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DECISION ALGORITHMS FOR MULTIPLAYER GAMES

OF INCOMPLETE INFORMATION

Abstract

This paper provides algorithms for deciding the outcome for various
classes of multiplayer games of incomplete information. The classes of

games which our algorithms are applicable include games not previously

known decidable; furthermore many of our algorithms have asymptotically
optimal complexity. We apply our algorithms to provide alternative

proofs of upper bounds, and new time-space tradeoffs on the complexity

of multiplayer alternating machines of [Peterson and Reif, 79].
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1. INTRODUCTION

A multiplayer game can be specified (formal definitions are given in
Section 2) by a set of positions, a relation defining possible next moves,
and an assignment of the rights of players to view and modify certain
components of positions. These rights do not change 'during the play of a
game. A player may have incomplete information on the values of those
components for which it has no rights to view, though it may be possible
for a player to partially infer this information by observing the visible
portion of posiEions in the previous play of the game. ’

A strategy for player i defines a single next move for player i from
any given sequence of previous moves ending in a position for which it is
player i's turn to move. Such strategies are called pure. (In contrast,
a companlon paper |kKelr, 1Ysl) considers mided strategles where morc than
one moves next are allowed to be chosen with various probabilities.

R strategy of player i must depend only on the visible components of
previous positions for which player i made moves.

Players in a multiplayer game are partitioned into two teams,

T, and T,. Section 2 defines the win outcome yroblem for a game: Do

0 1

the players of team T have a strategy yielding only finite winning

1

plays? We also consider the non-loss outcome problem: does team T
have a strategy yielding possibly infinite plays with no losses? Further-
more, we consider the Markov (m(n)) outcome problem: Given an initial
position of length n, does team Tl have a winning strategy dependent
only on the previous m(n) positions of ahy play? The Markov (1)

outcome problem was previously considered in [Peterson and Reif, 79].

The purpose of this paper is to provide decision algorithms for these

outcome problems.
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Section 3 providés decision algorithms for outcome problems of
certain games with a space bound S(n) Zlog n (i.e., S(n)
bounds the space required to compute possible next moves from a
position). [Chandra, Kozen, and Stockmeyer, 78] give an algorithm for
deciding the acceptance of a space bounded alternating machine which we
adopt to decide in time exponential in S(n) the win outcome of any
S(n) space bounded game of perfect information. [Reif, 79} gives an
algorithm with time double exponential in S(n) for the win outcome of
any S(n) space bounded two player game of incomplete information.
Both of these algorithms were known to be asymptotically optimal.
Unfortunately, there is a three player game with constant space bound
but indecidable win outcome problem [Peterson and Reif, 79)]. Thus we
must consider a restricted class of space bounded games, if we wish
decision algorithms.

A game is hierarchical if players of 1T, can be linearly ordered

1
by their rights. We give a powerset construction for eliminating incomplete
information in a hierarchical game with a finite space bound. This

powerset construction was first used for two player games in [Reif, 79].
Hierarchical games are in a sense the largest class of games for which we
can apply our powerset construction for eliminating incomplete information.
In particular, the undecidability result of tPeterson and Reif, 79 ] for

3 player games of incomplete information can be extended to show that for
any game G which is not hierarchical, there is a game G which has

undecidable win and nonloss outcome problems; where G and ¢ have the

same players and each player has the same rights to view components of

A
positions in G as in G.




Let a clique be a maximal set of players of a game with exactly the
same rights to view components of positions. Let X(G) be the number of
cliques in team Tl for which the players do not have all the rights of
team To. Our decision algorithm for the win and nonloss outcome of a
S({n) space bounded hierarchical game requires deterministic time of
X(G) +1 repeated exponentations on S(n). By lower bound results of
[Peterson and Reif, 79] our algorithms has an asymptotically optimal time
bound.

A blindfold game is a hierarchical game where no component of a

position visible to a player of team T is ever modified by a player of

1

team TO. For a blindfold game with space bound S(n), our decision
algorithm requires deterministic space of ¥X(G) repeated exponentiations
on S(n)} which again is asymptotically optimal by the lower bound result
of [Peterson and Reif, 791].

Also, in Section 3, we give an algorithm for the Markov (m(n))
outcome problem of any S(n) space bounded game; this extends a previous
result of [Peterson and Reif, 79] for the case m=1.

The algorithm results of Section 3 imply Corollaries giving time
bounds for plays induced by a winning strategy in any hierarchical
game. and for a Markov m(n) winning strategy of any game.

Section 4 gives an algorithm for the outcome problems of any
hierarchical game with botb a space bound and an alternation bound (i.e.,
a bound on the number of times a sequence of moves of the team Tl
alternates with moves of team To).

Section 5 shows that for games with both a time bound T(n) 2n

(T(n) is the maximum number of moves per winning play from an initial

position of lenath n) and a brainching bowurd b (b upper bounds is the




maximum number of possible positions divided by a single move from any

position) the outcome problems can be solved in deterministic space
O(T(n)b).

