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ABSTRACT

The feasibility of amplitude data compression has been explored with
respect to the Versatile Experimental Kevlar Array (VEKA) analog multiplexed
telemetry of acoustic data. A Fourier transform approach has been developed
to quantify the potential benefits and penalties associated with a
particular invertible compression function. Analysis was performed using
sinusoidal signals and white noise. Results of the analysis indicate that
substantial gains in dynamic range can be achieved with tolerable sacrifices
in telemetry system linearity. Specific examples for a particular telemetry
system illustrate an increase in dynamic range from 80dB to approximately
120dB.
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l Analog Data Compression for Versatile Experimental Kevlar Array (VEKA) Telemetry

I. INTRODUCTION

Multiplexed telemetry, particularly that used to telemeter data from
experimental acoustic arrays, frequently suffers from insufficient dynamic
range. Dynamic range is defined as the ratio of maxfmum to minimum allow-
able signal level for a minimum specified signal to noise ratio. Dynamic
range problems are typical in cases where the acoustic experiment involves
low level signal measurements (e.g., ambient noise) as well as high level
signals from more powerful acoustic sources. Linearity of the telemetry
system, however, is typically much better than required for the acoustic
experiment. The concept explored here is that of sacrificing an insig-
nificant amount of linearity to achieve an extended dynamic range. This
technique of signal processing is known as amplitude data compression and
essentially involves amplifying relatively low level signals more than
relatively high level signals. Several compression algorithms have been
realized in other programs (SEAGUARD, 1979) and analysis has been conducted
(Assard, 1981) illustrating the benegits of amplitude data compression
while much less attention has been devoted to quantifying the simultaneous
detrniments. Closed form analysis is virtually impossible due to the non-
linear compression and expansion functions. The analysis technique presented
here uses a fast Fourier transform (FFT) with a computer simulation to allow
undersirable nonlinear effects such as amplitude errors and harmonic dis-
tortion to be examined. Results of the analysis show that compression can
be used to significantly increase dynamic range with only a moderate penalty
in overall system linearity.

The following sections describe the concept of amplitude compression
and present examples of achievable performance for a particular telemetry
system and invertible compression function. Also, considerable attention
is devoted to describing the Fourier analysis technique developed for this
investigation. In some respects, the technique is more significant than
the actual results since the technique provides a convenient tool for ana-
lyzing virtually any data compression algorithm.




IT. BASIC CONCEPT OF AMPLITUDE DATA COMPRESSION

Amplitude data compression basically consists of amplifying lower
amplitude signals more than relatively higher amplitude signals. The
compressed signal is expanded later in the system to restore the original
amplitude information. The intent of amplitude compression is to extend
dynamic range of a system by increasing signal to noise ratios for rela-
"~ tively low amplitude signals. The concept of increasing dynamic range by
amplitude compression is illustrated by Figure 1 which displays output
versus input relationships for a compressing (nonlinear) gain function
as well as for a conventional non-compressing (linear) gain function.

N
Compressing (nonlinear) Gain Function
- Non-compressing (linear) Gain
.*“:,:’ Function
= ,
= Autput Noise Level
+ /
> > o N~
o ‘
4+
3
[en)
J i 4 N N
U | v rd
0 L] LZ Lmax

Input Amplitude
Figure 1. Linear and Nonlinear Gain Functions

Notice from Figure 1 that by compressing the input signal, the output
signal amplitude is larger than the output noise level for a wider range
of input leveis (wider than for a non-compressing gain function).

If we define dynamic range as the ratio of the maximum input signal
level to the minimum input signal level (for an output signal to noise
ratio = 1), then the dynamic range for the linear (non-compressed) system,
DL’ is given by

DL = Lmax
L
2

Likewise, the dynamic range for tihe nonlinear (compressed) system, DNL’
is given by L
D
NL [

max
1

From the example of Figure 1, we see that L, < L and therefore the dynamic
range of the nonlinear system is greater th;n thgt ]

f the 1inear system, viz.
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Extending the example of Figure 1, one could choose a compression function

to allow a dynamic range as large as desired. Unfortunately, practical
problems exist in the inverse, or expanding, process which 1imit the maximum
usable extension of dynamic range. Analysis presented in this technical note
examines achievable performance by quantifying detrimental effects such as
harmonic distortion and amplitude errors as well as the beneficial effect of
extended dynamic range. To proceed with this analysis, it is first necessary
to characterize the telemetry system under consideration.

