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INTRODUCTION

Objective. The specific objective is to formulate a viscoplastic consti-

tutive model which incorporates the so-called "CAP75" plasticity model for
geological materials (1). Included in this objective is the development of a

numerical solution algorithm (computer program) which "exercises" the visco-

plastic model for general states of strain loading (or stress loading) time

histories.

Background. Geological constitutive models based on inviscid plasticity

concepts, such as CAP75, are inherently independent of real time. Experimental

evidence, however, indicates a strong time-dependent behavior for most soils

and rocks (2,3,4,5), thus motivating the above objective. The coupling of

plastic behavior with time dependency comes under the general heading of vis-

coplasticity. Like religion, viscoplasticity has a variety of "sects" each

with its own fervent disciples, dogmas, claims and counterclaims. Some per-

spective on the variety of viscoplastic formulations can be gained by contrast-

ing the endochronic approach of Valinis (6) to the elastic/viscoplastic approach

3f ?erz',.a . The genesis of the former may be envisioned as a modification

to classical viscoelasticity wherein plastic-like behavior is introduced by

neans of "intrinsic time", a time scale considered to be a property of the material.

No plastic yield function is introduced. Alternatively, Perzyna's elastic/vis-

copiastic approach is a modification of classical plasticity wherein viscous-like

behavior is introduced by a time rate flow rule which employs a plastic yield

function. Cther viscoplastic formulations include developments by Katona (8),

Bodner and Parton (9), and Phillips and Wu (10).

Any viscoplastic formulation should have the following attributes:

(1) capability of simulating observed material behavior over a wide range of

loading conditions; (2) satisfaction of thermodynamic restrictions; (3) feasible

techniques for parameter identification; and (4) readily adaptable and efficient

in numerical solution procedure (e.g. finite element methods). With regard to

the last attribute, the numerical solution strategy is clearly of utmost impor-

tance, i.e. it makes no sense to utilize sophisticated constitutive theories if

the accuracy of the solution is highly questionable. At the same time, however,

some compromise in accuracy must be made to achieve computational efficiency.
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In 1974 Zienkiewicz and Cormeau (11) presented a finite element algorithm

for a viscoplastic model of the Perzyna type using an explicit forward difference

scheme for time integration. Couputationally the explicit algorithm is simple,

requiring only an elastic stiffness matrix to be assembled and triangularized

at the outset. Nonlinearities are accomodated on the right-hand-side at the

element level with (if desired) a mid-interval iteration and/or next-interval

equilibrium correction (12). Unfortunately, a major drawback is the concern for

numerical stability. This places a stringent limit on the size of the time

step and, thereby, compromises overall efficiency. Cormeau (13) presented a priori

time step limits to avoid instability for a restricted class of Perzyna-type

viscoplastic models. However, for more general forms (e.g. viscoplastic models

with hardening) a priori time step limits are not established.

Numerical stability concerns can be eliminated by employing an implicit

time integration scheme. Hughes and Taylor (14) showed that a one parameter

(9) Crank-Nicolson integration scheme provides unconditional stability for 0.5

< 9 < 1 when applied to FEM models with Perzyna-type viscoplasticity. For a

particular problem, they demonstrated accuracy was maintained for implicit

time-step sizes 105 times greater than the critical time-step size in the

explicit algorithm.

The computational penalty for implicit integration schemes is the require-

ment to solve nonlinear algebraic equations for each time step. Here a variety

of efficiency vs. accuracy alternatives are possible based on various versions

of the Newton-Raphson technique (15,16).

Scope and Approach. In meeting the stated objective, a Perzyna-type visco-

plastic formulation is adopted. Motivations for this choice are; (1) the formu-

lation is well accepted and well used, and (2) the incorporation of the CAP75

plasticity model (or any plasticity model) is theoretically straightforward.

In contrast, the endochronic approach to viscoplasticity continues to draw

criticism and does not lend itself to direct incorporation of plasticity models.

For this study, a one parameter Crank-Nicolson time integration scheme is

used which provides options for explicit or implicit algorithms. For the im-

plicit algorithm, nonlinear algebraic equations are solved "exact-as-desired"

by an iterative Newton-Raphson technique with special modifications for plastic

hardening.
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For clarity and insight, the presentation begins with a one-dimensional

viscoplastic formulation along with some exact solutions illustrating the in-

fluence of viscoplastic model parameters. The numerical time integration is

also introduced at the one-dimensional level illustrating the nature of explicit

and implicit algorithms. Next, the general multi-dimensional viscoplastic for-

mulation is presented together with the numerical solution strategy. Finally,

the formulation is specialized for the CAP75 plasticity model and example re-

sults are discussed.

The Appendix contains user input instructions for the computer program

VPDRVR which is a viscoplastic version of the plasticity program CAPDRVR (17).

ONE-DIMENSIONAL VISCOPLASTICITY

Although one dimensional viscoplastic stress-strain relationships have

limited practical application, they provide an excellent starting point for

introducing fundamental theoretical concepts, behavior characteristics, and

solution strategies.

Conceptual Formulation. Figure 1 illustrates a simple viscoplastic

rheological model composed of an elastic element (e.g. spring), viscous element

(e.5. dashpot), and a plastic element (e.g. slider). In such a rheological

const-action we first identify local stress-strain relations of the component

elements. As i somewhat general example, we will specify the following forms.

7or the elastic element let:

e= E( ) (1)I ? e

where , e = stress and strain in elastic elemente e

E(E ) - modulus function of elastic strain,

e (linear case E(ce) = Eo)

n Equation (), the inverse is required to exist, i.e.,s = E (a e
e

3
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The viscous stress-strain relation is represented in power form as:

sgn ((2)

v v

where i = rate of viscous straining, dE v/dt.

a viscous stress.
v

C0 = normalizing constant (units of stress).

y - fluidity parameter (units of inverse time).

N - exponent power (N > 0).

sgn(a)= { +i, v > 0
-1, o < 0

V

Note the linear form of Equation 2 is given by N = I representing a simple

dashpot model. In such a case the dashpot coefficient is . - a /y, (i.e.
0

v . In the more general case (N # 1) Equation 2 is a nonlinear creep

law implying that the viscous strain rate magnitude is proportional to some

power of the viscous stress, and the strain rate direction (sign) is governed by

the viscous stress sign.

Lastly, the plastic element is defined by means of an isotropic hardening

plastic yield function f;

f(a , ) = a - k(t ) < 0 (3)
p p p

p

where a , Z stress and strain in plastic element.
p p

k(E ) - positive valued hardening function (for non hardening
p

k(e) - ko.

In conjunction with the above, we adopt the classical plasticity assumptions that

plastic flow (increments of plastic strain) can only occur when the equality holds

in Equation 3, i.e.;



0, if f(a < 0,

P jd I sgn(ap), if f(, ) - 0, (4)

and Agn(a P)do > 0

Note, f(ap, ep) > 0 is not an admissible state when a is used as an argument
p p p

in f. This will be elaborated subsequently.

In addition to the above component relationships, the model in Figure 1

inherently implies the following equilibrium and compatability relationships

which must always hold true.

a a + a (5)
e v p

+ (6)e VP

VP p v

sgn(o) , sgn (ap sgn( v )  (8)

where a - total stress

- total strain

-= viscoplastic strain
VP

Ultimately the objective is to utilize Equations I through 8 to get a

differential equation relating total stress to total strain, i.e., a constitu-

tive relation. To this end, Equations 5 and 8 give, a I - 'alj - 10v1, which

when inserted into Equation 3 with e - E allows the left hand side of Equation~p vp
3 to be replaced by:

f(C p, C ) " f(a, C ) - la (9)

By virtue of Equation 4 plastic flow occurs when f(a , ev) - 0 in which case

Equation 9 gives J - f(O, E ). Introducing this into Equation 2 with

6



= gives;

VP
VP = o(f) sgn(a) (10)

where, Rf/aoN when f > 0

OM0 (11)
S0 when f < 0

and, f(o, E ) jai - k(e ) (12)
VP vp

Equation 10 is a fundamental viscoplastic flow rule of the Perzyna type (7) which

could have been simply stated as opposed to the model development given here.

