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Convective flow with subcritical instability
John C. Neu
Department of Mathematics. Stanjbrd University. Stanford, California 94305
(Received 4 April 1980; accepted 23 October 1981)

An asymptotic analysis of subcritical instability in double diffusive convection is presented. Using a modified
perturbation method, a Landau equation that determines how the amplitude of the convection evolves in time
is derived. From the Landau equation, it is found that in certain cases, stable finite amplitude convection can
exist even when the rest state with no flow is locally stable. The perturbation analysis complements and
unifies previous work which is primarily qualitative or numerical in character.

I. INTRODUCTION form solute concentration in the interior of the roll, and
the stabilizing solute gradient does not appear there.

There are fluid flows which are stable against infinite- the aling so gae doeta re .Curve (ii) in Fig. 1 shows the conjectured bifurcation
simal perturbations, yet finite amplitude disturbances, diagram for double diffusive convection. The locus of
once created, may persist and even grow. We state stable steady states is indicated by the solid lines, and
that such flows exhibit subcritical instability. Certain the locus of unstable steady states by hatched lines.
geophysical and astrophysical convection processes According to this picture, there is stable, finite ampli-
provide prime examples. Veronis' discovered stude convection for subcritical Rayleigh numbers in an
tical instability in the process of double diffusive con- interval R <R<R We state that the convective pro-
vection. Here, the basic thermal instability is mod- m

ified by the presence of a solute which introduces a cess exhibits subcritical bifurcation. The goal of the

second bouyancy force in addition to the usual effect of present work is to provide an asymptotic description of

thermal expansion. Previous researchers into this this phenomenon.

subject have proceeded along the lines of a simplified Huppert and Moore2 discovered a stable branch of sol-
semi-quantitative description, or a detailed numerical utions that represent finite amplitude convection. These
simulation. In this paper, we present a quantitative solutions were computed both numerically and by analv-
asymptotic analysis of double diffusive convection. Cer- tic approximation based on mean field equations. This
tain results of previous analyses are consequences of branch is represented by the solid portion of curve (ii)
the unified treatment presented here. in Fig. 1. In addition, they discovered a branch of un-

To pose the proper goals of the analysis, we consider stable solutions emanating from a bifurcation point atTo osetheproer oal o th anlyss, e cnsier R =Rs,S =0. This branch is represented by the hatched

the physical mechanism of subcritical instability in p o Thi bnchis rereeby the cheddoube dffuive onvctin. I a lui wit nosolte, portion of curve (it). In this paper, we verify the con-doube dffuive onvctin. I a lui wit nosolte, jecture of Huppert and Moore that the stable 'and un-
where purely thermal convection takes place, the ex- stable branches of solutions connect each other in a

istence of convection due to an adverse tempera- continuous fashion to form a single branch of solutions.
lure gradient is determined by a single dimen- In the limiting case with small solute diffusivity and
sionless parameter R called the Rayleigh number. R small solute gradients, we present a unified analysis
is proportional to AT/I, where AT is the temperature which describes the stable and unstable branches, and
difference across the fluid layer and v is the viscosity, their joining to form one continuous family of solutions.

There is a critical Rayleigh number R =R*, such that
the static solution corresponding to heat transfer purely In Sec. 11, we give the mathematical formulation of the
by thermal convection without fluid flow is stable for double diffusive convection problem. In Sec. Ill, we
R<R*andunstableforR>R*. ForR>R*,thestablestate present the results of linearized stability theory for
is steady convection. The amplitude Aof the convection, as peidcrlsInS.IVweotnafrtquiaivis sead covecion.Tbempltud~oftecovecion as periodic rolls. In See. IV, we obtain a first qualitative

measured by the velocity at a fixed point in the flow, description of the subcritical instability by means of an
increases like(R -R*)iI'forO<R-R* << 1. Curve (i) in averaging procedure due to Stuart. His procedure, al-
Fig. 1 is a plot of the amplitude as a function of Rayleigh though qualitative, nevertheless gives valuable insight
number for purely thermal convection and is typical into the conditions under which subcritical instability
of systems that exhibit supercritical bifurcation. occurs. In particular, it suggests the proper limiting

