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This paper presents some comﬁarisons of EDA and biplot
display. By pencil-and-paper EDA we mean the methods advo-
cated by John Tukey in his 1977 volume (Tukey, 1977). We
use examples from that book to illustrate the differences and

the similarities of the two methods. We assume that the anal-

yses in the book are familiar and show how our biplot analyses
differ from them. Q
o ; Quy
The paper begins with an introduction to the biplot, _— 2
accompanied by one example, in which the biplot is used for ""ﬁj © 3;
D
data summarization and description. Then we look at four Dd §

diagnostic examples from the book and show what biplot display m
B/

would have done. We end by drawing some conclusions. Refer-

ences for further reading on the biplot and its diagnostic and

lResea'rch supported in part by ONR contract N 00014-80-C-
0387 on Biplot Multivariate Graphics.
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other uses are included at the end of the paper. Computer
programs are available from the authors at the Division of
Biostatistics of the University of Rochester.

We start by explaining what the biplot is. It is a graph-

ical display of a matrix Y of n rows and m columns by

(nxm)

means of row markers 30850002, and column markers
by/bys...by. The biplot carries one marker for each row, and
one marker for each column. The principle of biplot display
of a matrix Y is that element Yi,j in the i-th row and j-th
column is represented by the inner product of the i-th row
marker and the j-th column marker, i.e., gigj represents Yi,5e
A 100 by 20 matrix, for example, would be represented by 100
row markers and 20 column markers in such a way that all 2,000
elements are represented by inner products of row markers

and column markers. To set this in matrix terms we may array
the row markers a; as rows of matrix A and the column markers
gj as columns of a matrix B'. Clearly, then the matrix pro-
duct AB' represents the matrix Y itself.

On a point of terminology, the prefix "bi-" of biplot
serves to indicate that this is a joint dispIgy of rows and
columns. It does not indigate:the two~-dimensionality of the
_ﬁiéiot. Any plot is two diménsional. On the other hand, if

L IO

\We ‘Use a three-dimensjional display analogous to the kiplot,

.

.
3

.

‘ﬁb;. call it a bi-model because it too is a joint display of
‘”:gith rows and columns: the ending "model"” indicates that
there are three dimensions. |
Figure 1 shows a very simple example of a biplot. Y is a
4 x 3 matrig of rank 2; the row markers are the rows of matrix
A, and the column markers are the columns of matrix B'. Each

.row of A and each'bbighb of B' is displayed on this biplot--
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Fig. 1. A matrix Y, its factorization AB' and the
biplot.
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seven markers in all. For convenience the row markers a; are
indicated as circles whereas the column markers Qj are indi-
cated as vectors.

Figure 2 illustrates how particular elements of the matrix
are represented on the biplot. Thus, element Ya,3 is repre-
sented by the inner product of the second row marker a, and
the third column marker 23. To see this geometrically, we

choose one of these markers, e.g., 23, take the straight line

{ ¥23° =-{Langth of B, % (Length of prejecticn of g, anto ’53)}

Y43 * (Length of 33) x (Length of projection cf g, cnto 53)

Third
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from the origin through that marker, and project the other
marker a, orthogonally onto it. The distance fromthe origin
to the foot of the perpendicular of a, onto the line through
by is then multiplied by the length of the vector b, to obtain
the inner product. For another example, take Y3,3 for which
we project as onto 23. In this case,the:projection is half

as long as the one before and in the opposite direction, i.e.,
in the direction of 93 itself. So the product is positive and
half the size of the previous one.

A few more remarks about biplots need to be made. First
of all note that the biplot is planar--the row markers a; as
well as the column markers gj,are plotted in the plane. This
cannot be done exactly for any matrix of rank greater than 2.
Hence, the first step for biplotting such a matrix Y is to
approximate it by a matrix Y[2] of rank 2. This is called
lower rank approximation. The second step is to factorize
the 2[2] approximation into a product AB' of an A matrix of
two columns and a B' matrix of two rows. Then the rows of A
can be plotted as row markers a; and the columns of B' as
column markers gj. Their'jqint display is a biplot. Bi-
plotting is thus seen to require three steps: rank 2 approx-
imation, factorization, and display.