The Appendix defines the multiplayer alternating machines of [Peterson

and Reif, 79] to which we apply our decision algorithms.
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2. MULTIPLAYER GAMES OF INCOMPLETE INFORMATION

2.1 Game Definitions

A k+l player game is a triple G= (POS,+,VISIBLE,T,) where:

(i) POS is the set of positions with
Pos = {0,...,k} XR, X ..+ xR
1 r

where Rl,...,Rr are sets of strings over a finite alphabet.

(ii) F € POS XPOS is the next move relation, satisfying axioms Al,
A2 given below.

(iii) VISIBLE is a mapping from {0,...,x} to (not necessarily
proper) subsets of {1,...,r}.

(iv) Team T, is a subset of {0,1,...,k}. The opposing team is

o= {0,1,...,x} -1

The domain of VISIBLE are the k+1 players named O,...,k. Let
p= (i,pll],...,pln]) be a position in POS. Then next(p) =1 is the
player whose turn it 18 to move next. For each j=1,...,r, pljl 1is an
element of Rj and is called the j~th component of p. We say player i
has the rights teo view plj]l if JEVISIBLE(i). For each i=0,...,k,
let .visi(p)==(v,b) where v 1is the list (in order of occurrence) of
components of position p for which player i has rights, and b 1is a
boolean which is 1 just if it is player i's turn to move at position p.
Let invisi(p) be the list of components of position p for which
player i has no rights. Let W < POS bé the set of positions from

which there is no next mcve by any player. Let POSiA={y>€POS[next(p)==i}.




For each player i€ {0,...,k} we assume: J

Al If p€POSi and p | p' then invisi(p)=invisi(p').

A2 1f p,qEPOSiI—W and visi(p)=visi(q) then ]

{visi(p')lpf-p'} = {visi(q')lqi-Q'}-

Axiom Al states that no move by player i can modify a component of a
position for which player i has no rights to view. Axiom A2 insures that
if a pair of nontermination positions p,q are indistinguishable to
player i, then the sets of possible next moves from p and g must be

indistinguishable to player i.

2.2 Plays

For any finite string 7 of positions, let 1last(m) be the last
position of T. Fix an initial position pIEPOS. A play is a
(possibly infinite) string 1T=p0pl... of positions such that Py = P;

is the initial position, p Fpl, pll-pz,... and last(w) € W whenever

0
T is finite. A play p is a lose for player i if p is finite and
last(p) EPOSiAW; thus it is player i's turn to move but there is no next
move. A play prefix m is a finite null initial substring of a play;
thus 7 indicates a finite sequence of moves from the initial position
Py- We now inductively define a sequence visi(‘n) representing that
portion of the play prefix T which is visible to player i. Let
p=1last(n). If 7 is of length 1 then visi(ﬂ) =visi(p). Let p' be
a position such that phtp'. If both piéosi and visi(p) =visi(p')
then let visi(ﬂp') =visi(ﬂ) , and otherwise let visi(’n) =visi(ﬂ)visi(p) .

Thus player i can detect the occurrence of a move only if it is a move by




player i or if player i has rights to a component of the position

which is modified by the move.

2.3 The Game Tree

The game tree GT is the set of play prefixes. The root of GI is
the initial position py- Each play prefix 7 is considered a node of
T. The children of 7T are the play prefixes which are of length one
less than 7 and which arec aprefixof m. Thus last{m) F last(m') if =’
is a child of 7T . Let GTi be the set of play prefixes 7T such that
last(ﬁ)EfPOSi-w (these are those play prefixes ending at a position

for which it is player i's turn to move).

2.4 Pure Strategies

if

-

A partial function 0:GT.»GT is a (pure) strategy for player

(1) for any TE GTi,G(W) is a child of 7, and

"

(2) 4if m, '€ GTi and visi(ﬂ)==visj(ﬂ') then visi(o(ﬂ))
vis, (0(m')).
i
The first restriction requires the strategy to make only legal
moves. The second restriction insures that the strategy depends only on
that portion of the play prefix which is visible to player i.

Recall that the players O0,...,k are partitioned into disjoint

sets T., T. which we call teams. A play p is a win for team T if

o' 1

it is a loss for some player on team B. A play p 1is nonlogcs for tcam

T1 if it is not a loss for any player on team Tl. Let a team strategi

for 1 be a mapping o: (U GT )T such that for each player i ellf

1 iE‘l

the restriction of O to demain O i octratear for plaver 1. A

faimmen - -




play T is a play by team strategy o if whenever 7' is a prefix of
"™ and T' is in the domain of G, then O(7') 1is a prefix of . o
is a winning (nonloss, respectively) strategy for team T if every
play by strategy ¢ 1is a win (nonloss, respectively) for team Tl.
Note that all plays by a winning strategy are finite, but a play by a
nonloosing strategy may be infinite.

To define Markov strategies, we must introduce some special notation.
Given a play prefix T, and an integer m=20, let lastm(ﬂ) be the
last m positions of T if m< lﬂl, otherwise let lastm('n) =T. A
strateqy O for player i is Markov(m) if o(m) =0(n') for all play
prefixes T, T'E€ G'I‘i such that visi(lastm('n)) =visi(last:m(1r')). Hence
player i plays by a Markov(m) strategy if its moves depend only on the
visible portions of the last m positions of any play. A strategy for

team Tl is Markov(m) if the strategy for each player i€ Ty is

Markov(m) .

