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INTRODUCTION

Objective. The specific objective is to formulate a viscoplastic comnsti-
tutive model which incorporates the so-called "CAP75" plasticity model for
geological materials (1). Included in this objéctive is the development of a
numerical solution algorithm (computer program) which "exercises” the visco-
plastic model for general states of strain loading (or stress loading) time

histories.

Background. Geological constitutive models based on inviscid plasticity
concepts, such as CAP75, are inherently independent of real time. Experimental
evidence, however, indicates a strong time-dependent behavior for most soils
and rocks (2,3,4,5), thus motivating the above objective. The coupling of
plastic behavior with time dependency comes under the general heading of vis-
coplasticity. Like religion, viscoplasticity has a variety of ''sects'' each
with its own fervent disciples, dogmas, claims and counterclaims. Some per-
spective on the variety of viscoplastic formulations can be gained by contrast-
ing the endochronic approach of Valinis (6) to the elastic/viscoplastic approach
of Perzzma (7). The zenesis of the former may be envisioned as a modification

to classical viscoelasticity wherein plastic~like behavior is introduced by

means of "intrinsic time", a time scale considered to be a property of the material.

No plastic yield function is introduced. Alternatively, Perzyna's elastic/vis-

coplastic apprcach is a modification of classical plasticity wherein viscous-like
behavior is introduced by a time rate flow rule which employs a plastic vield i
function. Other viscoplastic formulations include developments by Katona (8),

Bodner and Parton (9), and Phillips and Wu (10).

Any viscoplastic formulation should have the following attributes:

(1) capability of simulating observed material behavior over a wide range of

loading conditions; (2) satisfaction of thermodynamic restrictions; (3) feasible

techniques {or parameter identification; and (4) readily adaptable and efficient
in numerical solution procedure (e.g. finite element methods). With regard to
the last attribute, the numerical solution strategy is clearly of utmost impor-
tance, i.e. it makes no sense to utilize sophisticated constitutive theories if
the accuracy of the solution is highly questionable. At the same time, however,

some compromise in accuracy must be made to achieve computational efficiency.

A TPl TIPS, 7




In 1974 Zienkiewicz and Cormeau (ll) presented a finite element algorithm

for a viscoplastic model of the Perzyna type using an explicit forward difference
scheme for time integration. Computationally the explicit algorithm is simple,
requiring only an elastic stiffness matrix to be assembled and triangularized
at the outset. Nonlinearities are accomodated on the right-hand-side at the
element level with (if desired) a mid-interval iteration and/or next-interval
equilibrium correction (12). Unfortunately, a major drawback is the concern for
numerical stability. This places a stringent limit on the size of the time
step and, thereby, compromises overall efficiency. Cormeau (13) presented a priori
time step limits to avoid instability for a restricted class of Perzyna-type
viscoplastic models. However, for more general forms (e.g. viscoplastic models
with hardening) a priori time step limits are not established.

Numerical stability concerns can be eliminated by employing an implicit
time integration scheme. Hughes and Taylor (14) showed that a one parameter
(8) Crank-Nicolson integration scheme provides unconditiomal stability for 0.5
< 5 < 1 when applied to FEM models with Perzyna-type viscoplasticity. For a
particular problem, they demonstrated accuracy was maintained for implicit
time-step sizes lO5 times greater than the critical time-step size in the
explicit algorithm.

The computational penalty for i;plicit integration schemes is the require-
ment to solve nonlinear algebraic equations for each time step. Here a variety
of efficiency vs. accuracy alternatives are possible based on various versions
of the Newton-Raphson technique (15,16).

Scope and Approach. In meeting the stated objective, a Perzyna-type visco-
: plastic formulation is adopted. Motivations for this choice are; (1) the formu-
z lation is well accepted and well used, and (2) the incorporation of the CAP7S
| plasticity model (or any plasticity model) is theoretically straightforward.
! In contrast, the endochronic approach to viscoplasticity continues to draw

( criticism and does not lend itself to direct incorporation of plasticity models.

‘ For this study, a one parameter Crank-Nicolson time integration scheme is
! used which provides options for explicit or implicit algorithms. For the im-
! plicit algorithm, nonlinear algebraic equations are solved "exact-as-desired"

by an iterative Newton-Raphson technique with special modifications for plastic
hardening.




For clarity and insight, the presentation begins with a one-dimensional
viscoplastic formulation along with some exact solutions illustrating the in-
fluence of viscoplastic model parameters. The numerical time integration is
also introduced at the one-dimensional level illustrating the nature of explicit
and implicit algorithms. Next, the general multi-dimensional viscoplastic for-
mulation is presented together with the numerical solution strategy. Finally,
the formulation is specialized for the CAP75 plasticity model and example re-

sults are discussed.

The Appendix contains user input instructions for the computer program

VPDRVR which is a viscoplastic version of the plasticity program CAPDRVR (17).

ONE-DIMENSTIONAL VISCOPLASTICITY

Although one dimensional viscoplastic stress-strain relationships have
limited practical application, they provide an excellent starting point for

introducing fundamental theoretical concepts, behavior characteristics, and
solution strategies.

Conceptual Formulation. Figure 1 illustrates a simple viscoplastic

rheoiogical model composed of an elastic element (e.g. spring), viscous element
(e.5. dashpot), and a plastic element (e.g. slider). In such a rheological
construction we first identify local stress-strain relations of the component
2lements. As & somewhat general example, we will specify the following forms.

For the elastic element let:
e Ee) (1
where Je, ze = stress and strain in elastic element

E(z ) = modulus function of elastic strain,
(linear case E(se) = Eoee).

In Equation (i), the inverse is required to exist, i.e.,c = E—l(o ).
e e




*13pou 011s®1dodSTA jeuOFSUBWIP PU) ‘T 2InByg

QQ >0 OQ
- - = -
(%)y =90 (*anf=r9 (°3)3=°0
() M
dp Ao 00
¢ :
o1
°0
°3 214Sv13
—Y
)
>.O n_b
drgy Ldy Ay e . _“”_
b SNOJSIA J11SVd
y




W

The viscous stress-strain relation is represented in power form as:
(1o IV
. ‘lov‘ 2)
| —-| sgn
Ev' Y\d g (cv)
0

where év = rate of viscous straining, dsv/dt.

S = viscous stress.

co = normalizing constant (units of stress).

y = fluidity parameter (units of inverse time),

z
L]

exponent power (N > 0).

e

sgn (Jv) { *1, % 7 0

-1, 0 <0
v

Note the linear form of Equation 2 is given by N = 1 representing a simple

dashpot model. In such a case the dashpot coefficient is u = JO/Y, (i.e.

Mie

v = :V/,). In the more general case (N # 1) Equation 2 is a nonlinear creep
ilaw implying that the viscous strain rate magnitude is proportional to some
power Of the viscous stress, and the strain rate direction (sign) is governed by

the viscous stress sign.

Lastly, the plastic element is defined by means of an isotropic hardening

plastic yield function f;

f(o , =) = o} - k(sp) <0 (3)

where J s = = stress and strain in plastic element.

k(ep) = positive valued hardening function (for non hardening
k(ap) = kg).

In conjunction with the above, we adopt the classical plasticity assumptions that

plastic flow (increments of plastic strain) can only occur when the equality holds

in Equation 3, i.e.;




-
o, if £(o_, € ) < 0,
de = < P P

P \i d g if £(o_, = 0, 4)
_lde | sgno), (@, €,) (

and sgn(g )do > O
gn ( p) >

Note, f(cp, sp) > 0 is not an admissible state when op is used as an argument

in £f. This will be elaborated subsequently.

In addition to the above component relationships, the model in Figure 1

inherently implies the following equilibrium and compatability relationships
which must always hold true.

o =g, =0+ cp (5

e =g+ o (6)

vp T fp T Sy ak

sgn(o) = sgn (op) = sgn(o ) (8)
where g = total stress

¢ = total strain

evp = viscoplastic strain

Ultimately the objective is to utilize Equations 1 through 8 to get a
differential equation relating total stress to total strain, i.e., a constitu-
tive relation. To this end, Equations 5 and 8 give, fcp[ = |o| - [ov{, which

when inserted into Equation 3 with sp - Evp allows the left hand side of Equation

3 to be replaced by:
f(cp. Evp) = f(o, svp) - lcvl (9)

P

By virtue of Equation 4 plastic flow occurs when f(o , Evp) = 0 in which case
Equation 9 gives icvl = f(a, evp). Introducing this into Equation 2 with

.



)

= ¢ , gives;
vp

évp = y¢o(f) sgn(o) (10)
where, (f/oo)N when f > 0
p(f) = (11)
0 when f < 0
and, f{(o, Evp) = |of - k(evp) (12)

Equation 10 is a fundamental viscoplastic flow rule of the Perzyna type (7) which
could have been simply stated as opposed to the model development given here.
However, certain insights from the model development are useful. For example,
the so-called "dynamic yield function”, given by Equation 12, is greater than
zero during plastic flow by the amount ;ovf, whereas the classical plasticity
vield function is zero during plastic flow (Equation 3). If loading is held
constant, steady state conditions are eventually reached, Jv = évp = 0, so that,
f(rp, avp) = (7, ivp) = 0.