Lower rank approximation can be carried out by means of
the theorem due to Householder and Young (1938), which pro-
vides the least squares solution to this problem. When
weights are introduced, and each of the squared differences
(yij - gig)z is to be weighted by some given ¥iy, the mathe-
matics of that theorem break down. However, a weighted least

squares algorithmand suitable initialization methods are

——




available (Gabriel and Zamir, 1979). An earlier solution for
particular kinds of weights common in statistics was provided
by Haber (1975). Another method of reduéed rank approximation
uses adaptive fits (McNeil and Tukey, 1975). C. L. Odoroff

of Rochester is currently working on using the weighted least
squares solution for adaptive fitting, i.e., taking the
residuals from the last fit and using them to adjust the
weights for the next fit.

We now turn to uses of the biplot. These are mostly of
two kinds--inspection of data and diagnostics. We present
one brief example of biplot inspection before we go on to our
main subject which is biplot diagnostics.

We consider data from single-dose, postoperative, oral
analgesic trials. Patients who had previously consented to
participate, and who requested medication for moderate to
severe pain during the first three days after surgery, were
given a single dose of one of the study drugs on a randomizedg,
double-blind basis. The resulting data consist of ordinal
pain scores, on a five point scale, with zero being no pain
and four being very severe pain: (A number.of standard pain

L't .
scales were used, of which we -have chosen this one as an

illustration.) Data were recorded at baseline (medication
time), one~half hour later, and at hourly intervals until
five hours after medication--Figure 3. There were a total of
180 patients in the trials, with eight treatments, including
a placebo.

In Figure 4 we show a portion of a biplot of the data

matrix. We have included only two of the treatment groups:

those receiving a placebo and those given a highly effective

,
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. A
P Baseline . - Time after medication
L Surgical
: Patients (Medication 1/2 hr.|1 hr.|2 hrs.|{3 hrs.{4 hrs.| 5 hrs.
. Time) ‘
l - * . L] . » . - . - - L ] - - - .
2 - - L] - . . . L] L - - . L L] - .
\ DATA
180 - . . - L . - . Ll - L] Ll L] - L .
Note: Ordinal pain scores on a S5-point scale from 0 (no pain) to
4 4 (worst pain I have ever experienced).

Fig. 3. Data from single dose postoperative oral analgesic

trials.
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Fig. 4. Biplot of ordinal pain scores from two treatment
groups in analgesic trials.
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combination analgesic (pentazocine and aspirin). This par-
ticular biplot has been scaled so that the lengths of the
arrows represent standard deviations and the angles between
the arrows represent correlations among the corresponding
columns--times of recording. (This is referred to as a GH'
biplot--Gabriel, 1971.)

Figure 5 replaces the row markers of Figure 4 by one
standard deviation concentration ellipses. Each ellipse
summarizes the row markers of the approximately 25 patients
in the corresponding treatment group. The center of each

ellipse is also piotted.
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Fig. 5. Analgesic biplot with concentraticn ellipses
sunmarizing treatment groups.




The small angle between the arrows for the one-half hour
and one hour pain scores shows that scores at those times are
fairly well correlated with one another. Similarly, one can
see that the three, four, and five hour pain scores are
correlated with each other, but roughly uncorrelated--arrows
at about 90°--with the scores at earlier times. The shortness
of the baseline arrow reflects the fact that only patients
with baseline pain scores of 2 or 3 were included in these
trials. (Further examination of the data suggests that the,
baseline pain scores are not well represented by the biplot.)
| In order to see the effects of the two treatments, we examine
! the average pain scores of the two treatment groups at differ-
ent time points by projecting the centers of the ellipses onto
the arrows. We see that both groups were similar (and below
the overall average) at the one-half and 1 hour time points;

| this is an indication of a placebo effect of surprising dura-
tion. With respect to the later time points, however, the
placebo group had much higher than average pain scores, while

-

the pentazocine-aspirin group had below averAage pain scores.