2.5 The Outcome Problem for a Game

Let G= (POS,}-,VISIBLE,TI) be a game. We assume the next move
relation F is represented as a next move transducer which is a Turing
machine transducer with an input tape and an one-way write only output
tape, and possibly some work tapes. The input alphabet I for this
transducer contains the symbols appearing in positions of POS. Given
any p€ZI*, the next move transducer outputs the set of moves
{(p,p')lpt—p'} if p€POS, and otherwise 6utputs a distinguished symbol
$¢€r if p€POS. The game G 1is thus finitely represented by pair

containing the next move transducer and VISIBLE.




The win outcome (Markov(m(n)) outcome, nonloss outcome, respectively)

1 problem for game G (finitely represented as above) is:

Given an initial position pIEZPOS, is there a winning (winning

Markov(m(n)), nonloss, respectively) team strategy for Tl?

2.6 Complexity of Games

A move ptr p' is an alternation if pEPOSi and p'EPOSj where
(i€t, iff j€T,). Thus, pkp' is an alternation if the players to
move at p, p' are on different teams.

Game G has time bound T(n) (alternation bound BA(n), space bourd :
S{n), respectively) if for each position pIEZPOS of length n for which
team Tl hae a winnina atrateay 0. there is some such 0 where ™
contains at most T(n) moves. (T contains at most A(n) alternations,
the next move transducer of G requires S(n) work tape cells,
respectively)for each play ™ induced by ¢ from initial position Py-

The complexity bound definitions given above are relevant only to
the win outcome problem for a game. When considering the Markov(m(n))
(nonloss, respectively) outcome problem, we bouné space, time, and

alternations only for plays of same winning Markov(m(n)) (nonloss,

respectively) strategy.

2.7 Obvious Properties of the Outcomes of a Game

Since the players of team To are allowed any legal moves in

response to a team strategy of Tl, we have:




e
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PROPOSITION 2.1." Let G, be the [Tll +1 player game derived from

1
G by substituting for all the players of team T, @ single ommiscient
player of T, which has rights to all components of any position, and

is allowed to move the same as the playcrs of 1 o ?reviously moved. Then

the win, nonloss and Markov(m(n)) outcome of G, is the same as G,

1

for any m(n) 20.

Recall from the Introduction that a clique is a maximal set ¢ of
players such that VISIBLE(i) =VISIBLE(j) for all players i,j€@. 1t

is also easy to show:

PROPOSITION 2.2. Let G, be the game derived from G by substitu-~

ting for each clique of T, a single player with the same rights as the

1

elique and allowed to move the same as the players of the clique. Then
G, has the same win, nonloss, and Markov(m(n)) outcome as G, for any

m(n) 2 0.

2.8 Restricted Classes of Games

Fix a game G with teams TO, Tl.

A player i is deterministic if for each position ;)€Posi, there is
at most p’' such that pkp', G is nondeterministic if each player of

T is deterministic. G 1is determintstic if all players are deter-

ministic.
We now define some classes of games with restrictions to VISIBLE.

A player i€ T has perfect information of T, if

VISIBLE(i) 2 VISIBLE(3), for each j€T,. G is perfect information if

all players of Tl have perfect information of T _.

0




kadt’]
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G is hierarchical if the players of T, can be ordered {il,...,ih}

so that VISIBLE(i ) 2 VISIBLE(i_ ,,) for 1<x<h. Hierarchical

games occur naturally in a variety of situations such as the multi-

processing games of incomplete information of [Reif and Peterson, 80]

where a hierarchy of processes are generated by a sequence of fork

operations.

G is blindfold if G is hiearchical and no player of T, can
view any portion of a position which is ever modified by a player of To.

Note that if G 1is blindfold then without modifying the outcome problems

for G, we can by Proposition 2.1 disallow the players of TO rights to

Tl,

view any portions of positions which are viewed by any player of
SO we can assume

VISIBLE(i) A VISIBLE!(j) = @

for all i€ To, jG‘Tl. The games of MASTERMIND, BATTLESHIP and BLINDFOLD-

PEEK [Reif, 79] are examples of blindfold games.

P VORI

e s L,
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3. DECISION ALGORITHMS FOR SPACE BOUNDED GAMES

This section provides algorithms for deciding the outcome of a
game G==(POS,F,VISIBLE,TI) with space bound S(n) 2log n given an
initial position pIEIPOS and team T,. We will let POS(pI) be the
set of positions in POS reachable from P; by some sequence of moves of
b+, and with space bound S(n).

Since the positions of POS are strings over a finite alphabet:

PROPOSITION 3.1. If S(n) Z2log n, there is a constant c¢>0 such

that  |pos(p)|< S

It is also straightforward to show:

PROPOSITION 3.2. The win and Markov(m(n)) outcome of any deter-
ministic (nondeterministic, respectively) game with space bound
S{n) 2log n can be decided in deterministic (nondeterministic,
respectively) space S(n). Furthermore, the nonloss outcome of any
deterministic (nondeterministic, respectively) game with space bound
S(n) 2log n can be decided in deterministic (co-nondeterministic,

respectively) space S(n).