To compliete the constitutive development Equations L, 5 and 6 are
combpined to give:

g = E(z - gvp) (13)
Taking the time derivative of Equation 13 and replacing évp by Equation 10

2ives tne final constitutive form:
o= Z(E - va(f) sgn(o)) (14)

In the above, I contains J and ivp as an argument, i.e. [ = f(3, = ), however,

we have bv Egquations 1 and 5:

-1
ivp = : - E "(3) (15)

so that Equation l4 with avp given by Equation 15 represents the desired consti-

tutive form relating 7 to <.




N

Exact Solutions. For present purposes we will consider solutions for

Equation 14 as if the model represented a material test specimen with either
a specified strain loading history or stress loading history, and we seek

the corresponding response history.

To achieve an exact solution we restrict ourselves to linear funetional

forms for k(svp), ¢(£f), and E(ee) as follows:

k(s ) =a +H' ¢ (16)
vp y vp
p(f) = f/oy, (f > 0) (17)
4 E(ee) = Eoee (18)
with £f=lol - (s +H &) (19)
y vp
_ £
and e = ;P lge | (20)
vp 0 vp
where: EO = elastic modulus (positive constant).
¢
3 = initial yield stress (positive constant).
y

H' = plastic hardening modulus (positive constant).

€ = wviscoplastic strain hardening measure.

Further, if viscoplastic straining is monotonic (i.e., évp does not change sign),

then EV? = 'z !, or by Equatiomn 15, Evp = ¢ - a/EOf. Thus, the constitutive
relation (Equation 14) becomes the following first order, linear ordinary dif-

ferential equation when f > 0:

G + fL (EO + H)o = Eo(é +H' - ¢ + y.sgn(loading)) (21)
y y

For the case of stepped strain loading causing viscoplastic flow, we

specify:




!
e(t) = Bey h(t) (22)
where ey = oy/Eo , initial yield strain (23)
8 > 1, loading magnitude (24)
(-0 t <0
h(t) = ﬁ 1t o+ , heavyside function (25)
(-

The solution to Equation 21 is:
I(t) = Jy(a + (38 - a) exp(-Y(Eo + H')t/Oy)) (26)

where a = (1 + SH'/EO)/(l + H'/EO) . (27)

U

consequently, >a>1 (28) ;

Some behaviorial observations from the solution are:

. . + . .

(a) The largest stress occurs instantly at ¢t = 0, a(0) = ch, which is
surely an elastic response, i.e., no time for viscoplastic flow to

JcgLur.

{5 The smallest stress occurs when t + =, 73(») = aoy, which is the ‘l

alastic-plastic solution, i.e., steady state solution, JV = (.,

{(c) The rate of stress decay from Boy to X is controlled bv the

fluidity parameter, y. For large values of v, 3(t) approaches

w5 more rapidly. In the limit as vy - =, 5(t) = acy for all
t » 0, inferring the absence of the viscous element.
{é, For nonhardening, H' = 0, all the above statements are valid

~herein » = 1.

.y

"he complimentary solution to Equation 21 for a stepped stress loading,

, iefined by;

[}

:(t) Savh(t) (29)

is given by:

(1) = -:y(a* IS exp(-vH't/0 ) (30)




* E,

vhere, a = =% (8 -1) +8 (31)
*

consequently, a > 8 > 1 (32)

Some observatious from the solution are:

(a) The smallest strain occurs instantly at t = O+, c(0) = Bey, which
is purely an elastic responmnse.

(b) The largest strain occurs when t + =, g(=») = a*sy, which {s the
steady-state, elastic-plastic solution.

(c) The rate of strain increase from Bey to a*ey occurs more rapidly
when the fluidity parameter vy 1is large.

(d) When the hardening parameter becomes small, H' -+ 0, we have
u* + = so that e(») + = (as expected). In the limit, B' = 0,

Equation 30 becomes, c(t) = Sey + v(3 - Dt.

Numerical Algorithm. Beginning with the rate form of Equation 13,

g = E(e - evp) (33)
[
we integrate over one time step from time tn to tn+l to get:
Ao = E(de- Ag ) (34)
VP £+ At
!
where, Ao =-:n+] - a J Jd dt (35)
t
n
and, o" = o(tn), (similarly for ¢ and evp) (36)

Since évp is given by Equation 10, we will approximate Asvp by a Crank-Nicolson
(12) time integration, i.e.,

eén-i-l)

vp 37

pe = At((1-9)e"  +
vp vp

where 3 = adjustable integration parameter (0 < 9 < 1)

10
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If we choose 8 = 0, Equation 37 is equivalent to a simple forward difference
scheme (Euler Method). This 1s also called an explicit method because we
estimate Aevp based only on information (ésp) at the sta?t of the time step.

As a consequence, At is restricted in size to avoid numerical instability (13).
Alternatively, if we choose 8 > 0, the method is called implicit since Ae
depends on information at the beginning and end of the time step, generally
requiring an iterative solution procedure within the time step. For 8 > 1/2,
the implicit methods are unconditionally stable (14) so that the choice of

it is governed by desired accuracy, not stability.

Returning to Equation 34, with Aevp replaced by Equation 37 and performing

1 : : . ;
the £ = operation, we have a numerical version of the viscoplastic constitutive

relation which becomes exact as 4t - 0,

-1 . .
E - (i2) = Ae - At((l - 3)e™ + ae“+1) (38)
vp vp

Also we 1ave the side relations valid at all time;

évp = % 3(f) sgn(3) (39)
f= 3 - x(z ) (40)
vp
=z - E-I(J) (41)
o

We now consider an iterative solution procedure for Equation 38 when strain

loading is specified, i.e. A¢ is known at each step. At time tn the quantities
8 .0 ol : . . . : . c s
. ¢ . _» and <, are known, and the objective is to determine these quantities
.
F

w4

or brevity, we assume the elastic modulus is constant at least

. ) -1 -1 _n+ -1ln .
within the time step so that E (idg) = E 73 Lo E "5 . Thus, regrouping

Zonatiom s with un<nowns on the left we have the form:

n+1 n
Pz =
where P(Jn+l) = E_lJn+l + 1t én+l (43)
vp
Q" = e - 2e(1-9)E" 4 g0 (44)
vp

11

PR T




When 6 > 0, Equation 42 is a nonlinear algebraic equatiom in °n+1 because in
general én+1 is nonlinearly related to 0n+1' However, choosing 6 = 0 (explicit
method) results in a linear equation (but at the expense of accuracy and sta-
bility concerms).

Using a Newton-Raphson procedure to solve Equation 42 (which will converge

on the first iteration 1f 6 = Q), we let:

n+l i

o = gl + 6o (45)
i n+l
where 0° = gome estimate of o at iteration 1 (first estimate
i=1 n
is o = g),

Goi = correction to estimate ai

1

Thus we have P(0” + 601) = qn which when expanded in a first order Taylor series

; 1
gives an estimate of the correction 8¢ :

P'(c )50t = qn - P(c™) (46)
where poly = Elot + srect (47)
vp
i 3 (s} -1 3¢
and, P'(g) = = E =+ Atgy —2F (48)
30 ac
The process is repeated with oi+l = oi + 60" to get dci+1, and so on until
501+l ~0

Table 1 summarizes the above numerical solution algorithm for strain loading.

A stress loading algorithm is easily established in a similar manner.

12
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Table 1. Solution algorithm for one-dimensional viscoplasticity
with strain loading.

n

. n
1. Given: ¢, 0, ¢

(set) q = ¢

3. Iteration loop:

(solve) 601

(update) 31+l =

i+l

vp

citl

Jitl
= Vp

i+l
P

il

4. Repeat iteration

are satisfied:

(a) 3 =20

(e) o,
L

e e, Pn. p'" (at time t ) and en+1
vp vp n

2. Time loop: n - n+l up to nmax

- s st -0)e® + g it
vp

i=1,2, ... imax

@' H™ (g -ph

i i
g” + 3o

o+l -loivl

-1_i+1 + Ata i+l
vp
-1 3 i+l *
£ s are = (2
36 T vp

(step 3) unless one of the following conditions
(explicit solution)
£ < 0 (elastic space)

< tolerance (converged solution)

(d) i » imax (maximum iteration limit)

b e o —— e e e e — e

B vp

S. Print results, returm to step 2 if n < nmax
5. £nd.

3 Li+1 i+l -1 i
Z ePh et a-e k'<qj;l> sgn(5-thy)

13
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MULTI-DIMENSIONAL VISCOPLASTICITY

We now consider a general viscoplastic constitutive model for continuum

bodies with six-dimensional stress and strain vectors ordered as:

Qa

T
o = <o Y290 9330 %10 %130 93> (49)

T
= 5y0 €220 €330 Yipr Vi3 Yo3 > (50)

In point of fact, the general viscoplastic formulation is only a small extention
of the one-dimensional formulation, so that the following development is pre-
sented with minimal additional discussion.

