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DECISION ALGORITHMS FOR MULTIPLAYER GAMES

OF INCOMPLETE INFORMATION

Abstract

This paper provides algorithms for deciding the outcome for various

classes of multiplayer games of incomplete information. The classes of

games which our algorithms are applicable include games not previously

known decidable; furthermore many of our algorithms have asymptotically

optimal complexity. We apply our algorithms to provide alternative

proofs of upper bounds, and new time-space tradeoffs on the complexity

of multiplayer alternating machines of [Peterson and Reif, 79].
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1. INTRODUCTION

A multiplayer game can be specified (formal definitions are given in

Section 2) by a set of positions, a relation defining possible next moves,

and an assignment of the rights of players to view and modify certain

components of positions. These rights do not change during the play of a

game. A player may have incomplete information on the values of those

components for which it has no rights to view, though it may be possible

for a player to partially infer this information by observing the visible

portion of positions in the previous play of the game.

A strategy for player i defines a single next move for player i from

any given sequence of previous moves ending in a position for which it is

player i's turn to move. Such strategies are called pure. (In contrast,

a companion paper Lheir, iibi consiaers mixed strategies whlere more tfan

one moves next are allowed to be chosen with various probabilities.

A strategy of player i must depend only on the visible components of

previous positions for which player i made moves.

Players in a multiplayer game are partitioned into two teams,

T and TI . Section 2 defines the win outcome probZlem for a game: Do

the players of team T have a strategy yielding only finite winning

plays? We also consider the non-loss outcome problem: does team T

have a strategy yielding possibly infinite plays with no losses? Further-

more, we consider the ?arkov (m(n)) outcome problem: Given an initial

position of length n, does team T have a winning strategy dependent

only on the previous ni(n) positions of any play? The Markov(l)

outcome problem was previously considered in [Peterson and Reif, 791.

The purpose of this paper is to provide decision algorithms for these

outcome problems.
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Section 3 provides decision algorithms for outcome problems of

certain games with a space bound S(n) log n (i.e., S(n)

bounds the space required to compute possible next moves from a

position). [Chandra, Kozen, and Stockmeyer, 78] give an algorithm for

deciding the acceptance of a space bounded alternating machine which we

adopt to decide in time exponential in S(n) the win outcome of any

S(n) space bounded game of perfect information. [Reif, 79] gives an

algorithm with time double exponential in S(n) for the win outcome of

any S(n) space bounded two player game of incomplete information.

Both of these algorithms were known to be asymptotically optimal.

Unfortunately, there is a three player game with constant space bound

but indecidable win outcome problem [Peterson and Reif, 79]. Thus we

must consider a restricted class of space bounded games, if we wish

decision algorithms.

A game is hierarchical if players of 1i can be linearly ordered

by their rights. We give a powerset construction for eliminating incomplete

information in a hierarchical game with a finite space bound. This

powerset construction was first used for two player games in [Reif, 79].

Hierarchical games are in a sense the largest class of games for which we

can apply our powerset construction for eliminating incomplete information.

In particular, the undecidability result of [Peterson and Reif, 79 ] for

3 player games of incomplete information can be extended to show that for

any game G which is not hierarchical, there is a game G which has

undecidable win and nonloss outcome problems; where G and G have the

same players and each player has the same rights to view components of

positions in G as in G.
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Let a clique be a maximal set of players of a game with exactly the

same rights to view components of positions. Let X(G) be the number of

cliques in team. T1 for which the players do not have all the rights of

team 10 Our decision algorithm for the win and nonloss outcome of a

S(n) space bounded hierarchical game requires deterministic time of

X(G) + 1 repeated exponentations on S(n). By lower bound results of

[Peterson and Reif, 79] our algorithms has an asymptotically optimal time

bound.

A blindfold gane is a hierarchical game where no component of a

position visible to a player of team T1 is ever modified by a player of

team T . For a blindfold game with space bound S(n), our decision

algorithm requires deterministic space of X(G) repeated exponentiations

on S(n), which again is asymptotically optimal by the lower bound result

of [Peterson and Reif, 79].

Also, in Section 3, we give an algorithm for the Markov (m(n))

outcome problem of any S(n) space bounded game; this extends a previous

result of [Peterson and Reif, 79] for the case m=1.

The algorithm results of Section 3 imply Corollaries giving time

bounds for plays induced by a winning strategy in any hierarchical

game and for a Markov m(n) winning strategy of any game.

Section 4 gives an algorithm for the outcome problems of any

hierarchical game with both a space bound and an alternation bound (i.e.,

a bound on the number of times a sequence of moves of the team

alternates with moves of team TO)

Section 5 shows that for games with both a time bound T(n) n

(T(n) is the maximum number of moves per winning play from an initial

position of length n) and a hranohcing !ound b (b upper hounds is thc
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maximum number of possible positions divided by a single move from any

position) the outcome problems can be solved in deterministic space

O(T(n)b).

The Appendix defines the multiplayer alternating machines of [Peterson

and Reif, 79] to which we apply our decision algorithms.