3.1 Deciding the Markov{m(n)) Outcome of a Space Bounded Game

LEMMA 3.1. If a game G has a space bound S(n) 21log n, with

respect to the tarkov(m(n)) outcome problem, them G has a time bound

LSy respect to the Markov(m(n)) outcome problem.




-13-

To prove this Lemma, we observe that there is a constant c¢c>0

such that if a Markov(m(n)) strategy O induces a play 7 of length

> cm(n)S(n), then T contains a repeated play subsequence ﬂl containing

- . T i - MT="T e and ™
m(n) -1 moves Thus is of the form 0n1ﬂ2ﬂ1w3 wher ﬂo an 12

are either play subsequence or empty strings, and 7 is a play subscguence.

3

If it is a player of team Tl turn to move at least(ﬂl), then ﬂ3 has an

infinite number of occurrences of nl so W 1is infinite. Otherwise if

turn to move at last(ﬂl), then T'=7T_T_ TN T T .

it is a player of team T LWL

o

is an infinite play induced from ©. 1In either case 0O is not a winning

strategy. Hence a winning Markov{m(n)) strategy induces only plays of
length < cm(n)s(n). o

We wish to determine the Markov(m(n)) outcome of a game G with

- - - ~ - . . e aV ey [ — o
space vound  Sin) £ 1oy n. Dy Lewdia 3.1, a Wiinaiing Hoarkow {(w{n)) stra

cm.(n)S(n)

0 need only be defined for plays containing € positions, for

some constant c¢>0. Therefore we can verify a Markov(m) strategy is

2O(m(n)S(n))

winning within deterministic space. Furthermore, 0 can be

m(n)

represented by a function A:POS(pI) -*POS(pI) such that o(T) =Tp

iff )\(lastm {(M)) =p for all 7 in the domain of O.

(n)
By Proposition 3.1 there can be at most C(m(n)+1)s(n) such functions

A. Hence we have shown:

THEOREM 3.1. The Markov(m(n)) outcome of any game G with space

bound S(n) Zlog n can be decided in deterministic space 20(m(n)S(n) ) .

By Lemma 3.1 and Theorem 3.1 we have:

COROLLARY 3.1. For any S(n)21log n, and k20

O [
th—spz\cms(’n)) l\mk—sm(.‘:g,i'].\ﬂ«:(S(n) .2 ("(")))

< D-SPACE(S(n)) .




T

3.2 Dpeciding a Space Bounded Game of Perfect Information

Let G be a game of perfect information. Fix an initial position

Py of length n,

PROPOSITION 3.3. If team 7T, has a winning strategy o in game G

1

of perfect information, then team 1. has a winning Markov(1) strategy.

1

To prove this, suppose a(m) #0(n') for play prefixes %,7'E€ GTi

j €T, such that visi(last(ﬂ)) =visi(last(7r')) . Then the strategy o'

1

is also winning if it is identical to winning strategy O except that

o'(m') =0(nm). By repeating this process, we can derive a winning

Markov(l) strategy for team Ty B
By applying Proposition 2.3 to Lemma 3.3, we have:
LEMMA 3.2. If a game G of perfect information has space bound
S(n) 2log n, then G has time bound AL o

Now assume G has constructible space bound S(n) 2log n (if S{(n)

is not constructible, we try S(n)=0,1,...). Let W be the positions in
POS(pI) with no next move. Given a mapping £: POS(pI)-*{true,false}, let £(X)

be the mapping such that for each pEPOS(pI) for which it is a player of team 1

turn to move, let

f(W)(p) = true if i=0 and p€Ew
= false if i=1 and pEW

= A f(p"y if i=0 and pgwW
ptp’

= V p'y if i=1 and pg:
ptp'

2.4

PR
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20 (s(n))

Let a= IPOS(pI)I. By Proposition 3.1 a = f(£) can be computed

from £ in deterministic time a2. Let £;=f(2;) be thc mapping
derived by repeatedly applying f to initial mapping ZO:POS(pI) nd
{fg_l__s_g}, until a fixea point is reached. (This computation of 26 is
similar to a procedure used by [Chandra, Kozen, and Stockmeyer, 78] to
decide acceptance of space bounded alternating machines.) Note that

the sequence of mappings 2.0, f(ko) ' f(f(ﬁo)) r+-. are monotone in the sense

. +
that if fx(lo) (p) = true then £* 1(2,0) (p) =true, for any x20 and
p € POS (pI) . Hence the computation converges by at most a repeated
*
applications of f to RO s0 20=fa(20) . The total deterministic
0(s(n))