We now consider the modifications due to the presence case for an asymptotic analysis. In Sec. V, we begin
of a solute. We assume that a higher solute concentra- a formal asymptotic analysis analogous to the work of
tion is maintained on the bottom of the fluid layer than Keller and Kogelman on the B(nard problem.' The
on the top, so that the solute appears as a stabilizing eventual result of this analysis is a Landau equation that
agent. Hence, the critical Rayleigh number increases to describes the slow temporal variation of spatially per-
a value R5,,R*. We further assume that the solute iodic rolls. The derivation of the Landau equation in-
diffusivity is sufficiently small sothat the mixingdue to volves an elliptic boundary value problem for the solute
convective motions is not overcome by the effect of concentration. The completion of the analysis does not
fixed boundary concentrations. Under these conditions, require the solution of the elliptic problem, but rather
it may be possible for finite amplitude convection a certain inner product of the solution. There is a very
to exist at thermal Rayleigh numbers R< R,, convenient variational formulation suggested by Keller 4

because the convective motion maintains a nearly uni- for computing such inner products. In Sec. VI, we
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A The condition w = 0 at z = 0 and r = 1 expresses the con-
finement of the fluid between the planes z = 0 and r = 1.
u, = 0 is the "free surface" condition of no tangential
stress. The conditions (3b) follow from the choice of

R fixing the temperature and solute concentration at the
boundaries.

The system (2a)-(2c), (3a), (3b) is the mathematical
formulation of a double diffusive convective process.

FIG. 1. Amplitude of convection A as a function of Rayleigh The problem is to solve Eqs. (2a)-(2c) for 0, 0, and Z
number R. subject to the boundary conditions (3a) and (3b).

present the variational procedure and its application to III. LINEAR STABILITY THEORY
our analysis. Finally, in Sec. VII we present the corn- The rest state with no convective motion is charac-
pleted Landau equation and its predictions concern sub- terized by 0, 0, X -0. From a linearized analysis of
critical instability. the problem (2a)-(2c),(3a),(3b), we see that this rest

II. THE EQUATIONS OF MOTION state is unstable against spatially periodic perturba-
tions of the wavenumber k if the thermal Rayleigh num-

We consider a convective process taking place in a ber R exceeds the critical value

fluid layer of thickness d with both surfaces free. Gra- R* =,2 
2 )3

vity acts uniformly with magnitude g in the z direction. R.-R* + SIT, +k /k 2 . (4)

The density of the fluid depends on the temperature T R* is the critical value for purely thermal convection

and solute concentration S according to an equation of with S =0. If S > 0, then R. > R*. We see that the pre-

state sence of a solute whose concentration increases with

P = p1 - a,(T - T,) + c,(S -So)]. (1) depth has a stabilizing effect. If R =R , we have the
condition of neutral stability for which the linearized

Here, p, is the density when T= T0 and S=S0 ; as and problem admits a time independent solution. This sol-
a' are both positive constants. Constant temperatures ution is given by
and solute concentrations are maintained on the free )a sinkxsiniz, 0 =aocoskxsinvz,
surfaces, with the higher values on the bottom surface.

We denote the differences in temperature and solute 2 =a cos kx sin az, (5)
concentration from bottom to top by AT and AS. In this
analysis, we consider two-dimensional motions which where

depend only on x and z. We nondimensionalize by mea- a, = -(k/'r 2 
+ k2 )a, , a, = -(l/T)(k/ 2 + k2 )a, • (6)

suring all lengths in units of the fluid layer thickness
d, and time in units of d 2 /K,, where K, is the thermal Figure 2 depicts the streamlines, which are curves of
diffusivity. Under these conditions, the dimensionless constant $.

equations of the Boussinesq approximations are IV. THE QUALITATIVE THEORY OF SUBCRITICAL

