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1. INTRODUCTION

It has long been appreciated that the simple birth-and-death Markov

process often provides an adequate initial model for the behavior of

service systems, populations, epidemics, and many other stochastic

systems; see Feller [3] for an early classic account. Refinements,

particularly in the modeling of service systems, have typically involved

the replacement of exponential service times, also assumed independent, by

independent random variables of "general" or arbitrary distribution,

replacement of independent exponential inter-arrival times by independent

"general" random variables, or both. Isolated examples in which arrival

process parameters are allowed to change deterministically in time have

also been studied.

Randomly appearing fluctuations in system environment, associated

with weather or other change in physical surroundings, personnel changes,

alteration of system usage intensity, etc., are likely to be reflected

in changes in observed failure and repair rates in a system reliability

context.

1.1 Examples : In order to illustrate the ideas summarized above, we

introduce two specific birth and death models in random environments.

Numerical results and discussion will be found in the last section.

Repairman Model. Suppose any of m machines that are in use fail independent-

ly in Markovian fashion at rate {t. t ; 0), and, if failed, experience

repair at rate { t , t > 0). In turn, the rates {At } and {P} are them-

selves finite-state Markov processes independent of the state of the

machines, so that if n is the number of machines on repair, and j identifies

the environmental state, then (n,j) is the overall state variable of the



system; conditional upon j, n cnanges by on,! unit at a time in typical

birth-death fashion with parameters depending on j : the probability that

an operating machine goes down in (t,t+dt) is x.(m-n)dt + o(dt), while tne

probability that a machine on repair becomes available is pj min(R,n)dt + o(dt),

R being the number of repairmen. Such a setup describes groups of

redundant equipments that all experience common environmental intensities

simultaneously; the environmental changes are reflected in the numerical

values of the failure and repair rates that prevail at any time point.

The model described also may be used to represent the behavior of a net-

work of m timesharing computer terminals that independently send messages or

programs to a common central computing facility. Suppose the rate of message

transmission changes with external activity, i.e. responds to an occasional

period of unusual activity, perhaps a crisis situation. In tnis case the

"constant" demand rate , (assumed equal for all terminals) switches almost

instantaneously to a higher value, switching back to normal after the crisis

elapses, but doing so repeatedly. Left alone, the central processor may well

continue processing at the original rate, allowing congestion to simply build

up, and eventually drop again when the demand lapses. On the other hand,

remedial action may be taken. These phenomena suggest interesting and realis-

tic questions concerning stochastic control, but these will not be

considered in this paper.

Mass Search Model. Let a group of m predators attempt to round up and capture

a finite group of p prey. Predators search independently and with equal inten-

sity and effectiveness, but the detection rate is allowed to depend upon exter-

nal environmental conditions that cause relatively long-term changes in, say,

visibility. If a prey is detected, it is followed until lost by the predator,

after which moment it is susceptible again to search, detection, and active

surveillance. While predators and prey move independently, as soon as a pre-

dator begins following a particular prey the latter is removed from circula-

ticn and the remaining unattached predators continue search for the free prey.

B .
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Of interest is the long-run or stationary distribution of the number of

prey under simultaneous surveillance, and also the first-passage time until

a large fraction- perhaps all- of the prey are simultaneously under the eye

of the predators. Here is a plausible model : the state of the system is

(n,j), so that if the number of prey under surveillance, is n, and the

state of the environment is j, then the probability that a free prey is

detected is xj(p-n)(m-n)dt + o(dt), while the probability that a prey under

surveillance is lost is vjndt + o(dt), where n 4 min(p,m) and xj and Pj

change in accordance with independent finite-state Markov processes, as

before.

1.2 The analytic structure : We shall consider Markov processes

{(Xt,Yt), t > 0), on the state space ((n,j), 0 4 n 4 N, I < j < Kn}, with a

block-tridiagonal infinitesimal generator Q

A(O )  A(0 ) 0 0 ... 0
M() (1) A m1 0 ... 0

0 M(2) A(2) A(2) ... 0

Q (1.1)

M(N-I) A(N-1) A(N-l)

0 0 M(N )  A(N)

~ ~ -, -, -J
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Here , 0 , AA a... ..are square matrices, respectively of order
KO0 KI  ... I K Their diagonal elements are strictly negative, all other

ele-rents are non-negative. The matrices A(n), 0 < n< N-1, and M(n ),

1 - n - N, are rectangular, with appropriate dimensions ; their entries

are non-negative. The rowsums of Q are equal to zero, therefore we

have that

A(O)e + A ()e = 0

M()e + A(i)e + A(i)e = 0, 1 < i < N-i,

M(N)e + A(N)e = 0,

w'er- e denotes a column vector with unit elements. The variable Yt

's u iinLeknt ieeu L s the state of the environment, and Xt as the

state of the bitth nd death process, at time t

We assume, furt .ermore, that the Markov process Q is irreducible, and we

denote y level n the set {(n,j), 1 < j < Kn), of states corresponding to

the common value r for the first index. The structure (1.1) of Q permits

the M'arkov process to move up or down by only one level at a time. It is

in tris respect analogous to the classical birth-and-death process, see

Feller [3] or Karlin and Taylor [$1.