*

time to compute 20 is thus O(a3) =2

We now show by induction on length of plays that Zo(pI) = true iff

team T have a winning strategy. Suppose, for some x=20, and for

1
apy p € POS (pI) that fx(lo) (p) =true iff team Ty have a winning
strategy from p where all plays have length <x. (This trivially
holds for x=0). If p€W then by definition fx+l(20) (p) = true iff
it is a player of To turn to move at p iff team Tl have a trivial

winning strategy form p. If it is a player of TO turn to move at

p¥€W than by definition fx+l(20) (p) = true iff fX(QO) (p') = true

for each p' € POS (pI) such that pkp' iff (by the induction hypothesis)
team Tl has a winning strategy of length <x from each p' EPOS(pI)
such that pplp'. If it is a player of Tl turn to move at pgW then
by definition fx+l(20) (p) = true iff fx(lo) (p') = true for some

p' € POS (pI) such that ptp' 1iff (by the induction hypothesis) tecam

Tl has a winning strategy of length <X from some p'EPOS(pI) such
that ptp'. In either case, fx+l(9-0) (p) = true iff team T, has a

winning strotcay of lenath <x+1 from p.
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*
To determine the nonloss outcome of G, let Rl be the mapping

o 0(S() | :

derived by repeatedly applying h a total of times to

the mapping ll:Pos(pI)'*{true}. It is again easy to show that R
*
ll(pI)-=true iff team Tl has a nonloss strategy in game G.
* * 3
Furthermore both mappings £ and 21 are computed in deter- o

0
2O(S(n))

ministic time . Hence we have shown:

THEOREM 3.2. The win outcome and nonloss outcome of any game of
perfect information with space bound S(n) 2log n can be decided in ‘j

deterministic time 2O(s(n)).

By Lemma 3.2 and Theorem 3.2:

COROLLARY 3.7. (due to [Chandra, Kozen, and Stockmeyer, 78]).
For any S(n) 2log n,

0(S{n))

A-SPACE,TIME(S(n),2 )

0(s(n))

A~SPACE(S(n))

< D-TIME(2 ).

3.3 Elimination of Incomplete Information from a Hierarchical Game

Let G==(POS,F,VISIBLE,T1) be a hierarchical game. Fix an initial
position pIGZPOS and teams TO,Tl. We assume the set of positions
reachable from P, is finite. We give a method for transforming G to
a game of perfect information. We will accomplish this in stages. 1In
each stage we effectively eliminate from the game the incomplete

information associated with a clique wl of players in team Tl

(though these players will remain in the game), so that in the resulting

+
derived game G the players of w] have perfect information.
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For any set of players of G, let
VISIBLE(pY) = U  VISIBLE(i) .
i€y
Let mo c Tl be the set of players of Tl with perfcct information cf to; so

VISIBLE(¢b) 2 VISIBLE(i) for each player iETO. Let ¥X(G) Dbe the number
of cliques of Tl-wo. (This will be an important parameter of a game's
complexity.) Let wl be the clique of Tl-wo such that
VISIBLE(@l) 2 VISIBLE(i) for all players i€'tl-(po. We shall eliminate
the incomplete information of clique wl.

We now derive from G a new hierarch;cél game G+==(POS+,F+,
VISIBLE+,T1). G+ has the same players as G and the same teams TO,Tl.

Let RIGHTS+(i)= {1,...,r+1} for each player iE(DIU(DO and let
RIGHTS (i) = RIGHTS(i) for all other players. By this assignment of
rights, the players of wo and ml have perfect information.

For each position p=(i,p[l),...,plr]), in POS, and every play jpre-
fix W of G with p=last(n), we derive a new position
P(T) = (i,p(1l],...,plr},plr+l]) of pos® where the r+l component  plr+l]
is {last(ﬂ')lﬂ' is a play prefix with vi%pl(ﬂ') = vigpl(ﬂ)} and where

visw (m) = vis (m) for any J €‘Tl. Intuitively, the r+l1 component
1

plr+l] of P(n} is the set of possible positions visible after 17, from

the players of wl point of view (where the players of wl are allowed

1 1 wl

c s + .
We allow no next move from position P € POS if the r+l component of

only to view vism (M)). Note that P(m) =p(n') iff vism (m} =vis _ (1').

P contains a position of POS with no next move. Hence the team T

wins at P if P=P{(nm) for some play 7 winning for T Othcrwise,

1

+ +
let P+ P' be a move of G if P=P(") and P'=P(Tn') for some




b
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child 7m' of 7. By this definition, a move of G+ from P simulates
all possible next moves of G from any position last(m') where

. o, +
P=P(T). Fix PI==P(pI) to be the initial position of G .

S0(8(n))

+
Note that G has space bound ; thus, we have an expo-

nential blow-up in space complexity.

LEMMA 3.3. Team T, has a winning (nonloss, respectively) stratecyy
in G from initial position P 1ff team T, has a winning (nonloss,

respectively) strategy ¢ from initial position P_-

Proof. We will establish a 1-1 correspondcnce between winning
+
strategies in G and G . (A similar 1-1 correspondence can also be

. . +
shown between nonloss strategies in G and G .)

Let O be a winning strategy for team Tl in G. For
each play prefix 7 of G+, for which one of thé players of Tl turn
to move, let O+(w);=ﬂP(0(ﬂ)) where T is the play prefix of G from
which 7™ was derived. Suppose 0% induces a play W of G+ which is
not winning for team Tl in G*. Then there is a play 7 of G
induced from O where last(T) 1is contained in.the r+l1 component of P(w)

and some such 7 is not winning for team Tl. But this contradicts our

. , . . + . . .
assumption that O is a winning strategy. Thus O is a winning strateqy.