Ii
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2. MULTIPLAYER GAMES OF INCOMPLETE INFORMATION

2.1 Game Definitions

A k+l player game is a triple G= (POS,I-,VISIBLE,T ) where:

(i) POS is the set of positions with

POS = {0,... ,k} xR 1 x ... xR r

where R1 ,...,R r  are sets of strings over a finite alphabet.

(ii) I- c POS xPOS is the next move relation, satisfying axioms Al,

A2 given below.

(iii) VISIBLE is a mapping from {O,...,k} to (not necessarily

proper) subsets of {i .... r}.

(iv) Team T' is a subset of {0,1,..., k}. The opposing team is

0 = {0, .. k} -1

The domain of VISIBLE are the k+l players named 0,...,k. Let

p (i,p[l] ... ,p[n]) be a position in POS. Then next(p) =i is the

player whose turn it is to move next. For each j=l1....r, p[j] is an

element of R. and is called the j-th component of p. We say player iJ

has the rights to view p[j] if jEVISIBLE(i). For each i =0,...,k,

let visi (p) = (v,b) where v is the list (in order of occurrence) of

components of position p for which player i has rights, and b is a

boolean which is 1 just if it is player i's turn to move at position p.

Let invis. (p) be the list of components of position p for which
1

player i has no rights. Let W C POS be the set of positions from

which there is no next move by any player. Let POS i = {pC POSInext(p) =i}.
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For each player iE {0,...,k} we assume:

Al If pEPOS and p F p' then invis (p) =invisi (p').

A2 If p,qE POS. I -W and vis. (p) =vis.(q) then-- 1 1 1

{vis i (p ' )Ipt P-1 = {vis. (q')Jql-q'}.
1

Axiom Al states that no move by player i can modify a component of a

position for which player i has no rights to view. Axiom A2 insures that

if a pair of nontermination positions p,q are indistinguishable to

player i, then the sets of possible next moves from p and q must be

indistinguishable to player i.

2.2 Plays

For any finite string R of positions, let last(Ii) be the last

position of N. Fix an initial position pI EPOS. A play is a

(possibly infinite) string I=p 0Pl... of positions such that p0 = p I

is the initial position, p0 F-p l p 2  ... and last(m) EW whenever

7 is finite. A play p is a Zoss for player i if p is finite and

last(p)E POS. AW; thus it is player i's turn to move but there is no next1

move. A play prefix ff is a finite null initial substring of a play;

thus T indicates a finite sequence of moves from the initial position

P1 " We now inductively define a sequence vis i () representing that

portion of the play prefix T which is visible to player i. Let

p=last(lr). If T1 is of length 1 then vis. (T) =vis. (p). Let p' be1 1

a position such that pI-p'. If both pZPOS, and vis. (p) =vis. (p')1 1 1

then let vis. (Tp') =vis.(i), and otherwise let vis. (Tr) =vis, (T)vis. (p).
1 1 1 1 1

Thus player i can detect the occurrence of a move only if it is a move by
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player i or if player i has rights to a component of the position

which is modified by the move.

2.3 The Game Tree

The game tree GT is the set of play prefixes. The root of GT is

the initial position p 1 . Each play prefix 7 is considered a node of

T. The chiZdren of 7 are the play prefixes which are of length one

less than Ii and which are a prefix of r. Thus last(OT) I- last(7T') if T'

is a child of 1 . Let GT. be the set of play prefixe's r such that

last(7T) E POS. -W (these are those play prefixes ending at a position1

for which it is player i's turn to move).

2.4 Pure Strategies

A partial function G:GT . GT is a (pure) strategy for player i if1

(1) for any 7E GT , (1) is a child of 71, and
1

(2) if T, 'r I GT. and vis. (7T) =vis. (7') then vis. (a(1)) =£ 1 1 1

vis. (o(V'))1

The first restriction requires the strategy to make only legal

moves. The second restriction insures that the strategy depends only on

that portion of the play prefix which is visible to player i.

Recall that the players 0,... ,k are partitioned into disjoint

sets T0, T1 which we call teams. A play p is a win for team T1 if

it is a loss for some player on team B. A play p is nonlocs for tcam

T if it is not a loss for any player on tam TI . Let a tcaui stratcj,

for T1 be a mapping o: (U i GT) , ,'r ;;uch thtt for ,ach pla.er i C 1 ,

the restriction of 0 t(, rir:-"iin i i , for piaer i. A
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play IT is a play by team strategy a if whenever ' is a prefix of

71 and ' is in the domain of a, then 0(') is a prefix of n. 0

is a winning (nonloss, respectively) strategy for team T1 if every

play by strategy a is a win (nonloss, respectively) for team T1.

Note that all plays by a winning strategy are finite, but a play by a

nonloosing strategy may be infinite.

To define Markov strategies, we must introduce some special notation.

