. Section 4 describes the
simulation process and contains the comparisons of different methods
and different POD/confidence interval combinations. Conclusions and

recommendations are contained in Section 5.

It should be noted that in general NDE reliability comprises
two types of wrong indications: failure to give a positive indica-
tion in the presence of a crack and giving a positive indication
when there is no crack (a false call). While it is recognized that
both types of error are important, only the former is considered

in this study. Due to the potential safety hazard, failure to find
a crack is considered to be the more critical problem in the

structural integrity application.

47



SECTION 2

NDE RELIABILITY EXPERIMENTS

There are three categories of experiments which have been
used to evaluate the reliability of NDE systems: 1) demonstration
of a capability at one crack length; 2) estimation of the POD

function and confidence bounds through single inspections of cracks
covering a range of lengths; and 3) estimation of the POD function
and confidence bounds through multiple inspections of cracks cover-
ing a range of lengths. Analysis of data from category 1 and 2

experiments have generally been based only on binomial distribu-
tion theory. Category 3 data have been analyzed by regression
analyses. Details of the three types of experiments and the analysis
methods used to date are presented in References 1,, 2, and 3. The

following paragraphs summarize pertinent features of each current
experiment/analysis combination. In the discussion, it is assumed
that a representative population of inspectors are inspecting
representative specimens in the environment of interest. Also, the

question of the number of uncracked specimens submitted for inspec-
tion along with the cracked specimens is ignored even though this

is recognized as an important experimental design condition. As
noted earlier, false calls are being ignored in this study so only
the cracked specimens enter the analysis.

2.1 CATEGORY 1: NDE CAPABILITY AT ONE CRACK LENGTH

This category of experiments can be vievted as a method for

de onstrating that an NDE system can detect at least a given
percentage of cracks of a specified length with a specified con-
fidence limit. For example, this approach could be used to show

th t there is 95 percent confidence that at least 90 percent of all
cr cks of length 0.25 in. will be found by a particular system.
Th a category of experiments also serves as an introduction to the

us of the binomial distribution for the analysis of NDE reliability
da a.'

I; 5



Out of a large number of specimens to be inspected, assume
n contain a crack of length a and, at each inspection, there is a
probability, p, of detecting the crack of length a. If r of the
cracked specimens are detected,

p =r/n (1)

is an estimate of p and binomial distribution theory can be used
to calculate lower confidence limits for the true, but tnknown,
value of p. The confidence limits depend on both r and n and are

tabulated in many references, c.f., References i or 4.

To demonstrate a 90 percent POD at a 95 percent confidence
level, a minimum of 29 specimens at the fixed crack length are

required. If 28 out of 28 cracks are detected, the lower 95 per-

cent confidence level for p is Less' than 0.9. Given the number of
cracked specimens tested and the number of cracked specimens found,
a lower confidence level for p can be constructed. If the lower
confidence limit is sufficiently high (as defined prior to the
experiment, e.g., 0.90) the demonstration is complete. If the
lower confidence level for p'is below the targeted valive, the NDE
system has failed the demonstration at that crack length.

This category of experiment provides information only at the
crack length inspected and was not evaluated in this study. A

complete discussion of the experiment and analysis method can be

found in Reference 1.

2.2 CATEGORY 2: ESTIMATION OF THE POD FUNCTION WITH ONE
OBSERVATION PER CRACK

In the second category of experiments many specimens covering

a range of crack sizes are inspected once and the results are used
to estimate the POD as a function of crack length with confidence
limits. Different analysis methods have been used on the results
of these experiments but they are all based on binomial distribu-
tion theory. Since, in general, there are not a large number of
specimens with crackL of the same length, the specimens are grouped

into intervals of crack length. It is assumed that all cracks

6



within a specified interval have approximately the same POD.

The number of detections for the group is modeled by the binomial

distribution, analyzed as described-earlier, and the lower confidence

bound for the POD is usually assigned to the crack length at th3

upper end of the interval.

The essential difference among the various methods of

analyzing the data from this category of experiments has been in

the method by which the crack length intervals are formed or com-

bined. The following paragraphs present a brief summary of four

analysis methods that have been used. References 1 and 2 present

detailed discussions of these analyses. Reference 2 recommends

the use of the method defined as the Optimized Probability Method

(OPM) as described in Paragraph 2.2.4.

2.2.1 Range Interval Method

In the Range Interval Method (RIM) crack length

intervals are defined with equal lengths across the range of the

data. Due to the somewhat random nature of the crack lengths in the

specimens being inspected, the intervals constructed by this method

will contain different numbers of flaws, The estimate of the POD

function and iti lower confidence limit can exhibit an apparent

erratic behavior of the confidence limits resulted from small

sample size. For example, Figure 2 presents RIM analyses of inspec-

tion results for eddy c~vrent inspections of etched fatigue cracks

in 2219-T87 aluminum flat plates, Reference 2, page D-63. The

individual data points are thepercentageof cracks identified in

each interval while the solid line segments connect the lower

'5 percent confidence bounds for each POD estimate. The extremely

erratic behavior of the confidence limits resulted from small

sample sizes in some intervals even though all cracks greater than

3.6 mm were detected. For example, the very low confidence
bound at about 6 mm resulted from that particular interval containing

only one crack and., even though detected, the lower 95.percent con-

fidence bound on p for a sample of size one is 0.05.

7
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2.2.2 Non-Overlapping Constant Sample Size Method

To avoid the problem resultinc from the variable
sample sizes, the length of the intervals can be varied so that
each interval contains the same number of specimens with cracks to
be detected. This method, the non-overlapping constant sample size
method, is discussed in detail in Reference I. If N represents the

number of points in each interval, the intervals are constructed
as follows. The longest N cracks form the first group. The second
group contains the longest N cracks after the first group has been

removed. The process is continued until all cracks are assigned to
one of `he intervals. Figure 3 shows the results of analyzing the
data of Figure 2 by this method using a sample size of 60 cracks

in each interval. As before, the data points represent the

observed percentages of detections in each interval and the line
segments connect the lower 95 percent confidence bounds. The data
points and the lower confidence bounds are plotted at the longest
crack. size in each interval which introduces an unknown degree of
conservatismn in the NDE capability. Although in this example the

lwer confidence bound is monotonically increasing, other data sets
could give rise to more erratic behavior; i.e., the, monotonicity
is a function of the data, not the analysis method. This method

reeuces the nun,b-r of intervals for analysis which leaves longer

gaps to be filled by interpolation. The number of points in each
interval could be reduced but lowering the sample size in an inter-
val widens the confidence bounds.

2.2.3 Overlapping Constant Sample Size Method

To obtain narrower intervals-with a relatively large
number of specimens in each crack length interval, the intervals

are overlapped (Reference 2). Each interval contains the same
number of specimens but the NDE indication for any particular
specimen m&y be analyzed in more than one interval. The intervals

* are created by first grouping the largest N cracks. Of these, the
smallest T percent is grouped with the next largest N-NT cracks.

This process is continued until all cracks are assigned to at

least-one interval. As an example, in Reference 2, a 50 percent

9| 1,
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overlap was used with a 60 point increment and was referred to as

the overlapping sixty point method (OSPM). Figure 4 presents an

example of the method for the data of Figures 2 and 3. Again,

erratic behavior of the confidence bound can result and the bounds

are p e at the upper end of each interval with unknown conser-

vatism. Further, using the results from a particular inspection

in more than one interval results in deriving confidence limits

from nc½n-independent data sets with an unknown effect on the total

measure of NDE capability.