+ . , +
Let C be a winning strategy for team Tl in G . For each
play prefix 7T of G where it is one of the playcer of team LY turn to move,
let O(W) be the child of T such that .0+UU =7p{(g(m)) for any play

: + fas . s
prefix m of G whose positions are derived from the positions of .

0 can easily be shown to be a winning strategy for G. o

Let g(x,0) =x and g(x,y+l)=:ZQ(x’y) for vZ0. Thus g{x,y) is

derived by apblying y repeated exponentations of 2 to x.
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THEOREM 3.3. The win outcome ard the nonloss outcome of any
hiearchical game G with space bound S(n) Zlog n can be decided in

deterministic time g(O(S{(n)), X(G) +1).

Proof. Fix an initial position Pr of G with length n.
Lemma 3.3 can be applied X(G) times to yield a game G* of perfect
information with space bound g(0(S(n)),Xx(G)), and with initial position

P; such that team Tl has a winning strategy in G* from P; iff

team Tl has a winning strategy in G froem P;. By Theorem 3.1,

G* can be decided in deterministic time g(O(S(n)),X(é)-+1) =

,3(0(s (N, X(6)) o

By Proposition 2.3, Lemma 3.1 and Theorem 3.3, it is interesting

to observe that

COROLLARY 3.3. If hierarchical game G has space bound S(n) 2 log n,
then it suffices that a winning strategy be Markov(m(n)), where

m(n) = g(O(S(n)),X(G)). Furthermcre, G has time bound ZO(m(n))'

By Theorem 3.3 and the above Corolary 3.3,
COROLLARY 3.4. For any S(n)2logn and k20

PAk—SPACE(S(n)) = PAk—SD!‘.CE,TIME(S(n) ,g(0(s(n)),k))

C D-TIME(g(0(S(n)),k+1)) .

THEOREM 3.4. To win outcome (nonloss outcome, respectively) of
any blindfold game G with space bound S(n) 21log n can be decided
tn nondcterministic (co-rordctcrministic, respectively) space

g(O(s(n)) , x(G)) .
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Proof. Fix an initial position P; of G of length n. As in
Theorem 3.3, Lemma 3.3 can be applied X(G) times to yield a game G*
of perfect information with space bound g(0(S(n}),x(G)). But since G
is blindfold, any winning or nonloss strategy of team 11 can be made

oblivious to moves of team TO. Thus G* can be transformed to a non-

L . N . L. .
deterministic game G by allowing team Tl to nondeterministically

choose a strategy Tl (this can be done nondeterministically in space

g(0(s(n)),xX(G))) and then allowing team TO to iteratively choose each

possible strategy OO of team TO (this can be done deterministically

in space g(0(S(n)),Xx(G))); during the simulated play of the game G*

team TO must move by strategy OO and the players of Tl must move

. The win outcome (nonloss outcome, respectively) of

by strategy 01

N . . C s C e s .
G can be decided in nondeterministic (co-nondeterministic, respectively)

space a{(0(S{n)),x(G)) by Proposition 3.2.

By Theorem 3.4 and Corollary 3.3, 1
COROLLARY 3.5. For any S(n)2Zlogn and k=20,

BA, ~SPACE,TIME(S(n),g(0(s(n)) ,k))

i

BA, -SPACE(S(n))

k k
€ N-SPACE(g (0(S(n)).,k)).
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4. DECISION ALCGORITHMS FOR GAMES WITH BOTH ALTERNAT ION AND SPACE

BOUNDS

THEOREM 4.1. If a game G of perfect informaticn has cpace bound
S(n) Zlog n and alternaticr bounda A(n), then the win outcome and ;
nonloss outcome of A can be deeilded in deterministic space

(A(n) +S(n))sS(n).

Proof. (We utilize here an algorithm attributed to A. Borodin by
[Chandra, Kozen, and Stockmeyer, 78], for deciding acceptance of alter-
nating machines with space and alternation bounds.) Let pIEIPOS be o
an initial position of length n. We assume S(n) 1is constructible

(otherwise try S{n)=0,1,...). Let POS(pI) C POS be those

taeitinne raachable from o with svace €S{n).
! N v

Given any two positions p, p'€ POS(pI) let PATH(p,p")
(APATH (p,p'), respectively) be the predicate that holds iff there is a
sequence of moves from o to p', with no alternations (except the last
move is an alternation, rosjuectively) and where all positions visited are

in POS(pI). Also, let DIVERGE(r) be the predicate that holds for a

position p € PO (y I) 1Y FATH G, ") and either

(1)  PATH(' 10 "),

(2) There is a monve tr i ' teo o oresition with space > S(n).
Thus DIVERGE(;) nolds ¢ r v 10 1t thore 1s an infinite nonalter-
nating play from .. Membogp boroan rD‘(;[) and the predicates

PATH, APATH, and DIVERT' can i+ decided in nondeterminiscic space  S(n),

2
and hence in deterministic =oace  S(n)” by [Savitch, 70}.

We now define a recurcion jrocelurve DECTDE (5, a) ¢
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If p€POS then goto [1] else goto [2].