In the examples cited above, either X or Y changes each time the

Markov process undergoes a change of state. In fact, this restriction is

rot part of the model, and we allow X and Y to change simultaneously.

1.3 txistinq literature: Infinite birth-and-death models in random

environment nave been studied for some time already; early results are

found in Eisen nd Tainiter [21, Purdue (11] and Yechiali [142. More

recortly, Neuts [9], Chapter 6, has systematically examined a class of

problems in which N = -, and Q has a special repetitive structure

i) (2)

A'1 2

M(2) M(3)= .
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This structure leads to matrix-geometric stationary probability vectors and

efficient algorithmic procedures.

Finite models have been examined by Torrez [12], who suggests using

numerical procedures designed to solve eigenvectors for band-matrices.

Hajek has considered in [4], Section 5, a finite model with repetitive

structure :

A(')= A(2) A (N-2)

A( ' ) = A( 2 )  .. -),

M( 2 ) = M(3) ... =M(N),

KI  =K 2  =...=KN = K.

Hajek determines the stationary probability vector in terms of two matrices

R and R, of order K, which have to be iteratively computed. Finally, Keilson

et al. [6] have considered finite models with the structure (1.1) and equal

Kn's. They analyse the (Laplace transform of) first passage times distributions,

from which they obtain equations for moments, and for the stationary distribu-

tion. We cannot in this short space describe in detail the differences between

our results and those in [4, 6, 12]; but we shall give some discussion at

the end of Section 5.

This paper presents an efficient computational approach to the analysis

of birth-and-death models in a Markovian environment. The emphasis is upon

obtaining numerical properties of both stationary distributions (in the next

section), and first-passage time (;n Sections 3 and 4). The computational

algorithms are discussed, and numerical examples are given, in the last two

sections.

2. THE STATIONARY DISTRIBUTION

In order to determine the stationary probability distribution, and moments of

first passage times, it is useful to think of the Markov process as evolving in

a certain manner.
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r define S to be the restriction of the original process Q,n

ooserveu Curing tnose intervals of time spent at level n, before the original

process enters level n+I for the first time, the state space of Sn is

'(n,j), I j K n. Clearly all 5n, 0 < n -, N-i are transient Markov proces-

se,. Tne process 5N is the restriction of the process Q to the states

(,> i, 1 j K;. it is an ergodic Markov process. We denote by Cn the

infinitesimal ,eneator of the process Sn , 0 n < N.

In order ti) determine the matrices Cn, we need the following result.

C si Jer 3 ,-rv process on the state space {1,2,...,r,r+1,r+2,...,r+s},

infinitesimal generator

r 1
- ' (2.1)

00

wlpre A is a square matrix of order r, A is a rectangular r by s

rw ' Te t,,jtes r+1 to r+s are all absorbing.

The ,t3tes I to r are all transient if and only if the matrix A is non-

* .'e 'ii)th entry of (-A-1), for I < ij < r; is the expected amount of

*i-P s~ent in t'.e transient state j, starting from the transient state i,

lr-frre 3 : ')rgtion in any of the absorbing states.

e ,t ertry .)f (-A-  , for 14i <r, r+l< kr r+s, is the

-o~h. bility that, starting from the transient state i, absorption occurs

in the state k.

... ... ... . ... ........... .... . .... -: ... .. ....
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Proof. The first assertion is proved in ,euts [9], Lemma 2.2.1.

The matrix A-1 has all nonpositive entries. The second assertion is

a consequence of Neuts and Meier [10], Corollary 2. To determine the

probability Pi,k of being eventually absorbed in state k, r+1 4 k < r+s,

starting from state i, 1 < i < r, we study the Markov chain embedded at

instants immediately following a transition in the Markov process.

The corresponding transition probability matrix P is given by

P= 1

where the matrix A is diagonal, with diagonal entries equal to those of A.

It results from Kereny and Snell [71, Theorem 3.3.7, p. 52, that

= [I - I - '(A) -1  ( A- ) (.A-1)^;

which completes the proof of Lerma 1. a

We may now determine the matrices Cn -

Lemma 2

co  A(O), (2.2)

Cn = A(n) + M(n)(C 11)A(n-
1), 1 n 4 N. (2.3)

Proof. The equation (2.2) is obvious :starting from level 0, the process So

terminates as soon as the process Q enters level 1. Meanwhile, the transi-

tions are governed by A(0). Since the process Q is irreducible, the

process So  contains only transient states, 
and the matrix CO  is non-

singular, by Lemma 1. Also, (-Co)
1  0.