2.2.4 Optimized Probability Method

An algorithm for grouping experimental results to

achieve the highest possible lower confidence bound from binomial
distribution methods is presented in Reference 2. This method was

named the optimized probability method. Initially, groupings are

formed as in the range interval method giving rise to m intervals.
For convenience, these intervals will be labeled 1 through m with

the longest cracks in interval 1. The first OPM interval is

selected as follows. The lower confidence bound on the POD is

calculated for the data 4n interval 1, then for the data in inter-
vals 1 and 2 together, then for intervals 1, 2 and 3 and so forth

until a lower confidence bound for the POD is calculated for the
whole data set (intervals 1 through m combined). The group of

intervals that gives rise to the highest lower confidence bound is
used as the first interval in the optimized probability method.
Interval 1 data is then eliminated and the set of intervals 2

through m are analyzed in a similar manner to create the second

OPM interval. This process continues until confidence bounds for

all m intervals are found. Figure 5 shows the results of this

procedure for the same data that was used in Figures 2 through 4.

Confidence bounds obtained by the optimized probability method
are better behaved than those of the other interval. However,

this behavior is obtained at the expense of unknown statistical

validity of the POD function across all ranges of crack length.

t o
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The overlapping of intervals requires inspection results for a

i{ particular crack to be analyzed more than once. Any crack that

falls in an overlap area is used in calculating the confidence

bounds for all the intervals involved. Thus, there is a correla-

tion between confidence bounds that share data and the influence

of this correlation on the POD as a function of crack length is

unknown.

In general, the various "interval" methods have

three major deficiencies. First, since they are based uporn tne

binomial distribution, the confidence bounds are greatly influenced

by the method for assigning cracks to intervals. The confidence

bounds are as much influenced by the analysis method as they are

the data. Second, the confidence bounds do not approach unity

and, depending on the sizes of the cracks in the test specimen,

may not reach the required 0.90 POD level. The entire experiment

may fail to prcvide the desired result. Third, they provide

limited inferences on the entire POD function if this function is

required for further studies such as risk of failure analyses.

2.3 CATEGORY 3: ESTIMATION OF THE POD FUNCTION WITH MULTIPLE
OBSERVATIONS PER CRACK

This category of experiment resulted from a large NDE

reliability program performed for the Air Force (Reference 3 and

Appendix A). Sections of retired aircraft and other specimens

were transported to Air Force depots and inspected for cracks by

representative personnel, using various NDE systems in, a typical

environment. At the completion of the travel phase of the program,

the structures were destroyed to verify the existence and lengths

of the cracks. This experiment has often -been called the "Have-

Cracks-Will-Travel Program" and the data from the program if, often

referred to as the "Have-Cracks" data.

This method of collecting data yields an estimate of a

detection probability for each individual crack. For example,

Figure 6 from data of Reference 3, displays the inspection results

of individual cracks emanating from fastener holes in a skin and

stringer wing assembly (Sample A) as inspected by eddy current

14
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surface scans. Each data point in the figure represents the

proportion of times the crack was found when subjected to 60

independent inspectioas by different inspectors. These data

clearly illustrate that not all cracks bf the same tngth have

the same detection probability.

To analyze the data collected from this category of NDE

experiment, a regression analysis is performed in which a model

curve is fit to data points (as represented by Figure 6) and a

lower confidence limit is placed on the regression equation. In

Reference 3, the model selected as providing the best fit is

given by

POD (a) = exp [-a a(l-8)• (2)

where the parameters are estimated by a linear regression on trans-

formations of the crack lengths and observed probabilities of

detection. The curve labeled "mean" in Figure 6 illustrates the

fit of the model to the data points.

In Reference 3, the viewpoint was taken that the POD at a

particular crack length was a low percentile of the distribution

of detection probabilities at the crack length. To calculate

a lower confidence limit on the POD, a confidence bound on the

population of detection probabilities was used. Such a bound is

also shown in Figure 6 as the "95% Confidence" curve. In this

particular example, the "95% Confidence" curve is considerably

below all of the data points. It will be shown later that the POD

is actually, the mean of the detection probability distributic.A.

Hence, the POD confidence limits should be placed on the mean

regression line not on the total population of detection probabil-

ities.

!1 16



SECTION 3
A PROBABILISTIC FRAMEWOP01 FOR POD

Prior to the "Have Cracks" program described in Reference 3,
the results of all inspections of details with cracks of approxi-
mately equal length were treated as completely random samples from

Bernoulli trials with a constant probability of successful detection.
This model is an entirely correct approach for comletely independent
inspections. In the "Have Cracks" program, the same details were

inspected by a large number of inspectors. The repeated observa-
tions on the same details required a different analysis model which
separately handled the different detection probabilities for

different details. A regression approach was. used to analyze these
data but no rationale other than goodness of fit was presented for.

the approach. In the following, a probabi?.istic framework is pre-
sented in which it is shown that the POD is the average of all
detectior probabilities of all cracks of the same length. Thus, the
regression equation provides an estimate of the POD function, but
a regression model must be determined. The "Have Cracks" data were
used to compare and select an acceptable model from seven candidates.
For the best model, methods of estimating the parameters are also

discussed.

3.1 THEBASIC FRAMEWORK

In the data of the "Have Cracks" program, there are many

examples of two cracks of approximately equal length having signi-
ficantly different probabilities of being detected (c.f. Figure .6
and Appendix A). These results demonstrate that the POD is
influenced by many factors and is only correlated with crack

length. To model the POD, assume that there is a distribution

of detection probabilities at each crack length where the scatter
in this distribution is caused by the non-reproducibility of all

factors other than crack length. Examples of such factors are
differences in detectability due to operators, environments,
and crack orientation, geometry or location. The probability of

detection of a crack selected atrandom from all cracks'of a
fixed length can be calculated as follows.

17
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Let fa(p) represent the density function of the detection

probabilities for the population of details which have a crack

length of a. Figure 7 presents a schematic representation of this

distribution. The probability of selecting a crack whose detec-

ticý2 probability is between p and p+dp is fa (p) dp by definition

of a density function. The probability that this crack will be

detected is p. The conditional probability that the detection

probability is p and that a positive indication will be given is

p fa(P~dp. To find the unconditional probability that a randomly
selected crack of length a will be detected, POD(a), the conditional

probabilities are summed over the range of detection probabilities.,

Therefore,
1

POD(a) - f P fa(P)dp (3)

0

In addition to calculating POD(a), equation 3 is also the formula

for the mean of the distribution of detection probabilities at

crack length a.

The following simple example illustrates this property.

Assume at'some crack length there are only five types of cracks

and for each crack type there is a constant detection probability

as given in Table 1. Assume, further, that the five crack types

are equally represented in the structural details of interest.

Under these conditions, the average of the detection probabilities,

POD(a), is 0.80. If 1,000 inspections are perfonaed on details

chosen at random, 200 of each type would be expected in the total

sample. Of the 200 cracks of Type 1, (0.65) (200) - 130 would be

expected to be detected and similarly for the other four crack

types as indicated by the calculations of Table 1. The total

number of cracks that would be expected to be found in 800 or 80

percent of the total number inspected. Thus, the percentage found

would be expected to be the POD as calculated by equation (3).