(at - qV2 )V20 = -oR9. + oSE -V .0 + O.V 20,, (2a) INSTABILITY

(a, _ V2)& + 0. = _#,9. + O'll, , (2b) Chandrasekhar5 has analyzed finite amplitude thermal

(at - TV2)r + 0, + ,1 (2c) convection by an averaging procedure called Stuart's
-- method. We generalize his work to the case of double

for 0< z< 1. Here, 0 is the stream function from which diffusive convection. The essence of the procedure is
one may determine the horizontal and vertical velo- simple. From the equations of motion (2a)-(2c), (3a),

cities according to u = 41, and w= -Or,. 0 and Z are the (3b), we derive three integral relations for steady con-
deviations of temperature and solute concentration from vection which express the balances between the creation
the rest state with no fluid flow. 0, 0, and Z are the and removal of mechanical energy, heat and solute.
unknowns to be solved for. There are four dimension- These integral relations are given by
less numbers: a, the Prandtl number, is the ratio of I
viscous diffusivity v to thermal diffusivity Kt. 7 is the (4 V2

0.)dz - R (0.1,)dz + S ((.s)dz = 0, (7a)
ratio of solute diffusivity oc, to thermal diffusivity. R fo f0f
=-ga*ATd'/K,v and S ga.ASd 3/,v are the thermal and f ' - I 'o1 (f d 2

solute Rayleigh numbers, respectively. Equation (2a) j(0V dz -J z = dz - (.)dz)
governs the momentum. The bouyancy force terms are (b
-aRG, and oSE,. Equations (2b) and (2c) express the (71)
conduction of heat and solute. = 1 Z

The boundary conditions at the free surfaces are

#=*,,=O, onz=0,1. (3a) M

O=E =0, onz=O,l. (3b) 0 0

The conditions (3a) imply wo=- 0 and a., =4, 0. FIG. 2. Streamlines for neutrally stsble convection.
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T f d f' curs if r, the ratio of solute to thermal diffusivities, is
of order 1/3. We set 7 = e IT,, where T. is of order

I 2 I unity. Given that S and T have magnitudes and ( / 3,

(O's()dz- %,s)dz) (7c) the proper scaling of the remaining parameters and
T ) \o variables is determined from the following considera-

Here, the brackets ( denote the average over a hori- tions.
zontal plane, while ,6 0- (0) and s Z- (). (i) The fluxes of solute due to diffusive and convec-

Near marginal stability where 0< R -R.-< 1, the con- tive effects should balance. In the solute conduction
vection is of small amplitude and the field variables 0, equation (2c) the term TV2 ; represents the effect of
0, and Z are well-approximated by the values (5) of the diffusion, and the terms -0,1, + 46 represent the ef-
linearized theory. Upon substituting these values into fect of convection. Since r is 0(r f'/), we see that 4 is
the integral relations, we obtain the following system of O(El/ 3 ).

equations for the amplitudes a,, a, and ar: (ii) For purely thermal convection with 0< R-R*

(k2 + u 2)a2 + Rkaa. -Skaa, = 0, (8a) '< 1, the amplitudes of 4 and 0 are both proportional to(R -R*) 1 / 2 . Although this relation is not valid quantita-
(k 2 + r 2 )a + kaa, -9' ka.'a , (8b) tively for double diffusive convection, we assume that it

indicates correct orders of magnitude. Hence, 0 is also
0(E11 3 ) and R -R* is (21/3). For Rayleigh numbers

T(k2 + 2 ) +kaca. -(1/8T).¢ a . (8c) R with R -R* =0(f '"), the growth rate of temporal in-
stability is 0(f 2 "). Hence, the time scale for the