-- -- 90-



l-, : r errJtor C1  of the process S. Let Z()

owcvs. Z - i if the process S1 is in state

~~.<> t~ z~t it = , a nd Z T + d) = T i.

i<1st nave occurred in the process Q. Z ( t + d-)

* c z~'.v -~ "h ~ e fellowing events have occured.

r-~- 1,~to (1,j), this happens with probability

to (O,k), for some k, and the process Q

lr~~onin an unspecified amount of time at level 0,

.D erstate at level 1. This happens with probability

* (dr), where is the probability of moving from

>f-t're visiting any other state at level 1.

V 'A A(') and A A(') it results from Lemma 1 that

=~ AP)= dT + k= 1MP) (-A(O)A( )j d7
1,'j k1 k)

+ o (dT), I < i* j Kit

- i [ = 17 =(+A( ) dir) + r M.1  (-A(O AO) d
k=1 ik

+ 0 (dT), 1 < K1
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Thus, C1 = A(')-, M~)-())'(

which proves (2.3) for n-1.

Assume that (2.3) holds for n, we prove now that it holds for n.1. Let

Zn+1 (T), T 0, be equal to i if the process Sn+1 is in state (no.1,i)

at time T.

if Z n+1 (T) =i, then Zn+1 (T+dT) - j~i if and only if one of the fol-

lowing events occurs.

a. There is a transition from (no.1,1) to (n+1,j), with probability

Afntl )dT + o(dT).

b, There is a transition from (n+l,i) to (n,k) for some k. with probability

M~n+1 )dT + o(d ), and the process Q returns to (n+1,j), after spending an

unspecified amount of time at levels 0,1,...,n, before visiting any other

states at level no.1, with probability kj

Since Sn records the visits made by Q at level n before reaching level

n+1, we have by Lemmna I that

(n) (C- 1 A (n)k ) (2.4)
Yk k,j'

It is now easy to prove that (2.3) holds for no.1, which completes the proof

of the lemmwia.

Ma



t'.? stationary probability vector P, i.e. the

P e 1. We partition that vector as

te subvectors Pn have Kn  elements and

, ;. e 1 n, 0 <n <N.

-N , , are determined by the equations

(2.5)

for 0 < n <N-1, (2.6)

(2.7)

P .. .1e >1) of Q, it results that the system

.into

2 , (2.8)

. + + M(n+l) 0  1 <n <N-i, (2.9)

0. (2.10)

.' 1j) are matrix equivalents of the familiar

, i frr hirth-and-death processes. They may also be

. ;:r , hility balance .
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From (2.9), 0 = -P 1 M(1)(A(O)) '= P_ M(1) (-CO1). Then, by recurrence,
using Lemma 2, the vectors P. , I < n < N, satisfy the equations (2.5) and

(2.6). Since the matrix CN  is the infinitesimal generator of a finite

irreducible Markov process, Equation (2.5) has a unique solution, up to a

multiplicative constant, and that constant is determined by (2.7).

0

This result suggests an algorithm to compute the stationary probability

vector.

Algorithm A.

Al. Determine recursively the matrices Cn, 0 < n < N.

A2. Solve the system N CN = 2' 54 t = .

A3. Compute recursively the vectors P " n = N-i, .... 0, using n

instead of PN .

A4. Re-normalize the vector P so obtained.

A complete analysis of this algorithm is deferred. We shall make some

comments on it at the end of this section. Examples of numerical appli-

cations to certain specific models are presented at the end of the paper.

3. FIRST PASSAGE TIME TO HIGHER LEVELS

We denote by Tn the first passage time from level n-1 to level n,

and by Tn,m the first passage time from level n-1 to level m > n

Tnm = inf {t > 0 : Xt = mI X0 = n-l} , 1 n < m N,

n T n,n

We define, for x > 0, 1 < n < N, I < i < Kn _I , 1 < j Kn 9

q~n!x) P[ n  T nY +0 =  X0 
= n-1, YO i(n)

a. *x) =P [n ~x n~ = -i, I]



-- state of the system at time h, a simple probabilistic

+ (n-i )) (n)(x) + T A n- )h g(n)x +An-h
+A1 i h g k4.j i,k k~ .) A(i)

K 2  K n- (3.1)
+ M~'n- g(rl)* g(n).(x)+

k4 i,k 1)h E k,m M,j +oh)

Jdznotes the Stieltjes convolution. Substracting

'ies of equation (3.1), dividing by h and letting

inrst order differential equation for g fl3(x).

t'e apac-Stieltijes transform of g(n)

9()x]dad byG(n)(t) the matrix with entries

)AI) that

(nl)(n)( ~(n-1) + M(n-l)G(n-l)(&)G~n()

(3.2)

for 2 n N,

A- G') + A() (3.3)

rwritten as

D -()A (n1 for 2 < n < N, (3.5)

v1-AO))-, (3.6)

- (n)_ .(n)n C)- n < N-1. (3.7)
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Let qn1 m (X) =P[T < X, V 0 n-1, Y= iI
1jn,m T n,m '0 00

and let Gnm( denote the Laplace-Stielties transform of gYn~m)(xW.