Given a play prefix 7, and an integer m O, let last (7) be the

last m positions of 1 if m< 171, otherwise let last (7) =7T. Am

strategy 0 for player i is Markov(m) if 0() =o(V') for all play

prefixes Tr, ' E GT. such that vis.(last (7T)) =vis. (last (IT')). Hence1 1 m 1 mn

player i plays by a Markov(m) strategy if its moves depend only on the

visible portions of the last m positions of any play. A strategy for

team T is Markov(m) if the strategy for each player iE7I is

Markov(m).

2.5 The Outcome Problem for a Game

Let G= (POS,F,VISIBLE,T ) be a game. We assume the next move

relation I- is represented as a next move transducer which is a Turing

machine transducer with an input tape and an one-way write only output

tape, and possibly some work tapes. The input alphabet Z for this

transducer contains the symbols appearing in positions of POS. Given

any pE E*, the next move transducer outputs the set of moves

{(p,p')Ipp'} if pEPOS, and otherwise outputs a distinguished symbol

$ qE if p POS. The game G is thus finitely represented by pair

contiininq the next move transdu¢'ur and VISIBLE.
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The win outcome (Markov(m(n)) outcome, nonloss outcome, respectively)

problem for game G (finitely represented as above) is:

Given an initial position pI EPOS, is there a winning (winning

Markov(m(n)), nonloss, respectively) team strategy for TI?

2.6 Complexity of Games

A move pF p' is an alternation if pE POS, and p' EPOS. where1 J

(iE T0  iff j E T1 ). Thus, pFp' is an alternation if the players to

move at p, p' are on different teams.

Game G has time bound T(n) (alternation bound A(n), space bound

S(n), respectively) if for each position pI E POS of length n for which

Feam T bi; . wi nni n'i traidyv (Tb. t-or i s ,-ncm' qlch C7 where Tr
I -

contains at most T(n) moves. (T contains at most A(n) alternations,

the next move transducer of G requires S(n) work tape cells,

respectively)for each play T induced by 0 from initial position p1.

The complexity bound definitions given above are relevant only to

the win outcome problem for a game. When considering the Markov(m(n))

(nonloss, respectively) outcome problem, we bound space, time, and

alternations only for plays of same winning Markov(m(n)) (nonloss,

respectively) strategy.

2.7 Obvious Properties of the Outcomes of a Game

Since the players of team TO are allowed any legal moves in

response to a team strategy of T1 , we have:
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PROPOSITION 2.1. Let G 1 be the ill+ 1 player game derived from

G by substituting for all the players of team r0 a single omniscient

player of T0 which has rights to all components. of any position, and

is allowed to move the same as the players of t0 previously moved. Then

the win, nonloss and Markov(m(n)) outcome of G1  is the same as G,

for any m(n) >0.

Recall from the Introduction that a clique is a maximal set 'P of

players such that VISIBLE(i) =VISIBLE(j) for all players i,jE '. it

is also easy to show:

PROPOSITION 2.2. Let G be the game derived from G by substitu-

ting for each clique of T1 a single player with the same rights as the

clique and allowed to move the same as the players of the clique. Then

G 2 has the same win, nonloss, and Markov(m(n)) outcome as G, for any

m(n) 0.

2.8 Restricted Classes of Games

Fix a game G with teams T0 , T.

A player i is deterministic if for each position pEPOS., there is1

at most p' such that p-p', G is nondeterministic if each player of

T0  is deterministic. G is deterministic if all players are deter-

ministic.

We now define some classes of games with restrictions to VISIBLE.

A player i E T1 has perfect information of T0  if

VISIBLE(i) Z VISIBLE(j), for each jE CT0" C is perfect information if

all players of T have perfect information of TO •

MAMMON. ,. ,
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G is hierarchical if the players of TI can be ordered {i , .. 1 ih }

so that VISIBLE(i ) D VISIBLE(i x+) for l~x<h. Hierarchicalx x-l

games occur naturally in a variety of situations such as the multi-

processing games of incomplete information of [Reif and Peterson, 80]

where a hierarchy of processes are generated by a sequence of fork

operations.

G is blindfold if G is hiearchical and no player of 1i can

view any portion of a position which is ever modified by a player of to.

Note that if G is blindfold then without modifying the outcome problems

for G, we can by Proposition 2.1 disallow the players of T rights to

view any portions of positions which are viewed by any player of TV

so we can assume

VISIBLE(i) A VISIBLE(j) = 0

for all iE T0 , jE T. The games of MASTERMIND, BATTLESHIP and BLINDFOLD-

PEEK [Reif, 79] are examples of blindfold games.
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3. DECISION ALGORITHMS FOR SPACE BOUNDED GAMES

This section provides algorithms for deciding the outcome of a

game G= (POS,t-,VISIBLE,T1) with space bound S(n) >log n given an

initial position pI E POS and team T I. We will let POS(pI) be the

set of positions in POS reachable from pI by some sequence of moves of

, and with space bound S(n).

Since the positions of POS are strings over a finite alphabet:

PROPOSITION 3.1. If S(n)>log n, there is a constant c >o such

that IPOS(pI)[ <cS(n)

It is also straightforward to show:

PROPOSITION 3.2. The win and Markov(m(n)) outcome of any deter-

ministic (nondeterministic, respectively) game with space bound

S(n) >log n can be decided in deterministic (nondeterministic,

respectively) space S(n). Furthermore, the nonloss outcome of any

deterministic (nondeterministic, respectively) game with space bound

S(n) >log n can be decided in deterministic (co-nondeterministic,

respectively) space s(n).