0

[1] In this step; the moves of player in team TO are decided. 1If
DIVERGE (p) then return false. Else if a=0 then return true. Else, deter-
ministically consider vach p'EfPOS(pI) such that APATH(p,p') holds. 1If
DECIDE(p',a-1) holds for all such p' then return Lrue else return false.

[2] Here the moves of players in team Tl are decided. 1If a=0 then
return falsg. Else, deterministically consider each p' EPOS(pI) such that
APATH(p,p') holds. If DECIDE(p',a-1l) holds for any such p' then return
true else return false.

It can be shown that for each ;)EPOS(pI), DECIDE(p,a) holds iff team Tl

has a winning strategy from position p where all plays have <€a alternations.

Hence, DECIDE(pI,A(n)) decides the outcome of G.

Note that each invocation of the procedure DECIDE can be imple-
mented in deterministic space §(n) and there are at most A(n)
recursive cells. Also, S(n)2 global space is required to compute the
predicates APATH and DIVERGE. Thus the total space requirement is
(A(n) +S(n))sS(n).

The procedure for deciding the nonloss outcome of G 1is similar,
except that we delete "If DIVERGE(p) then return false" from (1] and

add "If DIVERGE(p) then return true" as the first statement of [1]. o

COROLLARY 4.1. (due to Borodin) For S(n)2log n and A(n) =0,

A-SPACE,ALT(S(n) ,A(n)) < DSPACE((A(n) +S(n))sS(n)).

THEOREM 4.2. If hierarchical game G has spacc bound S(n) 2log n

and altcrnation bound A(n), then the outcome and nomloss outcome of G

can be decided in deterninistic gpace  (A{n) +1)g(0(S{n)),x(G)).
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Proof. As in Theorem 3.3, we can apply Lemma 3.3 x(G) times to
yield a game of perfect information G* with space bound g(0(S(n}),x(G))
" where G* has the same outcome as G. Since the construction of
Lemma 3.3 introduces no new alternations, A(n) 1s an alternation bound
of G*. Thus by Theorem 4.1, the outcome of G* can be decided in

deterministic space (A(n) +1)g(0(sS(n)),Xx(G)). a

COROLLARY 4.2. For S(n)2log n, A(n) 20, and any k21,

PA, -SPACE,ALT (S (n) ,A(n)) & D-SPACE((A(n)+1)g(0(S(n)) ,k}) .

5. A DECISION  PROCEDURE FOR TIME AND BRANCH BOUNDED GAMES

Let. G be a game of incomplete information with time bound T(n) 2n.
Let  have pDranch pound DZU 1D 1OY cacl position p e rud,
b2 |{p'|prp'}|. Fix an initial position p; of length n. We assume
T(n) is constructible (otherwise try T(n) =0,1,...). To decide the
win outcome of G, we need only choose each strategy O for team Tl
and verify that this team wins for any play % induced from ©. But
each such play 7 has at most T(n) mwoves and can be stored in space

S(n)log(b). This space also suffices to deterministically verify that

0 is Markov(m(n)). Thus we have shown:

THEOREM 5.1. The win outcome and Markov(m(n)) outcome of any

multiplayer game of incomplete information with time bound T(n) 2n,

and branch bound b can be decided in deterministic space S(n)log(b).

COROLLARY 5.1. For any T(n)2n,

MPAk—TIME(T(n)) € D-SPACE(S(n)) .
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6. CONCLUSION

This paper gives decision algorithms for various classes of games of
incomplete information. In light of the lower bound results of
[Peterson and Reif, 79] our algorithms are in many cases asymptotically
optimal.

Our algorithms are applied in this paper to obtain upper bounds and
time-space tradeoffs on the complexity of multiplayer alternation
machines of {Peterson and Reif, 79]. Our algorithm for space bounded
games of incomplete information is also utilized [Reif and Peterson, 80)
for deciding certain formulae of a multiprocess logic of incomplete
information. We believe that our method given in Section 3.3 for
elimination of incomplete information in a hierarchical game, may be of
use in many other problems where ambiguity and incomplete information
arises; for example the understanding of natural language.

It would be worthwhile to investigate heuristic techniques for
deciding games of incomplete information. We suggest here the use
of a-f8 search on the game tree of the game G* obtained in Theorem 3.3
by eliminating incomplete information in a hiearchical game G (the

a~-f search technique avoids exploration of the entire game tree).
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APPENDIX: MACHINE DEFINITIONS

Multiperson alternation is defined here from
(1) a restricted nondeterministic Turing machine N, where we
(2) partition each state and assign players various rights to view
and modify tapes and portions of states, and then we
(3) idintroduce a multiplayer game, called a computation game, which is
used to define acceptance for the resulting multiperson
alternating machine.
(NOTE: These three steps can be viewed as an algorithm for defining a
game-like machine from a nondeterministic machine. It will be obvious
that we could have begun with any type of nondeterministic machine. For
exawgde, 10 we Login with 2 nendoterminietic RMM than we must assian
players rights to view and modify various memory registers rather than

types. Acceptance of the resulting multiplayer RAM would be again

defined by a computation game.)