Constitutive Development. Two fundamental assumptions are as follows:

g = B(ge) (51)
e = & + &
z _e fvp (52)
¢
where £ T elastic strain vector

= viscoplastic strajn vector

[y}

D = elastic constitutive matrix (operator)

-1
(and 2 is assumed to exist)

The viscoplastic strain rate is assumed to be of the Perzynma type (7) defined by:

%Vp = vo(f) o (53)
Fo(f), £ >0
where, p(f) = < = viscous flow function (54)
10, £ <0
L —
f = f(g, Evp) = yield function (55)
14




with the following understanding.

Two typical forms of the viscoplastic

2 . %£ = vector gradient of f w.r.t.o (56)
9 I(¢.  held constant) ~
vp
and, v = fluidity parameter (57)

Note the above relationships are identical in form to the one-dimensional relation-

ships wherein m replaces sgn(c), defining the vector direction of €.+

vp

The yield function f may be taken as any valid plasticity yield function

In six dimensional stress space all states

of J giving f(o, §vp) = 0 forms a '"static yield surface" (e.g. a classical plasti-

city yield surface), all states of g giving f(o, fvp) = 3 > 0 forms a "dynamic
vield surface'", and all states o such that {(J, gvp) < 0 implies o is in the
elastic domain, i.e., »(f) = O so that __ = 0.

vp ~

flow function, %, given by Perzyna are:

R -
;\(f) ="—f—' i ()8)
\ 2
- N
(£ = exp (&) -1 (59)
£
0
where N = =2xponent (material parameter) *
fO = some normalizing parameter so that 9 is dimensionless

(material parameter)

Ygquation 58

i3 directlv analogous to the form adopted in the one-dimensional

guaticn

LWwOo forms

' 2(f)

(33
~~
~

<

=

where A,, 3,

4

o
W 2

[N

We

Tay te wriiten as:

i cevelopment and is apparently the most popular form for soils.

59) is sometimes used for metals.

The second form

A series generalization of these

P
A, (=) (60)
1 73 fo
£ b
L 3. (exp (?—) - 1) (61)
. 0

are additional material constants.

15




Having established the fundamental assumptions, the viscoplastic comnstitu-
tive relationship (i.e. a set of differential equations in time relating o and
€) can be readily derived by first combining Equations 51 and 52 in rate form

to get:

§ = D(E=-¢ ) (62)
Upon replacing évp with Equation 53, the final constitutive form is:

§ = D(e - v¢(f)m) (63)
Here it is understood that if f is a hardening yield function, then ¢
is an argument (i.e. £ = f(o, evp)). But, since evp = g - 2-1(0), Equation 63

implicitly infers the desired (¢,e) relationship.

A numerical solution strategy, paralleling the one-dimensional procedure,

is given next.

Numerical Algorithm. As in the one-dimensional case, we seek a solution

3(t) when e(t) is specified, or vice versa. In either case, we integrate Equa-

tion 62 over one time step L, ot andd denote the result by:

n+l

Ac = D(Ae - A 64
0 D(de gvp) (64)
tn + At
where Ao = an+l - o = J a dt (65)
t 4
n
o (t ), or e _(t) (66)
- ‘:v(tn)’ E.: n’’ ° ?V’P n

o n
Quantities a1 are presumed to be known at the start of each step.

Using the previously described Crank-Nicolson time integration scheme for

approximating Aevp, we have (0 < 9 < 1):

A - _ .a .n+1
*€vp ae((l - 8) €op + egvp ) (67)

L)




Inserting the above into Equation 64 (after performing the er operation)
an incremental approximation for the viscoplastic constitutive relatiomnship

is obtained (becoming exact as At + 0);

én+l)

Sup (68)

g'l(Ac) = ac - At((Ll - 8)&" + 0
~ ~ ~Vp
Implied in the above are the viscoplastic model assumptions valid for

all time:

8
' -vp

YQ(E)? (69)

-1

w = -0 @ (70)

t M
It

For the case when strain loading is specified, Equation 68 is regrouped with

unknowns at time t on left;
n+1
?(__n+l) - qn (71)
where P(Jn+l) = Q—l:n+l + ALS é:;l . (72)
¢Y = o= ar(l-3:t o+ p7h? (73)
N N vVp = .

Zere it is assumed :he elastic matrix is constant (at least within the time step).

by

impiicit integration is employed (3 > 0), Equation 71 represents a set

. . . R n+l :
27 nonlinear alzebraic equations for 3 . Using a Newton-Raphson procedure we
. n+l i L1 i, . . n+l . S .
Lar oo = 3 + 3z where 5 is some estimate of 3 and 3¢~ is a correction.

. - o - R S : LT i Uiy .
‘2 approximation for 30~ is achieved by expanding P(s™ + )gl) in a first order
Taylor series, and solving:

- ... 1 a i

2'':7)cT = g7 - P (2D (74)
Jo2rs The Jocebian mactrix g' is:
i P(37)
g'(: ) = ’- <
—;E—- (75)
d 2(shy = b4 aeset 76
an SN ot Z ;Vp ( )

17
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+
The process is repeated with gi 1. oi + Ggi to get 6gi+1 and so om, until

|6g| 2 0. Table 2 summarizes the algorithm for strain loading.

For the case of stress loading, a similar solution procedure is readily

n+l i i
= e

derived to iteratively determine ¢ + 87, i.e.;

pcheet = ¢t - BGep an
where i - 2-1Ag + At(l-e)ézp (78)
pel) = ¢! - sacet (79
-1 apced
B'(e) = *2°F (80)
: 2

The solution procedure for stress loading is summarized in Table 3. Note the
solution procedure for stress loading is very similar to the strain loading

procedure wherein q, P, and P' are replaced by q, P, and B'.

The complete Jacobian matrix P' (or g' for stress loading) is gemerally
nonsymmetric when hardening is included in the yield function. This may be
avoided by not including contributions to the Jacobian matrix arising from

partial derivatives of f(g, gvp) w.r.t. Evp as illustrated below.

Equation 75 defines the complete Jacobian P' with the understanding that
the hardening argument in f (g, gvp) is to be replaced by Evp =g - 2-19, so

that tne complete Jacobian matrix is:

o= gl vast(o'a(m + 1) + 4 (@' + b)) (81)
where ' = [%% ] (82)
n - 02 (83)
' EL .
- (symmetric) (84)
39
ho= DR (85)
18
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Table 2. Solution algorithm for general viscoplastic model with
strain loading.

: n n n .n n n . n+l
A 1. Given: ¢ ,0 ,e. , £, P, P' (at time t ), and ¢ .
< ~vp" ~vp’ . = n <

Q

| . 2. Time loop: n -+ n+l, up to nmax
s .
: (set) " = ("T o™ Zacl - 9)2® + phR
: - - vp -
T 3. Iteration loop: i = 1,2, ... imax '
]
(solve): R'' 3gb = " - pt
: : (update): g1+l = gi + égl
: i+l n+l -1 i+l
€ = ¢ -D
. ~vp < = - |
_i+l o, i+l i+l !
£ = £(37 7, ¢ ) |
< “vp i
i+l ;:fl+l . |
= LT i
n L f
L+l ToielT il 1
= = /;( ) m
vp T
~i+1 - D'_:l‘l . ;c%éi+1
2 3 “vp :
— '+l’1 .
seitl Pt . :
f = ‘ _‘,g 1
| _

1
4. Repeat iteration (step 3) unless one of the following is satisfied |
|

{a) 3 =0, (explicit integration)

|
‘ -0 i+l .
i (b £ and f < 0, (elastic space) f
! , A . l
‘ () 30 | < tolerance, (converged solution) .
; (d) 1 > imax , (iteration limit)
: 3. ?rint results, return to step 2 if n < mmax
' 3. End
' .
|
! *
I Symmetric form of Jacobian matrix is (see Equation 87):
' -1 \ ' T (]
2' = +y3at(e" ma” + o]

19
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Table 3. Solution algorithm for general viscoplastic model with
stress loading.

N

n n .an 0 n n
. L)
l. Given: ¢, ¢, ¢ ,e , P, R' (at time t ), and ¢

2. Time loop: n + n+l, up to nmax

n+l

-1 n+l n
c -

(set) " = D (o

cn) + At(l ~0)&" + ¢
g Svp T €

3. Iteration loop: 1 = 1,2 ... imax

(solve): g'l dgl = ﬁn - gl
(update): §i+l = gi + 651
L 1 p-loatl
Svp € g
f1+1 - f(qn-wl-l’ §1+1)
=
1 _ ) agttt
3 ! 30
P
§1+l - Yé(fl+l) i+l
S NS &5 BNV 02
£ € . Svp
Lot
il P )
' = .
z , 9¢ |

! 4, Repeat iteration (step 3) unless one of the following is satisfied:
(a) 3 = 0, (explicit integration)
(b) £" and fi+l < 0, (elastic space)
(c) j5§l+ll < tolerance , (convergence solution)
(d) i > imax , (iteration limit)
5. Print results, return to step 2 if n < nmax.
6. End
) t
* -~

Symmetric form of Jacobian is identify matrix, B' = [
step is trivial and P' need not be formed.