. kb _
(The other six treatment groups were intermediate, increas-
ing in efficacy from placebo.) Clearly, the later time points

are more sensitive to the effect of analgesics. This analysis

contrasts with the traditional method of analyzing such data
in which the post-medication pain scores are cummulated to
obtain a measure of "total pain" and the time differentials
are ignored (Cox et al, 1980). Inspection of this biplot has
suggested new derived pain measures, which appear to be more

sensitive to treatment differences.
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We now turn to the second use of the biplot which is to
facilitate the search for patterns and the inference of models
to fit the data. To illustrate, some of the patterns that
we look for are shown in Figure 6. Figure 6A shows
row markers and column markers which are both collinear and
have a right angle between their two lines. Such a biplot
pattern indicates that the data are well fitted by an additive
model, i.e., Yij =0, + Bj for some row effects oy and some
column effects Bj. This is something that the eye picks up

readily: row markers on a line, column markers on a line,

and a 90° angle between them.

®Q,
b b, *
6A AN ADDITIVE MODEL o' o De0; 0O
S 3 4
L= QT o 005
%, et B | +

68 A CONCURRENT MODEL

Yii=mteB,

6C A MULTIPLUCATIVE MODEL

Vi@ 'Bj

Fig. 6. Biplot patterns and the models which they
diagnose.
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markers aligned, and the row markers aligned, but the angle
between the lines is not 90°. A concurrent model can then be
diagnosed. This is also known as a degree of freedom for non-
additivity model and it can be parametized most simply as

Yy =7 + aiBj.

i’j
Finally, Figure 6C has all markers on one line. This
obviously diagnoses a model of rank one, i.e., yi,j = aisj.
It will have been noticed that in Figure 6B there is one
column marker--b,;--that is not aligned with the other b's and
one row marker--a,--that is not aligned with the other a's.
That indicates that the third columnand fourth row are not
fitted by the concurrent model, though the other rows and
columns are. This illustrates a very ugeful property of the
biplot; if a pattern fits only some of the column markers and
some of the row markers, the implied model may be diagnosed

exclusively for those columns and rows. Indeed, a biplot is

not only a display of the whole matrix, but can also be

11

Another biplot pattern, shown in Figure 6B, has the column

regarded as a simultaneous display of all possible submatrices.

The eye immediately picks up subsets and subtables and allows
their separate diagnosis.- o ‘

We should add that outlying rows or columns might at
times distort the rank two approximation and spoil the chances
of diagnosing a model. There might also be situations where
the subtable models cannot be seen on the biplot because the
biplot mainly displays subtable differences. 1In such cases
it might be helpful to employ a 3D bimodel and see whether any

simple patterns are evident on some projection of such a

bimodel.
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' Row Markers Column Markers The Model
. a; gj ;for Yi,j i8¢
B
[ l. - -+ .6-
| Collinear . BJ a; 5
columns regression
- Collinear a; + YiBj
rows regression
Collinear Collinear H o+ yis.
[l
; one degree of freedom
{ for non-additivity
I Collinear Collinear a, + Bj
lines 90° to each other additive

Fig. 7. Some biplot diagnostic rules (Bradu and Gabriel,
! 1978) .

‘ The examples of Figure 6 illustrate some simple diagnostic
rules which are listed more formally in Figure 7. There are
four collinearity patterns for row and/or column markers and
Figure 7 shows the model that may be diagnosed from each one.
Thus, collinear row markers indicate that each column can be
modelled by a linear regression on some "row effects” a.

An analogous diagnosis follows from column marker collinearity.