However, certain insights from the model development are useful. For example,

the so-called "dynamic yield function", given by Equation 12, is greater than

zero during plastic flow by the amount ' , whereas the classical plasticity

yield function is zero during plastic flow (Equation 3). If loading is held

constant, steady state conditions are eventually reached, u = £ = 0, so that,v vp

, ) = :(a, £p) = 0.
D V-- V

To complete the constitutive development Equations i, 5 and 6 are

combined to give:

a = E(e - £ ) (13)
vp

Taking the time derivative of Equation 13 and replacing :  by Equation 10
vp

gives tne final constitutive form:

= E(U - vD(f) sgn(j)) (14)

In the above, f contains j and £ as an argument, i.e. f = f(a, £ ), however,
vp vp

we have by Equations I and 5:

- E - ) (15)

VPPso that Equation 14 with z a given by Equation 15 represents the desired consti-

tutive form relating 3 to c.

7



Exact Solutions. For present purposes we will consider solutions for

Equation 14 as if the model represented a material test specimen with either

a specified strain loading history or stress loading history, and we seek

the corresponding response history.

To achieve an exact solution we restrict ourselves to linear functional

forms for k(e ), O(f), and E(s ) as follows:vp e

k(e ) a y +H' e (16)

cP(f) . f/ao , (f > 0) (17)y

E(e ) E0 5 e (18)

with f = - (a + H' - ) (19)

and v ;VP ,d (20)

0

where: EC . elastic modulus (positive constant).

I

- initial yield stress (positive constant).
Y

H' - plastic hardening modulus (positive constant).

E = viscoplastic strain hardening measure.VP

Further, if viscoplastic straining is monotonic (i.e., does not change sign),
vp

then - , or by Equation 15, = - ~/E . Thus, the constitutive
VP VP vp 0'

relation (Equation 14) becomes the following first order, linear ordinary dif-

ferential equation when f > 0:

S+__ (E + H')a - E ( + H' - -- E + y.sgn(loading)) (21)
3 0 0 1

y y

For the case of stepped strain loading causing viscoplastic flow, we

specify:

8



E(t) - a h(t) (22)
y

where E 0 y/E0 , initial yield strain (23)

3 > I , loading magnitude (24)

:0 t < 0

h(t) = s 1 t heavyside function (25)

The solution to Equation 21 is:

J(t) = y (a + (3 - a) exp(-y(E 0 + H')t/a )) (26)y Y

where (I + 3H'/E 0)/(l + H'/E 0) (27)

consequently, S > a > 1 (28)

Some behaviorial observations from the solution are:
0+

(a) The largest stress occurs instantly at t = 0 , j(0) = 3o, which is
y

purely an elastic response, i.e., no time for viscoplastic flow to

)c cur.

Cb' The smallest stress occurs when t - (, ( ) = tao , which is the
y

21astic-plastic solution, i.e., steady state solution, a = 0.~V
(C) The rate of stress decay from Sc to aa is controlled by the

y Y
fluid-v parameter, Y. For large values of Y, :(t) approaches

more rapidly. In the limit as y - -, 1(t) = ac for all
y

0: 0, inferring the absence of the viscous element.

z, For nonhardening, H' = 0, all the above statements are valid

:herein = 1.

The complimentary solution to Equation 21 for a stepped stress loading,

:efined by-

:it) = 3' h(t) (29)
V

is given by:

c(t) = £ (ci -( - 3) exp(-vH't/a )) (30)
y y

9



where, a* E0  (-) + 8 (31)

consequently, a > B > 1 (32)

Some observations from the solution are:

(a) The smallest strain occurs instantly at t - 0+, e(0) - Be , whichY
is purely an elastic response.

(b) The largest strain occurs when t (, e(-) -a , which is the
y

steady-state, elastic-plastic solution.

(c) The rate of strain increase from Be to a e occurs more rapidlyy Y
when the fluidity parameter y is large.

(d) When the hardening parameter becomes small, H' - 0, we have

+ b so that c(-) - (as expected). In the limit, H' - 0,

Equation 30 becomes, e(t) = $r + y(5 - l)t.Y

Numerical Algorithm. Beginning with the rate form of Equation 13,

- E( - vp) (33)

we integrate over one time step from time t to t to get:n n+l

o=E( r ) (34)
vp t + it (4

where, 6C - ' - U n n d dt (35)
t

n

and, a . a(t ), (similarly for E and e ) (36)
n vp

Since r is given by Equation 10, we will approximate ac by a Crank-Nicolson

(12) time integration, i.e.,

A - At((l-9) n  + ,n+ l) (37)VP vp vp

where 3 - adjustable integration parameter (0 < 9 < I)

10



If we choose 8 = 0, Equation 37 is equivalent to a simple forward difference

scheme (Euler Method). This is also called an explicit method because we

estimate Ac based only on information (in~ ) at the start of the time step.
VP VP

As a consequence, At is restricted in size to avoid numerical instability (13).

Alternatively, if we choose 0 > 0, the method is called implicit since AtVP
depends on information at the beginning and end of the time step, generally

requiring an iterative solution procedure within the time step. For 6 > 1/2,

the implicit methods are unconditionally stable (14) so that the choice of

2.t is governed by desired accuracy, not stability.

Returning to Equation 34, with Ac replaced by Equation 37 and performing

the E operation, we have a numerical version of the viscoplastic constitutive

relation which becomes exact as At 0,

- (zc) = A - _t((l - %) n + 9 n+ l ) (38)

vP vp

Also we nave the side relations valid at all time;

)= sgn(3) (39)

- k( ) (40)
vp

- I () (41)

4e now consider an iterative solution procedure for Equation 38 when strain

loading is 3pecified, i.e. ce is known at each step. At time t the quantitiesn
and are known, and the objective is to determine these quantities

S-e 'n-.For brevity, we assume the elastic modulus is constant at least
-ithin he time step so that E-  (O) = E - . Thus, regrouping

n.. y i' n nnuowns in the left we have the form:

q (42)

+1 n+l1 + n+l
haere ( E r + -tO (43)vp

n A .n + E-in (44)
q -- t(l-) +(4D

vp

11



n+l
When 6 > 0, Equation 42 is a nonlinear algebraic equation in c because in

n+l n+l
general cnVP is nonlinearly related to a However, choosing 6 - 0 (explicitvp
method) results in a linear equation (but at the expense of accuracy and sta-

bility concerns).

Using a Newton-Raphson procedure to solve Equation 42 (which will converge

on the first iteration if 8 - 0), we let:

n+l _ai (45)

where ai - some estimate of an+ l at iteration i (first estimate

isa i -  a a n).

d i  . correction to estimate a
i

Ths ehae ~i +oi )  n
Thus we have P(a i+ 6a) - q which when expanded in a first order Taylor series

gives an estimate of the correction 6a 1:

n
P=(a )60 q - P(ai) (46)

where P(ai ) - E a + Ate (47)
VP

and, P'(a) = _ EI + Atey vp (48)ac

BiJ. i i x+lThe process is repeated with a a + So to get 6ai , and so on until
G i+l - 0.

Table 1 summarizes the above numerical solution algorithm for strain loading.

A stress loading algorithm is easily established in a similar manner.

12



Table 1. Solution algorithm for one-dimensional viscoplasticity
with strain loading.

n n n *n n ,n n+l
1. Given: e , , , vp, P , P (at time t ) and e

2. Time loop: n -. n+l up to nmax

n+l n 1 n
(set) q E - E - t(l-8) 0 + EaGvp

3. Iteration loop: i = 1,2, ... imax

(solve) Si (pi)l (q _Pp)

(update) i+l = i + 5 i

i+l n+l 1 i+l=- - E-l

vp

¢itl f (i+l i+l
vp

* ~+l 1+2. +2.
Si+l y (f1 J) sgn( i+l)

vpp
i+. i+l i+l

,p-i. = E + At i+
iO vp

4. Reneat iteration (step 3) unless one of the following conditions

are satisfied:

(a) i = 0 (explicit solution)

_n f+l(b) fn and < 0 (elastic space)

(c) ),. < tolerance (converged solution)

(d) i > imax (maximum iteration limit)

5. Print results, return to step 2 if n < nmax

5,. End.

_ ) = ) (1 - E -  k' ('i ) sgn( i+ ))
V p Vp

13
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K
MULTI-DIZENSIONAL VISCOPLASTI CITY

We now consider a general viscoplastic constitutive model for continuum

bodies with six-dimensional stress and strain vectors ordered as:

o - 3ll022, 033, 012, 013,u23 (9a T (49)

<< i' £22- £33' Y12' Y13' Y23>T (50)

In point of fact, the general viscoplastic formulation is only a small extention

of the one-dimensional formulation, so that the following development is pre-

sented with minimal additional discussion.