We readily obtain that

()= G nmi(E) G(m)(&), (3.8)

m
= M~ G~k() (3.9)

for 1 < n < m < N, where we define G (n~n1) (E) =I for all n~.

We easily prove from Lemma 2 and Equations (3.4) to (3.7) that

D n (0) = - n for 0 4n <N-1, (3.10)

hence G ( 0) = n-i for 1 < n < N, (3.11)

which is merely another representation of Equation (2.4), since ( n

is the probability that, starting from (n-1,i), the process Q visits

(n,j) before visiting any other state at level n.

Let U(n,m) 3 G_ m(0,=

We have that

U n"m) =EC, Tn ,Y +0 X0 n-i, Y=i

and (n~m) = E[T Ix n-i, YV i
n,in 0 0 iJ

where u (n,m) = U(n Im)e.

We define U(n) =U(n,n) G - (n)() = , and u (n) =U(n )e.



r 14.

,',s of the first passage time to higher levels satisfy

-:e relations.

(3.12)

I-1 (e+,j(n-i )u (n 'l) '  for 2 < n < N, (3.13)

+ (0) df for 1 n <m < N. (3.14)

be proved by differentiating equations (3.6) and

dand evaluating the derivatives - 0 D(F.) at . = 0.

,ui first probabilistic principles. First, equation

r,!mma I (b) and (2.2). Then let V be the elapsed

enters a different level; that is,

X By the strong Markov property, Lemma 1, and

YO = i

II, * 0  
=  n Y YO =  i]

1X 0 = n , YO = i

i - 1 n

; (A(n))- Mn)Ilk E[TnjX 0 = n - 1 , yo = k]

n-(n) ]-Cn) in'l)ij E[Tn+IIXO = n YO j] (3.15)
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Hence,

[I - (A(n))-I M(n)(_C-l )A(n-l)] U(n+l)

(-A (n))l e + (-A(n))-l M(n) u(n) (3.16)

Multiplying both sides of (3.16) by A(n ) results in the equation

[A(n) + M(n)(-Cnll)An-i u(n+l) (3.17)

e + M(n) u(n)]

Equation (3.13) now follows from (2.3) and (3.17).

Since

E[n,mIX0 : n - 1, Y 0  i]

= E[Tn,m 1 + TmIX 0 = n - 1, = i]

. u(nm-l )(i) + G(n'm-1)(O) u(m ) (i)

equation (3.14) also follows.

Any number of moments of the first passage times may be similarly obtained.

We merely state the following result for second moments, without proof.

- .i~'
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Tnm = n-1, Y= i,

(n) -(n,n)

m m < N. We have

V") =2 (- C6)u ( I),(.

-I(n) 2 C 1
1) (I + M(n-1)u(n-1) )u (n)

+ (-1 M(n-1)v(n -1), for 2 < n < N,n 1)
(n,m) v(n,m-l) + 2 u(nm-l)u(m) + G(n'm'l)(O) (m) (3.20)

n <m <N.

,. Theorems l and 2 show how the matrices CnS 0 n < N, determined

2 play a central role in the determination of both the stationary

,iiity distribution, and the moments of first passage times to higher
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Example: Consider the repairman model of Section (1.1). Assume there

are just two environment states, denote by j = 1, 2 . Let the transition

rate from environment state 2 to 1 be ctand from environment state

1to 2 be 8.Then G (n) (E) satisfy the following system of equations.

GM ( X(m) 1) + a ()Wl,j d1(l) +~ 3 1T)TTC2,j

(3.21)

I E) ' 2 (m)_____
G'''. d~ = .(2) + d G1 (l)W

d2(1) + C J d7(l + Ilij

G (n~l) M~ X1(m-n) k( + 11[min(R,n)] [G (n) G G(n+l) ,
Iid 1(n) + E J d,(n) + E

+G (n+l) W~ (3.22)
d1(n) + E 2,j

G(n+l) X~ 2 x(m-n) 112 [min(R,n)] G()(C1nl2,j d2(n3 ~ + + 2(n) + c (() G1nl

+ G G(n+l)
d2(n) +c I l,j

for n < m-1

where

d 1(1) X X1 m+c

d 2(l) =x 2m +8

d 1(n) = Ym-n) + 1p 1[min(R,n)1 + a(3.23)

d 2(n) = A2 (m-n) + j2[min(R,n)] + a

1l if i = j
=to oth er wise.
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''e above equations can in principal be solved recursively. Finally,

G1 (,n+l) G~1)(c) G2()x ... x G (n+l) (3.24)

Similarly, the expected first passage times satisfy the following

telc~jYsive equations.