3.1 Deciding the Markov(m(n)) Outcome of a Space Bounded Game

LEMMA 3.1. If a game G has a space bound S(n) > log n, with

respect to the 1arkov(m(n)) outcome probZem, then G has a time bound

2 0(m(n)S(n)) with respect to the arkov(m(n)) outcome problem.
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To prove this Lemma, we observe that there is a constant c > 0

such that if a Markov(m(n)) strategy a induces a play n of length

> m ( n ) S (n )

> , then Tr contains a repeated play subsequence 71 containing

m(n) -I moves. Thus 7f is of the form 71= 1 0 7172 7T1r3 where 7T0 and r2

are either play subsequence or empty strings, and T13 is a play subs uqucnce.

If it is a player of team T turn to move at least(T I ) then 713 has an

infinite number of occurrences of TTi so W is infinite. Otherwise if

it is a player of team T turn to move at last(71), then 7' =7 71 71 21 72

is an infinite play induced from a. In either case a is not a winning

strategy. Hence a winning Markov(m(n)) strategy induces only plays of

length < c m(n)S(n).

We wish to determine the Markov(m(n)) outcome of a game G with

6V £J iUUILa Z; i) U9 it. Dy LtiidrL .1 a Wil-1-i!L.g . .4r42 zt~~

0 need only be defined for plays containing <cm(n)S(n) positions, for

some constant c> 0. Therefore we can verify a Markov(m) strategy is

winning within deterministic 2 (m (n )S (n ) ) space. Furthermore, 0 can be

represented by a function X:POS(p m(n) -*POS(p ) such that G(O) = 7p

iff A(last (1)) =p for all 7F in the domain of 0.
m(n)

By Proposition 3.1 there can be at most c (m(n)+l)S(n) such functions

X. Hence we have shown:

THEOREM 3.1. The Markov(m(n)) outcome of any gane G with space

bound S(n) >log n can be decided in deterministic space 2 0(m(n)S(n)).

By Lemma 3.1 and Theorem 3.1 we have:

COROLLARY 3. 1. For any S (n) > log n, and k > 0

MA k-SPACE(S (n) ) IA k-SPACE,T]il(S (n) ,2 O(S(n))

C D-S VAC1 (S (n))
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3.2 Deciding a Space Bounded Game of Perfect Information

Let G be a game of perfect information. Fix an initial position

PI of length n.

PROPOSITION 3.3. If team II has a winning strategy a in game G

of perfect information, then team -r has a winning Markov(1) strategy.

To prove this, suppose 0(T) 40(TT') for play prefixes Tr, T' GT

jEt 1 such that visi(last(7)) =visi(last(')). Then the strategy a'

is also winning if it is identical to winning strategy a except that

O'(i') =(0). By repeating this process, we can derive a winning

Markov(l) strategy for team T l'

By applying Proposition 2.3 to Lemma 3.3, we have:

LEMMA 3.2. If a game G of perfect information has space bound

S(n) >log n, then G has time bound 2
O (S(n))

Now assume G has constructible space bound S(n) >log n (if S(n)

is not constructible, we try S(n) = 0,1,...). Let W be the positions in

POS(p I) with no next move. Given a mapping Z: POS(pI)-*{true,false}, let f(k)

be the mapping such that for each p E POS() for which it is a player of team -L

turn to move, let

f (i)(p) = true if i = 0 and p E w

= false if i = 1 and p E W

= a (p') if i=0 and peW

= V £(p') if i = 1 and p£ 7

pI-p'

pL



-15-

Let a=IPOS(p )I. By Proposition 3.1 a = 20(S(n))f(k) can be computed
I. I

2 * *
from k in deterministic time a . Let to = f(0 ) be the mapping

derived by repeatedly applying f to initial mapping z0 :POS(p I)

{false}, until a fixea point is reached. (This computation of R* is
0

similar to a procedure used by (Chandra, Kozen, and Stockmeyer, 78] to

decide acceptance of space bounded alternating machines.) Note that

the sequence of mappings tot f( '0), f(f(o)) 0 ... are monotone in the sense

that if fx (k 0(p) = true then f x+(2. )(p) =true, for any x > 0 and

pE POS(pI). Hence the computation converges by at most a repeated

applications of f to 2. so £*= fa (z ). The total deterministic
0 0 0

time to compute 2. is thus O(a 3 ) =20(S(n))
0

We now show by induction on length of plays that k 0 (pI) = true iff

team T have a winning strategy. Suppose, for some x>0, and for

any pE POS(pI) that fX(o )(p) =true iff team T1 have a winning

strategy from p where all plays have length < x. (This trivially

holds for x =0). If pEW then by definition fX+l (90) (p) = true iff

it is a player of T turn to move at p iff team T1 have a trivial

winning strategy form p. If it is a player of T turn to move at

p5W than by definition fx+1 (z0)(p) =true iff fx (2 0(p') =true

for each p' EPOS(p I) such that pI-p' iff (by the induction hypothesis)