TABLE I. Monthly Mean Temperatures (°s F)2

Caribou Washington, D.C. Laredo

Jan. 8.7 36.2 57.6
Feb. 9.8 37.1 61.9
Mar. 21.7 45.3 68.4
Apr. 34.7 54.4 75.9
May 48.5 64.7 81.2
Jun. 58. 4 73.4 85.8
Jul. 64.0 77.3 87.7

3rrom J. W. Tukey, EDA, Chapter 10.




2.5 :

Joint Collinearity diagnoses concurrence or additivity,
depending on the angle between the lines, as already illus-
trated in Figure s. i

We now turn to the first example from John Tukey's book.

one up North, one mid-way and one further South. The biplot
of the data ig shown in Figure 8. fThe biélot column markers
for the three cities are clearly collinear and the row markers
for months are also Pretty close to collinear. fThe angle

between the lines is not 90°, ang this suggests a concurrent

7.89
7
6.5
6
$.57
S -
4.5
44
3.57
3

wash

apr

2
1.5
1
8.5
e-ccri
-8.5 Jan

mar

-1 Y T T T T T T —
-1 ~8 -6 -4 -2 %} 2 4 6

Fig. 8. Biplot of mean monthly temperature data from
three cities (Caribou; Washington, D.c.; Laredo) .
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model. Indeed, that is exactly what Tukey concluded in his
book, where he calls it a "plus-one-fit".;

It is evident that the biplot has revealed this model very
simply and strikingly. Actually, a few more things may be
said about this example. The months really are not guite
collinear--they seem to curve around in a sequence from Jan-
uary to July. This leads one to wonder about addition of the
remaining months. Tsianco (1980) has done similar biplots on
data of 50 weather stations for twenty-four successive months.
When one looks at part of his biplots, they look much like
Figure 8§ but when one looks at a bimodel of the entire years'
data, the month markers are found to be on an ellipse in 3D.
It can be shown that an ellipse on the biplot diagnoses a
harmonic model for the data. That is a more reasonable model
for temperature than a "concurrent", or plus-one-fit, model.

This example is considered again in Chapter 9 of Mosteller
and Tukey (1977), where a one parameter family of "matched"
exponential transformations is used essentially to obtain
additivity (e.g., d = 70 in Exhibit 21). The biplot of the
transformed data, however, still suggests a concurrent model,
even though the median polisﬁ residuals do not suggest this.
Thus, the biplot can serve as a useful check whether a trans-
formation has achieved its purpose.

As a second example of the use of these diagnostic rules,
we consider data on the world's supply of telephones --

Table II A--analyzed in Tukey's (1977), Chapter 12. The world
was divided into seven "continents", and yearly counts were

given from 1951 to 1961, with the years 1952 through 1955

omitted. Yearly increases are seen to be more proportional

14
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TABLE II A. World's Telephones (Raw Counts).a

1951 1956 1957 1958 1959 1960 1961

N.Amer. 45939 60423 64721 68484 71799 76036 79831

Eur. 21574 29990 32510 35218 37598 40341 43173
Asia 2876 4708 5230 6062 6856 8220 9053
S.Amer. 1815 2568 2695 2845 | 3000 3145 3338
: Oceania 1646 2366 2526 2691 2868 3054 3224 ?
X Africa 895 1411 1546 1663 1769 1905 2005 i
MidAmer. 555 733 773 836 911 1008 1076 - !

I qFrom J. W. Tukey, EDA, Chapter 12; originally The World's
- Telephones 1961, American Telegraph and Telephone Company.