ITT. VEKA MULTIPLEXED TELEMETRY SYSTEM

A. Linear Configuration

The VEKA telemetry system utilizes frequency division multiplexing
(FDM) with the amplitude modulation (AM). Figure 2 displays a simplified single
channel model of the telemetry system. The input signal, s(t), is low pass
filtered, modulated, transmitted via transmission line, RF link, etc., then
demodulated and Tow pass filtered to obtain an output estimate §(t), of the
input signal. The low pass filters are included to prevent crosstalk between
channels of the frequency division multiplexed system. The additive noise
source, n(t), is included to model the telemetry system "mux-demux" noise. This
noise is reasonably white (constant power spectral density with respect to
frequency) over the frequency band of interest. Noise power in 1 Hz of band-
width is approximately 80dB below the maximum allowable monochromatic signal
level, and therefore, the linear system is described as having 80dB of dynamic
range. Amplitude data compression is introduced in the next section.

B. Application of Nonlinear Compression and Expansion

The linear telemetry system model of Figure 2 has been modified to include
data compression as shown in Figure 3. Notice from Figure 3 that the comptcessen
has been placed alicad of the low pass filter. This location (as opposed to
after the low pass filter) was selected so that harmonic distortion products
from the nonlinear compressor will not result in a rather complicated form of
crosstalk in the frequency division multiplexed system. For similar reasons,
the expander (inverse of the compressor function) is placed after the low pass
filter of the demodulator. At first glance, it may appear that the compression
and expansion functions are arranged in a fashion as to exactly cancel each
other. This is not true for two reasons: (1) there is a low pass filter
operation between the nonlinear operations of compression and expansion, and
(2) the signal, s(t), is compressed and expanded whereas the noise, n(t), is
expanded only. Closed form characterization of these effects would be
extremely difficult due to the nonlinear compression and expansion functions.
It is precisely the difficulty of closed form analysis that motivated develop-
ment of the computer simulation described in the next section.

The expansion function (see Figure 3) can be performed in the time domain
or the frequency domain. Experiments conducted during the investigation
described here indicate both techniques to be satisfactory for high signal to
noise ratios. For Tow signal to noise ratios, however, the frequency domain
expansion technique was found to be superior. The expansion operation will be
described in more detail later.
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Iv. COMPUTER SIMULATION

The computer simulation developed for the effort described here is a
numerical technique for evaluating performance of amplitude data compression/
expansion algorithms. Performance is quantified by output signal to noise
ratio, amplitude errors, and harmonic distortion. The simulation is extremely
useful since it provides the necessary information for evaluating compression
designs without fabricating expensive hardware prototypes. Also, the simula-
tion is guite versatile which allows evaluation of any compression/expansion
functions whereas a closed form analysis, due to the complexity of analyzing
nonlinear processes, is limited to a small class of functions.

The software simulates the hardware described in the block diagram of
Figure 3. The input signal, s(t), is represented by a sinusoid and is com-
pressed by the desired compression function to generate s.{t). A fast Fourier
transform (FFT) (Cooley, 1965, Bloomfield, 1976) is used 0 determine the
Fourier series representation of s.(t), denoted by Sc(w). A very fast sample
rate (approximately 25 times the highest frequency component of s(t)) is used
in order to prevent harmonics generated by the compressor from aliasing with
significant amplitude into the frequency spectrum of interest. The Fourier
representation, Sc(w) allows the low pass filter operation to be performed
quite easily as a product in the frequency domain as opposed to a convoluticn
in the time domain. OQutput of the low pass filter, sc1(t), is added to a
pseudo random white noise sequence, n(t), to form scyp(t). The modulator
and demodulator are modeled together as an ideal pair, *i.e., the demodulator
output is identical to the modulator input. The receive end low pass filter
function is then performed to yield sc]n1(t).