team T1  has a winning strategy of length < x from each p' E POS(pI)

such that pF p'. If it is a player of 'i turn to move at pFW then

by definition fx+l( (k) (p) = true iff fX( 0) (p') = true for some

p' EPOS(p I) such that p-p' iff (by the induction hypothesis) team

11 has a winning strategy of length <x from some p' EPOS(p I) such

fx+l1
that p-p'. In either case, f (2. ) (p) = true iff team T1 has a

01

winning stritc,(7y of Ic'n.th < x + 1. from p.
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To determine the nonloss outcome of G, let ki be the mapping
2° (S (n))

derived by repeatedly applying h a total of a= times to

the mapping £1 :POS(pi) -{true}. It is again easy to show that

1(Pi) = true iff team T1  has a nonloss strategy in game G.

Furthermore both mappings £ and 9i are computed in deter-0 1

ministic time 2
O (s(n)) Hence we have shown:

THEOREM 3.2. The win outcome and nonloss outcome of any game of

perfecot information with space bound S(n) log n can be decided in

deterministic time 2O(S(n))

By Lemma 3.2 and Theorem 3.2:

COROLLARY 3.7. (due to [Chandra, Kozen, and Stockmeyer, 78]).

For any S(n))> log n,

A-SPACE(S(n)) = A-SPACETIME(S(n) , 2 0(S{n))

C D-TIME (2 O(S(n)) ).

3.3 Elimination of Incomplete Information from a Hierarchical Game

Let G (POS,-,VISIBLE,TI) be a hierarchical game. Fix an initial

position pIEPOS and teams TQI I'. We assume the set of positions

reachable from pI is finite. We give a method for transforming G to

a game of perfect information. We will accomplish this in stages. In

each stage we effectively eliminate from the game the incomplete

information associated with a clique 01 of players in team T1

(though these players will remain in the game), so that in the resulting

derived game G+ the players of (P have perfect information.
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For any set of players of G, let

VISIBLE (c0) = U VISIBLE(i)
iE(P

Let (p0 c T1 be the set of players of T with perfect information of O so

VISIBLE((P 0) = VISIBLE(i) for each player iET Let X(G) be the numrbcr

of cliques of T1 -(P0 * (This will be an important parameter of a game's

complexity.) Let k01 be the clique of t1  0 such that

VISIBLE((P 1) D VISIBLE(i) for all players i C T1 -(P00 We shall eliminate

the incomplete information of clique (p1"

We now derive from G a new hierarchical game G (POS

+ +
VISIBLE ,T I . G has the same players as G and the same teams TOfT.

Let RIGHTS +(i) = {l,...,r+l} for each player iE(P U(P0 and let

RIGHTS'(i) =RIGHTS(i) for all other players. By this assignment of

rights, the players of (P0 and (p1 have perfect information.

For each position p= (i,p[l),...,p[r]), in POS, and every play pre-

fix TF of G with p=last(), we derive a new position

P(O) = (i,ptl] [.... p[r] ,p[r+l]) of POS + where the r+l comp onent p(r+l]

is {last(7T') In' is a play prefix with vis (71') = vis (7)} and where
(Pj

vis (r) = vis (7) for any j ET I. Intuitively, the r+l component

p[r+l] of P(7) is the set of possible positions visible after 7i, from

the players of (pI point of view (where the players of (pI are allowed

only to view vis (I1)). Note that P(IT) =P(T(') iff vis () =vis (7i').
+ 1 1~

We allow no next move from position P E POS+  if the r+l component of

P contains a position of POS with no next move. Hence the team T

wins at P if P =P(7) for some play 7T winning for T 1. Otherwise,

l + +let P ~-P' be a rrove of G if p=p( I) and P' =P(1') for some
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child V' of 7. By this definition, a move of G+  from P simulates

all possible next moves of G from any position last(7T') where

P =P(71). Fix P- =P(p ) to be the initial position of G

Note that G+ has space bound 2
O (S(n)); thus, we have an expo-

nential blow-up in space complexity.

LEMMA 3.3. Team T1 has a winning (nonloss, respectively) strategy

in G from initial position p1  iff team 1 has a winning (nonloss,

respectively) strategy G+ from initial position P1.

Proof. We will establish a 1-i correspondence between winning

strategies in G and G . (A similar 1-1 correspondence can also be

shown between nonloss strategies in G and G+ .)

Let 0 be a winning strategy for team T in G. For

each play prefix 7 of G, for which one of the players of T1  turn

to move, let o+ (I) = IP(O(IT)) where TI is the play prefix of G from

which 7 was derived. Suppose G+ induces a play n of G+ which is

not winning for team Ti in G . Then there is a play IT of G

induced from a where last(T) is contained in the r+l component of P(R)

and some such it is not winning for team T But this contradicts our

+
assumption that a is a winning strategy. Thus 0 is a winning strategy.

