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This paper presents some comparisons of EDA and biplot

display. By pencil-and-paper EDA we mean the methods advo-

cated by John Tukey in his 1977 volume (Tukey, 1977). We

use examples from that book to illustrate the differences and

the similarities of the two methods. We assume that the anal-

yses in the book are familiar and show how our biplot analyses

differ from them.

The paper begins with an introduction to the biplot, ,y a
accompanied by one example, in which the biplot is used for U U U.

W co
data summarization and description. Then we look at four

diagnostic examples from the book and show what biplot display

would have done. We end by drawing some conclusions. Refer-

ences for further reading on the biplot and its diagnostic and

1 Research supported in part by ONR contract N 00014-80-C-
0387 on Biplot Multivariate Graphics.
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other uses are included at the end of the paper. Computer

programs are available from the authors at the Division of

Biostatistics of the University of Rochester.

We start by explaining what the biplot is. It is a graph-

ical display of a matrix Y(nxm) of n rows and m columns by

means of row markers al a2,...n and column markers

b bl b2,...bn The biplot carries one marker for each row, and

one marker for each column. The principle of biplot display

of a matrix Y is that element Yi,j in the i-th row and j-th

column is represented by the inner product of the i-th row

marker and the j-th column marker, i.e., a'b represents Yi-3yj

A 100 by 20 matrix, for example, would be represented by 100

row markers and 20 column markers in such a way that all 2,000

elements are represented by inner products of row markers

and column markers. To set this in matrix terms we may array

the row markers ai as rows of matrix A and the column markers

bj as columns of a matrix B'. Clearly, then the matrix pro-

duct AB' represents the matrix Y itself.

On a point of terminology, the prefix "bi-" of biplot

serves to indicate that this is a joint dispfay of rows and

columns. It does not indicate-the two-dimensionality of the

biplot. Any plot is two dimensional. On the other hand, if

W.,ese a three-dimensional display analogous to the biplot,

call it a bi-model because it too is a joint display of

6th rows and columns: the ending "model" indicates that

there are three dimensions.

Figure 1 shows a very simple example of a biplot. Y is a

4 x 3 matrix of rank 2; the row markers are the rows of matrix

A, and the column markers are the columns of matrix B'. Each

row of A and each.6'umn of B' is displayed on this biplot--

.. .., . . . .4
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L .u is u-th row marker
Legend: v is v-th column marker
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Fig. 1. A matrix Y, its factorization AB' and the DTIC ?AS
biplot.
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seven markers in all. For convenience the row markers a. are

indicated as circles whereas the column markers bj are indi-

cated as vectors.

Figure 2 illustrates how particular elements of the matrix

are represented on the biplot. Thus, element Y2,3 is repre-

sented by the inner product of the second row marker a2 and

the third column marker b3. To see this geometrically, we

choose one of these markers, e.g. b3 1 take the straight line

{ Yj : -(Length of b 3 x (Length of prcjecvicn of az onto t3

Y4,3 a (Lanqh of b.5) x (Length of projection of C4 onto _3 f
Third
column (3 A

of Y

I = 0 -I

'lo

Projection of C..ta

-o" +_a
-Z* / -3

0 .

* Projecticn f _a4 onto b3

-2]J

-: ~i~ 2~ iplot representation of the third column of Y.

07. *4
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from the origin through that marker, and project the other

marker a orthogonally onto it. The distance from te origin

to the foot of the perpendicular of a 2 onto the line through

h3 is then multiplied by the length of the vector b3 to obtain

the inner product. For another example, take Y3 ,3 for which

we project a3 onto b3 ' In this case, the projection is half

as long as the one before and in the opposite direction, i.e.,

in the direction of b3 itself. So the product is positive and

half the size of the previous one.

A few more remarks about biplots need to be made. First

of all note that the biplot is planar--the row markers a, as

well as the column markers b.,are plotted in the plane. This

cannot be done exactly for any matrix of rank greater than 2.

Hence, the first step for biplotting such a matrix Y is to

approximate it by a matrix Y[2] of rank 2. This is called

lower rank approximation. The second step is to factorize

the Y[2 ] approximation into a product AB' of an A matrix of

two columns and a BI matrix of two rows. Then the rows of A

can be plotted as row markers ai and the columns of B' as

column markers b.. Their joint display is a biplot. Bi--J

plotting is thus seen to require three steps: rank 2 approx-

imation, factorization, and display.

Lower rank approximation can be carried out by means of

the theorem due to Householder and Young (1938), which pro-

vides the least squares solution to this problem. When

weights are introduced, and each of the squared differences

(Yij - ab) 2 is to be weighted by some given w the mathe-

matics of that theorem break down. However, a weighted least

squares algorithm and suitable initialization methods are
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available (Gabriel and Zamir, 1979). An earlier solution for

particular kinds of weights common in statistics was provided

by Haber (1975). Another method of reduced rank approximation

uses adaptive fits (McNeil and Tukey, 1975). C. L. Odoroff

of Rochester is currently working on using the weighted least

squares solution for adaptive fitting, i.e., taking the

residuals from the last fit and using them to adjust the

weights for the next fit.