18



POD f 1aIP) dp

00 la

CRACK LENGTH

Figure 7. Schematic Representation of Distribution of Detection
Probabilities for Cracks of Fixed Length.
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TABLE 1

:!XAMPLE OF POD CALCULATION FROM
DI fRIBUTION OF DETECTION PROBABILITIES

Expected
Crack # Times Expected
Type p in 1000 Trials # of Detections

1 0.65 200 130

2 0.75 200 150

3 0.80 200 160

4 0.85 20C 170

5 0..95 200 190

TOTAL p - 0.80 1,000 800 80% of trials

20I ,



As shown by equation (3), the true POD function is the curve
through the averages (means)of the individi-al density function of
detection probabilities. Such a curve is also the traditional
regression equation of POD as a function of crack length. Therefore,
regression analysis techniques can be used to estimate POD(a) when
individual estimates of the detection probabilities are available.

Confidence limits on the true POD, however, would be calculated
from the confidence limits for the average of the predictions, not
for the individual detection probability estimates.

3.2 SELECTION OF POD(a) MODEL

Althnugh POD(a) has been shown to be the curve through the
mean of detection probabilities, a functional model for this curve

must be determined or assumed before the characterization can be
used. Since the *Have Cracks' data are representative of field
inspection capability for selected structures and inspection methods
and are the largest data set for which detection probabilities have
been estimated for many cracks from many inspectors, they were

* selected for a study to determine an acceptable model for the POD(a)

function. See Appendix A for a discussion of these da'a. Three
criteria were established for the definition of "acceptable":
(1) goodness of fit, (2) normality of deviations from fit, and
(3) equality of variance of deviations from fit for all crack lengths.

*The latter two criteria are necessary statistical assumptions for
the validity of confidence limits derived from regression analyses.

Seven functional forms were investigated as listed in Table 2.
The Lockheed model was derived during the original analysis of the
"Have Cracks* data. The Weibull model was selected since it is
a generally accepted model and is a variation of the Lockheed model.

The other five models were selected because they have been found
useful in analogous problems in the field of bioassay (References 5
and 6). In particular, the transformations have been derived to
yield the properties of normality and equality of variance (the

second and third criteria). The probit and log probit models used
the normal distribution to transform the observed detection

* '"21
I,-



.-

TABLE 2

POTENTIAL POD FUNCTIONS

Name Functional Form Transformation

Lockheed P2(a) : e-2 : I: n : X L:)

Weibull P (a) 1-ee-a(a) Y n(BnIp)

Probit P(a) - 0 (i + 8a) Y PAOBIT (p) X- a

Log Probit P(a) - (a+81n(a)) Y - PROBIT (p), X tn(a)

Log Odds en+8a Y - Ln(p/(l-p)), X - a
-linear scale P (a) - 1 + e+B

SLog Odds naa y - Ln(p/(1-p)), 1' - la a

-log scale P (a) = B
l+aa

Arcsine P(a) - 2(ct+Sa) Y arcsine (W-), X - a

I x
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probabilities. A probit is the value obtained by applying the
inverse normal distribution function. The log odds or logistic

model uses the logistic function to transform the detection
probabilities. The logistic function is an approximation to the
normal distribution function and, in addition, equalizes variances.

The arcsine model was included because of its use in bioassay even
though there could be practical difficulties in its use as a POD(a)

model.

Regression analyses were used to fit all seven models to the

"Have Cracks" data. The "Have Cracks" data comprise 13 data sets

with a data set being defined in terms of NDE method and type of
structure. Each model was fit to all 13 data sets. The detection

probabilities, pi, and the crack lengths, ai, for each crack were
transformed to Yi and Xi in accordance with the transformations of

1 1
Table 2. The transformed X and Y variables were then used in a
linear regression analysis of the form

Yi - A + BX. + e. (4)

For all seven models, B is the estimate of B and, depending on the

model, either A or exp(A) is the estimate of a. The deviations of
the transformed observations from the regression equation, ei, were
analyzed to test the applicability of each model with respect to

the three acceptability criteria.

The probit, log odds-linear and arcsine models were based on
models which did not transform the crack. length scale. None 'of
these models provided adequate goodness of fit in the sense that
their patterns of deviations were not randomly distributed about
the model over the entire crack length range (i.e., they were

inconsistent with the linear model of equation (4)). These models
were eliminated on this basis. The other four models generally
provided an adequate fit to the observed data.

The Bartlett's test and the Shapiro-Wilks'W test were used

to evaluate the equality of variance and normality, respectively,
of the deviations from the regression equations (Reference 7). The
variance of the deviation from the log odds-loq scale and log,

.23
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normal models was constant (within random error) across the range
of crack lengths in all data sets. Equality of variance was
rejected for some crack length/data set combinations for the
Weibull and Reference 3 models.

$ The log odds-log scale model was consistent with the assump-
tion of normality of deviations in all but two data sets. Consis-
.en4y was dafined as the failure to reject the hypothesis at the* 1 0.1 level of significance. In the two cases for which normality
was rejected for the log odds-log scale model, the probability of

the type I error was between 0.05 and 0.10. None of the other
models performed as consistently. Therefore, it was concluded that
the log odds-log scale model provided an adequate fit to the POD(a)

function for the "Have Cracks" data (see Appendix A). This model,
hereafter referred to as the log odds model, was adopted for the
simulation analysis study.

3.3 ANALYSIS METHODS FOR NDE CHARACTERIZATION

that the POD function is the' mean of all detection probabilities

at each crack length. This framework indicates that NDE capabili-

ties can be characterized by regression analyses if a functional
form is assumed for POD(a). In particular the equation

PODa exp (a + B In a) (5)P.a 1 + exp (a + a Xna)

was shown to fit the "Have ,Cracks" data and may be an acceptable

j model for other NDE applications.

The following paragraphs present methods for estimating the
POD and confidence limits on the-POO. The regression analyses of

rthis section are based on any POD model which can be transformed
to a linear equation in detection probability and crack length. In
addition, a maximum likelihood estimation method is presented but

the equations are strictly depindent on the model of equation (5).

A different model would require different equations for the esti-

mates of the parameters.
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3.3.1 Regression Analysis

Equation (3) indicates that the parameters of the
!POD(a) function can be estimated through a regression analysis.,
Further, it has been shown that for the "Have Cracks" data,

equation (5) is a model of POD(a) for which the assumptions of

normality and equality of variance of the residuals, is acceptable.
Therefore, equation (5) can be fit to the data and standard

statistical regression methods can be used to find a lower confi-
dence bound on the true POD(a).

If the data are from the category 3 type of experiment

in which the detection probability for each crack is estimated through
multiple inspections, the (ai, Pi) data pairs can be input directly

into the transformations required by the analysis. If the data are

from a category 2 type of experiment in which each of many cracks

* is inspected once, the cracks will have to be 'grouped into intervals
F of crack length and the proportion of detections assigned to a single

crack length representative of the interval. Since the detection
probability for an interval is more likely to be representative of
the middle of the interval than the endpoints, the middle is
recommended. However,' using the upper endpoint as a conservative
measure could be employed, but the probability level of the result-

ing confidence bound would not'necessarily be correct.