ETj~yo ] = 1 ErTIJY = 2]

EIT 1IYQ 2] = I2  + 2(l) E[T 1fY0 = 1]

7n+ y =1] = I a E[T~4  Y 2]

+ P1[rnin(R,n)] {EIITnY 1] + E[T~IY l}

.T 2] 1 __ + E[TIY =1

n+ O -d2(n d2(n n+l1O=

+ 02 [rin(R,n)] {E[TIY = 2] + E[T +1 0 = 2]}

d2n 4On1Y
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4. FIRST PASSAGE TIME TO LOWER LEVELS

There is some symmetry in the process Q, which we have not exploited

yet. This we proceed to do now. Instead of the processes Sn, 0 < n < N,

defined earlier, we now consider the processes gn ' 0 < n < N.

For I < n < N, Sn is the restriction of the process Q, observed during

those intervals of time spent at level n, before the process Q moves down

to level n-1 for the first time. All Sn, 1 < n < N, are transient Markov

,processes. The process 90 is the restriction of Q observed at the lowest

level; it is an ergodic Markov process. We denote by Cn the infinitesimal

generator of the process Sn' 0 < n < N.

We may carry out for the processessn exactly the same analysis as we

did for the processes Sn. We indicate below the main results for two

reasons.

a. The first passage times to lower levels must be analysed via the

processes Sn"

b. We shall be able to describe the precise correspondence between our

analysis, and the analysis of Neuts for the infinite quasi-birth-and-

death process.

The proof of the next lemma is omitted, since it is identical to that

of Lemma 2 and Theorem 1.



Lemma 3.

The matrices Cn 0 < n < N, are recursively determined as follows.

C N = A (N ) '

tn = A(n)+ A(n)(-Cn+I 1) M(n+l) ' for 0 < n < N-1.

The stationary probability vector P = (0 ' 1, ... , "N) is determined by

the equations

!oo = , (4.1)

P-n = I -1 ( for l n 4 N, (4.2)

N
E P e = 1.
n=O - -

The (i,j)th entry of the matrix A (n-1) ( n1) is equal to

[A(n-1)(-nl. ' k--

Kn i~
(-A n-l)) 1 1 -1) k  (4.3)

T fcrAi'i k=1 -,(n-1) 'J

The factor Ik )/(-A i I  is the probability that, upon leaving the state

(n-1,i), the process Q moves to the state (n,k). The (k,j)th entry of

(-4n1) is the expected time spent by the process in state (n,j), starting

from (n,k), before hitting any state at level n-i (by Lemma 1). Therefore,
it results from (4.3) that [A(n'1)(_nl)], j  is equal to (-An ) )i

ni) times

the expected time spent in the state (n,j), before the first return to level

n-1, given that the process 9 starts in the state (n-1,i). This is exactly

the interpretation of Neuts' matrix R for the infinite quasi-birth -and-



Let T ~ denote the first passage time to level n, down from level

m+I, for 0 < n < m < N-i

T mn = inf {t>O Xt =n I X0=m+1},

and let

d~m,n)= E [T- = m+1' Y0 =i]
I m,n 00

(in) (nn

for 0 n <m < N-i. The proof of the next theorem is omitted, since it

is identical to that of Theorem 2.

Theorem 3.

The expected values of the first passage time to lower levels satisfy the

following recurrence relations.

( -1) t- (4.4)Ne,

d(m)= d(m,n)= _ c-11(e + A(m+i)d(m+l)), for 0O<m <N-2, (4.5)

d(m,n)= d(m~n+l) + 6(m~n+i) MA (n) , for 0 < n < m < N-i, (4.6)

n
where (m"""(O) = Ty (_C k+1) M(k+l), for 0 < n < m < N-i, (4.7)

k=m

Observe that in the right-hand side of (4.7) ,the left most matrix

in the product is (-~,not (
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5. REMARKS ABOUT THE COMPUTATIONAL ALGORITHMS

The algorithm A described in Section 2 is numerically stable

unjer a large range of values for the entries of the generator Q

of (1.1). The matrices (-Cn 1 ) have only non-negative entries. Moreover,

since they measure the time spent at level n only, before moving to

level n+1, they usually are of the same order of magnitude for each n,

* - for large values of N, if the entries of the matrices A (n) are of

-,e same order of magnitude for each n, and similarly for the matrices M(n)

,:otential source of trouble exists when the A's are either very small or

-y large, compared to the other elements of Q. In that case, the expected

_ies spent at one level before moving up are respectively very large or

vet! small, and there is a risk of encountering overflow or underflow

:)roblems, when determining the matrices (-Cn ).