We now turn to uses of the biplot. These are mostly of

two kinds--inspection of data and diagnostics. We present

one brief example of biplot inspection before we go on to our

main subject which is biplot diagnostics.

We consider data from single-dose, postoperative, oral

analgesic trials. Patients who had previously consented to

participate, and who requested medication for moderate to

severe pain during the first three days after surgery, were

given a single dose of one of the study drugs on a randomized

double-blind basis. The resulting data consist of ordinal

pain scores, on a five point scale, with zero being no pain

and four being very severe pain. (A number of standard pain

scales were used, of whic' we-have chosen this one as a-n

illustration.) Data were recorded at baseline (medication

time), one-half hour later, and at hourly intervals until

five hours after medication--Figure 3. There were a total of

180 patients in the trials, with eight treatments, including

a placebo.

In Figure 4 we show a portion of a biplot of the data

matrix. We have included only two of the treatment groups:

those receiving a placebo and those given a highly effective

' -.... ... .... " .... .. .'. ...II I I I w T I
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Baseline Time after medication
Surgical
Patients (Medication 1/2 hr. 1 hr. 2 hrs. 3 hrs. 4 hrs. 5 hrs.

Time)

2 . . . ..

£ DATA

180 .. . . . .

Note: Ordinal pain scores on a 5-point scale from 0 (no pain) to
4 (worst pain I have ever experienced).

Fig. 3. Data from single dose postoperative oral analgesic
trials.
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Fig. 4. Biplot of ordinal pain scores from two treatment
groups in analgesic trials.
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combination analgesic (pentazocine and aspirin). This par-

ticular biplot has been scaled so that the lengths of the

arrows represent standard deviations and the angles between

the arrows represent correlations among the corresponding

columns--times of recording. (This is referred to as a GH'

biplot--Gabriel, 1971.)

Figure 5 replaces the row markers of Figure 4 by one

standard deviation concentration ellipses. Each ellipse

summarizes the row markers of the approximately 25 patients

in the corresponding treatment group. The center of each

ellipse is also plotted.

161

12.

d 8'

4

-4i

00 MI
.20 -i0 0 0

FIRST PRINCPAL AXIS

Fig. 5. Analgesic biplot with concentration ellipses
summarizing treatment groups.
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The small angle between the arrows for the one-half hour

and one hour pain scores shows that scores at those times are

fairly well correlated with one another. Similarly, one can

see that the three, four, and five hour pain scores are

correlated with each other, but roughly uncorrelated--arrows

at about 900--with the scores at earlier times. The shortness

of the baseline arrow reflects the fact that only patients

with baseline pain scores of 2 or 3 were included in these

trials. (Further examination of the data suggests that the,

baseline pain scores are not well represented by the biplot.)

In order to see the effects of the two treatments, we examine

the average pain scores of the two treatment groups at differ-

ent time points by projecting the centers of the ellipses onto

the arrows. We see that both groups were similar (and below

the overall average) at the one-half and 1 hour time points;

this is an indication of a placebo effect of surprising dura-

tion. With respect to the later time points, however, the

placebo group had much higher than average pain scores, while

the pentazocine-aspirin group had below average pain scores.

(The other six treatment groups were intermediate, increas-

ing in efficacy from placebo.) Clearly, the later time points

are more sensitive to the effect of analgesics. This analysis

contrasts with the traditional method of analyzing such data

in which the post-medication pain scores are cummulated to

obtain a measure of "total pain" and the time differentials

are ignored (Cox et al, 1980). Inspection of this biplot has

suggested new derived pain measures, which appear to be more

sensitive to treatment differences.
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We now turn to the second use of the biplot which is to

facilitate the search for patterns and the inference of models

to fit the data. To illustrate, some of the patterns that

we look for are shown in Figure 6. Figure 6A shows

row markers and column markers which are both collinear and

have a right angle between their two lines. Such a biplot

pattern indicates that the data are well fitted by an additive

model, i.e., y.j = ai + 8j for some row effects ai and some

column effects 8. This is something that the eye picks up

readily: row markers on a line, column markers on a line,

and a 900 angle between them.

*0
6A AN ADDITIVE MODEL ] 0 00b+ 3 b3  b4

00

CC 
1

62 0

Sb5 b3e *01
6B A CONCURRENT MODEL 02

J -- * 0 5

+ a.
03

*4

6C A MULTIPLICATIVE MODEL b b2  b5  b3  b4

Yij =a' a1 2 05 0304 06

Fig. 6. Biplot patterns and the models which they
diagnose.