Constitutive Development. Two fundamental assumptions are as follows:

a - D(c ) (51)-s e

+ (52)
-.e .vp

where E= elastic strain vector
_e

C - viscoplastic strain vector-Vp

- elastic constitutive matrix (operator)

(and D
-I
is assumed to exist)

The viscoplastic strain rate is assumed to be of the Perzyna type (7) defined by:

£ =,(f) m (53)~vp

C-,P(f), f > 0

where, (f) - = viscous flow function (54)
0, f < 0

f f(O, cv) - yield function (55)

-1vp

14



m . 3f ector gradient of f w.r.t.a (56)
I (E held constant)

VP

and, y - fluidity parameter (57)

Note the above relationships are identical in form to the one-dimensional relation-

ships wherein m replaces sgn(a), defining the vector direction of v

The yield function f may be taken as any valid plasticity yield function

with the following understanding. In six dimensional stress space all states

of J giving f(a, E ) - 0 forms a "static yield surface" (e.g. a classical plasti-~ - ~vp

city yield surface), all states of j giving f(a, £ ) = 3 > 0 forms a "dynamic

yield surface', and all states i such that f(j, £ ) < 0 implies a is in the

elastic domain, i.e., D(f) = 0 so that 0.
vp -

Two typical forms of the viscoplastic flow function, , given by Perzyna are:

zrf) = - (58)

:(f) = exp (-) - . (59)

nhere N = exponent (material parameter)

= some normalizing parameter so that ) is dimensionless

(material parameter)

-quation 58 is directly analogous to the form adopted in the one-dimensional

cevelopment and is apparently the most popular form for soils. The second form

KTquation 59) is sometimes used for metals. A series generalization of these

two rorns nav -e written as:

N j
(f) A. ( (60)j=l j f 0

N

: 3 (exp (y--) - 1) (61)

where A., 3, are additional material constants.
J 1

15



Having established the fundamental assumptions, the viscoplastic constitu-

tive relationship (i.e. a set of differential equations in time relating a and

c) can be readily derived by first combining Equations 51 and 52 in rate form

to get:

- D(~ - &Vp) (62)

Upon replacing & with Equation 53, the final constitutive form is:-vp

- D(E - y (f)m) (63)

Here it is understood that if f is a hardening yield function, then F_
-l VP

is an argument (i.e. f - f(a, e )). But, since e E - D (a), Equation 63
VP ..pvpimplicitly infers the desired (a,E) relationship.

A numerical solution strategy, paralleling the one-dimensional procedure,

is given next.

Numerical Algorithm. As in the one-dimensional case, we seek a solution

7(t) when E(t) is specified, or vice versa. In either case, we integrate Equa-

tion 62 over one time step tn to tn+1 andodenote the result by:

a -D(Ae - A ) (64)
- - vp

t + Atn+l n +n
where Aa a n. - J n n idt (65)

t
n

n

nQuantities i are presumed td be known at the start of each step.

Using the previously described Crank-Nicolson time integration scheme for

approximating Ae we have (0 < a < I):-vp'

1E t((l - 6) .n + ,.n+l) (67).vp .vip .vp (7

16



Inserting the above into Equation 64 (after performing the - operation)

an incremental approximation for the viscoplastic constitutive relationship

is obtained (becoming exact as At - 0);

-I(AC) = Ae- At((l - ),n + n + l ) (68)
~ vp vp

Implied in the above are the viscoplastic model assumptions valid for

all time:

= yC(f)m (69)
-Vp

-l

S -- - D (a) (70)
~vp - = -

For the case when strain loading is specified, Equation 68 is regrouped with

unknowns at time tn+1 on left;

+)= q 
(71)

where ?()nl) D-1: n+l + .1+1  (72)
vp

-n = !v t(l ).n + D-i n  
(73)~vp

Here it is assumed :he elastic matrix is constant (at least within the time step).

7Z izplicit integration is employed (9 > 0), Equation 71 represents a setn+l
: nonlinear algebraic equations for n Using a Newton-Raphson procedure we

= - + where iT is some estimate of n and 5a is a correction.

. approximation for io is achieved by expanding P(a + 5,1) in a first order

Taylor Series, and solving:

_l: 1, ( 7 4 )

.er: -he -,cobian marrix ' is;

= p(1*)
(75)

and ?(0) D-I i + t (76)- VP

17



i+l i i i+1
The process is repeated with a a i + 6a to get 6a and so on, until

16al " 0. Table 2 summarizes the algorithm for strain loading.

For the case of stress loading, a similar solution procedure is readily

derived to iteratively determine e C+l + S i.e.;

i) 6 ei -q n - (.) (77)

n -1n
where q - D Aa + At(l-0) (78)- - -Vp

p(i) = _At V (79)

p,(i) = ( ) (80)

The solution procedure for stress loading is summarized in Table 3. Note the

solution procedure for stress loading is very similar to the strain loading

procedure wherein q, P, and Z' are replaced by , P, and '.

The complete Jacobian matrix I' (or i' for stress loading) is generally

nonsymmetric when hardening is included in the yield function. This may be

avoided by not including contributions to the Jacobian matrix arising from

partial derivatives of f(a, E ) w.r.t. e as illustrated below.
- vp -vp

Equation 75 defines the complete Jacobian ?' with the understanding that

the hardening argument in f(o, z ) is to be replaced by - Da, so
-vp -Vp

that tne complete Jacobian matrix is:

PI +- et;I~ h T]

yent['(w++h) T  h') (81)

where[ (82)
3f

M -;f (83)

(symmetric) (84)

h -1. {3fh D L (85)
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Table 2. Solution algorithm for general viscoplastic model with
strain loading.

n n n n n+l
1. Given: E a EFv , P ,n (at time t )' and E

-vp vp .. n

2. Time loop: n - n+l, up to nmax
n n+l n. \tD-In

(set) q = (E _ n) _ t(l 8 ),n + _an

3. Iteration loop: i = 1,2, ... imax

ni
(solve): i = q -P

i+l i i
(update): a = a + o

i+l n+l i+l
-vp

i+l fi+l i+l

i -i = f~

* i-ti i~l -i+l
- ~ '(f mr

- vp

-- lj.. l

-i~ -i-- t iVi

, i+l jp

4. Repeat iteration (step 3) unless one of the following is satisfied

,a) 9 = 0 , (explicit integration)

(b) fn and fi+l < 0 , (elastic space)

(c) is'' tolerance, (converged solution)

(d) i imax , (iteration limit)

3. ?rint results, return to step 2 if n < nmax

6. End

Symrmetric form of Jacobian matrix is (see Equation 87):

='+ Y-i tL ' Mm + '
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Table 3. Solution algorithm for general viscoplastic model with
stress loading.

1. Given: e n, n n n n pn (at time t ) and an+ l-q vp' v ' - n '
2. Time loop: n - n+l, up to nmax

n -1 n+l - n ) + At(, n + :n
(set) q 7)i (a - + -vp

3. Iteration loop: i - 1,2 ... imax

i i n ^i(solve): -' 6Ce n P
i+l i i

(update): eil e + C i

+l in+l -i-n+l

f i+l .fa (n+l, i+l)

i+l 6 ;fi+l

i+l ii) i+l
-Vp -

pi+l i+l i"

i+l

4. Repeat iteration (step 3) unless one of the following is satisfied:

(a) a = 0 , (explicit integration)

(b) fn and f i+l < 0 , (elastic space)

(c) ISEi+l5 < tolerance , (convergence solution)

(d) i > imax ,(iteration limit)

5. Print results, return to step 2 if n < nmax.

6. End

Symmetric form of Jacobian is identify matrix, Pj= i, thus the "solve"
step is trivial and P' need not be formed.
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5m

h' - [_(non symmettic) (86)
-vp

and all the above partials are taken with the other variables held constant.

If f = f(j), implying no hardening, then F' becomes a symmetric matrix

because h and h' are zero. Otherwise P' has nonsymmetric contributions from
hT h ,

the matrices m h and h T. By retaining only the symmetric terms to define '

we have:

+ yeAt([' m mT + p ' (87)

In a similar development for stress loading, we find ' is composed of the

identity matrix plus nonsymmetric matrices related to hardening. Retaining only

the symmetric identity matrix we have:

(88)

-n closing -his section it is emphasized that the symmetric forms of the

acobian matrices (Equations 87 and 88) are complete and correct for non hardening

yield funct:ions. For the more general case of hardening, the symmetric forms

may '.-e used with the consequence that the Newton-Raphson rate of convergence

and tbe Jiomain of convergence (i.e. step size) ma"r be reduced. Of course once

a converged solution is obtained, it is correct.