The steps A3 and A4 of Algorithm A are more delicate. We start step A3

.,, h a vector 2N normalized by IN e 1 1. If N is very large, it is likely

*-at the vector PN will be much smaller than , and there is a real risk

,f running into overflow problems while performing step A3. In order to

;ercome this difficulty, we have merged the two steps A3 and A4, and

''-normalized the vectors each time a new subvector is determined (see

Ai'-orithm B in Appendix A).

It results from Theorem 2 that one may compute the vectors u (n,m) at

the same time as one is preparing the evaluation of the stationary probabi-

lity distributions, i.e. during step Al of Algorithm A. In the numerical

P, mples presented in the next section, we have determined the first passage

t imes from level 0 to level m, for 1 < m < N. The corresponding algorithm
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Finally, we compare the numerical efficiency of three approaches.

As observed by Torrez [12], the matrix Q is a band-matrix, dnd there exist

efficient numerical procedures to solve eigenvectors for band-matrices.

The complexity of such procedures, for the matrix Q, is 0(,,K 3 ), where

K = max (Kn , 0 < n < N) (Wilkinson and Reinsh [133, p. 70). The crucial

step in our algorithm resides in the inversion of the matrices Cn, 0 < n < N-i,

and the solution of the system (2.5).
N 3

The corresponding complexity is O( Kn ). In Keilson et al. [6], 2 N matrices
n=O

have to be inverted, and N systems have to be solved. Again, the complexity
N

is O( T_ K ). Clearly, the three approaches have globally similar numerical
n=0

efficiency; in order to distinguish among them, one would have to determine the

coefficients implicit in the 0(.) notation. However, it must be observed that

the last two have the additional advantage of offering clear probabilistic

interpretations of the computed quantities.

6. NUMERICAL RESULTS

6.1 Machine repairman model. We consider a system with N=5 machines and

R=1 repairman. The system can be in K=2 environments. The system remains

in the environment state j (j = 1,2) for an exponentially distributed random

interval of time, with parameter aj. The failure rate of each machine is

equal to I. in the jth environment, with X1 = 0.12, and A2 = 0.06. The repair

rate of the repairman is v = 1 in both environments.

Our objective is to measure how the rate of changes in the environment

influences the system behaviour. In order to do so, we set 0I = 8/2, a2 =0

and chose different values for a. Then the stationary probabilities of being

in each environment remain constant and are given by yI = 2/3 and Y2 = 1/3.

We expect that if B is large, then the environment changes rapidly, and the

systerm is only influenced by the average failure rate A0 = YIA1 + Y2 ' 2 = 0.1.

&n..ow....-- -~ - - -
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On the other hand, if a is small, then the environment stays for long

periods of time in the same state, and this should affect the dynamic

endviour of the system.

We denote by &i(a), 0 < i < 5, the marginal distribution of the

number of machines on repair, for a given value of a.

1 e furthermore denote by ni(x), 0 • i < 5, the probability distribution

for the classical machine repairman system, with constant failure rate X.

In table I, we give the cumulative probabilities, corresponding to

), for x = 0' 1 and and to (a), for B = 10, 10- 2, 10- , I, 1j,

1i2, 105. We observe that the distributions of all the systems in a random

environment are close to the distribution for the system with a unique,

average rate X0, with increasing differences when the environment changes

more slowly. We also observe that (10- ) = yla(xl) + y2n(x2 ), up to five

,ecimal places.

We conclude therefore that for the present model, the random environment

'ias little effect on the marginal stationary distribution of the number of

machines on repair.

In order to measure the influence of the random environment on the

Jynamic behaviour of the system, we have computed the average time needed to

.- ach the states [n machines on repair], 1 < n < 5, starting from the state

,J machine on repair]. We present on Figure 1 the results for n=5, which is

.erpretable as the "time to complete failure". The functions are as follows

I and 2 : f1(a) and f2(0), where f (a) = E{time to reach the state [all

macnines on repair] starting from the state [0 machine on repair and

environment j]}.

3, 4 and 5 :g(A)g(A(A2) and g(XA), where g(X) = E{time to reach the state

fall machines on repair], starting from [0 machine on repair]},for a system

with constant failure rate i.
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-6 ylfl(6) + y2 f 2 (a) , equal to the stationary expected time to complete

failure, starting from [0 machine on repair].