) TABLE II B. Loge Counts of World's Telephones

1951 1956 1957 1958 1959 1960 1961

N.Amer. 10.735 11.009 11.078 11.134°11.182 11.239 11.288 _
Eur. 9.979 10.309 10.389 10.469 10.535 10.605 10.673 . !
Asia 7.964 8.457 8.562 8.710 8.833 9.014 9.111
S.Amer. 7.504 7.851 7.899 7.953 8.006 8.054 8.113
Oceania 7.406 7.769 7.834 7.898 7.961 8.024 8.078
Africa 6.797 7.252 7.343 7.416 7.478 7.552 7.603
MidAmer. 6.319 6.597 6.650 6.729 6.815 6.916 6.981

than additive, and we follow Tukey's suggestions and consider

the logarithms--Table II B.

H
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We first examine a biplot of the mean-centered log counts,
shown in Figure 9. In addition to plotting the row and col-
umn markers, we have also included their arithmetic averages
gmn and hmn, for row and column markers, respectively. From
the evident collinearity of the column markers we diagnose a
rows regression model--second row of Figure 7. The linearity

‘ of regression on time is checked by comparing the distances

( between column markers with the corresponding time intervals.

I It is thus evident from the figure that the regression is

linear in time.
u We next show how to0 use the biplot to obtain approximate
parameter estimates, and thus more specific diagnoses. (For
details see Bradu and Gabriel, 1978.) We first draw the line
through the column markers and project the row markers
orthogonally onto it. The distances from these projections

to the projection of the mean of the row markers (gmn) are

proportional to the estimates of the regression coefficients
Yo (The projection of the mean gives the positive direction.)
On the basis of these projections, we decide to fit a single
3 slope for North, South, and Mid—Ameriéa and Oceania. We
also require the same slope for Europe as Africa. A higher
slope is clearly needed for Asia.

Further diagnosis can be obtained by projecting the row
3 markers onto the line through the origin and the mean of the
column markers (hmn). Distances from the projection of the
mean (gmn) approximate the row effects (ui) proportionally.

These are the intercepts of the regressions. Indeed, the

ordering of these projections is quite similar to that of the

1
)
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log counts in 1951. Thus, for example, North America had
more telephones than Europe in 1951, but subseguently
Europeans acquired them more rapidly.
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-0.51
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Fig. 9. Biplot of log counts of telephones, by continent
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TABLE III A. Least Squares Fit to Logs of Telephone Data.

Regression Coefficients

Intercept Slope

N.Amer. 10.63 0.063

Eur. 9.86 0.076

Asia 7.80 ‘0.116

! S.Amer. 7.45 0.063

) Oceania 7.39 0.063

; ‘ Africa 6.79 0.076
MidAmer. 6.25 0.063

GOF = 0.9997

{ TABLE III B. Least Squares Fit to Residuals for Years 1956-61.

Intercept Slope
N.Amer. 0.0567 -0.0075
Eur. 0.0207 -0.0033
Asia -0.1751 0.0197
S.Amer. 0.0887 -0.0103
Oceania 0.0089 -0.0002
Africa 0.0607 -0.0059
MidAmer. -0.1492 0.0174

GOF = 0.9999

Table III A shows the’:eéﬁits of our first least squares
fit. The goodness-of-fit, expressed as the sum of sguared
residuals divided by the sum of squared deviations from the
overall mean, is very good (99.97%), and we are tempted to
stop here, or perhaps fit a model with fewer intercept para-
meters. (This fit is similar to the fit displayed in Exhibit
14 A--Chapter l12--of Tukey's book, if one improves it slightly

by adjusting the row slope for Mid-America to be equal to 30.)

P
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Fig. 10. " Biplot of residuals from first fit to log
telephone counts.

In Figure 10 we take a second look and biplot the resid-
uals from our first fit. fhis biplot still shows a trace of
collinearity in the column markers from 1956 or 1957 to 1961,
and that would diagnose a rows regression model for a sub-
table. Table III B shows the estimates of the linear regres-
sion parameters (one line for each continent) for the ~956-61
subtable. We see that, for Asia and MidAmerica, our first
fit overestimated the rates of increase in numbers of tele-
phones from 1951 to 1956, and underestimated them afterwards.