Given the n pairs of (ai, pi) data points to be fit

by the regression analysis, the appropriate tran3formations are
performed. For 'the model of equation (5), the transformations are

defined by

Y. = log (P./(1-pi)) - (6)

and

Xi = log (a.) (7)
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The variables X and Y are then used in a linear regression analysis

resulting in estimates A and B for a and 8, respectively. The

formulas for A and B are
n n
n Xi E Yi

B= i~l (8)

n

'A Y - B X(9)

where Y and,R are given by

n
E YX E XX

i (10)
n n

The formula for a lower confidence bound on the mean uyL for a
given value is

Uy= A+B X - t (n-2)y Sy.xVn + X-)SS (11)

where

y is the confidence coefficient

t(n-2)• is the yth percentile of a t distribution
w th n-2 degrees of freedom

Y.• XSy.X - i i=I(yi-A-B Xi1 2  (12)'

n
E 2

n x2  - l (13)SSX z -x 1 (13
i= 2 n
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Since the log odds transformation is monotonic, the reverse trans-

formation of the confidence bound on Y(a) will be the confidence

bound on POD(a). Although somewhat complicated alqebraically, an

inverse to the confidence bound function can be derived explicitly.

This formula can be used to calculate the single poinc NDE capability

characterizations expressed in terms of a POD/confidence level.

Figure 8 preaents the results of the regression

analysis of the "Have Cracks" data of Figure 6 using the log odds
model of equation (5). The-solid line represents the lower 95
per;ent confidence bound on the true POD(a). The results of this

analysis should be contrasted with those of Figure 6 which were

calculated using the analysis methods of Reference 3. The mean

or best estimate curves are essentially the same in both figures

as the functional forms of both the Lockheed and log odds models

fit the data reasonably well. The significant difference in the

95% confidence curves results primarily from the method of calcu-

lating the confidence limits from the mean curve and, consequently,

different interpretations of the 95% confidence curves are required.

As shown in subsection 3.1, the probability of

detection of a randomly selected crack of a fixed length is equal
to the mean of all detection probabilities for cracks of that

length. The mean curves of Figures 6 and 8 are both regression

estimates of this average as a function of crack length.. The

confidence limit curve of Figure 8 was calculated such that there

is 95% confidence that the mean detection probability (POD) lies

above the curve for any single crack length. The confidence limit

curve of Figure 6 was calculated such that a randomly selecte&
crack at a'fixed length will have a 95%.chance of having a detec-

tion probability greLter than the indicated value, i.e., that 95%,

of the individual data points would lie above the confidence bound.

Since confidence bounds on individual elements of a population are

always wider than equivalent bounds on the mean, the confidence

limit curve of Figure 6 must be lower than that of Figure 8. The.

* difference between the confidence bounds is determined by the amount

*27
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of the scatter of the individual data points about the mean.

While both of these analyses characterize NDE capability, the

confidence bound of Figure 8 is the regression equivalent of the

j classical confidence bounds using binomial methods. The approach

of Figure 6 does not yield confidence limits on the POD and, if

used, another name should be given to this type of more conserva-

tive characterization.

* A problem in the use of regression. analysis arises

when the observed proportion of detected cracks at a crack length
is zero or one. In either of these cases, the most useful trans-

formations can be undefined. To circumvent this problem, there are

several alternatives. In Reference 3, the values of 0.01 and 0.999
were substituted for 0 and 1, respectively. However, the regression

results are sensitive to the arbitrarily defined values. A wore
$ acceptable solution is to use a different estimator for the detection

probability.

The usual (maximum likelihood) estimator for the

detection probability is taken aa

= i/n (14)

w'ere i is the number of detections and n is the number of specimens

with the crack of the fixed length. Other estimates of the propor-

tion which have acceptable statistical properties are the mean

estimate

p= i/n+l (15)

and the median estimate:

np4-n . (16)

In this study, equivalent mean estimates were used if Ai=0 or

Pi=l.. If a Crack was detected by all inspectors (Pi=l), the

detection probability was set equal to n/n+l. If a crack was
' never detected (ýi=O), the detection probability was set equal to

1/(n+l) which is the equivalent result that would be obtained if
the definitions of success and failure were reversed. (If the

ii
medianestimates, ,were used when i-O or n, a similar equivalenLH]__ 29



formula for the i=0 case would be required.) These substitutions

were judged to have no significant effect on the results of this

study.

3.3.2 Maximum Likelihood Estimates

Given the POD(a) model of equation (5), an entirely

different method for estimating the parameters uses the principal

of maximum likelihood. In this type of estimation the parameter

estimates are the values which maximize the probability of obtaining

the observed data. The maximum likelihood estimates do not require

grouping of data when the experiment is the single inspection per

crack of category 2. Instead, they are based directly on the

observed outcomes of' 0 for a non-detection and 1 for a detection.

This paragraph presents the equations for the maximum likelihood

estimates of the log odds model and confidence limits when each

crack is inspected only once. Maximum likelihood estimates for

multiple inspections of each crack could also be developed. Further,

maximum likelihood estimators for parameters of models other than

equation (5) could be developed, but the solutions would not

necessarily be in closed form.

Maximum likelihood estimation is based on the concept

that the data will take on values which are most likely to occur

under the chosen probability model. For example, in a simple

Bernoulli trial (which is the probabilistic representation of a

single inspection) the probability of success is p. if p > ½ a
success would be more likely than a failure. Conversely if a

success were observed in one trial', it is more likely that p >.__

In following the philosophy of maximum likelihood estimation, the

value of the unknown parameter that would give rise to the highest

probability of-obtaining the observed data is used as the estimate.

In the simple Bernoulli experiment if p were equal to 1 the proba-

bility of observing a success would be 1. Since probability cannot

exceed 1, the maximum likelihood estimate of p when a success is

observed in a single Bernoulli trial is 1.

30
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To find the maximum likelihood estimates of equation,

(5) aom a sample of single inspections of n cracks, the following
procedure adopted from Reference 5 can be used. The maximum likeli-

hood estimates a and 8 of a ,and a satisfy the simultaneous equations.

tn

0 n exp(a+atn(ai) )0 E ?.z. - - (17)
i=1 i i=1 l+exp(ai+8Ln(ai))

n n
0 E Zitn(ai)- E Zn(ai)exl(N+6 n(ai)) (18)

i=1 i=l l+exp(&+8tn(ai))

where z. = 1 if the flaw is detected and 0 if it is not. The

variances and covariance of the estimates 6 and B are

n exp(a+8tn(ai))
Var (&) = (19)

i-1 (l+exp(a+6tn(ai))

Var (5% (tn (ai)) 2exp(a+6In(ai)) (20)

1ii (l+exp (a+Btn (ai)) 2

Aoy A ,n(ai)exp(a0+Lnfai))
Cov (a,) (21)

i'l (l+exp(a+0tn (ai))) 2

Estimates of these variances and covariance are calculated by

substituting 'the, estimates, a and 8, in equations (19), (20), and

(21)..