We clearly observe several typical ranges of values for a. If > 10,

the environment changes so rapidly that the expected time to complete failure

is equal to the time for a system with unique failure rate equal to x0

For 10-1 < 5<10, the expected time to complete failure does not depend on the

initial environment state. For a < 10-0, the environment changes so slowly

that complete failure is reached before a change of environment occurs.

In fact, it seems that the system is almost completely decomposed in two

different systems, one corresponding to each environment, with very slow

migrations from one to the other. Also, we note that for B < 10- 3, the sta-

tionary expected time to complete failure looses any practical significance.

Finally, the average failure rate A0 yields an overestimation of the time to

-3
complete failure for 10 <8<1, that is, for values of a which are neither much

lower, nor much higher than the failure rates.

6.2 Mass search model. We define a reference model with p=15 prey and m

predators. The system can be in K=2 environments, with parameters a, and

a2=2 a,. The detection and loss rates are respectively given by X, = .001,

X .005, P1 = .02 and P2 = .01. Thus, environment 2 is more favorable to the

predators, since the detection rate is higher, and the loss rate is lower;

however, environment 1 lasts on the average longer than environment 2.

For this model, the rate of changes in the environment has an influence

on the marginal stationary distribution of the number of prey under surveillance.

In Table II, we give that distribution for five different models. Columns 1

and 2 correspond to models with a unique environment (respectively environments

1 and 2).
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" ::s 3 and 4 correspond to the reference model, respectively with

10 4 (slow environment changes), and a1 = 1 (fast environment changes).

f.l,..n 5 corresponds to a model with a unique, average environment
2 1I 2 1Xl + >2 ' 2 + N 2 Note that the distribution in column

-,is two modes, respectively corresponding to the modes in columns I and 2.

We have also measured how the system responds to increases in the effi-

--y of the predators. We have considered two ways for the predators to

,me more efficient. The first one is by becoming more numerous, the second

* increasing the probability of detecting a free prey, or by decreasing the

-ability of losing a prey under surveillance. We present on Figures 2 and

"*e values of tn, j , n=5,10,15, j=1,2, where

tnj = E [time until n prey are under surveillance I at time 0,

0 prey under surveillance, environment state is j],

tr.e reference model with al = .0001, and m equals 15 to 45. It clearly

... rs that environment 2 is more favorable for the predators. The curve for

presents a plateau which we explain as follows. We denote by Tn j the

-e until n prey are under surveillance given that initially zero prey are

:iPr surveillance, for a system with a unique environment, identical to

o ment j. For values of m less than 32, say, Ti5, 1 is so large (greater

on the average) that the reference model with a, = .001 switches to

.- ronment 2 before 15 prey are under surveillance (the switch occurs on the

.,.er ),e after 104 units of time). Once the model is in environment 2, it takes

t e average 102 to 103 units of time to have all preys under surveillance.

-i occurs before the environment switches back to 1, and the total elapsed

i.,, on the average, approximately 10.
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On Figures 4 to 7, we present the values of t~ ~, n=5,10,15, j=1,2,

for models derived from the reference model. We consider a,= .0001,

m equals to 15 and 20, and we multiply the rates Xjby v5, we divide the

rates Piby F~ , with y > 1, so that the probability ratio's "probability of

detecting / probability of losing" are uniformly multiplied by y in each state.

These figures may be used in conjunction with Figures 2 and 3 to measure trade-

off such as the following one. Suppose we start from the reference model with

m=15, and that we double the number of predators to m=30. This will entail a

reduction on t 15,1  which can be measured on Figure 2. We can then measure on

Figure 4 that the probability ratio must be multiplied by a factor y =3 in order

to obtain the same reduction.

In Table III, we give the approximlate values of y which give the same reduction

as doubling the number of predators, for m=15 and m=20.
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APPENDIX A.

AlgorithmB evaluation of the stationary probability distribution, the

first and second moments of the time to reach level m, 1 < m < N, starting

from level 0.

81 First passage times from level 0 to higher levels.

B1.1 Initial values.

((-Cs'0 4- -(A(0 ))-1 (Equation (2.2))

U( 1) 4- C 1 ) e; u (1,1) 4- UM (3.12)

V( 1) ,2(-C- 1) u(1); v('11) v(1 (3.18)

G~l)(0) 4-(-C 01) A(O); G(''')(0) 4- G~1 )(O); (3.11)

un) (-C 01)2 A(O); Un~1 '- un U 1  (3.15)

81.2 Levels 2 to N.

for n = 2 to N do

((-Crn1) -(AnI)Mn - 2 ) A~ 2 ) (2.3)

u() (C11(e+ M(n-l)u (n-i); (3.13)

u (l- 14 G(ln)()u); (3.14)

v (n) 4- 2(-C-1 )( + M(n l)U(n-l)) u(n)