The opposite is true for the remaining continents. 1In general,
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the year 1951 probably had too great an influence on our first

fit. The extra fit makes a small improvement in goodness-of-
fit. However, we consider this less important than the extra
information we have obtained about time changes in telephone
acquisition.

A biplot of the residuals from this additional fit, shown
in Figure 11, reveals much less structure than the previous
one, although some regularity remains. In this respect one
is reminded of the famous "vapor pressure of water" example
(Tukey, 1977, Chapter 6) in which definite structure remains

in the residuals even after a clearly diagnosed fit.

8.167
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-9.04- St
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-0.1 T T T
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0.4 -8.3 -8.2  -0.1 0 0.1 8.2

Fig. 11. Biplot of residuals from extra fit to years 1956
to 1961.
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Our next example concerns the data in Table IV, which are

2

from an experiment for measuring the sensitivity of several

TABLE IV A. Finger Limens.?

Rates
Initial Weights Persons I, ry r, e
{ K 39 85 101 151
X wl L 16 32 43 63
) M 18 31 42 58
{ = K 31 55 84 124
i g W4 L 12 22 33 51
‘ M 13 26 38 55
K 26 56 70 98
W7 L 12 20 30 37
M 14 26 40 46

| ®From J. W. Tukey, EDA, Chapter 13; originally Pp.oO. Johnson,

Statisticdl Methods in Research, Prentice-Hall, New York, 1249,
Table 89.

TABLE IV B. Logs of Finger Limens.

Rates
Initial Weights Persocns r, Ty r. T4

K 3.664 4,443 4.615 5.017

Wl L 2.773 3.466 3.761 4.143

M 2.890 3,434 3.738 4,060

K 3.434 4.007 4,431 4.820

Wy L 2.485 3,091 3.497 3.932

M 2.565 3,258 3.638 4.007

i K 3,258 4.025 4.248 4.585
- W L 2.485 2.996 3.401 3.611
-i M 2.63%9 3.258 3.689 3.829
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Fig. 12. Biplot of logs of finger limens: rates and
weights vs. individuals.,
individuals to changes in pull, and are analyzed in Chapter 13
of Tukey's (1977) book. The F@ble shows data for individuals K,
L and M, for different initial steady pulls W,, W,, w7; which
are referred to as "weights", and different rates of increase
of the pull, L +Tpr T, and Xy We follow Tukey's suggestion
and analyze the logs shown in Table IVB.

The first problem with displaying these data is that they
are in a three-way layout. As the biplot is a matrix, i.e.,
two-way, display, it can be applied to these data only if two
of the three classifications are crossed either in the rows

or in the columns of a matrix--as in Table IV in which weights

b
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and individuals are crossed in the rows. There are two other
ways of crossing in the rows (there are also three trans-
positions with crossing in the columns--but their biplots do
not differ from the previous three). ‘It will be instructive
to look at all three biplots. (Kester (1979) has considered
biplot display of such three- and higher-way layouts.)

Figure 12 shows the biplot with individuals in the columns
and the rates and weights crossed in the rows. At first it is
a little difficult to see any pattern because there are too
many row markers. But if one pencils in lines to join the
three weights for each rate, a clear pattern emerges. The
average of the r, markers is farthest to the left, then the

average of the r, markers, then that for r_ and finally, the
b c y

average for rd—-and those four averages are more or less
collinear. Furthermore, this line of averages is approximately
at right angles to a line through the three markers for individ-
uals. Thus the rate classification appears orthogonal to that
by individualé. According to the rules in Figure 7, this
suggests additivity between rates and individuals.

From this figure, one can also infer the relative sizes
of the differences between rates and weights. 1In this biplot
the positive direction is to the right, as the arrows point
there (recall the inner-product construction). The order of
the rates in that direction is r_ < r < r_ < rye The order

a b

of weights is W7 < W, < W, but the average differences between

4
the weights are much smaller than those between the rates.