Lo0
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Another biplot pattern, shown in Figure 6B, has the column

markers aligned, and the row markers aligned, but the angle

between the lines is not 900. A concurrent model can then be

diagnosed. This is also known as a degree of freedom for non-

additivity model and it can be parametized most simply as

Yi,j = n + ij.

Finally, Figure 6C has all markers on one line. This

obviously diagnoses a model of rank one, i.e., Yi,j = a ij"

It will have been noticed that in Figure 6B there is one

column marker--b 3--that is not aligned with the other b's and

one row marker--a 4--that is not aligned with the other a's.

That indicates that the third column and fourth row are not

fitted by the concurrent model, though the other rows and

columns are. This illustrates a very useful property of the

biplot; if a pattern fits only some of the column markers and

some of the row markers, the implied model may be diagnosed

exclusively for those columns and rows. Indeed, a biplot is

not only a display of the whole matrix, but can also be

regarded as a simultaneous display of all possible submatrices.

The eye immediately picks up subsets and subtables and allows

their separate diagnosis.

We should add that outlying rows or columns might at

* times distort the rank two approximation and spoil the chances

of diagnosing a model. There might also be situations where

the subtable models cannot be seen on the biplot because the

biplot mainly displays subtable differences. In such cases

it might be helpful to employ a 3D bimodel and see whether any

simple patterns are evident on some projection of such a

bimodel.
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Row Markers Column Markers The Model
a. b for y. is:

Collinear 8. + ai6 j

columns regression

Collinear ai + Yij

rows regression

Collinear Collinear ji + yiS.
one degree of freedom4for non-additivity

Collinear Collinear ai + 8.

lines 900 to each other additive

Fig. 7. Some biplot diagnostic rules (Bradu and Gabriel,
1978).

The examples of Figure 6 illustrate some simple diagnostic

rules which are listed more formally in Figure 7. There are

four collinearity patterns for row and/or column markers and

Figure 7 shows the model that may be diagnosed from each one.

Thus, collinear row markers indicate that each column can be

modelled by a linear regression on some "row effects" a..

An analogous diagnosis follows from column marker collinearity.

TABLE I. Monthly Mean Temperatures (s F)a

Caribou Washington, D.C. Laredo

Jan. 8.7 36.2 57.6
Feb. 9.8 37.1 61.9
Mar. 21.7 45.3 68.4
Apr. 34.7 54.4 75.9
May 48.5 64.7 81.2
Jun. 58.4 73.4 85.8
Jul. 64.0 77.3 87.7

aFrom J. W. Tukey, EDA, Chapter 10.



13Joint collinearity diagnoses concurrence or additivity,
depending on the angle between the lines, as already illus-
trated in Figure 6.

We now turn to the first example from John Tukey's book.
Table I shows monthly mean temperatures at three locations,
one up North, one mid-way and one further South. The biplot
of the data is shown in Figure 8. The biplot column markersfor the three cities are clearly collinear and the row markers4 for months are also pretty close to collinear. The angle
between the lines is not 900, and this suggests a concurrent

( 7.57 

lore6.5/
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5.5

5 july4.5 
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4
3.5 wash ay

3
2.5 

.pr

2

1.5

mar-.5

o r 
feb-0.5 

jon

-10 -8 -6 -4 -2 0 2 4 6Fig. 8: Biplot of mean monthly temperature data fromthree cities (Caribou; Washington, D.C.; Laredo).14 L
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model. Indeed, that is exactly what Tukey concluded in his

book, where he calls it a "plus-one-fit".;

It is evident that the biplot has revealed this model very

simply and strikingly. Actually, a few more things may be

said about this example. The months really are not quite

collinear--they seem to curve around in a sequence from Jan-

uary to July. This leads one to wonder about addition of the

remaining months. Tsianco (1980) has done similar biplots on

data of 50 weather stations for twenty-four successive months.

When one looks at part of his biplots, they look much like

Figure 8, but when one looks at a bimodel of the entire years'

data, the month markers are found to be on an ellipse in 3D.

It can be shown that an ellipse on the biplot diagnoses a

harmonic model for the data. That is a more reasonable model

for temperature than a "concurrent", or plus-one-fit, model.

This example is considered again in Chapter 9 of Mosteller

and Tukey (1977), where a one parameter family of "matched"

exponential transformations is used essentially to obtain

additivity (e.g., d = 70 in Exhibit 21). The biplot of the

transformed data, however, still suggests a concurrent model,

even though the median polish residuals do not suggest this.

Thus, the biplot can serve as a useful check whether a trans-

formation has achieved its purpose.