20
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h' = D " [—] {non symmetric) (86)

= 3e

~vp

and all the above partials are taken with the other variables held constant.

If £ = £(3), implying no hardening, then P' becomes a symmetric matrix
because h and k' are zero. Otherwise P' has nonsymmetric contributions from
the matrices m QT and g‘T. By retaining only the symmetric terms to define P'

we have:

p' = 2’1 + v8At[¢’ mm o+ 9 m'] 87)

In a similar development for stress loading, we find P' is composed of the
identity matrix plus nonsymmetric matrices related to hardening. Retaining only

the symmetric identity matrix we have:

AN (88)

In closing this section it is emphasized that the symmetric forms of the
cacobian matrices (Equations 87 and 88) are complete and correct for non hardening
vield Zunctions. For the more general case of hardening, the symmetric forms
may >e used with the consequence that the Newton-Raphson rate of convergence
ana the domain of convergence (i.e. step size) mar be reduced. Of coursg once

a convergad solution is obtained, it is correct.

As illustrated in the last section of this report, the inverse of the
Jacobian matrix deccmes the "constitutive matrix" in forming finite element
stiffness matrices. Thus the motivation for retaining the symmetric form is

dpparent with regard to equation solving.

21
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SPECIALIZATION OF VISCOPLASTIC MODEL TO CAP75

Functional Forms. The foregoing viscoplastic algorithm presented in

Table 2 (or Table 3 for stress loading) is specialized by identifying the
functional forms for elastic, viscous, and plastic components, i.e. D, #(f),

and f(g, gvp) along with the hardening function associated with f.
In program VPDRVR (Appendix) the following forms are included:

(1) An isotropic elastic matrix is formulated with a bulk and shear
modulus (K and G) whose values may change between load steps

but are assumed constant within the load step, i.e.;

D = DK,®" (89)

(2) Two options for ¢$(f) are (see Equations 58, 59):

N
- (f/fo)

o(f) = | (or) (90)

-~ exp (f/fo)N -1

therefore,
- No(£)/ £,

o) =< (om)
CNGE) + 1 £ (91) |

(3) A somewhat general form for f£(gJ, Svp) applicable to CAP75 as well

as most other plasticity models 1is:

(s, évp) = 8,0, gvp) +8,(3,) (92)

where 8, = specified function of J, and ¢ where ¢
1 ~vp =
implies hardening.

g8, = specified function of J,.

Jl = first invariant of stress.

Jz = second invariant of deviator stress.

22




In a later section specific forms for 8, and g, are given for the CAP75 plasticity

model where we allow g8, and g, to be specified differently in different regiomns

of Jl’ JZ space (e.g. failure surface and cap) .

The advantage of the above form for f is that the gradient vector m and
the Jacobian matrix P' (symmetric form) can be established once and for all

in terms of 81 and g, and their derivatives as shown below.

Beginning with the stress invariant definitions:
Yy T 9yt 9 g3 (93)
1,2 2 2 2 2 2
= = + + S, +2 + + 4
Tp 7 g Sy Syt Syy ¥ 20y, F 205 ¥ 2059 (34)
where S.. = o,,~-J,/3, i=1,2,3 (no sum) (95)
ii ii 1
we have for a = >i/3a:
2 0= 3 b+, 3 (96)
3.
where g'l = “J: (97)
3%,
3, = T (98)
) : i
N - P . . .T . ;
b = “J1/’q =<11100¢0C~»> (99) i
T 1
= 3 3 = < S S S 2 2
a J:/;g 511 S22 S33 29y, 295 2323> (100)
ANC arter some manipulation, 2' (Equation 87) may be writtenm as:
-1 T T T T 2
-t = + v . r A v . -
z 2 +.,z_t(.(lk§§]+..2 (b a +‘3§‘+X3[§§]+X4[;g])
(101)
where Xl = :'(gé}' + :g; (102)
X = b'gigé (103)

ot Y A




\ |2 "
Xy = @ (8 + 48] (104)
X, = ¢g' (105)
4
2
" 3g.
with, g' . _1 (106)
1 aJl
agé
g' = = (107)
2 Jy
~ -

(108)

sym.

d
]
Q
o
N
]
’—l
N
]
H
A O O O

> O O O O
o O O O O o

L -
Thus to change yield functions, we merely specify new functions for 8y and g,y
with gi, g;, g;, and gE. Of course, hardening parameters must be maintained

separately in updating the gl function.

CAP75 Yield Function. We now specialize Equation 92 for a particular

version of the CAP75 plasticity soil model (1). Figure 2 shows the CAP75

yield function which is composed of a nonhardening "failure surface'" f_ and

F
a hardening ''Cap surface" fc. The failure surface is defined as:
i @ 8 (Jl) t 8p (J7) (1c9)
1 2 ©
where 3 = -A + C exp (BJ,) (110)
Fl 1
1
ge . (pY? (111)
"2

A,B,C = material constants

Jote the so-called '"von Mises transition" is not included in this development,

and the ad hoc "tension cutoff” technique (1) is not suitable in a viscoplastic

context (see Summary).
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The cap surface, forming an ellipse quadrant, is defined as:

fo = 8 €) + (112)
C cl(Jl, €) SCZ(JZ)
2 2

whete, B¢ = (-(x - L)+ (I - LI/g R’ (113)

gcz = JZ/f0 (114)
and, ¢ = volumetric viscoplastic strain hardening function

R = ratio of principal ellipse radii

L = current location on Jl axis of cap-failure intersection

X = current location of cap intersectiom on J1 axis

(X< L)
fO = pormalizing constant with units of stress.

Note, fC is a "squared" form of the cap surface presented by Sandler (1).
This is necessary because during viscoplastic flow (Jl< X) we must have
fC > 0 which is not possible with the Sandler form. Accordingly, fo is used

to retain the units of stress for fC.

Continuity of the hardening cap and failure surfaces (static) are main-

tained &y the relationship;

X = L+Rgg (L) (115)
1

which establishes the current ellipse quadrant of the cap surface. Typically,

the ellipse ratio R is assumed constant but may be a function of L.

CAP75 Hardening Function. Hardening of the cap is given by a relationship

between X and E;
T - we™® o (116)

where W and D are positive material constants.

The strain hardening function ¢ is a measure of accumulated volumetric

viscoplastic strain. For both rocks and soils, ¢ can only increase negatively
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during viscoplastic loading of the cap, inferring X and L grow negatively
expanding the cap during hardening. Thus the incremental update of €, when
J, <L, is:

1
P ™) (117)
n+l n
where Aw = w -w _ (118)
w =€ + ¢ + ¢ (119)

VP11 VP2 VP33
For soils only, e 1s allowed to be updated with positive increments of
Aw during viscoplastic loading of the failure surface, inferring that X and L
become less negative. This retracts the cap, however the retraction is limited

such that L < Jl'

not strain softening. The purpose of this procedure is to limit excessive

Sandler claims this is tantamount to kinematic hardening,

dilatancy for soil models (i.e., subsequent compression loading will activate

the cap sooner). Thus the incremental update of ¢ for soils, when Jl > L, is:

< = min (¢, € ) (120)
where Ea = &7 + max (0, Aw) (121)
s o= WP (122)
XC = J o+ RgFl(Jl) (123)
in the above, ;c insures that L < Jl. Also, En+l is never allowed to become

greater than Iits initial value.

Iable < summarizes the implementatjon of the CAP75 plasticity model. The

srocedure in Table 4 should be viewed as a subroutine which internally main-~

~air.. the hardening parameters E, X, and L. The subroutine outputs gl, gi, 81

and gz, gé, g; which allows calculatiom of f, m, and 2' by Equations 92, 96,
and 101, respectively. These, in turn provide the necessary ingredients in

Table 2 (or Table 3 without P') for the general viscoplastic algorithm.
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Table 4. CAP75 hardening update ana 81> 8, couwpurations.

Input initialization: Initial location of X specified as Xo

check: Xo < g.. (0)
F
1
- 0
set: eo a W(exp(DX) - 1)
solve: L = Xo - Rgp (LO)

- wm w e w e @ Er wm m e e o W e w W e e e mr e M e e e Em e wm W e W W W W w wm W =

For each iteration of each load step: Update E, X, and L and compute

' 11} 1 1"
8> 81> 8 and 32, 82’ 8, baged on current values of Jl’ J., and Adw.