The maximum likelihood estimate of the POD function

is calculated by substituting a and 0 for a and 8 in equation
(5)... The change of variables must be made using the' same trans-

formation that was used for the log odds model in Section 3.2 to

obtain

log (p(a)/(l-p(a))) - Y(a) a + B ,n (ai (22),

31



For very large sample sizes, estimates of the variances and co-
variances of 4 and 8 can be used to calculate a lower confidence

bound on Y(a) as given by

Y (a) a + 8 1n (a) - Z1 2 2S 223-S- s+ 2tn(a) S2- + (tn(a)) 2  (23)CLiB

where

Y is the confidence level,

Z satisfies P(Z < Z ) - y for the standard normal
Y distribution Y

2S- is the estimate of Var (M),

S?- is the estimate of Coy !a3
S2 is the estimate of Var (6).

Since the log odds transformation is monotonic, the reverse trans-

formation of the confidence bound on Y(a) will be the confidence

bound on P(a).

An example of the use of the maximum likelihood

estimates to obtain a lower bound on POD(a), is presented in
Figure 9. In this figure, the lower 95 percent confidence bound
from the maximum likelihood analysis is plotted along with the
optimized probability method (binomial model) that was previously
presented as Figure 5,. This .,nalysis was based on the results of
the inspections of 361 cracks and, with this large sample size,
the 95 percent confidence limit is very closed to the mean POD(a).

32

__________________

_ _ _ _ _ _ _ _ -



'I'

-o

0

.7o
00

4-

C3C.
Go qw C

Ld a~ MOMU3 J8M



SECTION 4
EVALUATION OF NDE ANALYSIS METHODS

To evaluate and compare the various methods for analyzing
data from NDE capability demonstration programs, results from a

large number of experiments under known conditions are necessary.
Since such tests are expensive and the experimental conditions

are difficult to hold fixed over the long intervals necessary to

repeat experiments, "experimental* NDE data were generated in a

computer simulation of inspections. The simulation process enabled

the generation of a large number of NDE experiments under a "known
capability" and under selected changes in experimental conditions.
In the following paragraphs, the simulation process is described
and the results of the evaluat.1on of the analysis methods are

presented.

4.1 SIMULATED NDE CAPABILITY EXPERIMENTS

A computer program was written to simulate the NDE inspection
capabilities that were present in the "Have Cracks" data of Reference

3. The following paragraphs present a general-description of the
program and describe the NDE experimental conditions which were
simulated. The simulation program comprises Volume II of this report.

4.1.1 Simulation Program

Figure 10 presents a flow diagram for the process of.

simulating NDE experiments. The process simulates one NDE
experiment by simulating the results of one inspection of each

of 400 details with cracks of different lengths. The simulation
of the inspection of each detail requires three steps:

1) To reflect the random nature of the crack sizes

that may be present in the details to be inspected, a distribution

of crack sizes is assumed. A simulated inspection is initiated
by selecting a crack size at random, ai, from this distribution.
The assumed crack size distribution is considered to be an experi-
mental condition as will be discussed later.
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2) A detection probability is randomly determined

for the crack of length a. using the regression relation between1

transformed crack sizes and detection probabilities for the log

odds model. In particular, for the log odds model, a. and pi are

related by the expression:

in (pi/(l-pi)) = a + 8 In ai + ei (24)

where a and 8 are constants which specify the POD function and E.

is' the difference between the average POD values at crack length

ai and the pi value for a particular crack. It was shown that

for the log odds model, the c. can be considered to come from a
1

normal distribution with a~common standard deviation, Sic), at'all

crack lengths. To randomly determine a detection probability for

the crack length a. (and given POD as defined by a and 8), c. is

selected at random from a normal distribution with standard devia-

tion S(E) and added to a + 8 in a. The value of pi is given by:

exp(a+8 in ai + C)

Pi - l+exp (z+8 in ai 4c) (25

(For the simulations of this study, a, 8, and S(c) were taken as

the values estimated for the AET, AUT, and BET data sets' of the

"Have Cracks Will Travel" Program.)

3) Given the detection probability, pi, for the

crack, a simple Bernoulli trial is simulated with probability p.

of successfully detecting the crack and (l-pi) of failing to

detect it. The result of the "inspection" is recorded either as

(ai, 1) if the "crack" was "detected" or (a,, 0) if the "crack"

was not "detected."

After the above steps are repeated 400 times to

complete an entire experiment, the data were analyzed by seven

analysis procedures. These included the four interval methods based

on the binomial distribution (60 points per interval and 50 percent
overlap), a. slightly modified version of the Lockheed analysis of
Reference 3, and the regression' and maximum likelihood analyses

using the .log odds 'model. Lower confidence limits on probability

4- '37
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of detection (upper POD/CL limits) were calculated using all com-

binations of POD equal to 0.5, 0.75, 0.9, 0.95, and 0.99 and confi-

dence limits for 90,95, and 99 percent. In selected runs a 50 per-

cent confidence limit was also calculated as a method of generating

the mean POD curve. These estimates were recorded for later analysis

while the results of the individual "inspections" were discarded.
The above procedure was repeated as part of the simu-

lation process to generate a large number of repetitions of the basic

*NDE reliability experiment and the associated estimates of the POD.

These data form the basis for the comparison and evaluation of the

various methods of estimating the capability of an NDE system.

Volume II contains a complete description of the simu-

lation program, instructions for the use of the program and a complete

source listing. Input parameters and output format are also described.

The output comprises a file of the POD/CL limits for all samples gen-

erated in the run and tables which.summarize the performance of the

various POD/CL limits. Further analysis of the POD/CL limits was

performed using a standard statistical program package.

4.1.2 Experimental Conditions and Results

Table 3 summarizes the experimental conditions which

were simulated. Each condition is identified as an experimental
"environment" which is defined in terms of a POD capability, a crack

size distribution and a standard error, S(e). The a and $ values

of POD curves were those which resulted from the analysis of the

indicated "Have Cracks" data sets. These capabilities are displayed

t graphically in Figure 11. Crack length distributions B and A were
the empirical istributions observed in the sample B and sample A

specimens of the "Have Cracks" study.

In order to generate data that was more compatible
with the interval analysis methods, it was necessary to introduce

a distribution of longer cracks. This distribution is identified

as L and was defined as a lognormal distribution with a median of

12.7mm and the 90th percentile at 76.2mm. ''The long cracks were

used only with the AET capability.
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TABLE 3

DEFINITION OF EXPERIMENTAL CONDITIONS
USED IN SIMULATED NDE EXPERIMENTS

POD CURVE
Environment Crack Length Parameters Percentiles

Code Distribu-ion a B a0.9 a0.W9

BET( 1 ) B -0.65 0.88 25.4 59.4

AUT( 2 ) A -3.9 1.8 29.6 44.8

AZT A -2.9 1.7 20.1 31.1

AET-L.C. L -2.9 1.7 20.1 31.1

AET-L.C. - L -2.9 1.7 20.1 31.1
Low Scatter

(1) Representative of eddy current surface scans around countersunk
fasteners, skin and stringer wing segments (Sample B).

(2) Representative of ultrasonic shear wave scans around countersunk
fasteners, skin and stringer wing assembly (Sample A).

(3) Representative of eddy current surface scans around countersunk
fasteners, skin and stringer wing assembly (Sample A).

A reduced value of the standard error of deviations

from the transformed model was introduced to demonstrate the effect

of a stronger correlation of detection probability with crack

length on the estimates of POD/CL. This comparison was made only

for the AET long cracks environment. In particular, it was

assumed for the AET-L.C.-low scatter environment that S(e) was

one-fourth of the value observed in the AET -Have Cracks" data.