As a second example of the use of these diagnostic rules,

we consider data on the world's supply of telephones --

Table II A--analyzed in Tukey's (1977), Chapter 12. The world

was divided into seven "continents", and yearly counts were

given from .1951 to 1961, with the years 1952 through 1955

4i omitted. Yearly increases are seen to be more proportional
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TABLE II A. World's Telephones (Raw Counts).a

1951 1956 1957 1958 1959 1960 1961

N.Amer. 45939 60423 64721 68484 71799 76036 79831
Eur. 21574 29990 32510 35218 37598 40341 43173
Asia 2876 4708 5230 6062 6856 8220 9053
S.Amer. 1815 2568 2695 2845 3000 3145 3338
Oceania 1646 2366 2526 2691 2868 3054 3224
Africa 895 1411 1546 1663 1769 1905 2005
MidAmer. 555 733 773 836 911 1008 1076

aFrom J. W. Tukey, EDA, Chapter 12; originally The World's

Telephones 1961, American Telegraph and Telephone Company.

TABLE II B. Log Counts of World's Telephones
e

1951 1956 1957 1958 1959 1960 1961

N.Amer. 10.735 11.009 11.078 11".134'11.182 11.239 11.288
Eur. 9.979 10.309 10.389 10.469 10.535 10.605 10.673
Asia 7.964 8.457 8.562 8.710 8.833 9.014 9.111
S.Amer. 7.504 7.851 7.899 7.953 8.006 8.054 8.113
Oceania 7.406 7.769 7.834 7.898 7.961 8.024 8.078
Africa 6.797 7.252 7.343 7.416 7.478 7.552 7.603
MidAmer. 6.319 6.597 6.650 6.729 6.815 6.916 6.981

than additive, and we follow Tukey's suggestions and consider

the logarithms--Table II B.

;"

4
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We first examine a biplot of the mean-centered log counts,

shown in Figure 9. In addition to plotting the row and col-

umn markers, we have also included their arithmetic averages

gmn and hmn, for row and column markers, respectively. From

the evident collinearity of the column markers we diagnose a

rows regression model--second row of Figure 7. The linearity

of regression on time is checked by comparing the distances

between column markers with the corresponding time intervals.

It is thus evident from the figure that the regression is

linear in time.

We next show how to use the biplot to obtain approximate

parameter estimates, and thus more specific diagnoses. (For

details see Bradu and Gabriel, 1978.) We first draw the line

through the column markers and project the row markers

orthogonally onto it. The distances from these projections

to the projection of the mean of the row markers (gmn) are

proportional to the estimates of the regression coefficients

Si" (The projection of the mean gives the positive direction.)

On the basis of these projections, we decide to fit a single

slope for North, South, and Mid-America, and Oceania. We

also require the same slope for Europe as Africa. A higher

slope is clearly needed for Asia.

Further diagnosis can be obtained by projecting the row

markers onto the line through the origin and the mean of the

column markers (hmn). Distances from the projection of the

4 mean (gmn) approximate the row effects (ai ) proportionally.

These are the intercepts of the regressions. Indeed, the

ordering of these projections is quite similar to that of the
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log counts in 1951. Thus, for example, North America had

more telephones than Europe in 1951, but subsequently

Europeans acquired them more rapidly.

1.2 asa
1.1

0.8 afra

0.7 eur gmn Ocen
0.6 n am s am mama

0.5

04 61

0.3 60

0.2 59

0.1-58I 58

-0- 57

0.1 56

-0.2

-0.3

-0.4

-0.5

-0.6 51
-0.7 17-,,,

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

Fig. 9. Biplot of log counts of telephones, by continent
and year.
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TABLE III A. Least Squares Fit to Logs of Telephone Data.

Regression Coefficients

Intercept Slope

N.Amer. 10.63 0.063
Eur. 9.86 0.076
Asia 7.80 0.116
S.Amer. 7.45 0.063
Oceania 7.39 0.063
Africa 6.79 0.076
MidAmer. 6.25 0.063

GOF 0.9997

TABLE III B. Least Squares Fit to Residuals for Years 1956-61.

Intercept Slope

N.Amer. 0.0567 -0.0075
Eur. 0.0207 -0.0033
Asia -0.1751 0.0197
S.Amer. 0.0887 -0.0103
Oceania 0.0089 -0.0002
Africa 0.0607 -0.0059
MidAmer. -0.1492 0.0174

GOF = 0.9999

Table III A shows the results of our first least squares

fit. The goodness-of-fit, expressed as the sum of squared

residuals divided by the sum of squared deviations from the

overall mean, is very good (99.97%), and we are tempted to

stop here, or perhaps fit a model with fewer intercept para-

meters. (This fit is similar to the fit displayed in Exhibit

14 A--Chapter 12--of Tukey's book, if one improves it slightly

by adjusting the row slope for Mid-America to be equal to 30.)

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ II I I;ls
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Fig. 10. Biplot of residuals from first fit to log
telephone counts.