One solution of these equations is a#=aq =a. 0, cor- growth of convection is O(f- 2 /3 ).
responding to the rest state with no convection; but
there are nonzero solutions as well. By eliminating as (iii) The magnitude of the thermal bouyancy force due
and a., we obtain the following equation relating the to thermal expansion is RB. If R > R*, a solute free
streamfunction amplitude a, to the Rayleigh numbers fluid experiences convective instability. Hence, we
R and S: may think of R*9 as the portion of the thermal bouyancy

force that is required to overcome the stabili7ing effect
R a +a , a (ka,8(12 

+ k2 )T11/2 of viscosity, while (R - R*)O represents the actual mo-
2  

ative force of the instability. In the case we consider,
(9) where a solute is present, we expect that this destabil-

iring force will be balanced in magnitude by the solute
Figure 3 is a graph based on Eq. (9) of the amplitude a bouyancy force SE:. Since (R-R*)6 is 0[(E/ )(('/ 3 )]
as a function of (R -R*)/I for various values of S and r. = O(E ) and S = , we find that Z is 0(1).

If S > 0 and On the basis of the discussion in (i), (ii), and (iii),

= (1/73 - 1/T)S - R* < 0, (10) we adopt the following scaling of the variables:

then (9) yields supercritical bifurcation represented by 8=(E1/P, e- /1 oe, Z;=4 , (11)
curve (i). If A> 0, there is subcritical bifurcation as R=R* +E2 3 r, t =/T.
represented by curve (iii). Curve (ii) represents the
intermediate case A=0, in which the bifurcation curve Weseekasymptotic solutionsfor ,0,, and 4 intheform
makes fourth-order contact with its vertical tangent at O , 1 /34, + 213 2 +
the po int P . (12)e 0 ±° + ' /3 e +e2'302 + . ... , (12)

V. PERTURBATION ANALYSIS 4 ~ o +E /341+ (
2 /qt 2 + .

We present a quantitative, asymptotic analysis of We discuss the leading order solution. From Eqs. (2a)
double diffusive convection to compliment previous and (2b) we find that *o and 0f satisfy
works in the subject which have been either qualitative
or numerical in character. The asymptotic limit to be V2*0 - R * 0 = 0, V Oo  $o>0. (13)
considered is S- 0. We take S=f ,0 << 1. From the The solutions which satisfy the boundary conditions *0
qualitative theory in Sec. IV, we expect subcritical bi- - -0 = 0 Oat z=0 and z=1 are
furcation to occur when Ass (i/ 3 - 1/I)S -R* >0. Since -

S is of order E, we see that subcritical bifurcation oc- 4F0 =asinkxsin~z, 0 0 =-[k/(k +;)]acoskxsin z.

1~ (14)
Ai Here, a = a(T) represents the time varying amplitude

of convection. The goal of this analysis is to find its
R- R* governing equation.

T From the solute conduction Eq. (2c) we find that 4',
satisfies

(15)FIG. 3. Bifurcation diagrams based on Stuart's method. a ' ' i

10 Phys. Fluids, Vol. 25, No. 1, January 1982 John C. Neu 10



If we set '0 =a sinkx siniz, this becomes The application to the analysis of Sec. V is clear.

(T/Cf)V=°-_ ('t+ (pik:=, i$=stnkxsinwz. (16) We apply variational principle with

Due to the periodicity of 0 in the x direction, it is suf- L=(T/a) V2- p0.+ -. , ab= . (23)

ficient to solve for 4o inside the single convection cell The functional g(u,v) is
depicted in Fig. 3 with 0 - z - 1 and 0 - x -i/k. The g(u,v)(v)+(, ,.)_[(r/2)V2u_- (pp.+ op,,v (24)
boundary condition on z=0 and z =I is o= 0. Along the
interfaces of the convection cell with its neighbors, where the inner product is the one defined by (18).
symmetry dictates 0.To compute the stationary value of g, it appears that

To complete the leading order description, we need one must perform variations with respect to both u and

the evolution equation of the amplitude a(T). This is v; but, there is a symmetry in our particular problem
found in the process of solving the higher order equa- which allows a simplification. The adjoint operator is
tions. We solve the equations for the first order cor- L ' = (To a) V+ 3,0 - 8.(P -(rT/a )V2+ ,a - 0.