2
it
No Yes
Failure Surf. Cap Surf.
E For soil only: K
f (E" + max(0, Aw)
E £ = min 1 w(exp(DXC) - E = 4+ min(0, Aw)

20

X, = J + RgFl(Jl)

L |

\

;‘..l t
X = ln(e/W + 1)/D

L = X- RgFl(L)

Fail Surf. VZ/ Y\ﬁu Cap Surf.
.8 gFl 1) i 8 T ~((X-L)" - (J;-L))/FRT
! [ 2
: o= gt (3 ! 'o= 2(J,-L)/f.R
! " - " 1t 2 |
i

1/2

i g, J,) g, = J,/f,
! [l l 'l 2 t
I By ® E(Jz) / g8, = 1/f0
! " 1 3 "
L 8y = =303 & g = 0
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EXAMPLE RESULTS AND DISCUSSION

In this section the CAP75 viscoplastic model is studied for two loading
conditions; uniaxial strain and triaxial stress. In both cases the plasticity
parameters are taken from Sandler (1) representing McCormick Ranch Sand.
Table 5 gives the values of the model parameters used for both loading con-

ditions along with three values for the fluidity parameter.

The intent of these examples is to verify the viscoplastic algorithm and
to illustrate the effect of the fluidity parameter, vy, on the time dependent
responses. The three values of the fluidity parameter (y = 0.001, 0.0l1, and
0.1) were chosen to produce responses with varying amounts of viscoplastic

flow.

With regard to numerical time integration, each example problem is solved
within 12 relative accuracy for five choices of the Crank-Nicolson 8 parameter;
3 = 0.0, 0.25, 0.50, 0.75, and 1.0. That is, for each choice of 8, the time
step size, At, is repeatedly halved until successive solutions agree within 1Z,

thus providing an efficiency comparison.

Uniaxial strain. Figure 3 shows the uniaxial strain loading history for

the strain component €11’ all other strain components are zero. Here, €11 in-
creases in compression at a constant rate, held constant, unloaded at a con-
:tant rate, and finally held constant so that eventually stress responses would
approach steady state for all y. Note the units of time are not and need not

be explicitly stated since they are the reciprocal of whatever units are assumed

for v.

Figure &4 shows the corresponding o stress response for the three magni-

tudes of v. For the relatively large mi:nitude, y = 0.1, the response is nearly
inviscid throughout the entire loading history. In other words, the viscous
ciement (see Figure 1) has very little effect in retarding the plastic response
>0 that the soiution is nearly elasto-plastic. Indeed, the steady state 93
values agree exactly with the inviscid CAP75 plasticity solution (17), thereby,
providing a verification of the viscoplastic solution. If higher values of ¥y
were used, the response would not change significantly, and the small peaks

at time = 1.0 and’ 5.5 would be flattened, resulting in a perfectly inviscid

solution.
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Table 5. Viscoplastic model parameters

Bulk Modulus = 66.67 ksi

Elastic Parameters Shear Modulus = 40.0 ksi

*
CAP75 Plastic Failure Surface (Equation 109):
{(McCormick Ranch Sand) A= 0.25, B =0.67, C= 0.18

Cap Surface (Equation 112):

R=2.5 £ =0.25 X° = -0.1888
Cap Hardening (Equation 116):

W= 0.066, D= 0.67

Viscous Parameters Flow Function (Equation 90a)

N=1, f = 0.25
o]

Fluidity parameter

y = 0.001, 0.01, and 0.1

R

S

?

: * -
! Units: A, C, fo and X° = ksi; B and D = ksi 1, vy = time

R, W, and N are dimensionless.
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For the relatively small magnitude, Yy = 0.001, Figure 4 shows a pronounced
viscous effect such that steady state conditions are not reached within the
constant loading duration, and peak stress magnitudes far exceed the maximum
stresses achievable from the inviscid plasticity solution. The rate of stress
relaxation decreases with decreasing values of y. In the limit as vy - 0, the

response becomes perfectly elastic in which case the shape of the ¢ response

11

history would be similar to the e,, loading history.

11
For reference, Figure 4 also indicates which CAP75 regions (i.e. failure
surface, cap surface, or elastic domain) are being activated during the loading

schedule. Lateral stress responses (022 = 033) are shown in Figure 5.

The foregoing solutions were independently obtained for five choices of 8,
each requiring a certain minimum value of At to achieve relative accuracy within
1Z. Table 6a shows the required values of At to maintain accuracy (Note,
although not necessary, At was taken uniformly throughout the loading schedule).
In general it is observed that 3 = 0.5 permits the largest time step, in some
cases up to four times greater than 2 = 0.0 or 6 = 1.0. Surprisingly, the
influence of v on At is small. That is, within the range 0.001 < v < 0.1, it for
accuracy changes at most by a factor of two. This is not in conformance with
initial expectations wherein it was incorrectly anticipated that At for accuracy
would be inversely proportional to y. In other words, it wis presumed the

dimensionless product yAt would be an accuracy measure,

It is now conjectured that the accuracy requirement for At is predominantly
controlled by the loading schedule, i.e., At must be sufficiently small to
adequately capture the abrupt changes in loading rates. This contention is
supported by the observation that the greatest accuracy deviations throughout
the loading schedule occurred at changes in loading rates, primarily at time =
~.0.

tastly, the it values in Table 6a for the conditionally stable algorithms,
> = 0.0 and 0.25, are controlled strictly by accuracy not stability. Unstable
values of 1t were typically found to be an order of magnitude or more than the
accuracy controlled values at At. Unstable solutions are readily distinguished

ov wild »scillations of the responses.

Triaxial Stress. Figure 6 shows the triaxial stress loading schedule.
Initially, hydrostatic loading (o11 =35, :33) is applied at a constant rate
34




Table 6a. Uniaxial strain:

required At for accuracy

) Integration Fluidity Parameter
Parafecer y = 0.001 y = 0.01 y = 0.1
0.00 0.00625 0.0125 0.00625
0.25 0.00625 0.025 0.0125
0.50 0.025 0.025 0.0125
0.74 0.00625 0.0125 0.0125
1.00 0.00625 0.0125 0.00625

Table 6b. Triaxial stress: required At for accuracy

Integration

T

Fluidity Parameter

; Parameter
| 3 y = 0.001 y - 0.01 y = 0.1
f 0.00 0.050 0.0125 0.00625
i
} 0.25 0.10 0.025 0.0125
: 7.50 0.10 | 0.05 | 0.025
0.75 0.05 0.025 1 0.0125
1.00 0.025 | 0.0125 ! 0.00625
! | ]
35
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and then held constant. Next, while holding the lateral stresses constant,

the axial stress, is increased at a constant rate, held constant, unloaded

0,0
at a constant rate,lind finally held constant at hydrostatic pressure.

The corresponding axial strain response is shown in Figure 7 for the three
magnitudes of y. As in the previous example, the relatively high magnitude,
y = 0.1, produces a nearly inviscid elasto-plastic response history. Accordingly,
large amounts of plastic straining is observed. Converseiy for the relatively
low magnitude, v = 0.001, rapid plastic straining is impeded resulting in smaller
strain magnitudes. In the limit as y - 0, the strain respoanse would be purely
elastic. Figure 8 shows the corresponding response histories for the lateral

).

strains (522 = £33

Table 6b lists the minimum values of At to achieve accuracy within 12 for ]
the five choices of 3. As before, 8 = 0.5 is the most efficient choice for
maintaining accuracy with maximum At. Further it can be observed that the in-
fluence of v is fairly uaiform. That is, for any value of 8, At generally de-

creases by one half for each magnitude increase in v.

Summarizing both examples, the following observations are noted:
1. For y >> 0.1, the responses are inviscid (elasto-plastic). For

y << 0.001 the responses are elastic.

r
.

For all v, 3 = 0.5 is mosct efficient with regard to maintgining

accuracy with largest At.

3. In the range, 0.001 < vy < 0.1, the fluidity parameter has less
influence on the required 4t for accuracy than anticipated.
loading rates and changes in loading rates are presumed to be
the major factor for the .t accuracy requirement.

4. For 9 < 0.5 (conditional stability), the At required for accuracy

is significantly less than the 2t limit for stability.

It is emphasized that the above observations pertain only to the example

problems presented herejn.
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EXTENSION TO FEM APPLICATIONS
For the sake of completeness, this section illustrates how to incorporate

the general viscoplastic constitutive model into a quasi-static, finite element

displacement formulation.

Using standard FEM notation, the global equilibrium equations to be satisfied

at any time t ., are:
with e = Bu (125)
where B = strain-displacement matrix
¢ = nodal point displacements
¥ = nodal force vector (body, traction, and point loads)
V = volume of body

Since gn+l is the unknown in Equation 124, we follow a procedure paralleling

Table 2 for strain loading, the only difference being that strain is not a priori

specified but determined iteratively via displacements. To, this end we let;

at . .
3 L gl + SQL (126)
o+ i .1
= 1 = z + 3e (127)
. i 1 . - + n+ . . .
where 01, € = estimates of gn l, 3 1 at iteration 1i.

. o . . i i
507, 3¢ = correction to estimate J°, £

Thus, the equilibrium equation may be written as:

;. 3" 5ol dv = s Fl (128)
with srt e Lo s T gt gy (129)

n+l

i o1
Note when 7 = 7 , we have 3F = 0.
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i
From Equation 74 we have a relationship for dg :

R st = (set+et - - - oY -ae-0g) + eévip ) (130)

-1
Or more simply (noting Evp =c=-D a)

sot = gt et + 5gh (131)
where qu - (ei - et ) - at(1-0)e” + ge ) (132)
~ ~Vp ~vp ~vVp ~Vp
i R S | .
g = [p (g )] Jacobian inverse (133)

In Equation 132, both groups of terms defining dq are estimates of the

increment Aevp when these estimates agree (converged solutlon), we have Gq = Q.