In Figure 10 we take a second look and biplot the resid-

uals from our first fit. This biplot still shows a trace of

collinearity in the column markers from 1956 or 1957 to 1961,

and that would diagnose a rows regression model for a sub-

table. Table III B shows the estimates of the linear regres-

sion parameters (one line for each continent) for thL '956-61

subtable. We see that, for Asia and MidAmerica, our first

fit overestimated the rates of increase in numbers of tele-

phones from 1951 to 1956, and underestimated them afterwards.

4The opposite is true for the remaining continents. In general,
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the year 1951 probably had too great an influence on our first

fit. The extra fit makes a small improvement in goodness-of-

fit. However, we consider this less important than the extra

information we have obtained about time changes in telephone

acquisition.

A biplot of the residuals from this additional fit, shown

in Figure 11, reveals much less structure than the previous

one, although some regularity remains. In this respect one

is reminded of the famous "vapor pressure of water" example

(Tukey, 1977, Chapter 6) in which definite structure remains

in the residuals even after a clearly diagnosed fit.

0.16-

.14" 60'aa

0.12

. 56

0.08-

0.06-

0.04 ocen

0.0? afro0.02

-0.02- 

1-0.04- St

-0.06 .L m 58 59

-0.08 57

-0 . I
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2

Fig. 11. Biplot of residuals from extra fit to years 1956
to 1961.
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Our next example concerns the data in Table IV, which are

from an experiment for measuring the sensitivity of several

TABLE IV A. Finger Limens.a

Rates

Initial Weights Persons r rb  rc  rd

K 39 85 101 151W 1  L 16 32 43 63
M 18 31 42 58

K 31 55 84 124
W L 12 22 33 51M 13 26 38 55

K 26 56 70 98
W7  L 12 20 30 37

M 14 26 40 46

aFrom J. W. Tukey, EDA, Chapter 13; originally P.O. Johnson,

Statistical Methods in Research, Prentice-Hall, New York, 1949,
Table 89.

TABLE IV B. Logs of Finger Limens.

Rates

Initial Weights Persons r a rb rc  rd

K 3.664 4.443 4.615 5.017
W L 2.773 3.466 3.761 4.143

M 2.890 3.434 3.738 4.060

K 3.434 4.007 4.431 4.820
W L 2.485 3.091 3.497 3.932

M 2.565 3.258 3.638 4.007

K 3.258 4.025 4.248 4.585
W7  L 2.485 2.996 3.401 3.611

M 2.639 3.258 3.689 3.829
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Fig. 12. Biplot of logs of finger limens: rates and
weights vs. individuals.

individuals to changes in pull, and are analyzed in Chapter 13

of Tukey's (1977) book. The t~ble shows data for individuals K,

L and M, for different initial steady pulls WI, W4, W7 ; which

are referred to as "weights", and different rates of increase

of the pull, ra ,rb, rc and rd. We follow Tukey's suggestion

and analyze the logs shown in Table IVB.

The first problem with displaying these data is that they

are in a three-way layout. As the biplot is a matrix, i.e.,

two-way, display, it can be applied to these data only if two

of the three classifications are crossed either in the rows

or in the columns of a matrix--as in Table IV in which weights
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and individuals are crossed in the rows. There are two other

ways of crossing in the rows (there are also three trans-

positions with crossing in the columns--but their biplots do

not differ from the previous three). It will be instructive

to look at all three biplots. (Kester (1979) has considered

biplot display of such three- and higher-way layouts.)

Figure 12 shows the biplot with individuals in the columns

and the rates and weights crossed in the rows. At first it is

a little difficult to see any pattern because there are too

many row markers. But if one pencils in lines to join the

three weights for each rate, a clear pattern emerges. The

average of the ra markers is farthest to the left, then the

average of the rb markers, then that for rc and finally, the

average for rd--and those four averages are more or less

collinear. Furthermore, this line of averages is approximately

at right angles to a line through the three markers for individ-

uals. Thus the rate classification appears orthogonal to that

by individuals. According to the rules in Figure 7, this

suggests additivity between rates and individuals.

From this figure, one can also infer the relative sizes

of the differences between rates and weights. In this biplot

the positive direction is to the right, as the arrows point

there (recall the inner-product construction). The order of

the rates in that direction is ra < rb < r < r d The order

of weights is W7 < W4 < W1 , but the average differences between

the weights are much smaller than those between the rates.

We will not discuss such comparisons in detail but rather

focus on model diagnosis.
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Fig. 13. Biplot of logs of finger limens: rates and
individuals vs. weights.

Figure 13 has individuals crossed with rates in the rows.

The column markers for weighty are pretty much collinear. The

row markers seem a bit messy but if one looks at them carefully

or draws a few lines, one sees that for each individual the

rates are close to a straight line orthogonal to the direction

of the weights' line. The diagnosis would therefore be that

rates are additive with weights.