4.2 EVALUATION OF RESULTS

The initial objectives for the evaluation of the data from

the simulated experiments were to compare the various methods of

analyzing NDE reliability data and to determine the effect of the

choice of POD/CL combination on the reliability characterization.

These evaluations are in the following paragraphs. However,
during the study, it was observed that the length of cracks in the
NDE experiment can influence the characterization and-that the
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strength of the correlation of detection probability with crack

length does not have as much effect as would be expec Led. These

latter evaluations are also presented in the following.

4.2.1 Comparison of Analysis Methods

In a preliminary evaluation of the seven analysis

methods, 25 experiments were simulated under the AET environment

which is based on the distribution of crack lengths that were

present in the "Have Cracks" data. Table 4 presents percentages of

three categories of events derived from the 25 simulations:

1) the percent of times the confidence bound was greater than the

true values; 2),the percent of time the confidence bound crossed

the POD more than once; and 3) the percent of times the confidence

bound never reached the POD value. For this crack length distri-

bution, the interval methods always failed to yield estimates of

the 90/95 and 95/90 crack length. That is, for the range of crack

lengths in the experiment and the capability determined for the

AET POD function, it was extremely unlikely to obtain any interval

which would yield sufficient detections to have 95 percent confi-
dence that 90 percent of all cracks of that length would be found.

To effect a comparison between the interval and

regression model approaches to the analysis, a distribution of

longer cracks was introduced into the simulation. In particular,

it was assumed that the crack lengths that would be present in the

NDE experiment'were from a lognormal distribution with a median

crack length of 12.7mm and'a 90th percentile of 76.2mm. The

particular choice of lognormal family was judged to be inconse-

quential and the percentiles were selected to yield much longer*

cracks than those of, the original "Have Cracks" 'Sample A data.

All cracks in the Sample A data were less than 26mm and approxi-

mately 90 percent were less than the 12.0 ,m assumed for the median

of the lognormal crack size distribution. Table 5 presents

percentages analogous to those of Table 4 but with the lon'3r

cracks size distribution and for 75 simulated experiments.
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Even with the longer crack size distributions, the
binomial analyses of the interval methods often do not provide

a limit. Note that the true 90 and 95 percent POD values for this
experiment are 20.1 and 31.lm.n, respectively, as these were pre-

determined by the manner in which the simulation was performea.
Double values occurred in the interval estimates, even for the
Optimized Probability Method (OPM) which is designed to produce

a better behaved POD function.

All of the methods except the log odds-maximum
likelihood produced POD/CL estimates which were always greater

than the true POD value. The row labeled ideal indicates the
expected percentages higher than true. While the calculated

values are conservative, the fact that all exceed the true value
indicates that they are not true confidence limits on the POD
value. The log odds-maximum likelihood analysis on the other
hand produced too many samples which were below the true value.
The cause of these lower than'desired values is unknown but it is

postulated that this result is due to the transformatioa in the
simulation procedure generating the correct median POD function

rather than the correct mean POD function.

A more detmiled method for comparing the POD/CL
estimates from the different analysis methcds is to compare the

cbserved distributions of the estimates that were obtained during
the simulated experiments. Figures 12 and 13 present the observed

cumulative distributions of the 90/95 and'95/90 values, respectively,
for the OPM, log odds-regression, and log odds-maximum likelihood

analysis methods. These figures are based on the AET-long cracks
environment and clearly demonstrate that the OPM estimates of the,

90/95 and 95/90 are generally much greater than those of the 'log
odds regression estimates which are in turn much greater than those

of the log'odds-maximum likelihood estimates. The failure of
the OPM distributions, to reach unity reflects the previously noted'

percentage of experiments for which no estimate of the POD/CL
combination is reached using the binomial distribution.

4
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The Slope of the distribution functions reflect

the scatter that can be expected in future estimates using the

various analysis methods. The smaller the slope, the greater

is the scatter and lack of precision in the estimates. For

example, referring to the OPM curve of Figure 12, the likely range

of a future 90/95 limit is quite large. For example, there is

a 50 percent chance that a future estimate would be either less

than 47mm or greater than 100mm (a factor of 2). From the log odds-

maximum likelihood curve, however, the corresponding middle of 50

percent spans the range of 21mm to 25mm, a range of a factor of 1.2.

* '?The precision of log odds-regression analyses is between these two.

The regression approach to estimating confidence

limits for high level POD values yields limits that are both closer

to the true limit and provide a more precise (in the sense of

less scatter) estimate. This is clearly demonstrated for the

OPM method which his been shown to be the "best" of the interval

methods.

Figures 14 through 19 compare the distributions of

90/95 and 95/90 limits for the log odds-maximum likelihood, log

odds-regression, and Lockheed analysis methods for the BET, AUT,

and AET environments. These environments have the shorter crack

size distributions that were present in the Sample B and Sample A

"Have Cracks" data. All of these figures display that the Lockheed

analysis yields significantly larger estimates of the 90/95 and

95/90 estimates and that these estimates have less precision than

those of the log odds analysis model. This result was expected

since the underlying simulation model was the log odds equation

and since the Lockneed analyses placed confidence bounds on the

individual detection probabilities at a crack. length rather than

on the mean of the detection probabilities.

The log odds-maximum likelihood estimates are smaller
and have greater precision than those of the log 'jds-regression for
all six combinations of Figures 14 through 19. For these shorter

crack simulations, the confidence limits are closer to true in the

sense that they are less than the truevalue in the correct

.47
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proportion of experiments. However, the precision of the esti-

mates for any of tb'se analysis methods is poor and will be

discussed later.

4.2.2 Comparison of POD/CL

The choice of the POD/CL combination to be used in

defining the capability of an NDE system has been rather arbitrarily

defined as 90/95. To evaluate various choices from the viewpoint

of their estimates in an NDE evaluation experiment, the crack lengths

corresponding to several combinations of POD and confidence level

were calculated for each simulated experiment. The statistical pro-

perties of these POD/CL limits under fixed conditions provided con-'

siderable insight into the practicaL usefulness of various combina-

tions.

Tables 6, 7, and 8 present the mean (X), standard

deviation (S), and coefficient of variation (CV = 100 S/R) of the

estimates of POD/CL limits for the BET, AUT, and AET environments

obtained using the log odds model for analysis. The statistics

are based on a sample of 100 estimates ("experiments") in each of

the environments. The "true" crack length corresponding to a POD

value (Equation 5 or Figure 11) is listed as the a value.

The coefficient of variation columns of the tables

display that estimation precision decreases rapidly with increasing

POD and with increasing level of confidence. Further, the average

of the calculated POD/CL limits increases as the degree of confi-

dence increases as would certainly be expected. The combination

of these facts indicates that considerable real scatter is present

in the estimate of NDE capability at high values of POD and

confidence.