Upon inserting Equation 131 into Equation 128 with S¢' = Béu’, the iterative-

global-equilibrium equation becomes:

su” = §F" - 4Q (134)
where gi = Iy gT ;i g dv (135)
st = s, 8t ¢t sqt av (136)
As the number of iterations increases (i - =), we have gi= gn+1, gi = §P+l,

i + . | i i 1 ,
“up gipl, etc., as well as, §F = 4q = 5Ql = 3u” = 0, (i.e. a converged
solution).

Table 7 summarizes the numerical FEM algorithm for a time step from time tn
to cn+l' First iteration esiimat:s (i = li ari bas:d o? preziously known values
at time t, S° that we have g =g, ¢ 1- ;+% = C,Kk = % , etc. Accordingly
from Equations 129 and 132, we have §F = F - Fn, and 63 = -At€ a

oM

Several variations of the solution strategy in Table 7 are easily established.
First, for the explicit method (3 = 0) we have gl = D resulting in linear equations

that convergence in one iteration but at the expense of reduced At to control
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—
1. Given at Gauss Points: gn, gn, %J;, E:p’ and QP (or reconstruct),
n
along with global K .
2. Time loop: n -+ n+l, up to mmax.
1
(set:) 6F = f(tnﬂ.) - F(e)
1 . N
§q© = -=Ate
- ~vp
1 T n 1
Q° = IV B & 6q 4v
3. Iteration loop: i =1, 2, imax.
O § i i
(solve): K Su = 6F - 4&Q
sel = Bl sul
i+l i i
(update): ¢ = ¢+ 8
t Ji+1 = oi + gi(b'ei + qu)
[l -~ -~
!
l i+l i+l -1 i+l
i £ = € - 9
: .Vp ~Vp - .
: g 141 Y@(fu‘l} mitl
. ) ~
‘. i -1 *
| g1.-0-]. - [E_' i+1] *
: coitl _ T i+l i+l
| 5F Fe ,)) -/, B & "¢ av
‘ . .
| sttt = LD s -e)e® 4 ose M
{ -~ -Vp -vp - ~Vp
{ . .
[ 5Qi+l - B.T i+] Sq1+1 qv
f ] - v= =
i ! : .
i | g - spf Mt pav
} ;
E 4. Repeat iteration (step 3) until convergence (see Table 2).
E 5. Print results, return to (step 2) if n < nmax.
f : 5. End.
' 1
* ] ‘]. - [] T [} -
P = D + voAt{¢o'm m” + og'] (see Equation 87)




accuracy/stability. A second variation is with regard to modified or quasi
Newton-Raphson methods (15). Here Ki is held constant (modified Newton-Raphson)
or approximately updated in its triagularized form (quasi Newton-Raphson) for
the purpose of reducing solution time per iteration but at the expense of slower
convergence rates. Lastly, if the iteration process is terminated prior to
convergence (or if the one-step explicit algorithm is used) the out-of-balance
force 5Fi+l may be added to the applied force F in the next time step as a

"load correction" to reduce error accumulation.

For dynamic problems the acceleration vector can be numerically integrated
by any suitable scheme (e.g. Newmark Beta-method) independently of the Crank-
Nicolson scheme used for the viscoplastic constitutive model. In such cases,
it may be presumed that At controlling accuracy would not be smaller than At
required for same problem with inviscid plasticity (i.e. CAP7S without viscous
effects). This is because the viscoplastic response at any instant is bracketed
between a1 purely elastic response and an inviscid plastic response. Thus, it is
reasonable to assume that At for a dynamic viscoplastic solution need not be less

than 4t for a dynamic inviscid-plastic solution.
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SUMMARY AND RECOMMENDATIONS

The viscoplastic formulation and numerical algoritlm developed herein
provides a general format for incorporating various plasticity models into a
Perzyna-type viscoplastic constitutive relationship suitable for FEM appli-~
cations. In particular, the CAP75 viscoplastic model illustrated in this
report and contained in the program VPDRVR (Appendix) appears to have a
sufficient generality to faithfully represent the time~dependent behavior

of many geological materials over a wide range of loadings.

The VPDRVR program has been extensively checked and verified including
cross-checks with the CAPDRVR program for steady state elasto-plastic solutioms,
as well as, self-checking time-dependent inverse solutions. Inverse solutions
are obtained by taking the stress responses from a strain loading problem and
using them for a stress loading problem whose strain response should match the
original strain input (or vice versa). These severe self-checking tests demon-
strated that the algorithm is accurate and working admirably. Furthermore,
the architecture of the VPDRVR program permits relatively easy addition of new

elastic, plastic and/or viscous functional forms.

Future research is needed to bring this work to full fruition. Two major
areas are (1) experimental verification and parameter identification, and

(2) numerical studies for optimizing efficiency/accuracy of the FEM algorithm.

The former area should be addressed first to establish the capabilities
and limitations of the viscoplastic model. Existing experimental data for
tine-dependent behavior of soils and rocks (2,3,4,5) is primarilv for slow
rates Oof loading. Hence, it is strongly recommended to obtain additional
experimental data for rapid loading rates. Concurrent with experimental veri-
fication, is the need for developing feasible parameter identification tech-
niques. Lastly, with regard to time-dependent tension failure or damage,
additional theoretical and experimental work is needed. A tension visco-damage

model recently proposed by Whitman (18) shows some promise in this area.
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APPENDIX

PROGRAM VPDRVR: INSTRUCTIONS/DOCUMENTATION

This Appendix provides input instructions and documentation for the VPDRVR
computer program (FORTRAN IV). VPDRVR exercises the CAP75 viscoplastic model
developed in this report for general states of strain or stress loading schedules.
The general solution strategy parallels the algorithm presented in Table 2 for
strain loading or Table 3 for stress loading. The procedure for updating the
cap hardening parameters follows the algorithm presented in Table 4.

Part I contains user input instructions. Part II describes program organi-
zation, subroutines, and program variables. Part III provides input/output for
a simple benchmark problem.

Input data cards are grouped in the following categories:

A. (Cards 1 and 2): Heading and master control

3. (Cards 3,4, and 5): Elastic functions/parameters

(@]

(Cards 6,7,8, and 9): Plastic functions/parameters

D. (Card 10): Viscous functions/parameters

[ &3}

(Cards 11, 12): Loading schedules for stress or strain
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Part I.

A.

USER INPUT INSTRUCTIONS

Problem Initiation, Heading and Master Control Cards.

Heading

(415, Al, 2F10.0)

Card 1. (15a4)
Columns Variable
01-60 TITLE
(15A4)
Card 2.
Columns Variable
01-05 LTYPE
(15)
06-10 NTSEG
(15)
11-15 I™AX
(15)
16-20 KPRINT
(15
20-21 IPLOT
(al)
THETA
CONVRG

Entry Description

Descriptive problem title, (program
terminates if TITLE(l) = STOP).

Master Controls

Entry Description

Loading type identification:
= 0, strain loading.
= 1, stress loading.

Number of time segments to define
loading, (Default = 1, Maximum = 30).

Number of Newton-Raphson iterationms,
(Default = 10).

Qutput print control:

= 0, standard response output.

= 1, above plus iteration parameters

, above plus yield function values.

W

I’
, above plus Jacobian matrix.

fv n u

’
Plot control for response data written
to unit 11:

= Y, (YES) Data written to unit 11

= N, (NO) YNot written

rank Nicolson integration parameter, 3;
8 <1.0

Convergence tolerance for Newton-Raphson
iteration, (Default = 0.01, 1i.e. 1%
relative error).
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Notes

(2)

(3)

(4)

(s)

above plus iterative correction vector

(6)

(7)

(8)




Elastic Function and Parameter Cards

(215 Selection of Elastic Functioms

Entry Description Notes

Selection of bulk modulus function, K(Jl): 9)

= 1, K(J,) = BDATA(1l), (linear).

= 2, K(J}) = BDATA(1)/(1-BDATA(2))*
(1-BDATA(2 ) *EXP(BDATA(3) *J1)

(Default = 1)

Selection of shear modulus function, G(J2): (10)

= 1, G(Jy) = SDATA(1l), (linear)

= 2, G(Jp) = SDATA(1)/(1-SDATA(2))*
(1-SDATA(2) *EXP (-SDATA(3) *J2)).

(Defaule = 1)

Bulk modulus parameters, BDATA.

Entry Description Notes

Card 3.

Columns Variable
01-05 IFBMOD
(15)

06-10 IFSMOD
(15)

Card 4. (7F710.0)
Columns Variable
01-~10 BDATA(1)
(F10.0)

11-20 BDATA(2)
{F10.0)

21-30 BDATA(3)
(F10.0)

Card 5. (7710.0)
Columns Variable
01-10 SDATA(1)
(Fid.0)

1.-20 SDATA(2)
{F10.0)

21-30 SDATA(3)
(F10.0)

First bulk modulus parameter. (11)

Second bulk modulus parameter.