++

Let 0 be a winning strategy for team T1 in G + . For each

play prefix 7, of G where it is one of the player of team i turn to move,

let 0O) be the child of 1T such that 0+ (i) =i[P(O(Tr)) for any play

prefix r of G+ whose positions are derived from the positions of TI.

a can easily be shown to be a winning strategy for G. 0

Let g(x,0) - x and g(x,y+l) --: 2 q(xy) for y0. Thu; g(x,y) is

derived by applying y repeated exponuntations of 2 to x.
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THEOREM 3.3. The win outcome and the nonloss outcome of any

hiearchical game G with space bound S(n) >log n can be decided in

deterministic time g(O(S(n)), X(G) +1).

Proof. Fix an initial position pI of G with length n.

Lemma 3.3 can be applied X(G) times to yield a game G* of perfect

information with space bound g(O(S(n)),X(G)), and with initial position

P* such that team T has a winning strategy in G* from P* iff

team T has a winning strategy in G from P*. By Theorem 3.1,

G* can be decided in deterministic time g(O(S(n)),X(G) + 1)

2 g (0O(S (n)), X (G) 0

By Proposition 2.3, Lemma 3.1 and Theorem 3.3, it is interesting

to observe that

COROLLARY 3.3. If hierarchical game G has space bound S (n)>I log n,

then it suffices that a winning strategy be Markov(m(n)), where

m(n) =g(O(S(n)),X(G)). Furthermore, G has time bound 2 O(m(n))

By Theorem 3.3 and the above Corolary 3.3,

COROLLARY 3.4. For any S(n) .>log n and k >-O

PA k-SPACE(S(n)) = PA k-SP7"CF,TIME(S(n),g(O(S(n)) ,k))

C D-TIME (g (O (S (n) ) ,k+l))

THEOREM 3.4. To win outcome (nonloss outcome, respectively) of

any blindfold game G with space bound S (n)>I log n can be decided

in nordcte rmni- tic (co-nondc tcrminis tic, respectively) stace

g(o(s(1)) ,X(G)).
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Proof. Fix an initial position pI of G of length n. As in

Theorem 3.3, Lemma 3.3 can be applied X(G) times to yield a game G*

of perfect information with space bound g(O(S(n)),X(G)). But since G

is blindfold, any winning or nonloss strategy of team I can be made

oblivious to moves of team TO . Thus G* can be transformed to a non-

deterministic game GN by allowing team T to nondeterministically

choose a strategy T1  (this can be done nondeterministically in space

g(O(S(n)),X(G))) and then allowing team T0 to iteratively choose each

possible strategy 0 of team T (this can be done deterministically

in space g(O(S(n)),X(G))); during the simulated play of the game G*

team TO must move by strategy O0  and the players of T must move

by strategy G . The win outcome (nonloss outcome, respectively) of

GN  can be decided in nondeterministic (co-nondeterministic, respectively)

space g(O(S(n)),X(G)) by Proposition 3.2.

By Theorem 3.4 and Corollary 3.3,

COROLLARY 3.5. For any S(n) log n and k>0,

BA k-SPACE(S(n)) = BA k-SPACE,TIME(S(n),g(O(S(n)) ,k))

C N-SPACE(g(O(S(n)) ,k))
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4. DECISION ALGORITHMS FOR GAMES WITH1 BOTH ALTERNAT ION AND SPACE

BOUNDS

THEOREM 4. 1. If a game G of p. rfeot information ha_- cpace ooun,,

S (n) -' log n and aIternati ;, bouna A (n), then the win outcoe and

nonloss outcomc of A can be decided in deterministic space

(A(n) + S(n))S(n).

Proof. (We utilize here an algorithm attributed to A. Borodin by

[Chandra, Kozen, and Stockmeyer, 78], for deciding acceptance of alter-

nating machines with space and alternation bounds.) Let pIE POS be

an initial position of length n. We assume S(n) is constructible

(otherwise try S(n) =0,1 ... ). Let POS(p1) POS be those

c rr- 1, .J.;c , frnm ) i. wit h su v, a S, (r1

Given any two positions p, p' E POS(p) let PATH(p,p')

(APATH(p,p'), respectively) be the predicate that holds iff there is a

sequence of moves from , to p', with no alternations (except the last

move is an alternation, r,-s,.,ctively) and where all positions visited are

ini POS(p). AIso, Ift D ; b0ie the predicate that holds for a

position ) E POL( 9i i1 tAIii, ,:) and either

(1) PATI ' , 1

(2) Th(i i t t, . csition with space > S(n).

Thus DIVERGE (i ) hol 1:i r an infinite nonalter-

nating play froi:, I.. .',l i i ( ) and the predicates

PATH, APATH, and DIV:,C1 cin 1- d', Idi in nondtetorministic space S(n),

and hence in d,trnii ni!ntic ce S(n) by (51vitch, 70].

We now def ino a rectr. i onl ,. , D'CTDU!(i ,
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If pECPOS 0 then goto [l] else goto [2].