Expansion can be performed in the time domain or frequency domain.
Time domain expansion is performed by operating on the signal Scln](t) with
identically the inverse of the compression function.

Frequency demain expansion is performed by first taking the FFT of
Scin] and applying an amplitude correction to each discrete frequency
component. The time domain output, S{t), can then be generated by inverting
the amplitude corrected FFT of Scinl- In either case, time domain expansion
or frequency domain expansion, system performance is evaluated by comparing
the FFT of the output S(w) with that of the input S(w).

V. RESULTS

The results presented here were obtained using the simulation described
in the previous section. A linear (uncompressed) telemetry model was designed
to approximate characteristics of the current NORDA VEKA telemetry system. In
rarticular, the Tinear telemetry model was designed to simulate 80dB of dynamic
range, where dynamic range, DR, is defined as the ratio (max monochromatic RMS
signal level/RMS noise level in 1Hz of bandwidth). To model the 80dB dynamic
range, pseudo random noise source, n(t), was set to -80dB amplitude in THz
bandwidth and the input signal amplitude was constrained to _ 0dB.

= The non-ideal nature of the pair {with transmission Jine) is accounted
for by additive noise source n(t) and a maximum input Tevel "clipping"
Timit.




M

The particular compression function used here was chosen by intuition
and in no way represents an optimum choice. The compression function used, how-
ever, does demonstrate the feasibility of achieving an extra 40dB (80dB to 120dB)
of dynamic range when applied to the current VEKA telemetry system. Before
detailed results can be presented in a meaningful fashion, several more modeling
assumptions must be described.

A. Compression Function

The compression function is designed to "compress" an input signal ampli-

tude range to a smaller output signal amplitude range. The particular compres-
sion function used here is shown below.

s () = f(s(t)) = as(t) + n(]s(t)])}saN(s(t)) (1)
Where s(t) A input (uncompressed) signal as a function of time, t,
'Q A compression function,
sc(t) A output (compressed) signal as a function of time,
a = 0.9,
n = 0.14,
|X | = denotes absolute value of X and
SGN(X) = +1, for X 20

= -] otherwise.

The particular values for o and nwere chosen to compress a 120dB range to
approximately 80dB range. Figure 4 describes the compression function by
plotting sc as a function of s for positive s. An identical curve (except for
signs) would describe s, and s for negative s. Figure 5 also describes the
compression function input output relationship. Figure 5 was generated by
assuming a sinusoidal compressor input

s(t) = Al sin{wgt) (2)

which results in a non-sinusoidal compressor output which may be expressed by

sc(t) = fc(s(t)) = B] sin(wot) + ngz

3, sin(nwot) . (3)
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Ap of equation (2). In other w
a

Figure 5 displays coefficient B, of equation (3) as a function of coefficient
$rds, Figure 5 displays magnitude® of the output
the §requency of the sinusoidal <nput as a function of the magnitude® of the
sinusoidal input. Notice from Figure 5 that a sinusoidal input of magnitude
-120d8 results in an output (at the fundamental frequency)of -79dB. Also,
notice that an input of 0OdB results in an output of 0dB. Therefore, the input
range of 120dB has been compressed to approximately 80dB.

B. Time Domain Expansion

Time domain expansion is performed by exercising the (uvcetse of the
compression function. The inverse, or expansion function, fe is given by

2
s = fls.) = (-n + (n2+4a{sc1)5) SGN(s,) - (4)
2a

where terms and notation are defined in equation (i1). Under conditions of no
noise and no filtering (between compressor and expander), the compression and
expansion functions form an ideal pair, viz.

s = f, (fc(s)), for all s. (5)
Intuitively, the actual inverse function, f_, would be the optimum algorithm
for expanding the compressed data. In the Sresence of noise, however, the

frequency domain expansion has been found to be superior (in terms of output
signal to noise ratio) to time domain expansion.