Third bulk modulus parameter.

Shear modulus parameters, SDATA.

Entry Description Notes

First shear modulus parameter. (12)

Second shear modulus parameter.

Third shear modulus parameter.
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’ c. Plastic Function and Parameter Cards
)

{

baré %. " (415, G10.0) Selection of CAP75 functions

Columns Variable Entry Description Notes

01-05 IFFAIL Selection of failure surface function: (13)
= + H

(15) fF I, gFl(Jl)

=1, 8 = ~-FDATA(1) + FDATA(2)*J1.
1

=2, 8 * -FDATA(Ll) + FDATA(2)*
1 EXP (FDATA(3) *J1).

(Default = 1)

06-10 IFCAPR Selection of cap surface ellipse ratio R: (14)
(15) = 0, No cap, just failure surface.
= 1, R = CDATA(1l).
= 2, R = CDATA(1)/(1 + CDATA(2))*
(1.0 + CDATA(2)*EXP(CDATA(3)*EL)).

11-15 IFHARD Control of cap hardening: (15)
(I5) = (0, No hardening, stationary cap.
= 1, CAP75 hardening function is used:
g = W*(EXP(D*X) - 1).
W = HDATA(L)
D = HDATA(2)

16-20 KAPTYP Selection for soil or rock hardening laws: (16)
(195) = (0, soil material.

= 1, rock material.
21-20 XINITL Initial locatior of cap X on J, axis. (17)
(G19.0)

' Card 7. (7F10.0) Failure Surface Parameters, FDATA.

: Columns Variable Entry Description Notes
d1-10 FDATA(L) First failure surface parameter. (18)
(F10.0)
11-20 FDATA(2) Second failure surface parameter.
(F10.0)
21-39 FDATA(3) Third failure surface parameter.
(F16.0)
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* Card 8. (7F10.0) Cap Surface Parameters for R, CDATA.

a
i

Columns Variable Entry Description Notes
01-10 CDATA(1) First cap R parameter. (19)
(F10.0)

11-20 CDATA(2) Second cap R parameter.

(F10.0)

21-30 CDATA(3) Third cap R parameter.

(F10.0)

* Card 9. (7Fl0.0) Hardening cap parameters, HDATA.

Columns Variable Entry Description Notes
01-10 HDATA(1) First hardening paramter, W. (20)
(F10.0) .
11-20 HDATA(2) Second hardening parameter, D.

{(F10.0)

*
Skip Cards 8 and 9 if IFCAPR = 0.

D. Viscous Function and Parameter Card
Card 10. (IS5, 37L0.0) Selection of viscous function/parameters
Columns  Variable Entry Descriptaon‘ Notes
01-05 IFVISC Selection of viscous function o: (21)
{13 = 1, ¢ = (f/ANQRM)**EXPN.

= 2, ¢ = EXP((f/ANORM)**EXPN)- 1.
(Default = 1)

Ob-13 EXPN Exponent in p function, (22)
(F10.0) (Default = 1.0).
16=25 GAMMA Fluidity parameter, Y. (23)
{r10.0)
25=35 ANORM Normalizing constant in » function, (24)
(F10.0) (Default = max(FDATA(l), 0.01)
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E. Input Loading Schedule and Time Steps.

Repeat card set 11 and 12 NTSEG times; NS = 1, NTSEG

Card 11 (F10.0, 215) Time segment, number of stops, print control.

Columns Variable Entry Description Notes

01-10 TS(NS) Time at end of segment NS. (25)

(F10.0)

11-15 NUMDT (NS) Number of times steps within time (26)

(I5) segment NS.
(Default = 10)

16-20 IPRNT(NS) Print interval for standard output: 27)

(15) = 1, every time step prints output.
= n, every nth step prints. J
(Default = 1)

Card 12 (6F10.0) Stress or strain load vector at time TS(NS).

Columns Variable Entry Description Notes
21-10 PLOAD(1,NS) 3., (or e,,) at TS(NS). (28)
. 11 11
(F10.0)
11-20 PLOAD(2,XNS) 522 (or 522) at TS(NS).
(F10.0) (]
21-30 PLOAD(3,N3) 933 (or 333) at TS(NS).
(F10.0)
31-40 PLOAD(4,NS) 312 (or 512) at TS(NS).
(F10.0) -
41-50 PLOAD(5,NS) 13 (or 513) at TS(NS).
' (F10.0)
[
51-60 PLOAD(6,NS) 623 (or = ) at TS(NS).
‘ (710.0) 23

***END OF INPUT FOR ONE PROBLEM*#** -

52




Commentary Notes with Input Instructions:

1.

oS
.

fo 2%
.

10.

11.

12.

13.

Problems may be run back-to-back. Terminate the last problem by writing
STOP in columns 1 to 4.

Strain loading implies the six components of strain will be specified
individually during the loading schedule. Similarly, stress loading
implies the six components of stress will be individually specified.

For either stress or strain loading, NTSEG is the desired number of
time segments to define the loading histories in a piecewise linear
fashion.

Generally 10 iterations is more than sufficient to achieve convergence.
If convergence is not achieved, it is a strong indication that the time
step is too large. Note that convergence of the Newton-Raphson procedure
does not guarantee accuracy. Accuracy can only be assured by repeatable
solutions with smaller time steps.

Standard output includes stress or strain responses, cap location, number
iterations to converge, stress invariants, and type of response. For
KPRINT > 0, additional information is given primarily for debugging purposes.

Standard response data is written to unit 11 for subsequent plotting on a
CALCOMP plotter. Subroutine GRAPH is used for plotting and maybe removed
or replaced if desired.

For THETA = 0.0, the solution algorithm is explicit resulting in linear
equations (i.e. no Newton-Raphson iteration). For THETA > 0, the algorithm
is implicit and generally more accurate for a given time size, but requires
Newton-Raphson iteration. For THETA > 0.5, the algorithm is unconditionally
stable.

The convergence tolerance, CONVRG, is tested against the ratio formed by
the norm of the correction vector for stress (or strain) divided by the
norm of the stress (or strain) vector. Norms are Euclidean.

The nonlinear bulk modulus function given by IFBMOD = 2 is taken from
CAPDRIVER (Reference 17). It is a function of J; (first stress invariant)
and is treated the same for loading or unloading. Additional functions
may be added to program in FUNCTION DI(I,J).

The nonlinear shear modulus function givem by IFSMOD = 2 is a function of
Jo, second deviator stress invariant (see Note 9).

For future program expansion, BDATA is dimensioned to 7 to allow incorpora-
tion of higher order nonlinear functionms.

SDATA is dimensioned to 7 (see above).
For IFFAIL = 1, the failure surface is standard Drucker-Prager (or Von
Mices i{f FDATA(2) = 0.0). For IFFAIL = 2, the failure surface is the

exponential form suggested by Sandler for CAP75. Additional functional
forms may be added to the program in FUNCTION FGl.
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14,

15.

16.

17.

18.

19.

22.

23.

24,

By setting IFCAPR = 0, the plasticity model is governed by only the failure
surface. For IFCAPR = 1 or 2 the cap surface is included with R given by
the corresponding functional form. Additional functional forms for R may
be added to program in FUNCTION FRCAP. (Note for IFCAPR = 2, R = R(EL)
where EL is "L" of cap).

1f desired, a nonhardening cap surface may be used by setting IFHARD = 0.
Otherwise the CAP75 hardening function is employed. New hardening functions
can be employed by modifying SUBROUTINE CAP73.

See Table 4 for the special hardening rules for soils (KAPTYP = 0).

The initial location of X defines the starting position of the cap surface.
The program checks that XINITL is not greater than FCUT, i.e. the inter-
section of the failure surface with J1 axis. If it is, XINITL is auto-
matically reset slightly less than FCUT. Note, the so-called Von Mises
Transition employed by Sandler is not included in this development. Thus,
if it is desired to obtain steady-state viscoplastic solutions to exactly
match CAP75 plasticity solutions, XINITL should be chosen so that the
initial L location is not greater than zero.

The "standard Sandler" CAP75 failure surface is the form given by IFFAIL =
2. In which case FDATA(l) = A, FDATA(2) = C, and FDATA(3) = B.

The "standard Sandler'" CAP75 cap surface parameter is the form given by
IFCAPR = 1, {i.e., CDATA(1l) = R.

If IFHARD = 0, HDATA(l) and HDATA(2) are read but not used. If IFCAPR =
0, cards 8 and 9 are not read. HDATA as well as FDATA and CDATA are
dimensioned to 7 for future program expansion. °

For geological materials IFVISC = 1 is generally the most popular form
for the viscous function. Additional functional forms such as Equations
60 and 61 may be added to the program in SUBROUTINE PHIF.

EXPN need not be a whole number, but must be greater than zero.

GAMMA has units of inverse time, the units (e.g. seconds, hours, years)
correspond to the loading time units TS in Card 11.