As illustrated in the last section of this report, the inverse of the

acobian matrix becomes the "constitutive matrix" in forming finite element

stiffness matrices. Thus the motivation for retaining the symmetric form is

dpparent with regard to equation solving.
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SPECIALIZATION OF VISCOPLASTIC MODEL TO CAP75

Functional Forms. The foregoing viscoplastic algorithm presented in

Table 2 (or Table 3 for stress loading) is specialized by identifying the

functional forms for elastic, viscous, and plastic components, i.e. D, *(f),

and f(a, vp) along with the hardening function associated with f.

In program VPDRVR (Appendix) the following forms are included:

(1) An isotropic elastic matrix is formulated with a bulk and shear

modulus (K and G) whose values may change between load steps

but are assumed constant within the load step, i.e.;

P= D(K, G) (89)

(2) Two options for (f) are (see Equations 58, 59):

- (ffo) N

=(f) (or) (90)
i fo)N

exp (f/f) -

therefore,

' =(f) K (o r ) N

N((f) + 1) fN-/f N (91)

(3) A somewhat general form for f(J, £ ) applicable to CAP75 as well

as most other plasticity models is:

f(j, ) - gl(J, I- ) + g (J ) (92)
- -vp 1 -Vp 2

where l= specified function of Jl and F where c1 -Vp vp

implies hardening.

92 specified function of J2.

J I first invariant of stress.

J 2 -second invariant of deviator stress.
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In a later section specific forms for g1 and g2 are given for the CAP75 plasticity

model where we allow g, and g2 to be specified differently in different regions

of J1 1 J2 space (e.g. failure surface and cap).

The advantage of the above form for f is that the gradient vector m and

the Jacobian matrix L' (symmetric form) can be established once and for all

in terms of g1 and g2 and their derivatives as shown below.

Beginning with the stress invariant definitions:

Jl = 0ii + a22 + a33 (93)

1 2 S2 2 2 2 2

J = - (S2 + 22 +$3 + 2?C2 + 2a2 + 2a 2) (94)
2 2 11 22 33 12 13 23

where Sii = oii - J /3, i = 1,2,3 (no sum) (95)

,e ~ave for m = :

M - +o a (96)

where (97)

o o ( 9 8 )

b = J, I I 0 0 1 (99)

a = 2J/T S Sjo~ 2a >T (100)- < S11 S22 $33 2o12 13 23>

Anc: after some manipulation, .' (Equation 87) may be written as:

= v~Q{rT T,= i~ ~ [ + + X3 [b b + X4 [ ])

(101)

where X = (g' (102)

x2 = "glg (103)
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x = ' ( ) , (104)

X utg' (105)
2

with, g" (106)

1

it = (107)

2 2

2 -1 -1 0 0 0

and, 7a2 1 2 -1 0 0 0 (108)
i I"  2000

sym. 6 0 0

6 0

6

Thus to change yield functions, we merely specify new functions for g, and g2

with gi, gl' g2, and g2. Of course, hardening parameters must be maintained

separately in updating the g function.

CAP75 Yield Function. We now specialize Equation 92 for a particular

version of the CAP75 plasticity soil model (1). Figure 2 shows the CAP75

yield function which is composed of a nonhardening "failure surface" f F and

a hardening "Cap surface" f The failure surface is defined as:

fF = (J  + gF2 (j) (IC9)
1 F2-?

wnere 1 =-A + C exp (BJ) (110)

1/2
g=. - (J2)

1 /2  (iii)

"2

A,B,C - material constants

Note the so-called "von Mises transition" is not included in this development,

and the ad hoc "tension cutoff" technique (1) is not suitable in a viscoplastic

context (see Summary).
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The cap surface, forming an ellipse quadrant, is defined as:

fC " Cl(J 1 , _) + g C(J 2) (112)

where, Cl- (-(X - L) 2 + QJ1 - L)2/f R 2 (113)

&C J2 /fo (114)

2 20

and, = volumetric viscoplastic strain hardening function

R - ratio of principal ellipse radii

L current location on J axis of cap-failure intersection

X - current location of cap intersection on J axis

(X< L)

f0 normalizing constant with units of stress.

Note, f is a "squared" form of the cap surface presented by Sandler (1).

This is necessary because during viscoplastic flow (J1 < X) we must have

> 0 which is not possible with the Sandler form. Accordingly, f0 is used

to retain the units of stress for fC,

Continuity of the hardening cap and failure surfaces (static) are main-

tained ty the relationship;

X - L + R gF1(L) (115)

which establishes the current ellipse quadrant of the cap surface. Typically,

the ellipse ratio R is assumed constant but may be a function of L.

CAP75 Hardening Function. Hardening of the cap is given by a relationship

between X and e;

-W(e DX - l (116)

where W and D are positive material constants.

The strain hardening function s is a measure of accumulated volumetric

viscoplastic strain. For both rocks and soils, e can only increase negatively
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during viscoplastic loading of the cap, inferring X and L grow negatively

expanding the cap during hardening. Thus the incremental update of e, when

Jl < L, is:

- n+l -(n
- e + min(O, Aw) (117)

n+l n
where AW - l - n (118)

- € + + €(119)
VPll vP22 vP33

For soils only, e is allowed to be updated with positive increments of

.1w during viscoplastic loading of the failure surface, inferring that X and L

become less negative. This retracts the cap, however the retraction is limited

such that L < Jl' Sandler claims this is tantamount to kinematic hardening,

not strain softening. The purpose of this procedure is to limit excessive

dilatancy for soil models (i.e., subsequent compression loading will activate

the cap sooner). Thus the incremental update of 7 for soils, when J > L, is:

- n+l
E mrain (ea9 , c (120)a c

- -nwhere 7 = c-+ max (0, 3W) (121)a

= W(e D ~ - ) (122)c

Xc " JI + RgF (J1 ) (123)

-n+l
,.n the abouje, . insures that L < J1 Also, t is never allowed to become

greater znan its initial value.

la!).a 4 summarizes the implementation of the CAP75 plasticity model. The

procedure in table 4 should be viewed as a subroutine which internally main-

ai.: the hardening parameters t, X, and L. The subroutine outputs gl, g{, gl

and g2, g2, g" which allows calculation of f, m, and P' by Equations 92, 96,

And 101, respectively. These, in turn provide the necessary ingredients in

Table 2 (or Table 3 without P') for the general viscoplastic algorithm.
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Table 4. CAP75 hardening update ana g, g2 CuuLpuLarions.

i0

Input initialization: Initial location of X specified as X
0

check: X0 < g (0)

set: E W(exp(DXO ) _ 1)

solve: L0  X0  (L0)

For each iteration of each load step: Update E, X, and L and compute

gl, gl, gI and g2 ' g' g2 based on current values of Jl, J2 and Ai.

NoYe

Failure Surf. Cap Surf.

For soil only:
Z-n + max(O, AW,)

n_
min W(exp(DXc ) -1) e +min(0 a)

-O

Xc =J + RFI(I

xx = nl+/W + 1)/D

C;

L -, X - RgFI(L))F

ItFail Surf. L Cap Surf.

g1 (J) 2 ((X-L) / 2  L) )/FoR

, = g (j)I - /f0 R22gi g Q g' 2(/ 2L)

1 -1/g (J 2 ) g " 2/f 0

i -1/2 , = /fog2 2 >  g2= 20
S- .(J ) -3/2

2 2
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EXAMPLE RESULTS AND DISCUSSION

In this section the CAP75 viscoplastic model is studied for two loading

conditions; uniaxial strain and triaxial stress. In both cases the plasticity

parameters are taken from Sandler (1) representing McCormick Ranch Sand.

Table 5 gives the values of the model parameters used for both loading con-

ditions along with three values for the fluidity parameter.

The intent of these examples is to verify the viscoplastic algorithm and

to illustrate the effect of the fluidity parameter, y, on the time dependent

responses. The three values of the fluidity parameter (y - 0.001, 0.01, and

0.1) were chosen to produce responses with varying amounts of viscoplastic

flow.