[1] In this step, the moves of player in team T are decided. If

DIVERGE(p) then return false. Else if a=0 then return true. Else, deter-

ministically consider ,-ach p' EPOS(p I) such that APATH(p,p') holds. If

DECIDE(p' ,a-l) holds for all such p' then return true else return false.

t2] Here the moves of players in team T1 are decided. If a=0 then

return falsq. Else, deterministically consider each p' EPOS(p I) such that

APATH(p,p') holds. If DECIDE(p',a-l) holds for any such p' then return

true else return false.

It can be shown that for each pCPOS(p I), DECIDE(p,a) holds iff team T1

has a winning strategy from position p where all plays have <a alternations.

Hence, DECIDE(p IA(n)) decides the outcome of G.

Note that each invocation of the procedure DECIDE can be imple-

mented in deterministic space S(n) and there are at most A(n)

2
recursive cells. Also, S(n) global space is required to compute the

predicates APATH and DIVERGE. Thus the total space requirement is

(A(n) + S(n))S(n).

The procedure for deciding the nonloss outcome of G is similar,

except that we delete "If DIVERGE(p) then return false" from [1] and

add "If DIVERGE(p) then return true" as the first statement of [1]. 0

COROLLARY 4.1. (due to Borodin) Fo S(n) )>log n and A(n) ?0,

A-SPACE,ALT(S(n),A(n)) c DSPACE((A(n) +S(n))S(n)).

THEOREM 4.2. If hierarchical game G has space bound S(n) >log n

and altcrnation bound A(n), then the outcome and nonloes outcome o.f G

can be de:cided in dctcr-ninictic space (A(n) + l)g(O(S(n)) ,X(G)).
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Proof. As in Theorem 3.3, we can apply Lemma 3.3 X(G) times to

yield a game of perfect information G* with space bound g(O(S(n),X(G))

where G* has the same outcome as G. Since the construction of

Lemma 3.3 introduces no new alternations, A(n) is an alternation bound

of G*. Thus by Theorem 4.1, the outcome of G* can be decided in

deterministic space (A(n) + l)g(O(S(n)) ,X(G)) . U

COROLLARY 4.2. For S(n) '0log n, A(n) ?0, and any k l,

PAk-SPACE,ALT(S(n) ,A(n)) C D-SPACE((A(n)+l)g(O(S(n)) ,k')

5. A DECISION PROCEDURE FOR TIME AND BRANCH BOUNDED GAMES

Let G be a game of incomplete information with time bound T(n) >n.

Let (, have bzapcf bourid i >/u ii ot cacri position p . iub,

b I{p'i-p'}I. Fix an initial position pI of length n. We assume

T(n) is constructible (otherwise try T(n) =0,1 .... ). To decide the

win outcome of G, we need only choose each strategy a for team T1

and verify that this team wins for any play if induced from o. But

each such play 7 has at most T(n) moves and can be stored in space

S(n)log(b). This space also suffices to deterministically verify that

a is Markov(m(n)). Thus we have shown:

THEOREM 5.1. The win outcome and Pfarkov(m(n)) outcome of any

multiplayer game of inco,.p7)ete information with time bound T(n) > n,

and branch bound b can be decided in deterministic space S (n)log(b).

COROLLARY 5.1. For any T(n) >n,

MPA k-TIMiE(T (n)) C D-SPACE(S(n))
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6. CONCLUSION

This paper gives decision algorithms for various classes of games of

incomplete information. In light of the lower bound results of

[Peterson and Reif, 79] our algorithms are in many cases asymptotically

optimal.

Our algorithms are applied in this paper to obtain upper bounds and

time-space tradeoffs on the complexity of multiplayer alternation

machines of (Peterson and Reif, 791. Our algorithm for space bounded

games of incomplete information is also utilized [Reif and Peterson, 80)

for deciding certain formulae of a multiprocess logic of incomplete

information. We believe that our method given in Section 3.3 for

elimination of incomplete information in a hierarchical game, may be of

use in many other problems where ambiguity and incomplete information

arises; for example the understanding of natural language.

It would be worthwhile to investigate heuristic techniques for

deciding games of incomplete information. We suggest here the use

of a-Z search on the game tree of the game G* obtained in Theorem 3.3

by eliminating incomplete information in a hiearchical game G (the

c - search technique avoids exploration of the entire game tree).
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APPENDIX: MACHINE DEFINITIONS

Multiperson alternation is defined here from

(1) a restricted nondeterministic Turing machine N, where we

(2) partition each state and assign players various rights to view

and modify tapes and portions of states, and then we

(3) introduce a multiplayer game, called a computation game, which is

used to define acceptance for the resulting multiperson

alternating machine.