Al. Definition of a Nondeterministic Machine

A nondeterministic Turing machine (N-Tm) is a tuple
N = (Q'qI'Z'r'#lbltls)

where Q 1is a finite set of states,
qI€Q is the Tnitial state
I is a finite set of tnput symbole
I' is a finite set of tape symbols

#,b€ET -1 are the distinguished endmarker and blank

symbols




a1

r is the number of tapes 4

§ (ert) x (Q x T x {left,right,static}t)

is the transition relation. !

The operation of this machine is defined in the usual manner; however o
we do not define acceptance here (since we will give a nonstandard
definition of acceptance later).
The tapes are named 1,...,t. Tape 1 is the read-only input tape.
Given input string WEZI*, input tape initially contains #w#, with the
input tape head scanning the first symbol of w. We assume there are no
transitions past on an endmarker #. The t-1 work tapes 2,...,t-1

initially contain two-way infinite strings of the blank symbol b. The

il

contents of a tape are given as (X,Y) where X is the nonblank suffix
of the portion of the tape to the left of the scan head, and Y 1is the
nonblank prefix of the portion of the tape just under and to the right

of the scan head.

A2. Definition of Multiplayer Alternation

A k+l-player altermaticn machine (MPA, -TM) is a pair M= (N,VISIBLE)

where:

(1) N:z(quI'ZIrl#lb't'G) is a N-TM with restrictions given below.
(2) VISIBLE is a mapping from {0,...,k} to (not necessarily proper)

subsets of {1,...,r}.
We require that the state set Q C {0,...,x} xQl><--- xQs where
Ql""'Qs are finite sets and =r-t. A configuration is a sequence

(i,q .-..,qs,(xl,Yl),...,(Xt,Yt)) where q==(i,ql,...,qs) is the current

1
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state, and (X,,Yj) are the current contents of tape j, for j=1,...,t.
The initial configuration has the initial state q; and the tape contents
initialized as for N. Let POS be the set of all configurations. The
rext move relation I < POS XxPOS is the binary relation on configurations
defined in the usual manner from the transition function ¢. We require

that the computation game GM==(POS,F,VISIBLE) Tl be a kt+l1 player game

satisfying axioms A1 and A2 of Section 2.1, with teams TO=={O} and 1. ={1,...,kI.

1

(NOTE: 1In a previous paper [Peterson and Reif, 78] we have an equivalent
definition of MPA-TMs where we are not given VISIBLE explicitly, but
allow each player i a maximal set VISIBLE (i) which satisfies Axioms Al

and A2.)

*
We say M caccepts input string w€EX  if players rl=={l,...,k}
have a winning strategy in GM from the initial configuration. Let the

language of M be LM) ={w€ZI |w is accepted by M}.

A3. Machine Intuition

To aid the reader's intuition, we introduce some (redundant) termino-
logy common to complexity theory. We have alread? used configurations for
the bositions of a computation game GM. Each play of GM is called a
computation sequence and the game tree T is the computation tree. The

computation sequences induced by a winning term strategy form an

accepting eubtree of T. The player 0 is called the V-plaver and the players

i, 1€i<k, are callcd the 3j-players. (They form the existential team T~
The accepting states (rejecting states, respectively)are those states in

© which have O-th component 0 (not 0, respectively) and from which there

is no state transition.

4

NaRBun® e .
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A4. Machine Types

Machine types are named in Figure 1, depending on the type of their
computation games. It can be seen that our machine definitions are equi-

valent to those standard definitions appearing in the referenced papers. g

A5. cComplexity Bounds for Machines

M has space bound S(n) (time bound T(n), alternation bound A(n),

respectively) if for each input string we " accepted by M, there

exists an accepting subtree T' such that no tape contains > S(n) non-
blank tape cells each computation sequence TE€T' contains ST(n) moves,
7 contains SA(n) alternations, respectively). Thus, the computation
game GM has space bound O0(S{(n+0(1))), time bound T(n+0(1l)), and
alternation bound A{(n+0(1l)), respectively.

For any o€ {D,N,A,BA ,PA

k k
a~SPACE, TIME (S (n),T(n)) ,0-SPACE,ALT(S(n) ,A(n)), respectively) denote the

,MPAk} we let Q-TIME(T(n)) (0-SPACE(S(n)),

class of languages accepted by 0~TMs in time T(n) (space S{(n},

simultaneous space S{(n) and time T(n), simultaneous space S(n) and

alternations A(n), respectively).
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Computation Game Type Machine Type ::§ZCVIated Reference
C s P [Hopecroft
deterministic deterministic T™M D-TM and Ullman,79]
nondeterministic nondeterministic TM N-TM "
X . . . [Chandra, Kozen,
perfect information alternating machine A-TM and Stockmeyer, 79]
. blind alternati PA_-TM Reif ,79
2 player blindfold ind alternating 1 t $79]
machine
2 player incomplete private alternating PAl—TM "

information

k+1 player Markov({l)

machine

k+1l player Markov
alternating machine

MAk—TM

[Peterson and
Reif, 79]

k+l player blindfold k+1 player blind BAk—TM "
alternating machine
k+1 player hierarchical k+l1 player private PAk-TM "
al ternating machine
k+1 player incomplete k+1 player alter- MPAk—TM "
information nating machine
Figure 1. Multiplayer alternating machines defined in increasing

generality.