With regard to numerical time integration, each example problem is solved

within 1% relative accuracy for five choices of the Crank-Nicolson e parameter;

- 0.0, 0.25, 0.50, 0.75, and 1.0. That is, for each choice of e, the time

step size, %t, is repeatedly halved until successive solutions agree within 1%,

thus providing an efficiency comparison.

Uniaxial strain. Figure 3 shows the uniaxial strain loading history for

the strain component s-ill all other strain components are zero. Here, e11 in-

creases in compression at a constant rate, held constant, unloaded at a con-

:tant rate, and finally held constant so that eventually stress responses would

da)proach steady state for all y. Note the units of time are not and need not

be explicitly stated since they are the reciprocal of whatever units are assumed

for v .

Figure 4 shows the corresponding a stress response for the three magni-

tudes of Y. For the relatively large magnitude, y = 0.1, the response is nearly

anviscid throughout the entire loading history. In other words, the viscous

ifemenc (see Figure 1) has very little effect in retarding the plastic response

o that the solution is nearly elasto-plastic. Indeed, the steady state ali

values agree exactly with the inviscid CAP75 plasticity solution (17), thereby,

providing a verification of the viscoplastic solution. If higher values of y

were used, the response would not change significantly, and the small peaks

at time = 1.0 and" 5.5 would be flattened, resulting in a perfectly inviscid

solution.
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Table 5. Viscoplastic model parameters

Bulk Modulus - 66.67 ksi
Elastic Parameters Shear Modulus 40.0 ksi

CAP75 Plastic Failure Surface (Equation 109):

(McCormick Ranch Sand) A - 0.25, B - 0.67, C - 0.18

Cap Surface (Equation 112):

R - 2.5, f = 0.25, X° - -0.18880

Cap Hardening (Equation 116):

W = 0.066, D - 0.67

Viscous Parameters Flow Function (Equation 90a)

N - 1, f = 0.25

Fluidity parameter

y - 0.001, 0.01, and 0.1

Units: A, C, f and X 0 ksi; B and D = ksi 1 , = time-1

R, W, and N are dimensionless.
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For the relatively small magnitude, y - 0.001, Figure 4 shows a pronounced

viscous effect such that steady state conditions are not reached within the

constant loading duration, and peak stress magnitudes far exceed the maximum

stresses achievable from the inviscid plasticity solution. The rate of stress

relaxation decreases with decreasing values of y. In the limit as y - 0, the

response becomes perfectly elastic in which case the shape of the a11 response

history would be similar to the e11 loading history.

For reference, Figure 4 also indicates which CAP75 regions (i.e. failure

surface, cap surface, or elastic domain) are being activated during the loading

schedule. Lateral stress responses (a22 = 033) are shown in Figure 5.

The foregoing solutions were independently obtained for five choices of e,

each requiring a certain minimum value of At to achieve relative accuracy within

I%. Table 6a shows the required values of At to maintain accuracy (Note,

although not necessary, At was taken uniformly throughout the loading schedule).

In general it is observed that a - 0.5 permits the largest time step, in some

cases up to four times greater than - 0.0 or e - 1.0. Surprisingly, the

influence of y on At is small. That is, within the range 0.001 < -, < 0.1, Zt for

accuracy changes at most by a factor of two. This is not in conformance with

initial expectations wherein it was incorrectly anticipated that At for accuracy

would be inversely proportional to y. In other words, it wAs presumed the

dimensionless product yAt would be an accuracy measure.

It is now conjectured that the accuracy requirement for At is predominantly

controlled by the loading schedule, i.e., Lt must be sufficiently small to

adequately capture the abrupt changes in loading rates. This contention is

supported by the observation that the greatest accuracy deviations throughout

the loading schedule occurred at changes in loading rates, primarily at time =

.astly, the It values in Table 6a for the conditionally stable algorithms,

0.0 and 0.25, are controlled strictly by accuracy not stability. Unstable

values of .t were typically found to be an order of magnitude or more than the

accuracy controlled values at At. Unstable solutions are readily distinguished

b'vD wild i-4iations of rhe responses.

Triaxial Stress. Figure 6 shows the triaxial stress loading schedule.

initially, hydrostatic loading (ll "22 ..33) is applied at a constant rate
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Table 6a. Uniaxial strain: required A~t for accuracy

F Integration Fluidity Parameter ______

Parameter Y-0.001 1 Y-00 Y y-0.1

0.00 0.00625 0.0125 0.00625

0.25 0.00625 0.025 0.0125

0.50 0.025 0.025 0.0125

0.74 0.00625 0.0125 0.0125

1.00 0.00625 0.0125 0.00625

Table 6b. Triaxial stress: required At for accuracy

Inte gration Fluidity Parameter_______

Parameter 0.1
Y -0.01 y - 0.01 Y - 0.1

0.00 0.050 0.0125 0.00625

0.25 0.10 0.025 0.0125

0.50 0.10 0.05 0.025

0.75 I0.05 I0.025 0.0125

1.00 0.025 0.0125 0.00625
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and then held constant. Next, while holding the lateral stresses constant,
the axial stress, a 1, is increased at a constant rate, held constant, unloaded

at a constant rate, and finally held constant at hydrostatic pressure.

The corresponding axial strain response is shown in Figure 7 for the three

magnitudes of y. As in the previous example, the relatively high magnitude,

y = 0.1, produces a nearly inviscid elasto-plastic response history. Accordingly,

large amounts of plastic straining is observed. Conversely for the relatively

low magnitude, y - 0.001, rapid plastic straining is impeded resulting in smaller

strain magnitudes. In the limit as y - 0, the strain response would be purely

elastic. Figure 8 shows the corresponding response histories for the lateral

strains (E22 w E33
) "

Table 6b lists the minimum values of At to achieve accuracy within 1% for

the five choices of 9. As before, 8 = 0.5 is the most efficient choice for

maintaining accuracy with maximum At. Further it can be observed that the in-

fluence of y is fairly uniform. That is, for any value of e, At generally de-

zreases by one half for each magnitude increase in y.

Summarizing both examples, the following observations are noted:

I. For y 0.1, the responses are inviscid (elasto-plastic). For

y - 0.001 the responses are elastic.

2. For all y, 9 = 0.5 is most efficient with regard to maintiining

accuracy with largest ,t.

3. in the range, 0.001 < y < 0.1, the fluidity parameter has less

influence on the required 1t for accuracy than anticipated.

Loading rates and changes in loading rates are presumed to be

the major factor for the t accuracy requirement.

4. For e < 0.5 (conditional stability), the t required for accuracy

is significantly less than the -t limit for stability.

:t is emphasized that the above observations pertain only to the example

problems presented herein.
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.1

EXTLNSION TO FEM APPLICATIONS

For the sake of completeness, this section illustrates how to incorporate

the general viscoplastic constitutive model into a quasi-static, finite element

displacement formulation.

Using standard FEM notatio,, the global equilibrium equations to be satisfied

at any time tn+ 1 are:

V T n+l dV Fn+l (124)

with E = u (125)

where ; = strain-displacement matrix

- nodal point displacements

F = nodal force vector (body, traction, and point loads)

V = volume of body

n+l
Since o is the unknown in Equation 124, we follow a procedure paralleling

Table 2 for strain loading, the only difference being that strain is not a priori

specified but determined iteratively via displacements. To this end we let;

n+1 i i
+ 50 (126)

n+1 i i= + 3 (127)

whee in+l n+l
where a = estimates of a iteration i.

• i i
So SEI  correction to estimate a i

Thus, the equilibrium equation may be written as:

T iiSo dy-SF (128)

with F n BT i iV (129)

i n+l i
Note when I , we have 5F 0.
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From Equation 74 we have a relationship for 6;i:

i -1

6 (6Ci + C --
n )  (ai _ n ) ((1_6)jn + eJ b 1 (133).... vp vp

-inwhere 6q i  (e -e) At((- n + 6e) (132)

Ci  . [p (o ) ]- Jacobian inverse (133)

In Equation 132, both groups of terms defining 6q are estimates of the
i

increment Ae when these estimates agree (converged solution), we have 6q - 0.
-Vp

Upon inserting Equation 131 into Equation 128 with 6Fi = 16u1 , the iterative-

global-equilibrium equation becomes:

i ui 6F 6 (134)

where KT dV (135)

3Qi fv §T i i dV (136)

i n+l i n+l
As the number of iterations increases (i - =), we have a C C =

n+1 i i i i
- , etc., as well as, 6F = 3q SQi su 0, (i.e. a convergedVp -Vp - -

solution).