C. Frequency Domain Expansion

Frequency domain expansion is performed by first taking the fast Fourier
transform (FFT) of the received output (s.y,y of Figure 3) and then applying an
amplitude dependent amplitude correction ?aclor to each Fourier component. The
time domain version of the expanded signal can be obtained by inverting the
ampiitude corrected FFT. The amplitude dependent amplitude correction factor is
obtained from Figure 5.

As an example, consider the input signal s(t) sinusoidal of magnitude
-80dB. From Figure 5, we see that the output magnitude (at frequency of s(t))
nf the compressor is -58.5dB. The compressed signal is then low pass filtered, etc.
The resulting signal (s.y1(t) of Figure 3)*w111 have a spectral component (at
the frequency of s(t)) very nearly -58.5dB. Applying the frequency domain
expansion correction factor, results in the approximately -58.5dB level to be
mapped to approximately -80dB.

*  Input and output magnigudes are expressed in dB relative to unity RMS.
As an example A; = (2)? is equivalent to s(t) of 0dB.

**  Signal Scip1(t) will have a magnitude slightly different from -58.5d8
due to additive noise n(t).
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D. Low Pass Filtering

Low pass filters are assumed linear phase with infinitely sharp cutoff
as illustrated by the transfer function shown below.

Fa

Magnitude of Transfer Function
Phase of Transfer Function—” ‘{'

N

-W 0 W

v

Figure 6. Ideal Low Pass Filter Characteristics

These ideal characteristics were assumed for simplicity and result in no sigrifi-
cant shortcoming of the analysis.

E. Examples

The examples presented here are intended to illustrate the signal charac-
teristics at various stages of the telemetry system and to illustrate how overall
performance is evaluated using the computer simulation. An example of high signal
lTevel and low signal level will be presented.

Example 1: (high signal level)

The highest allowable*sinusoidal signal level corresponds to 0dB for s(t)
of Figure 7a. Figure 7b shows the magnitude Fourier transform of the input signal
s(t), denoted by S(w) . The "compressed" version of s(t), denoted by s (t),
contains harmonics as well as the fundamental and is characterized by thé magnitude
transform, S _(w) shown in Figure 7c. In this example, it is assumed the frequency,
W _, of the sifiusoidal input signal is very much Less than the low pass filter cutoff
frequency, W¢. Therefore, virtually all the harmonic components of s _(t) are trans-
mitted to the receive end telemetry. Psuedo random white noise (reprgsented by n(t)
of Figure 7a) is added to the compressed and low pass filtered signal s(t). After
receive end low pass filtering, the signal, s (t) has a magnitude Fourier trans-
form as shown in Figure 7d. Time domain expaﬁlQLH «TDE) is performed by exercising
equation 4. Figure 7e characterizes the time domain expanded signal by plotting its
magnitude Fourier transform, STDE(w).Notice that harmonic distortion of the time
domain expanded signal is not visible above the noise. Frequency domain expansion

* Highest level that "clipping" does not occur.
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(FDE) results in the signal whose magnitude transform is shown in Figure 7f.
Notice the noise level of Figure 7f (FDE) is -122dB as opposed to -79dB for
Figure 7e (TDE). Also, notice the largest harmonic distortion term of the
FDE signal is 43dB below the fundamental (as opposed to > 70dB for the time
domain expanded (TDE) signal). To summarize, the improved signal to noise
ratio of FDE (over TDE) has been achieved at the expense of poorer linearity
which results in higher harmonic distortion.

Example: (low level signal)

A signal level of -80dB represents the case where output signal to
noise ratio is OdB for the conventional linear (uncompressed) telemetry system.
Figures 8a and 8b display the magnitude Fourier transform of the input signal,
S{w), and the compressed signal, S _.(w). Figures8d and 8e characterize the
signals after time domain expansioﬁ (TDE) and frequency domain expansion (FDE).
Notice that both expansion techniques perform quite well in that the output
signal to noise ratio is much better than the 0dB of the original linear system.
Also, notice the signal to noise ratio is much better (approximately 42dB S/N
as opposed to approximately 18dB S/N) for the frequency domain expanded signal
as opposed to the time domain expanded signal.