From Figure 12, we have rates additive with individuals;

from Figure 13, we have rates additive with weights. Together,

these diagnoses indicate a model Ykrw = r + kw' in which the
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variable y is indexed by individual k, rate r, and weight

w. The model has a rate effect a which is additive to a

joint weight-individual effect 0kw' which allows weight-

individual interaction. Indeed, in Figure 13, K, L and M are

not collinear, so there is no reason to expect individuals to

be additive with weights. It is easy to see that the inter-

action is due mostly to individual M: the weight markers line

is seen to be pretty much orthogonal to K averages, but the

average of the M markers is not on that line. The interaction

is thus seen to consist mainly of individual M's having a

relatively large value for weight 7 and a relatively small

value for weight 1. These finding are very similar to those

in the analysis in Tukey's (1977) book.
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Fig. 14. Biplot of logs of finger limens: weights and
individuals vs. rates.

The third biplot is shown in Figure 14. This shows a

rather more striking feature -than either of the previous two.

The rates are represented by fairly collinear column markers;

individuals and weights are represented together by collinear

row markers at a nearly right angle to the line which roughly

fits the rate markers. The most striking feature of this

figure is that weights and individuals markers are jointly

*. collinear. By the first rule of Figure 7, the model is

diagnosed as Ykr= ar + 8r0kw-- a regression of the rates onto
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Fig. 15. Biplot of logs of finger limens: weights vs.
individuals (averaged over rates).

the weights--individuals combinations: Gk isawegt

individual effect and 8r, mr are the slope and intercept for

rate r. Note that this model is a little more general than

the one we had before, which we could obtain by setting

8r = 1 for all r in the present model.

Since the form of the individuals-weights interaction is

still uncertair we consider one more biplot. Figure 15 shows

the individuals-weights responses averaged over the four rates.

_O.OS_
,| ....
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Fig. 16. A summary of models for logs of finger limens.

Here again individual K ( a male) is seen to be very different

from individuals L and M (females) and the weights show nice

collinearity. The second row of the diagnostic table (Figure 7)

applies, so the model for ekw is a = k + k1w ' a regression

of individuals onto weights.

All these models can be pulled together schematically as

shown in Figure 16. Each vertex of the cube is identified

with a different model, ranging from the most general (and

best fitting) at the top left back corner, to the most specific

(and least well fitting) at the bottom right front corner.

The biplot diagnostics which indicate specific changes in the

model are indicated as directions around the cube. Thus,

biplot collinearity of KW-markers suggested the general model

ar + $r kw* Orthogonality of the R-markers to the KW-markers

diagnosed absence of R vs. (KW) interaction: the downward

arrow therefore indicates modelling in which the R effects

are additive to (KW) effects, e.g. ar + 8rkw becomes ar + ekwri w w
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Collinearity of the K-markers (on the K x W biplot) diagnoses

a regression of W onto K: the rightward arrow indicates models

in which K effects appear only as "regressors", e.g., 0
kw

becomes vw + knw and K k + knw becomes Eknw. Similarly,

collinearity of the W-markers (on the K x W biplot) diagnoses

regression of K onto W: the forward arrow thus indicates that

W effects appear only as "regressors".

The original fit of the most general ar + ar0kw model,irkw
diagnosed by KW-collinearity, was 0.9937. Additional diagnoses

make for more specific models which are more easily interpret-

able but fit less well. Thus, the diagnosis by orthogonality

simplifies the model to ar + 0 kw while hardly worsening the

fit. On the other hand, the K collinearity diagnosis appre-

ciably reduces the fit in this example. A good model to

settle on might be ar + Kk + E knw which has a goodness-of-fit

of 0.9921--this was diagnosed by the W-collinearity alone.

Again, biplot patterns have diagnosed models very similar

to those suggested by John Tukey (1977) using pencil-and-paper

EDA methods.
A

&I
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Fig. 17. Seven South-American ports.

Our last example deals with ports along the western

coast of South America--Figure 17. Ship route distances

between these ports are given in Table V A. To begin with,

these are arranged in a North-South order so they are a little

easier to look at--Table V B. Then the mean distance is

subtracted out--Table V C. This makes for a strange kind of
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TABLE V A. Shiproute Distances Between S. American Ports.a

(distances in sea miles)

Ant Arr Cal Coq Iqu Lota P A Val

Ant 0 325 215 396 224 828 1996 576
Arr 325 0 522 702 110 1134 2301 882
Cal 215 522 0 196 420 628 1795 376
Coq 396 702 196 0 602 455 1623 203
Iqu 224 110 420 602 0 1033 2201 782
Lota 828 1134 628 455 1033 0 1191 268
P A 1996 2301 1795 1623 2201 1191 0 1432
Val 576 882 376 203 782 268 1432 0

a From J. W. Tukey, EDA, Chapter 11; originally The World Almanac

and Book of Facts, New York World-Telgram and Sun.