Table 7 summarizes the numerical FEM algorithm for a time step from time t
n

to tn. First iteration estimates (i - 1) are based on previously known values
I n I n n n 1 n

at time t so that we have a - a , - c , - , = , etc. Accordingly
n1 n+l 1

from Equations 129 and 132, we have 6F - Fn , and ql  - Atn- J - VP

Several variations of the solution strategy in Table 7 are easily established.

First, for the explicit method (a - 0) we have i . D resulting in linear equations

that convergence in one iteration but at the expense of reduced at to control
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n n n nl
1. Given at Gauss Points: a , ,

n  e and (or reconstruct),
n -Vp -VP

along with global K.

2. Time loop: n n+l, up to nmax.

(set:) SF = F(t ) - F(tn )i+l n

Sq -,,
-Vp

6Q1 Tn 1
SQ ~ .= f q dV

- V

3. Iteration loop: i = 1, 2, ... imax.

(solve): Ki6ui SFi - SQi

i = BI

(update): E 
+ 6 1

a = +'( + 6q')

i+l i+l -1 i+l
E = D ay

-vp -Vp -

i+l fi+l i+l
-vp

ci+l = p,i+l i *a

5F i+l = F(t n+) -V AT  i+l Ci+l dV

5qi+l = :i+l E n - it ((I ) n + 8g i+l
. vp -vp _vp Ivp

5Qi+l = /v i+l qi+l d

V Sq dV

Ki+l = BTi+lBdV

4. Repeat iteration (step 3) until convergence (see Table 2).

5. Print results, return to (step 2) if n < nmax.

6. End.

P' D + YeAt[('m m + P&'] (see Equation 87)
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accuracy/stability. A second variation is with regard to modified or quasi

Newton-Raphson methods (15). Here i is held constant (modified Newton-Raphson)

or approximately updated in its triagularized form (quasi Newton-Raphson) for

the purpose of reducing solution time per iteration but at the expense of slower

convergence rates. Lastly, if the iteration process is terminated prior to

convergence (or if the one-step explicit algorithm is used) the out-of-balance

force 6Fi+l may be added to the applied force F in the next time step as a

"load correction" to reduce error accumulation.

For dynamic problems the acceleration vector can be numerically integrated

by any suitable scheme (e.g. Newmark Beta-method) independently of the Crank-

Nicolson scheme used for the viscoplastic constitutive model. In such cases,

it may be presumed that At controlling accuracy would not be smaller than at

required for same problem with inviscid plasticity (i.e. CAP75 without viscous

effects). This is because the viscoplastic response at any instant is bracketed

between a purely elastic response and an inviscid plastic response. Thus, it is

reasonable to assume that At for a dynamic viscoplastic solution need not be less

than -t for a dynamic inviscid-plastic solution.
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SUMMARY AND RECOMMENDATIONS

The viscoplastic formulation and numerical algorithm developed herein

provides a general format for incorporating various plasticity models into a

Perzyna-type viscoplastic constitutive relationship suitable for FEM appli-

cations. In particular, the CAP75 viscoplastic model illustrated in this

report and contained in the program VPDRVR (Appendix) appears to have a

sufficient generality to faithfully represent the time-dependent behavior

of many geological materials over a wide range of loadings.

The VPDRVR program has been extensively checked and verified including

cross-checks with the CAPDRVR program for steady state elasto-plastic solutions,

as well as, self-checking time-dependent inverse solutions. Inverse solutions

are obtained by taking the stress responses from a strain loading problem and

using them for a stress loading problem whose strain response should match the

original strain input (or vice versa). These severe self-checking tests demon-

strated that the algorithm is accurate and working admirably. Furthermore,

the architecture of the VPDRVR program permits relatively easy addition of new

elastic, plastic and/or viscous functional forms.

Future research is needed to bring this work to full fruition. Two major

areas are (i) experimental verification and parameter identification, and

(2) numerical studies for optimizing efficiency/accuracy of the FEM algorithm.

The for-mer area should be addressed first to establish the capabilities

and limitations of the viscoplastic model. Existing experimental data for

time-dependent behavior of soils and rocks (2,3,4,5) is primarily for slow

rates of loading. Hence, it is strongly recommended to obtain additional

experimental data for rapid loading rates. Concurrent with experimental veri-

fication, is the need for developing feasible parameter identification tech-

niques. Lastly, with regard to time-dependent tension failure or damage,

additional theoretical and experimental work is needed. A tension visco-damage

model recently proposed by Whitman (18) shows some promise in this area.
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APPENDIX

PROGRAM VPDRVR: INSTRUCTIONS/DOCUMENTATION

This Appendix provides input instructions and documentation for the VPDRVR

computer program (FORTRAN IV). VPDRVR exercises the CAP75 viscoplastic model

developed in this report for general states of strain or stress loading schedules.

The general solution strategy parallels the algorithm presented in Table 2 for

strain loading or Table 3 for stress loading. The procedure for updating the

cap hardening parameters follows the algorithm presented in Table 4.

Part I contains user input instructions. Part II describes program organi-

zation, subroutines, and program variables. Part III provides input/output for

a simple benchmark problem.

Input data cards are grouped in the following categories:

A. (Cards I and 2): Heading and master control

B. (Cards 3,4, and 5): Elastic functions/parameters

0. (Cards 6,7,8, and 9): Plastic functions/parameters

D. (Card 10): Viscous functions/parameters

.Cards 11, 12): Loading schedules for stress or strain
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Part I. USER INPUT INSTRUCTIONS

A. Problem Initiation, Heading and Master Control Cards.

Card 1. (15A4) Heading

Columns Variable Entry Description Notes

01-60 TITLE Descriptive problem title, (program ()
(15A4) terminates if TITLE(l) - STOP).

Card 2. (415, Al, 2FI0.0) Master Controls

Columns Variable Entry Description Notes

01-05 LTYPE Loading type identification: (2)
(15) - 0, strain loading.

- 1, stress loading.

06-10 NTSEG Number of time segments to define (3)
(15) loading, (Default = 1, Maximum - 30).

11-15 ITMAX Number of Newton-Raphson iterations, (4)
(I5) (Default = 10).

16-20 KPRINT Output print control: (5)
(15) = 0, standard response output.

1 1, above plus iteration parameters
= 2, above plus yield function values.
= 3, above plus iterative correction vector
> 4, above plus Jacobian matrix.

20-21 IPLOT Plot control for response data written (6)
(Al) to unit 11:

= Y, (YES) Data written to unit 11
= N, (NO) Not written

22-31 THETA Crank Nicolson integration parameter, 9; (7)
(Fi0.0) 0 < 9 < 1.0.

32-41 CONVRG Convergence tolerance for Newton-Raphson (8)
(F10.0) iteration, (Default = 0.01, i.e. 1%

relative error).
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B. Elastic Function and Parameter Cards

Card 3. (215) Selection of Elastic Functions

Columns Variable Entry Description Notes

01-05 IFBMOD Selection of bulk modulus function, K(J1): (9)
(15) M, K(J ) = BDATA(1), (linear).

2, K1) - BDATA(1)/(l-BDATA(2))*
(1-BDATA(2 ) *EXP (BDATA(3) *Jl)

(Default - 1)

06-10 IFSMOD Selection of shear modulus function, G(J2): (10)
(15) 1 1, G0(J2 ) = SDATA(l), (linear)

- 2, G(J2 ) = SDATA(1)/(l-SDATA(2))*

(l-SDATA(2)*EXP(-SDATA(3)*J2)).
(Default - 1)

Card 4. (7FI0.0) Bulk modulus parameters, BDATA.

Columns Variable Entry Description Notes

01-10 BDATA(1) First bulk modulus parameter. (11)
(FlO.0)

11-20 BDATA(2) Second bulk modulus parameter.
(FIO .0)

21-30 BDATA(3) Third bulk modulus parameter.
(F10.0)

Card 5. (7F10.O) Shear modulus parameters, SDATA.

Columns Variable Entry Description Notes

01-10 SDATA(I) First shear modulus parameter. (12)

11-20 SDATA(2) Second shear modulus parameter.
(FiO.O)

21-30 SDATA(3) Third shear modulus parameter.
(FlO.0)
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C. Plastic Function and Parameter Cards

Card 6. (415, G10.0) Selection of CAP75 functions

Columns Variable Entry Description Notes

01-05 IFFAIL Selection of failure surface function: (13)(15) fF = rJ-- + g l(Jl)

- I 8F -FDATA(1) + FDATA(2)*JI.