F. Performance for Signals of Magnitude 0dB to -90dB8

The data presented here is in a format very similar to that of the
previous two examples. A major difference is that two frequencies are
considered for s(t). The two freguencies do not occur simultaneously, but are
considered in separate experiments. The first frequency is a Low frequency
which allows virtually alf the harmonic information from the compressor to be
telemetered to the expander. The second frequency considered is a high
frequency which allows none* of the harmonic information from the compressor
to be telemetered to the expander. The low frequency signal was selected to
allow observation of the intuitively worse case for harmonic distortion
appearing in the output signal, s. The high frequency was selected to
demonstrate the worse case £Lo0ss of hawmonic injommation between the compressor
and expander.* This loss of harmonic information affects time domain expansion.

Figures 9a-9j characterize performance of the linear {uncompressed)
system and the amplitude compressed system using time domain expansion (TDE)
and frequency domain expansion (FDE). Figures 9a-9j consider a low frequency
sinusoidal input as discussed in the just previous paragraph. Notice that for
signal amplitudes greater than -60dB all systems, including the standard linear
system, perform very well with respect to three criteria. (1) output signal
amplitude is very nearly the same as input signal amplitude, (2) output signal
to noise ratio is large, and (3) harmonic distortion terms are typically better
than 30dB below the amplitude of the fundamental signal. For signal levels Tess
than -60dB, the signal to noise ratio of the linear telemetry system becomes
small. Signal to noise ratios for the compressed system using time domain

expansion is greater than that of the linear system and signal to noise ratios

* Harmonics of high frequencies are removed by the low pass filtering.

12




for the compressed system using frequency domain expansion are even greater,
The enhanced signal to noise ratio of the FDE system is achieved at the expense
of greater harmonic distortion. An interesting property of the compressed
system using time domain expansion is that output noise amplitude is a function
of signal amplitude.

Figures 10a-10j describe performance characteristics of the system for

~a high frequency signal. The significance of the "high" frequency is that the

Tow pass filtering removes all harmonic components of the compressed signal.
The harmonic information is necessary to reconstruct the input signal exactly.
Therefore, it is interesting to observe signal degradation due to loss of
harmonic information. The experimental results presented in Figures 10
indicate the degradation insignificant for the cases investigated.

G. Performance for Signals of Magnitude -100d8 to -110dB

Performance of the systems for sinusoidal signals of -100dB and -110dB
magnitude were evaluated by averaging the results of 32 trials (experiments).
The averaging was necessary to obtain a better estimate of the output signal to
noise ratios. Performance of the linear system is very poor for the low level
signals and, therefore, is not displayed. Figures 11la and 11b illustrate
performances of the amplitude compressed systems using time domain expansion
(TDE) and frequency domain expansion (FDE). Again, S(w) denotes Fourier
transform of input signal and S(w) denotes Fourier transform of output signal.
Notice the amplitude accuracy and output signal to noise ratio of FDE signal
is better than that of the time domain expanded (TDE) signal.

H. Summary of Results

The amplitude data compressed telemetry system achieved a dynamic range
of approximately 105dB using time domain expansion and approximately 120dB
using frequency domain expansion. These dynamic ranges were achieved by
applying amplitude data compression to a linear telemetry system of 80dB
dynamic range. Dynamic range was defined as the ratio (max RMS monochromatic
signal level/RMS noise level in 1 Hz bandwidth). Results presented here
consider only monochromatic input signals.

VI. CONCLUSIONS AND RECOMMENDATIONS

Results of the analysis presented here show the feasibility of extending
the dynamic range of an 80dB system, such as the current NORDA VEKA telemetry,
to approximately 120dB. The resulting harmonic distortion is well within
performance goals for a practical telemetry system.

The following areas should be explored to continue the theoretical
investigation and prepare for hardware implementation.

e Evaluation of system performance for non-monochromatic signals

e More precise modeling of telemetry hardware

e e

oy




Analysis of frequency domain expansion versus time domain expansion

k e Evaluation of phase distortion

o Optimization of compression/expansion functions with respect to
system performance and hardware implementation

-
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