As an example of the effect of scatter in the esti-

mates, assume an aNDE value is to be determined for the BET

environment and the data will be analyzed using the log odds-

regression approach. Figure 20 displays the distribution of

potential estimates of aNDE if aNDE is defined as either the

90/95 or 95/90 limit. The result of the future experiment in the

BET environment is equivalent to drawing a number at random from

54
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either of these cumulative distribution functions. For this

environment, the "true" 90th percentile is 25.4mmn (Table 6) but

there is a 50 percent chance that the estimate will exceed 71mm,

a 25 percent chance that the estimate will exceed 150mm and a

10 percent chance that the estimate will exceed 380mm. These

values were obtained from the 90/95 curve of Figure 20. Similarly,

the "true" 95th percentile is 59.4mm while there is a 50 percent

chance that the 95/90 estimate will exceed 160mm and a 28 percent
chance~that this estimate will exceed 400mm. Similar examples

could be presented for the other envirounents and the log odds-

maximum likelihood analysis.

In general, the scatter in the estimates is suffi-

ciently large as to cast considerable doubt on the validity of any

single POD/CL limit if the POD is 0.9 or greater and the level

of confidence is 0.9 or greater. It should be noted that the

scatter in the limits gives rise to excessively large estimates

of aNDE and the estimates are conservative. However, the degree

of conservativeness would be unknown in a particular application.

4.2.3 Comparison of Crack Size Distributions in the
Specimens of an NDE Capability Experiment

Tocompare the interval and regreasion model methods
of analysis, it was necessary to introduce a distribution of long

cracks for the representative "specimens" of the simulation.
When the resulting POD/CL estimates from the long cracks simula-
tion were compared to those of the short cracks (i.e. the crack

sizes of the "Have Cracks" data) simulations, it was observed that

significantly different distributions resulted. Examples of such
comparisons for the AET environmwint are presented in Figures 21 and

22 for the log odds-regression and log odds-maximum likelihood
analysis methods, kespectively.
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In the four cases considered the long crack experi-

ments had less scatter in the estimates of the POD/CL limits than

did the short crack experiments. In the log odds-maximum likeli-

hood analysis (Figure 22), the long crack experiments tended to

provide estimates closer to the true POD value (i.e. smaller).

In the log odds-regression analysis, however, this trend was

reversed.

While the effect of specimen crack size distribution

has not been sufficiently determined, these comparisons definitely

indicate that the sizes of the cracks in a NDE capability demon-

stration program should be considered as an expeii.mental control

to the extent possible.

4.2.4 Comearison of Scatter in Detection Probabilities at
a Fixed Crack Length

In an effort to isolate the causesiof the large

degree of scatter in the estimates of the POD/CL limits, it was

postulated that this scatter could be caused by the relatively
poor correlation of crack detection with crack length that was

present in the "Have Cracks* data. To test-this hypothesis,
NDE simulations were performed for the AET-long cracks environment

but with standard error of deviations about the POD function

reduced by a factor of 4. Figure 23 depicts two sets of 95 percent

confidence bounds on the detection probabilities from the AET
environment. The outside bands would be expected to encompass

approximately 95 percent of the individual crack detection

probabilities (c.f. Figure-)..--.The inside bands were generated
dividing the *Have Crack" standard error by 4. As can be seen,
the detection probabilities for the reduced standard error are

much better correlated with crack size.
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Figures 31 through 34 present the distributions of 90/95

and 95/90 limits obtained from the simulations for both degrees
of variability in the AET-lonc cracks environment. Increasing tha
correlation of crack detection probabilities with crack length

* (i.e., reducing the scatter of individual crack detection proba-
bilities about the POD function) produced two changes. First,
smaller POD/CL estimates were obtained from the less scattered
detection probabilities even though the true POD was constant in

both sets of experiments. Second, the variability of the POD/CL
estimates was reduced but not by an amount that would have any
real practical significance. Thus, it was concluded that improving
the degree of correlation of detection probabilities with crack
length will not have a practical effect on the precision of the

estimates of the POD/CL limits.

4.3 DISCUSSION

Analysis of the results of the simulated NDE experiments
lead to three major conclusions:

1) The large degree of variability in the POD/CL crack
length estimates for POD values of 0.9 and greater
indicates that such estimates are not reproducible if
an NDE capability experiment would be repeated.

2) Both the magnitude and scatter in the POD/CL estimates
are significantly influenced by the crack sizes in the

experiment.

3) The variability of the POb/CL estimates is not primarily

due to the lack of a strong correlation of detection
probabilities of individual cracks with crack length.

These conclusions imply that the scatter in the POD/CL estimates

is, inherent to the analysis procedure and only indirectly to the
NDE capability.
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To further explore the instability of crack length estimates

corresponding to high POD values, consider the shape of tha model

for POD as a function of crack length. Available data from NDE
reliability experiments indicate that at least some of the longer

length cracks fail to be detected. Realistic POD models will
account for these misses by asymptotically approaching one. Simple

geometric considerations lead to the conclusion that estimates

of crack lengths corresponding to POD values in the flat portion
of the curve are very sensitive to "errors" in the POD value.

See Figure 11. Since the POD value is being estimated statisti-
cally, very large sample sizes would be required to reduce the

"error" in the POD estimate to yield a precise corresponding
crack length.

It is theoretically possible to have an NDE system for

which the slope of the POD curve is sufficiently steep, that
reasonably precise estimates of the crack length corresponding to
a POD of 0.90 or 0.95 can be obtained. Such POD curves have not
yet been shown to occur in field applications since htman factors
as well as inspection hardware influence the capability of the
system. Even if such a system were available, however, attempts
to characterize it in terms of higher POD levels (say 0.99 or
0.999) would lead to the same lack of precision in the POD/CL

estimates.

Assuming. the simulations are a reasonable approximation

to NDE capability demonstrations,, the preceding discossion indi-
cates that POD/CL crack length estimates are quite unstable and,

therefore, unacceptable for use as single number crack length
characterizations. Actually, the 90/95 limit. is commonly quoted
by the Air Force because the analysis methods could more often
provide this estimate rather than a desire to determine the

crack length for which 90 percent of the cracks will be detected.

It was generally assumed that the 90/95 limit was 'conservative"

for a system but no measure of the conservativeness was quoted.
Further, this characterization of NDE capability is extremely

difficult to use in a meaningful risk analysis.
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in the structural maintenance system application, the
quantity of real interest is the probability that cracks longer
than a fixed value will pass undetected. This probability depends
on both the POD distribution and tne sizes of the cracks that are
present in the structure. In particular, let H (a) represent the
probability of having a crack greater than or equal to a in the
structure and failing to detect it during an inspection whose

probability of detection is given by POD(a). Then

H(a) = [i POD(x)] f(x)dx (26)

where f(x) is the probability density function of the crack-
sizes in the structure to be inspected.