rections 1 and 0' and substitute the results into the
equations for the second order corrections *2 and 02. Hence, the adjoint equation Ltv- b is (25)

The second order equations have a solvability condition
which yields the governing Landau equation for a(T). (TVJa)V 2

,) + O -.V -tv= P,. (26)

The analysis is straightforward and gives the result The function O(x, z)=sinkx sin iz has the property

1 + a (k2+ 2) - rk 2  
12223 (x,z)=O(x, 1 -z). As a consequence of the symmetry,

a + ( k (k), we find that the adjoint Eq. (26) becomes equivalent to
the original equation Lu =a under the change of variable

(17) z- i=1 -z. Hence, the solution v* of the adjoint prob-

where (fo, (p) is lem is obtained by substituting I- z for z in u*(x, z);
that is,o )• 4 k f f,/lpd

'C 1 0)-- J ° (18) v*(x, z)=u*(x, 1 - z). (27)

The first two terms on the right-hand side of (17) ap- As a result, the stationary value of g(u,v) is equal to the

pear in the usual Landau equation for purely thermal stationary value of

convection. The term (to, 0.) represents the effect of k(u) M-g[u(x, z),u(x, 1 - z)]. (28)
solute. It is a definite function of the amplitude a be-
cause a appears as a parameter in Eq. (15). A varia- To estimate the stationary value of k(u), we substitute

tional principle suggested by Keller4 provides a very into (27) a simple approximation to u with undetermined

convenient tool for estimating the functional dependence parameters and then compute the stationary value with

of (W', 0.) on a. respect to the parameters. To third order in a/%, the
solution of

Vt. A VARIATIONAL PRINCIPLE AND ITS Lu = (To/)Vu - ,u. + Ofu, = 0. = a, (29)

APPLICATION subject to boundary conditions

Let u,a,b be functions defined in a bounded domain. u = 0 on z = 0, 1, u. = 0 on x = 0, ,/k, (30)
We wish to compute the value of the inner product

(u, b) when u is the solution of the inhomogeneous ellip- has the form

tic equation u =cl coskxsin wz + c2 sin2vz + c coskxsin 3trz.

Lu =a, (19) (31)

subject to homogeneous boundary conditions. This This is a natural choice for u. We substitute (31) into
problem has a simple variational formulation: Let t* the expression (28) for k. The stationary value of k
be the solution of (19) and let v* be the solution of the with respect to the parameters c1 , c2 , and c. is

adjoint problem

vb =. (20) g= -4k(k 2 +2) '2A[1 + 3A' 2 + 2/k"+

We define a functional g(u,v) by L \k 9  /J
x (1+ 2A2) - 

, (32)
g(u,v) = (aV) + (u,b) - (Lu,v) . (21) X

A simple calculation shows that where

k ag(u* + a=, v* + a2) = (u*, b) - (Lu,, U2). (22) A a 23k + lr2)] /2 T (33

We see that g attains its stationary value when u =u* We take e as our approximation to the inner product

and v=v*, and that the stationary value is precisely
the required inner product (u*,b). In the self-adjoint (to, od.
case, the stationary value is also extremal. Since the The accuracy of the approximation is easily accessed.

problem we consider is not self-adjoint, the stationary The variational procedure generates values of c,,c42 ,
value is not necessarily extremal. c , , so that the resulting expression (31) for u is correct

11 Phys. Fluids, Vol. 25, No. 1, January 1982 John C, Neu 11



to third order in A. That is, A

u =u* + a, (34)
2.0 Stuart's

where u* is the exact solution, and a is O(A 4 ). From Method

(22) we find for this value of u that

g* =;(u) =g[(x, Z),U(x, 1- z)]
1.0

= (u", b) - lt(x, z), r(x, -z)]. (35)

Since the operator L in (29) is O(I/A) and a is O(A 4), we
find that the error term [L(x, z),a(x, 1- z)] is O(A 7 ).
Hence, the approximation of ( ;o, 0.) in (32) has error 1.0 .0 3.0 4.0 --O(A').