- 2, g = -FDATA(l) + FDATA(2)*
1 EXP(FDATA(3)*Jl).

(Default - 1)

06-10 IFCAPR Selection of cap surface ellipse ratio R: (14)
(15) - 0, No cap, just failure surface.

= 1, R - CDATA(1).
- 2, R - CDATA(1)/(l + CDATA(2))*

(1.0 + CDATA(2)*EXP(CDATA(3)*EL)).

11-15 !FHARD Control of cap hardening: (15)
(15) - 0, No hardening, stationary cap.

= 1, CAP75 hardening function is used:
= W*(EXP(D*X) - i)

W = HDATA(l)

D = HDATA(2)

16-20 KAPTYP Selection for soil or rock hardening laws: (16)
(15) = 0, soil material.

= 1, rock material.

21-30 XINITL Initial location of cap X on J axis. (17)
(GI0.0)

Card 7. (7F10.0) Failure Surface Parameters, FDATA.

Columns Variable Entry Description Notes

01-10 FDATA(1) First failure surface parameter. (18)

(FIC. 0)

11-20 FDATA(2) Second failure surface parameter.

(F1O.0)

21-30 FDATA(3) Third failure surface parameter.

(Fi0.0)
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Card 8. (7F10.0) Cap Surface Parameters for R, CDATA.

Columns Variable Entry Description Notes

01-10 CDATA(l) First cap R parameter. (19)

(Fl0.0)

11-20 CDATA(2) Second cap R parameter.
(F10.0)

21-30 CDATA(3) Third cap R parameter.
(FlO.0)

Card 9. (7FI0.O) Hardening cap parameters, HDATA.

Columns Variable Entry Description Notes

01-10 HDATA(1) First hardening paramter, W. (20)

(FlO.0)

11-20 HDATA(2) Second hardening parameter, D.
(F!0.O)

Skip Cards 8 and 9 if IFCAPR - 0.

D. Viscous Function and Parameter Card

Card 10. (15, 3FI0.0) Selection of viscous function/parameters

Columns Variable Entry Description Notes

01-05 IFV'SC Selection of viscous function p: (21)
"= , = (f/ANORM)**EXPN.

= 2, = EXP((f/ANORM)**EXPN)- 1.

(Default = 1)

0$-i5 EXPN Exponent in p function, (22)
'FI0.0) (Default - 1.0).

16-25 GAMMA Fluidity parameter, y. (23)
.FI0.0)

2o-35 ANORM Normalizing constant in function, (24)

(FIO.0) (Default = max(FDATA(l), 0.01)
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E. Input Loading Schedule and Time Steps.

Repeat card set 11 and 12 NTSEG times; NS 1, NTSEG

Card ii (FlO.O, 215) Time segment, number of stops, print control.

Columns Variable Entry Description Notes

01-10 TS(NS) Time at end of segment NS. (25)
(F1O.O)

11-15 NUMDT(NS) Number of times steps within time (26)
(15) segment NS.

(Default = 10)

16-20 IPRNT(NS) Print interval for standard output: (27)
(15) = 1, every time step prints output.

= n, every nth step prints.

(Default - 1)

Card 12 (6F1O.0) Stress or strain load vector at time TS(NS).

Columns Variable Entry Description Notes

01-10 PLOAD(1,NS) ji1 (or Eii) at TS(NS). (28)
(F10.0)

11-20 PLOAD(2,NS) 22 (or 22) at TS(NS).
(FIO.0) 2

21-30 PLOAD(3,N.) 733 (or £33) at TS(NS).
(F1O.0)

31-40 PLOAD(4,NS) 12 (or 12) at TS(NS).
(Fl0.0)

41-50 PLOAD(5,NS) :13 (or e13) at TS(NS).
(FO.0)

51-60 PLOAD(6,NS) *23 (or )23 at TS(NS)
(7i0.0)

***END OF INPUT FOR ONE PROBLEM***
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Commentary Notes with Input Instructions:

I. Problems may be run back-to-back. Terminate the last problem by writing
STOP in columns 1 to 4.

2. Strain loading implies the six components of strain will be specified
individually during the loading schedule. Similarly, stress loading
implies the six components of stress will be individually specified.

3. For either stress or strain loading, NTSEG is the desired number of
time segments to define the loading histories in a piecewise linear
fashion.

4. Generally 10 iterations is more than sufficient to achieve convergence.
If convergence is not achieved, it is a strong indication that the time
step is too large. Note that convergence of the Newton-Raphson procedure
does not guarantee accuracy. Accuracy can only be assured by repeatable
solutions with smaller time steps.

5. Standard output includes stress or strain responses, cap location, number
iterations to converge, stress invariants, and type of response. For
KPRINT > 0, additional information is given primarily for debugging purposes.

6. Standard response data is written to unit 11 for subsequent plotting on a
CALCOMP plotter. Subroutine GRAPH is used for plotting and maybe removed
or replaced if desired.

7. For THETA = 0.0, the solution algorithm is explicit resulting in linear
equations (i.e. no Newton-Raphson iteration). For THETA > 0, the algorithm
is implicit and generally more accurate for a given time size, but requires
Newton-Raphson iteration. For THETA > 0.5, the algorithm is unconditionally
stable.

8. The convergence tolerance, CONVRG, is tested against the ratio formed by
the norm of the correction vector for stress (or strain) divided by the
norm of the stress (or strain) vector. Norms are Euclidean.

9. The nonlinear bulk modulus function given by IFBMOD = 2 is taken from
CAPDRIVER (Reference 17). It is a function of Jl (first stress invariant)
and is treated the same for loading or unloading. Additional functions
may be added to program in FUNCTION DI(I,J).

10. The nonlinear shear modulus function given by IFSMOD = 2 is a function of

J2, second deviator stress invariant (see Note 9).

11. For future program expansion, BDATA is dimensioned to 7 to allow incorpora-

tion of higher order nonlinear functions.

12. SDATA is dimensioned to 7 (see above).

13. For IFFAIL - 1, the failure surface is standard Drucker-Prager (or Von
Mices if FDATA(2) - 0.0). For IFFAIL - 2, the failure surface is the
exponential form suggested by Sandler for CAP75. Additional functional
forms may be added to the program in FUNCTION FGI.
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14. By setting IFCAPR - 0, the plasticity model is governed by only the failure
surface. For IFCAPR - 1 or 2 the cap surface is included with R given by
the corresponding functional form. Additional functional forms for R may
be added to program in FUNCTION FRCAP. (Note for IFCAPR - 2, R - R(EL)
where EL is "L" of cap).

15. If desired, a nonhardening cap surface may be used by setting IFHARD - 0.
Otherwise the CAP75 hardening function is employed. New hardening functions
can be employed by modifying SUBROUTINE CAP75.

16. See Table 4 for the special hardening rules for soils (KAPTYP - 0).

17. The initial location of X defines the starting position of the cap surface.
The program checks that XINITL is not greater than FCLYT, i.e. the inter-
section of the failure surface with Jl axis. If it is, XINITL is auto-
matically reset slightly less than FCUT. Note, the so-called Von Mises
Transition employed by Sandler is not included in this development. Thus,
if it is desired to obtain steady-state viscoplastic solutions to exactly
match CAP75 plasticity solutions, XINITL should be chosen so that the
initial L location is not greater than zero.

18. The "standard Sandler" CAP75 failure surface is the form given by IFFAIL
2. In which case FDATA(1) - A, FDATA(2) = C, and FDATA(3) = B.

19. The "standard Sandler" CAP75 cap surface parameter is the form given by
IFCAPR = i, i.e., CDATA(l) = R.

20. If IFHARD = 0, HDATA(I) and HDATA(2) are read but not used. If IFCAPR -
0, cards 8 and 9 are not read. HDATA as well as FDATA and CDATA are
dimensioned to 7 for future program expansion. 0

21. For geological materials IFVISC = 1 is generally the most popular form
for the viscous function. Additional functional forms such as Equations
60 and 61 may be added to the program in SUBROUTINE PHIF.

22. EXPN need not be a whole number, but must be greater than zero.

23. GAMMA has units of inverse time, the units (e.g. seconds, hours, years)

correspond to the loading time units TS in Card 11.