TABLE V B. N-S Order.

Arr Iqu Ant Cal Coq Val Lota P A

Arr 0 110 325 522 702 882 1134 2301
Iqu 110 0 224 420 602 782 1033 2201
Ant 325 224 0 215 396 576 828 1996
Cal 522 420 215 0 196 376 628 1795
Coq 702 602 396 196 0 203 455 1623
Val 882 782 576 376 203 0 268 1432
Lota 1134 1033 828 628 455 268 0 1191
P A 2301 2201 1996 1795 1623 1432 1191 0

TABLE V C. Mean-Centered Data.

Ant Arr Cal Coq Iqu Lota P A Val

Ant -732. -407. -517. -336. -508. 96. 1264. -156.
Arr -407. -732. -210. - 30. -622. 402. 1569. 150.
Cal -517. -210. -732. -536. -312. -104. 1063. -356.
Coq -336. - 30. -536. -732. -130. -277. 891. -529.
Iqu -508. -622. -312. -130. -732. 301. 1469. 50.
Lota 96. 402. -104. -277. 301. -732. 459. -464.
P A 1264. 1569. 1063. 891. 1469. 459. -732. 700.
Val -156. 150. -356. -529. 50. -464. 700. -732.
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Fig. 18. Biplot of distances between South American ports
(mean-centered).

distance, but one that is easier to biplot." Figure 18 shows

the biplot of these mean-centeed distances. It is immediately

evident that the row markers are an exact reflection of the

column markers. This is not really surprising since the matrix

is symmetric.

It is of interest to consider what is special about biplots

of symmetric matrices. Since Y = Y' it follows that in the

factorizations AB' - BA'. Thus, one may wonder whether A B or

A - -B, or. what else may account for this symmetry. If A = B,

one may display an ordinary biplot of factorization AA' in which

row markers coincide with column markers: one set of markers
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suffices. On the other hand, if A = -B, the display of factor-

ization -AA leads to a biplot like Figure 18 in which the row

markers are reflections -ai of the corresponding column markers

+a.. This redundancy on the biplot can be eliminiated by dis-

playing markers ai along imaginary axes--an imaginary biplot, so

to say. One may also achieve this by displaying only the ai 's--

and not displaying their negatives--but defining the representation

by means of the negative inner product, i.e., Yi,e = -Ae"
I Geometrically, this can be visualized exactly as an ordinary

inner-product except that the sign is negative when the a pro-

jection onto ai is in the direction of ai and positive if it is

in the opposite direction. That is quite easy to use in practice.

Algebraically, we should be thinking of factorization &A' where

the e-th row of A is 6' = ia' so that 6'S = (ia )'(ia) -ag-e -e -e-g - -9 eA-g

And the representation of 's along two imaginary axes looks

exactly like that of the a's but the imaginary units on the axes

produce negative inner-products. (See also Gabriel, 1978, for

a biplot with one real and one imaginary axis.)

In the present example of distances the representations and

inner-product relations are shown in Figure 19. Large distances,

small distances and average-distances translate to mean-centered

distances above zero, below zero and about zero, respectively.

Mean- If a's lengths constant
Centered a'b

Distance Distance ' a angle (aea)
eto g y =6 a'a ang e a g ,) aag e,g -e--g --e-g

Large >0 >0 <0 (r/2, T] distant
Average 0 0 0 1T/2 orthogonal
Small <0 <0 >0 [0,7r/2) close

Fig. 19: On the biplot representation of geographic dis-
tances.*
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In the ordinary biplot representation these (y Y -)s are
e,g

properly represented by a'b's. But that is equal to 6e6-e-g -e-g

(ia ) '(ia ). If one leaves out the i and keeps only the real

part, then the sign changes, i.e., a'a = -6'6 . Thus for large-e-g -e-g

distancesyg, the inner-product a'a would be negative; for
e,g e

small distances, it would be positive; and for average distances,

it would be about zero. Moreover, if the a's are all of equal

length, the inner-product is simply the cosine and varies as the

4 distance between the a points. What this means is that when a'a
-e-g

is large, there is an obtuse angle. When a'a is zero, there-e-g

will be a 900 angle, and when a'a is positive, the angle will-e-g

be acute. In terms of distances between the a's these correspond

to large, average and small distances, respectively. This rela-

tion between the a's thus turns out to be the same as the relation

of the original distances ye,g" That is why it was convenient

to mean-center these distances: the representation along two

imaginary axes turned out to be much the same as the original

pattern of distances. With this in mind, it is enough to plot

the a's, which is equivalent to plotting the P's along imaginary

axes, and to consider only the column markers on Figure 18.