(NOTE: These three steps can be viewed as an algorithm for defining a

game-like machine from a nondeterministic machine. It will be obvious

that we could have begun with any type of nondeterministic machine. For

~~~~~~~ Ifnc ~;i;i cterrn~in41-i c P7\1 i-Ian wo'c mist assicin

players rights to view and modify various memory registers rather than

types. Acceptance of the resulting multiplayer RAM would be again

defined by a computation game.)

Al. Definition of a Nondeterministic Machine

A nondeterministic Turinq machine (N-Tm) is a tuple

N =(Q,ql,,F,#,b,t,6)

where Q is a finite set of states,

qI E Q is the initial state

E is a finite set of input symbols

F is a finite set of tape symbols

#,be Cr- Eare the distinguished end rarker and blank

symdbo s
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r is the number of tapes

6 c (Qxt) x (Q xt x{left,right,static}t )

is the transition relation.

The operation of this machine is defined in the usual manner; however

we do not define acceptance here (since we will give a nonstandard

definition of acceptance later).

The tapes are named 1,...,t. Tape 1 is the read-only input tape.

Given input string W E *, input tape initially contains #w#, with the

input tape head scanning the first symbol of w. We assume there are no

transitions past on an endmarker #. The t-1 work tapes 2,...,t-1

initially contain two-way infinite strings of the blank symbol b. The

contents of a tape are given as (X,Y) where X is the nonblank suffix

of the portion of the tape to the left of the scan head, and Y is the

nonblank prefix of the portion of the tape just under and to the right

of the scan head.

A2. Definition of Multiplayer Alternation

A k+l-player alternation machine (MPA -TM) is a pair M= (N,VISIBLE)

where:

(1) N= (Q,q I,Z,,#,b,t,6) is a N-TM with restrictions given below.

(2) VISIBLE is a mapping from {0,...,k} to (not necessarily proper)

subsets of {l,... ,r}.

We require that the state set Q .{,... k} XQ1 X ... xQs where

Q ... s are finite sets and s= r-t. A configuration is a sequence

(i,q I , .... 'qs,(xl,1 1 (.... XtYt)) where q= (i,ql, .... qs) is the current
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state, and (X.,Y.) are the current contents of tape j, for j=l,...,t.) J

The initial configuration has the initial state qI and the tape contents

initialized as for N. Let POS be the set of all configurations. The

next move relation k c POS x POS is the binary relation on configurations

defined in the usual manner from the transition function 6. We require

M
that the computation game G = (POS,-,VISIBLE) T1 be a k+l player game

satisfying axioms Al and A2 of Section 2.1, with teams T0 = {0 and T1 = {i,... k}.

(NOTE: In a previous paper [Peterson and Reif, 78] we have an equivalent

definition of MPA-TMs where we are not given VISIBLE explicitly, but

allow each player i a maximal set VISIBLE (i) which satisfies Axioms Al

and A2.)

We say M accepts input string wE E if players ti = {i ....k}

have a winning strategy in GM from the initial configuration. Let the

language of M be L(M) ={WE* 1w is accepted by MI.

A3. Machine Intuition

To aid the reader's intuition, we introduce some (redundant) termino-

logy common to complexity theory. We have already used configurations for

M Mthe positions of a computation game G . Each play of G is called a

computation sequence and the game tree T is the computation tree. The

computation sequences induced by a winning term strategy form an

accepting subtree of T. The player 0 is called the V-plaver and the players

i, li-k, are called the 3i-players. (They form the existential team i

The accepting states (rejecting states, respectively)are those states in

Q which have 0th component 0 (not 0, respectively) and from which there

is no state transition.
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A4. Machine Types

Machine types are named in Figure 1, depending on the type of their

computation games. It can be seen that our machine definitions are equi-

valent to those standard definitions appearing in the referenced papers.

A5. Complexity Bounds for Machines

M has space bound S(n) (time bound T(n), alternation bound A(n),

respectively) if for each input string wE E n accepted by M, there

exists an accepting subtree T' such that no tape contains > S(n) non-

blank tape cells each computation sequence 7rE T' contains <T(n) moves,

7r contains <A(n) alternations, respectively). Thus, the computation

game GM  has space bound O(S(n+O(l))), time bound T(n+O(1)), and

alternation bound A(n+O(1)), respectively.

For any a E{D,N,A,BA ,PA kMPA k } we let a-TIME(T(n)) (a-SPACE(S(n)),

a-SPACE,TIME(S(n),T(n)),a-SPACE,ALT(S(n),A(n)), respectively) denote the

class of languages accepted by a-TMs in time T(n) (space S(n),

simultaneous space S(n) and time T(n), simultaneous space S(n) and

alternations A(n), respectively).
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Computation Game Type Machine Type Abbreviated Reference
Name

deterministic deterministic TM D-TM [Hopecroft

and Ullman,79]

nondeterministic nondeterministic TM N-TM

[Chandra, Kozen,
perfect information alternating machine A-TM and to ee,

and Stockmeyer, 791

2 player blindfold blind alternating PA1-TM (Reif,79]
machine

2 player incomplete private alternating PA -TM
information machine I

k+l player Markov(l) k+l player Markov MA -TM [Peterson and

alternating machine Reif, 79]

k+l player blindfold k+l player blind BA k-TM
alternating machine

k+l player hierarchical k+l player private PA k-TM
alternating machine

k+l player incomplete k+l player alter- MPA -TM
information nating machine k

Figure 1. Multiplayer alternating machines defined in increasing

generality.