To illustrate this calculation, Figure, 28 presents H(a)
for two crack size distributions and the NDE capability as
determined for the AET environment (a = -2.9, 8 = 1.7). The
crack sizes were assumed to have Weibull distributions with'
shape ps.rameter equal to 2.73. The scale parameters were
selected to yield median crack sizes of 12.7mm and 25.4mm. The

cumulative distribution of the crack sizes are shown as Fl(a)
and F2 (a). for the small and large cracks, respectively. The
resulting probabilities of having a crack larger than a and

missing it during the inspection are plotted as H1 (a). and H2 (a)
for the small and large cracks, respectively. The plot for H2 (a)
indicates that in a random inspection from the large cracks
distribution, there is a 2 percent chance of having a crack longer
than 25mm and not detecting it. On the other hand, Hl(a) for the
small cracks indicatas thete is practically no chance (within
plotting accuracy) of having a crack greater than 25mm and failing
to detect. Note that in the small crack distribution there is
only a 1 percent chance of having a crack greater than 25mm.
Note also that the 90/95 limits for the AET environment were
generally greater than 20mm. Therefore, whether or nc the 90/95
limit was sufficiently large depends not only on the particular

estimate obtained from the NDE experiment but also on the crack

sizes in the structure to be inspected.
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A second calculation that may prove of interest.in structural

maintenance plans is the probability of not detecting a crack given

that its length is greater than a fixed value, a. This quantity is

given by the expression

H (a)I ,G(a) = -(a) (27)

and is calculated quite simply from the cumulative crack size

distribution, F(a), and H(a) as tiven by equation (26).
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SECTION 5

CONCLUSIONS

This program comprised two distinct phases. The conclusions

drawn from each of the phases are presented below.

5.1 POD ANALYSIS FRAMEWORK AND REGRESSION MODEL SELECTION

The objectives of this phase of the study were to formulate

and demonstrate an analysis framework for quantifying the results

of NDE experiments and to select an appropriate POD model based

on the data of the "Have Cracks Will Travel" Program. The follow-

* ing conclusions were reached.

1. All cracks of the same length do not have the same detec-

tion probability. The strength of the correlation between detection

probability' and crack length depends on the NDE system (including

inspection environment and human factors), crack geometry, and the

structural element being inspected.

2. The probability of detection for cracks of a fixed length

in a population of details is the mean (average).of the detection

probabilities of the individual cracks.

3. Since the POD as a function of crack length is the curve

through the mean values, standard regression techniques of statis-

tics can be used to estimate and place valid confidence limits

on this POD function. Care must be taken in the determination of

a regression model to ensure not only that the equation "fits"

the data but also that the deviations from the predicted average

values are normally distributed with equal variance for all crack

lengths.

4. The log odds model met the three acceptability criteria

when applied to the eight data sets 'of the *Have Cracks Will

Travel" program that had sufficient data for meaningful analysis..

Six other models which have found wide use in problems of a similar
nature did not perform as well on the same data., Since the log
odds model was designed to yield both equal variance and normality

of deviations from the equation, this model is conditionally
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recommended for regression analysis of POD data. However, due to

the limited experience in the regression analysis of POD data,
the applicability of the log odds model should be verified whenever
possible. If necessary, more appropriate models should be used.

5. A method for estimating the parameters of the log odds

model using maximum likelihood was derived for the NDE experiment

in which each crack is inspected once. A method for placing confi-
dence bounds on the POD function was also established using

asymptotic properties of the maximum likelihood estimates. This
maximum likelihood method does not require grouping cracks into
ranges c similar length and is distinct from the least squares
estimates of a regression analysis.

5.2 RESULTS OF SIMULATION STUDIES

In the second phase of the program, NDE demonstration programs
were simulated using representative capabilities and scatter in

detection probabilities as determined for the "Have Cracks Will
Travel" data. The objectives of this phase were to compare analysis
methods and capability characterizations as expressed by combinations
of POD and confidence level. The following conclusions were reached.

14 Given an acceptable model for the regression function,
the regression estimates of NDE capability expressed in terms of a
confidence limit on a high probability of detection value (i.e. a
POD/CL value) are superior to. tose derived using binomial distri-
bution theory. The regression estimates are closer to the true POD,
exhibit less scatter 'in the distribution of the estimates, and,
contrary to binomial mo'hods, always provide an estimate of the
desired limit.

2. The ragnitude and scatter of the POD/CL values are
significanty.? influenced by the crack sizes employed in the NDE
capabiliti experiment.

3. The degree of scatter of the detection probabilities of

individual cracks about the POD function has only a secondary
effect on the scatter in the POD/CL estimates.
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4. Single number characterizations of NDE capability ex-

pressed in terms of a probability of detection and a confidence

level (POD/CL) display a degree of scatter (i.e. non-reproducibility)

that make these characterizations of limited practical use in the

evaluation of, NDE systems.

5. A more complex characterization of capability will be

required for use in the evaluation of NDE systems.
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APPENDIX A

"HAVE CRACKS WILL TRAVEL" DATA BASE

Under an Air Force program entitled "Reliability of Non De-

structive Inspections," personnel from the Lockheed - Georgia Com-

pany transported fatigue damaged structural' samples to Air Force

bases and depots. The samples were inspected by representative

inspectors at each facility using current, standard NDE technology

The results of each inspection along with a large body of concomit-

ant data were stored in a data base which has been commonly identi-
fied as the "Have Cracks Will Travel" data. 'At the conclusion of

the inspection phase of the program, the cracks in each structural

element were 'found and measured and these data were also incorpo-

rated into the data base.

The "Have Cracks" data base contains the results of approxi-

mately 22,000 inspections that were made on 174 cracks. Each crack

was inspected by 2 or 3 procedures appropriate to the structure

and by as many as 107 different inspectors.' Since different NDE

capabilities were anticipated for the different NDE methods and

structures, the data'were partitioned into 13 sets as defined by

structure type and inspection method. Table A.1 identifies the
13 data sets and lists the number of cracks and number of inspec-

tions of each crack of the data sets. Figures A.1 through A.13

present plots of the detection percentages foi each crack in each
data set.

There were two objectives in the analysis of these data:

'1) to determine a regression model which best fit the data as

defined by three criteria, and 2) to'cletermine estimates of the

parameters of the model and variability of POD values about the

model as representative input to a simulation study. The good-

ness of fit criteria were: 1) the pattern and magnitude of the

individual deviations from the regression curve (the residuals);

2) the equality of variance of the residuals for all crack lengths;

and, 3) the normality of the residuals. The first criteria con-

cerns the ability of the model to adequately represent the observa-

tions. The last two criteria are necessary assumptions for deter-80' '
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mining confidence limits on the POD curve and also provide the dis-

tributional framework for performing the simulation studies of this

program. It should be noted that since detection probabilities are

always between zero and one, candidate regression models required

transformations of the observed POD and crack length values. Thus,

the goodness ,f fit And residual analyses were performed in the

domain of the transformed values.

The sample type E specimens (data sets EEA and EEH) contain

only 6 cracks. Although these data were fit to the various regres-

sion models, they were ignored in the determination of the best
fit. similarly, the AUA, BEO, and FEA data sets were judged to

contain too few inspections per crack to be permitted to influence

model selection. The standard deviation of an estimated percen-

tage due only to sampling error is p-cl(-p)/n. Those data sets

which have few inspections per crack would have significantly

greater variability in the estimates of individual POD values than

those with 50 or more inspections per crack. The CUT and FUT sets
with 32 and 27 inspections per crack, respectively, were not elimi-

nated as these were considered the transitional sample sizes. Thus,

the selection of the POD model was based on 8 of the 13 data sets.

Also included in Figure A.1 through A.13 are the POD curves

derived from the log odds model which demonstrate the goodness of

fit of this model. Data sets AET, AUT, and BET were selected to

rep esent the "typical" inspection capability for the simulation

pha e of the study. These choices represent three reasonable

deg ees of NDE capability and two degrees of scatter of the indivi-

dua detection probabilities about the mean-POD function.
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