This example shows that on loccasion one can make use of

imaginary biplots for good display of data. John Tukey's (1977)

treatment was quite different. Instead of looking at the data,

he first tried a model which was intuitively appealing. He pos-

tulated that the distance between port e and port g is the sum

of (1) a local distance 1e from port e to the shipping lane,

(2) a distance pe,g along the shipping lane, and (3) a distance
1 from the lane into port g. He further postulated that shipping

lane distances pe,g are simply additive, thus Pl, 4 
= P1 ,2 ' P23

+ P3 ,4' etc. This model is shown in Figure 20. If one takes



35

Distance Port I Port 2 Port 3

Port 1 0 1+P 2 +1 2  I + p 2 
+ p 2 3 +13

Port 2 0 12 + P2 ,3 + 13

Port 3 0

Fig. 20. Tukey's model for nautical distances.

any tetrad on one side of the diagonal of this distance matrix,

its four points show additivity, e.g., (11 + P 1 ,3 + 13) -

(1 + P 1 ,5 + 15) - (12 + P2, 3 + 13) + (12 + P2, 5 + 15) = 0. On

the other hand, a tetrad across the diagonal does not have zero

differences. In other words, Tukey's model has Yi,j - i,g - Ye,j

+ yeg = 0 whenever i < e < j < g. What would happen in factori-

zation Y = AA' (or Y = LA') of such a matrix? The above tetrad

condition is readily seen to become (a.-ae) '(aj-a) = 0 for-i-e 3-j--

i < e < j < g. In other words, a -a is orthogonal to a -a

whenever i < e < j < g. A display of such a model for eight

ports is readily seen to require eight vectors al,...,a 8 such

that al-a2, a3-a4 a5-a6 and a 7-a are mutually orthogonal.

These are only part of the orthogonalities postulated by the

model, but they already require a seven dimensional space to

represent them. Evidently such a model cannot be diagnosed on a

biplot which is two-dimensional, nor on a 3D bimodel. It is

essentially a higher dimensional model.

We have discussed this model in some detail because it is

an example of what a biplot cannot diagnose. We have found

the biplot to be good for diagnosing some models which are

(close) to being two or three dimensional, but this is a case

of a model which the biplot just cannot represent because the

model cannot be collapsed into a plane or three-space.
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Finally, what have we learned from these examples? How

does biplot inspection compare with the EDA methods proposed

in Tukey's (1977) book? Parenthetically, we want to remark

that the issue is not one of pencil-and-paper methods of

median polish versus computer fitting by least squares,

because EDA methods have been computerized. The issue we

are addressing is which method gives more insight into the

form of models that fit the data. Our experience suggests

that in using the biplot, a few displays suffice to reveal

relevant patterns in a pretty striking manner. EDA, on the

other hand, requires several stages of median polish,

inspection of residuals, modelling, and re-expression, further

median polish, etc., until one may diagnose a model. The

biplot is more immediate: It allows one to see things at a

glance.

EDA may show more detail if one inspects fits and residuals

carefully at each stage, but it requires iterative cycles of

modelling, fitting, residuals inspection, re-expression and

decisions. If one fit is inadequate, another is tried until

a model is judged adequate. Tis is a search by trial and

error rather than by a systematic method. Moreover, the

decisions on model choice are based at each stage on I.1.1.--

inspired inspection of irregularities. Irregularities are

provided by data, inspection takes time, but inspiration is

something that may be difficult to come by. In summary, the

EDA modelling procedure is in general not systematic. (An

exception.to this is Tukey's diagnostic plot which uses com-

parison values systematically for diagnosis of models and

re-expressions.)
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Biplot diagnostics are more systematic and direct. One

does not start by guessing a model, but rather displays data

and inspects it--the diagnosis is then often immediate. We

know what biplot collinearities mean; we know what right angles

mean; we know what coplanarity means and we know something

about distances. Identification of any of these patterns makes

modelling automatic and hence, to a large extent, objective.

And yet, there is also an interactive and somewhat subjective

aspect to biplot modelling. One may use one's prior knowledge

about the subject matter to choose among various patterns

apparent on the biplot. Tsianco (1980) and Gabriel saw the

ellipse in the temperature data, though they were not looking

for it and at that time had no idea of how to use such a pattern.

But as they traced the seasonal variation of the monthly temp-

eratures, they were led to the elliptical pattern. Similarly,

when we identify subtables with simple patterns, we interact

with the data's display. So biplot modelling is partly systema-

tized and yet allows the investigator to interact with his

data and look for interesting patterns.

To sum up, we have sought to demonstrate, by the examples

of this paper, that the EDA methods presented in Tukey's (1977)

"Golden Book" are not the only ones available. Much can also

be learned about suitable models, and most of the messy trial

and error of EDA can be avoided, by displaying the data in a

biplot.

I
,A
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