24. Generally the default value of ANORM is appropriate providing FDATA(1) # 0.0.
ANORM should not be viewed as an independent material parameter since it is
always associated with GAMMA in the quotient GAMMA/ANORM**EXPN.

25. Up to 30 time segments may be used to define a piecewise continuous collection
of straight lines to define loading. For the first time segment, the program
automatically assumes initial time is zero, i.e. TS(0) = 0.0. Thus, TS(l)
is the time at the end of first segment, TS(2) is the time at the end of
the second segment, etc. Successive values of TS(NS) must be greater than
the previous value.
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26. Any number of time steps may be assigned to each time segment. Accuracy/
stability is controlled by the time step size so that it is good practice
to repeat solutions by doubling the value of NUMDT(NS). Although the
time step size may be specified differently in each time segment, it is
good practice not to make changes in at between segments by a factor of
more than 2.

27. The printout interval may be specified differently for each time segment.

28. Loading values at the end of each time segment are specified individually
for each vector component of strain if LTYPE - 0, or each vector component
of stress if LTYPE - 1. For the first time segment the initial loading
and responses are automatically assumed zero i.e., a(O) = e(0) 0 0. Standard
continuum mechanics sign convenctions are observed for all-input and output.
For example, if a uniaxial stress loading cycle is desired in which an1 is
compressed at a constant rate to a stress value -10.0, held constant, then
reverse loaded at a constant rate to a tensile stress value of +1.0, and
again held constant; we infer NTSEG = 4, and a 1 is described by:

PLOAD(l,l) = -10.0
PLOAD(I,2) = -10.0
PLOAD(I,3) = +1.0
PLOAD(I,4) = +1.0

and all other stress components (PLOAD) are zero.
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PART II. VPDRVR Documentation

Table Al describes subroutines and functions employed in VPDRVR along with
associated calls. Table A2 illustrates the program flow path.

Listed below are all COMMON statements with a description of their variables:

1. COMMON/MASTER/

THETA 6 6, Crank-Nicolson integration parameter
CONVRG convergence tolerance ratio
DT = At, current time step size
LTYPE = loading type; strain - 0, stress = 1.
NTSEG = number of time segments
KPRINT = print control parameter
ITMAX - maximum number of Newton-Raphson iterations

2. COMMON/ELAST/

BDATA(7) = bulk modulus coefficients
SDATA(7) = shear modulus coefficients
IFBMOD = functional form of bulk modulus
IFSMOD = functional form of shear m6dulus

3. COMMON/PLAST/

X cap surface location X
EL cap surface location L
VH = , viscoplastic volumetric strain hardening
VHY-AX = emax, maximum value of e
FDATA7) = CAP75 failure surface constants
CDATA(7) = CAP75 cap surface constants
HDATA(7) = CAP75 cap hardening constants
iFFAIL = functional form of failure surface
IFCAPR = functional form of cap surface
IFHAURD - functional form of cap hardening
KAPTYP = indicator for rock or soil hardening law; soil = 0, rock = 1

4. COMMON/VISCO/

EXPN N N, exponent in p function
GAIMMA y y, fluidity parameter
ANO&M . fo, normalizing constant in p function
IFVISC - functional form of p function

5. COMMON/RESULT/

EPS(6) - t, strain vector
SIG(6) - a, stress vector
EVP(6) = _ , viscoplastic strain vector
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EVPDOT(6) - j , viscoplastic strain rate vector-Vp

SJ1 - J. first stress invariant

SJ2 - J2 P second deviator stress variant

ITER - iteration number

6. COMMON/LOADNG

TS(30) = time at end of time segment
PLOAD(30) = loading at end of time segment
IPRINT(30) - print interval in time segment
NUMDT(30) - number of time steps in time segment

7. COMMON/UTLTY/

P(6) - P or P in Equation 72 or 79
PP(6,6) - ', Jacobian matrix (Equation 101)
RHS(6) - q or 4 in Equation 73 or 78
BELCOR(6)i 6a 6r 6e, correction vector for Newton-Raphson
DPLOAD(6) - Ao or aE, load increment
DEVPKK - Aw, increment of volumetric viscoplastic strain

8. COMMON/YIELDF/

Gl - gl, value of plastic surface function g,

GIP - gl" first derivative of g, w.r.t. Jl

GIPP = g", second derivative of g1 w.r.t. J

G2 g2' value of plastic surface function g2

G2P - g2 first derivative of g2 w.r.t. J2

G2PP = g', second derivative of w.r.t. J

9. COMMON/VFLOWF/

F - f or fc' yield function value

PHI - , viscous function value

PHI? - ', derivative of 0 w.r.t. f
n

PHIPRE = , value of e at end of previous time step
VHPRE =£,value of e at end of previous time step

ISURF - indicator for governing surface: failure surface = 0, cap =.
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Table Al. Subroutines and Functions

Name Purpose Called by Calls to

VPDRVR Main program: Executive duties for NPUT4M

controlling input calls, initialization, LOADS
time step sequencing, and output. GETSIG

GETEPS
GRAPH

NPUT4M Reads in functional forms and para- VPDRVR FGl
meters for elastic, plastic, and viscous FRCAP
components of viscoplastic model.

LOADS Reads in loading schedule, time step, VPDRVR
and print controls.

GETSIG Determines stresses for strain loading VPDRVR SOLVER
by Newton-Raphson iteration and updates VPLAST
responses. DI

GETEPS Determines strains for stress loading VPDRVR VPLAST
by Newton-Raphson iteration and updates DI
responses.

VPLAST Computes stress invariants, yield GETSIG CAP75
function value, viscoplastic straint GETEPS PHIF
rate, and forms Jacobian for GETSIG.

CAP75 Computes yield functions gl and 92 VPLAST FGl
and their derivatives for CAP75 FRCAP
plasticity and updates hardening

parameters.

PHIF Computes viscous flow function 0 and VPLAST
its derivative 9'.

SOLVER Gauss elimination equation solver GETSIG

GRAPH Calcomp plotting subroutine VPDRVR

DI(IJ) Determines components of D elastic GETSIG
matrix GETEPS

FGI(SJ1,M) Computes gl' g! and g" as a function NPUT4M

CAP75
first stress invariant.

FRCAP(EL) Computes cap parameter R as a function CAP75
of cap location IUT4M

FLNCTI ON S UBPROGRAMS
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Table A2. VPDRVR Program Flow

PROGRAM VPDRVR I SUBROUTINES
(main) FUNCTIONS

i INP UT

(a) Master Control -l j i FGI 1

(b) Material Properties - , t NPUT4 'i

Wc Loading Schedule..L S

2. TXDrITIALIZE VARIABLES

3. TIME LOOP

(a) Determine load increment GSOLVER
GETSIG

(b) Get solution + update *
(or) A

(c) ?rint results
GETEPS

4..Return to INPUT for new FG1
problem.ACP7

VLAST' FRCAP

59PHF
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PART III Example input/output

The uniaxial strain problem presented in the main body of this report is

used here as a benchmark example for the VPDRVR program. On the following

page is listed the formatted input (card images) corresponding to the input

instructions in Part I of this appendix. Subsequent pages show the output

from the VPDRVR program including a restatement of the input with default

values, as well as, response data. For brevity, the printout of response

data is limited for each of the four time segments to include only the time

segment midpoint and end values. All data is adequately labeled and should

cause no confusion except, perhaps, for the nomenclature associated with

the response "STATE". Here the following meanings are implied:

CAP-VP - viscoplastic flow above cap surface

CAP-SS - steady state response on (or near) cap surface

FSURF-VP - viscoplastic flow above failure surface

FSURF-SS - steady state response on (or near) failure surface

ELASTIC - stress state is in elastic domain
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Input to VPDRVR, Uniaxial Strain, y = 0.01.

00010 SAMPLE OUTPUT OF VF'DRVR - UNIAXIAL STRAIN LOAD
00020 0 4 ON .75
00030 1 1
00040 66.67

00050 40.0
00060 2 1 1 0 -.1888
00070 0.25 0.18 0.67
00080 2.5
00090 0.066 0.67
00100 1 0.01
00110 1. 80 40
00120 -0.03

00130 5. 320 160
00140 --0.03
00150 5.5 40 20
016 0 --0.0225
00170 7.5 160 s0
00180 -0.0225
00190 STOP
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