Generally the default value of ANORM is appropriate providing FDATA(l) # 0.0.
ANORM should not be viewed as an independent material parameter since it is
always associated with GAMMA in the quotient GAMMA/ANORM**EXPN.

Cp to 30 time segments may be used to define a piecewise continuous collection
of straight lines to define loading. For the first time segment, the program
automatically assumes initial time is zero, i.e. TS(Q) = 0.0. Thus, TS(1l)

is the time at the end of first segment, TS(2) is the time at the end of

the second segment, etc. Successive values of TS(NS) must be greater than

the previous value.

54




26.

27.

28.

Any number of time steps may be assigned to each time segment. Accuracy/
stability is controlled by the time step size so that it is good practice
to repeat solutions by doubling the value of NUMDT(NS). Although the
time step size may be specified differently in each time segment, it is
good practice not to make changes in At between segments by a factor of
more than 2.

The printout interval may be specified differently for each time segment.

Loading values at the end of each time segment are specified individually

for each vector component of strain if LTYPE = 0, or each vector component

of stress if LTYPE = 1. For the first time segment the initial loading

and responses are automatically assumed zero i.e., 0(0) = €(0) = 0. Standard
continuum mechanics sign convenctions are observed for all input and output.
For example, if a uniaxial stress loading cycle is desired in which 0;; is
compressed at a constant rate to a stress value -10.0, held constant, then
reverse loaded at a constant rate to a tensile stress value of +1.0, and
again held constant; we infer NTSEG = 4, and ¢ is described by:

11
PLOAD(1,1) = -10.0
PLOAD(1,2) = -10.0
PLOAD(1,3) = +1.0
PLOAD(1,4) = +1.0

and all other stress components (PLOAD) are zero.
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PART II.

Table Al describes subroutines and functions employed in VPDRVR along with

VPDRVR Documentation

associated calls. Table A2 illustrates the program flow path.

Listed below are all COMMON statements with a description of their variables:

o~

COMMON/MASTER/

THETA = 8, Crank-Nicolson integration parameter
CONVRG = convergence tolerance ratio

DT = At, current time step size

LTYPE = loading type; strain = 0, stress = 1.

NTSEG = number of time segments

KPRINT = print control parameter

ITMAX = maximum number of Newton-Raphson iterations

COMMON/ELAST/

BDATA(7) bulk modulus coefficients
SDATA(T) shear modulus coefficients
IFBMOD = functional form of bulk modulus
IFSMOD = functional form of shear modulus

COMMON/PLAST/

X = cap surface location X

EL = cap surface location L

VH = z, viscoplastic volumetric strain hardening
VHMAX = Emax’ maximum value of =

FDATA(7) = CAP75 failure surface counstants
CDATA(7) = CAP75 cap surface constants

HDATA(7) = CAP75 cap hardening constants

IFFAIL = functional form of failure surface
IFCAPR = functional form of cap surface

IFHARD = functional form of cap hardening

KAPTYP indicator for rock or soil hardening law; soil = 0, rock = 1

COMMON/ VI3CO/ '

EXPN = N, exponent in ;) function

GAMMA = v, fluidity parameter

ANORM = f;, normalizing constant in 7 function
IFVISC = functional form of » function

COMMON/RESULT/
ZPS(5) =

SIG(h) =
EVP(H) =

, Strain vector
» SLress vector

vp’ viscoplastic strain vector

M en
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EVPDOT(6) = évp' viscoplastic strain rate vector
SJ1 = Jl’ first stress invariant

SJ2 = Jz, second deviator stress variant

ITER = iteration number

COMMON/LOADNG ’

TS(30) = time at end of time segment

PLOAD(30) = loading at end of time segment
IPRINT(30) = print interval in time segment ,
NUMDT(30) = number of time steps in time segment i

COMMON/UTLTY/

P(6) = P or P in Equation 72 or 79

PP(6,6) = P', Jacobian matrix (Equation 101)

RHS(6) = q or § in Equation 73 or 78

DELCOR(6) # 6g or 8¢, correction vector for Newton-Raphson
DPLOAD(6) = 4g or Ae, load increment

DEVPKK = Jdw, increment of volumetric viscoplastic strain

COMMON/YIELDF/

Gl = gy, value of plastic surface function 81

GlP = gi, first derivative of gy w.r.t. J;

GlPP = g{, second derivative of g, v.Tr.t. Jl

G2 = gy value of plastic surface function g,

G2p = gé, first derivative of gy w.r.t. J,

G2PP = 33, second derivative of gy W.T.t. J

2
COMMON/VFLOWF/ ’

F = fF or fc,

PHI = 5, viscous function value

yield function value

PHIP = p', derivative of ¢ w.r.t. f
PHIPRE = @n, value of p at end of previous time step
VHPRE = En, value of ¢ at end of previous time step

ISURF = indicator for governing surface: failure surface = 0, cap = 1
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Table Al. Subroutines and Functions

rate, and forms Jacobian for GETSIG.

|
Name Purpose Called by ! Calls to
VPDRVR Main program: Executive duties for NPUT4M
controlling input calls, initialization, LOADS j
time step sequencing, and output. GETSIG
GETEPS d
GRAPH |
) NPUT4M Reads in functional forms and para- VPDRVR FG1 1
meters for elastic, plastic, and viscous FRCAP
components of viscoplastic model.
LOADS Reads in loading schedule, time step, VPDRVR -
and print controls. '
GETSIG Determines stresses for strain loading VPDRVR SOLVER :
by Newton-Raphson iteration and updates VPLAST i
| responses. DI !
t
! GETEPS | Determines strains for stress loading VPDRVR VPLAST ;
; by Newton-Raphson iteration and updates DI i
; responses. ;
. | s
: i VPLAST Computes stress invariants, yield GETSIG CAP75 i
i function value, viscoplastic straing GETEPS PHIF i
i {
i

Computes yield functions g1 and g VPLAST FG1

!
I
2
;
|
| capTs ; !
| ‘  and their derivatives for CAP75 FRCAP I
! ! plasticity and updates hardening
‘ | i parameters. ?
) |
: ! PHIF { Computes viscous flow function ¢ and VPLAST _ |
{ ’ , 1its derivative 3'. X 1
I ' |
| . !
) E SOLVER ] Gauss elimination equation solver i GETSIG i -
‘ | !
‘ i GRAPH Calcomp plotting subroutine : VPDRVR ' -
; * - ! !
' l DI(I,J) Determines components of D 1 elastic GETSIG i -
i : matrix GETEPS !
t ! |
¢ i * :
| ! FG1(SJ1,M) Computes 8y» gi and gI as a function NPUT4M | -
|
{ first stress invariant. iCAP75 }
" .
: FRCAP (EL) 2 Computes cap parameter R as a function iCAP?S -
L¥ ! of cap location lN'PUTAM

*
. FUNCTION SUBPROGRAMS




Table A2. VPDRVR Program Flow

]
PROGRAM VPDRVR !
1

i
! SUBROUTINES
| (main) . FUNCTIONS
i
INPUT ]
)
! (a) Master Control ' —_—
! | 7 — FGl
! (b) Material Properties <«———r— | NPUT4M ——
' A —— | FRCAP!
.
! (¢) Loading Schedule «—————r— | LOADS
nl i
|
INITIALIZE VARIABLES !
| |
} |
i TIME LOOP .
]
2 (a) Determine load increment : - . SOLVER

, ™1 GETSIG

(b) Get solution + update “T}
1

(or)
{c} Print results

Return to INPUT for new

1
I
i
!
t
t
!
(g i
problem.
i
i
[}
]

L-+ GETEPS

|




PART III Example input/output

The uniaxial strain problem presented in the main body of this report is
used here as a benchmark example for the VPDRVR program. On the following
page is listed the formatted input (card images) corresponding to the input
instructions in Part I of this appendix. Subsequent pages show the output
from the VPDRVR program including a restatement of the input with default
values, as well as, response data. For brevity, the printout of response
data is limited for each of the four time segments to include only the time
segment midpoint and end values. All data is adequately labeled and should
cause no confusion except, perhaps, for the nomenclature associated with

the response ""STATE". Here the following meanings are implied:

CAP~VP = viscoplastic flow above cap surface

CAP-SS = gteady state response on (or near) cap surface
FSURF~VP = viscoplastic flow above failure surface
FSURF-SS = steady state response on (or near) failure surface

ELASTIC = stress state is in elastic domain
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Input to VPDRVR, Uniaxial Strain, vy = 0.01l.

00010 SAMFLE OQUTFUT OF VUFIORVR - UNIAXIAL STRAIN LOAD
00020 0 4 ON .75 ’

00030 1 1

00040 64,67

00050 40.0

00060 2 1 1 0 -.1888

00070 0.25 0.18 0.67 ;
' 00080 2.5

20090 0.066 0.67

90100 1 0.01

00110 1. 80 40

001290 -0.03

00130 S. 320 140

00140 -0.03 %

00150 5.5 40 20 ,

DO1H0 ~0.0205 :

00170 7.5 150 80

00180 -0.0229
20190 STOF
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