VII. THE LANDAU EQUATION AND ITS
CONSEQUENCES 

- 1. 0

Using the estimate of (4", 0.) determined in Sec. VI,
the Landau Eq. (17) can be written as Varidtional

Lj\k2 + 5,,2 4 -2.0

rA A. AA +3A2 +2 72 )2 AI

x (1 2A') - + 0(A7 ), (36) FIG. 5. Comparison between Stuart's method and variational
where X- ( + o)/[Or(k + v')], r'a r/(R*:) and g± procedure.
=I,'R*T. Steady rolls have At= 0. Their amplitudes

satisfy 10 + - (A _ 1)A 2 + 2A[(k 2 + 57r2)/(k2 + 9F2)]A4 + O(A6 )

r+ A 3A2+2( 2  1 A 4 (38)
L The characteristic shape of the subcritical bifurcation

x (1 + 2A 2 ) 2 
+ O(A'). (37) curves in Fig. 4 is due to the balance of the quadratic

Figure 4 depicts A as a function of r' for various values and quartic terms in (38). Hence, A2 is 0(;, - 1)2.
of A and k = r Y. The curves with g > 1 correspond to The error O(A") will be negligible to leading order if
subcritical bifurcation. On any given curve, the por- (w - 1)'>> (A - 1), or A - 1<< 1.
tions with dr' dA 2 > 0 correspond to stable steady We compare the result (37) of the variational analy-
states, while the portions with dr'idA2 < 0 correspond sis with the result (9) obtained by Stuart's method.
to unstable steady states. The unstable portions are Setting/R=R*I+/3 r=R*(l+e 2 /r'), a-A, S , and
indicated in Fig. 4 by hatched curves. e E

1 ng/ Ro, we find that (9) becomes

We consider the asymptotic validity of the bifurcation r' =A 2 + //(1 +A 2 ) 4- O(E 2/3 ). (39)
diagrams. We expand (37) as

Figure 5 shows graphs of A vs r' for g = 2 as obtained
by Stuart's method and the variational procedure.

A VIII. COMPARISON WITH RELATED WORK

Most numerical solutions of the double diffusive con-
vection problem are performed at values of the thermal
and saline Rayleigh numbers for which the flow is fully
nonlinear. In these cases, the perturbation analysis

.0 does not apply. In the numberical work of Huppert and
Moore, 2 typical values of . =-S/R*r3 range between 10
and 1,000, whereas the results of the perturbation analy-

2 *, 4. - 3 ** sis presented in See. VII are valid for I- 1 I 1. It
0seems that the perturbation method, which gives accur-

.0 ?.0 .3.0 4.0 ate analysis locally, does not provide global results.
In this respect, certain semi-quantitative methods per-
form better by providing crude, but globally applicable

-1.0 results.

Veronis' provided the first semi-quantitative analysis-
of subcritical convection through the use of a truncated
modal representation. The result of his analysis is a

-?. fifth-order system of ordinary differential equations for
the amplitudes of the fundamental modes and second-

FIG. 4. Bifurcation diagrams based on variational method. harmonic corrections. From these equations, he de-
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rii
TABLE 1. Critical thermal Rayleigh number for finite ampli- In the asymptotic analysis of this study, p - I and 7
tude convention as a function of saline Rayleigh number, are small. In the limit g - 1, T7- 0, Veronis' formula

_ __ (41) predicts r.. = 2, while formula (42) gives r'. = 1.
~"rnin The latter value is the asymptotically correct one.S Numerical Formula (41) Formula (42)

We compare the predictions (41) and (42) of the semi-
10 20.4 18.6 16.9 quantitative theories with the numerical work of Hup-
loll 52.3 39.9 37.6 pert and Moore. From their solutions, they estimate
10' 148 91.9 89.7
2.5x 10' 358 189 185 mR. as a function of S for fixed values of r. Table I

compares the numerical and semiquantitative results

in the case T = 10112.
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