+ (-C- 1,) ,M(n-1)v(n-1); (3.19)



v 
l n )  + v(1,n-1) + 2 U (1,n-1) u(n)+ G(1 n-1) (0) v (n); (3.20)

G(n)(o) (-Cn 11 ) A(n-l); (3.11)

G(l'n)(o )  G(n-1)(o) G(n)(o); (3.8)

U n (-Cn-11)(I + M(n-l)u(n-l) )(-Cn 1l) A (n -1)  (.6

U( l ' n )  - u(l'n-l)G(n)(, )G ln-l)(o) U( n ) I 3.7

92 Stationary distribution.

B.1 Initialization of the recurrence.

CN A(N)+ M(N)-CI) A(N); (2.3)

solution of - CN = 0 e = 1 (2.5)

9'.2 Determination of Pn , 0 n < N.

for n = N-i to 0 do

M(n+l) I (2.6)

(re-normalize)

N
4- r ke

k=n

for k = n to N do

lk 0-



TABLES

Table I. Cumulative probabilities-number of machines on repair.

Table II. Marginal distribution-number of prey under surveillance.

Missing numbers are less than 5.10 -6 .

Table III. Values of y giving the same reduction as doubling the

number of predators.



0 12 3 4 5

.56395 .84593 .95872 .99256 .99932 1

.56395 .84593 .95872 .99256 .99932 1

.56398 .84589 .95870 .99255 .99932 1

.56421 .84561 .95850 .99249 .99931 1

.56579 .84397 .95711 .99202 .99925 1

.56910 .84151 .95424 .99091 .99908 1

.57033 .84078 .95321 .99U47 .99900 1

.57050 .84068 .95306 .99U40 .99899 1

.49516 .79226 .93486 .98620 .99852 1

72118 .93754 .98946 .99881 .99993 1

Table I

Cumulative probabilities-number of machines on repair



n III IIIV V

0 .00073 .00048

1 .00820 .00543 .00005 .00003

2 .04019 .02662 .00061 .00043

3 .11319 .07504 .00428 .00342

4 .20375 .00002 .13524 .01959 .01724

5 .24653 .00026 .16400 .06175 .05835

6 .20544 .00220 .13776 .13712 .13601

7 .11886 .01270 .08407 .21606 .22012

8 U04755 .05082 .04948 .24021 .24628

9 .01294 .13835 .05546 .18523 .18752

10 .00233 .24903 .08481 .09610 .09441

11 .00026 .28299 .09427 .03198 .03001

12 .00002 .18866 .06255 .00633 .00560

13 .06531 .02160 .00066 .00054

14 .00933 .00308 .00003 .00002

15 .00031 .00010

Table II

Limiting distribution-number of prey under surveillance.

Missing numbers are less than 5.10o
6



m t5 ,1  t1 0 1l t 15 ,1  t5 ,2  t 10 ,2  t 15,2

154.1 4.4 7.8 4.9 7.1 > 15

204.1 4.0 3.9 4.5 5.6 5.4

Values of y giving the same reduction as doubling

the number of predators



FIGURES

I .1. Expected time to reach the state [all machines on repair],

starting from [no machine on repair].

.2. Expected time to reach the states En prey under observation],

starting from [0 prey under observation, environment 1],

varying number of predators.

3. Expected time to reach the states En prey under observation],

starting from [0 prey under observation, environment 2],

varying number of predators.

.,.4. Expected time to reach the states En prey under observation],

starting from [0 prey under observation, environment 1],

15 predators, varying probability ratio.

Expected time to reach the states En prey under observation],

starting from [0 prey under observation, environment 21,
15 predators, varying probability ratio.

13.6. Expected time to reach the states En prey under observation],

starting from [0 prey under observation, environment 1],

20 predators, varying probability ratio.

.7. Expected time to reach the states En prey under observation],

starting from [0 prey under observation, environment 2],

20 predators, varying probability ratio.
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Figil. Expected time to reach the state [all machines on repair], starting from
[no machine on repair].
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Flg.2. Expected time to reach the states [n prey under observation], starting
from C0 prey uJnder observation, environment 1], varying number of predators.
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Fig.3. Expected time to reach the states [n prey under observation], starting
from CO prey under observation, environment 2], varying number of predators.
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Flg.4. Expected time to reach the states En prey under observation], starting
from (0 prey under observation, environment 1], 15 predators, varying
probability ratio.
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Fig.5. Expected time to reach the states [n prey under observation], starting
from [0 prey under observation, environment 2], 15 predators, varying
probability ratio.
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Fig.6. Expected time to reach the states [n prey under observation], starting
from [0 prey under observation, environment 1], 20 predators, varying
probability ratio.
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