We will not discuss such comparisons in detail but rather

focus on model diagnosis.
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Fig. 13. Biplot of logs of finger limens: rates and :
individuals vs. weights. ;
Figure 13 has individuals crossed with rates in the rows.
The column markers for weights'zre pretty much collinear. The
row markers seem a bit messy but if one looks at them carefully
or draws a few lines, one sees that for each individual the
rates are close to a straight line orthogonal to the direction
of the weights' line. The diagnosis would therefore be that
rates are additive with weights. i
From Figure 12, we have rates additive with individuals;
from Figu;e 13, we have rates additive with weights. Together,

these diagnoses indicate a model Yerw = O 0] in which the

r kw'’
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variable y is indexed by individual k, fate r, and weight

w. The model has a rate effect a. which is additive to a
joint weight-individual effect ekw' which allows weight-
individual interaction. 1Indeed, in Figure 13, K, L and M are
not collinear, so there is no reason to expect individuals to
be additive with weights. It is easy to see that the inter-

{ action is due mostly to individual M: the weight markers line

| is seen to be pretty much orthogonal to K averages, but the
average of the M markers is not on that line. The interaction

! is thus seen to consist mainly of individual M's having a
relatively large value for weight 7 and a relatively small
value for weight 1. These finding are very similar to those

: in the analysis in Tukey's (1977) book.

‘
+
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Fig. 14. Biplot of logs of finger limens: weights and
individuals vs. rates.

The third biplot is showq in Figure 14. This shows a
rather more striking feafureit%an either of the previous two.
The rates are represented by fairly collinear column markers;
individuals and weights are represented together by collinear
row markers at a nearly right angle to the line which roughly
fits the rate markers. The most striking feature of this
figure is that weights and individuals markers are jointly
collinear. By the first rule of Figure 7, the model is

diagnosed as Yerw = % ¥ Br@kw--a regression of the rates onto

r
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Fig. 15. Biplot of logs of finger limens: weights vs.
individuals (averaged over rates).

the weights--individuals combinations: ekw is a weight-
individual effect and Br’ a,. are the slope and intercept for
rate r. Note that this model is a little more general than

the one we had before, which we could obtain by setting

Br = 1 for all r in the present mocdel.

Since the form of the individuals~weights interaction is

still uncertain we consider one more biplot. Figure 15 shows

the individuals-weights responses averaged over the four rates.

——————

e
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Fig. 16. A summary of models for logs of finger limens.

Here again individual K ( a male) is seen to be very different
from individuals L and M (females) and the weights show nice
collinearity. The second row of the diagnostic table (Figure 7)

applies, so the model for 8 is 8 = Kk+-£knw, a regression

kw kw
of individuals onto weights.

All these models can be pulled together schematically as
shown in Figure 16. Each vertex of the cube is identified
with a different model, rang}qg from the most general (and
best fitting) at the top'léfi back corner, to the most specific
(and least well fitting) at the bottom right front corner.
The biplot diagnostics which indicate specific changes in the
model are indicated as directions around the cube. Thus,
biplot collinearity of KW-markers suggested the general model
o, + Brekw‘ Orthogonality of the R~markers to the KW-markers
diagnosed absence of R vs. (KW) interacticn: the downward
arrow therefore indicates modelling in which the R effects

are additive to (KW) effects, e.g. a_ + erokw becomes a_ + @kw'

r r

m 2 S
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Collinearity of the K-markers (on the K x W biplot) diagnoses

a regression of W onto K: the rightwardlarrow indicates models
in which K effects appear only as "regressors", e.qg., ekw
becomes vy, + Eknw and Ky + gknw becomes gk“w’ Similarly,
collinearity of the W-markers (on the K x W biplot) diagnoses
regression of K onto W: the forward arrow thus indicates that
W effects appear only as "regressors".

The original fit of the most general a,. + Brakw model,
diagnosed by KW-collinearity, was 0.9937. Additional diagnoses
make for more specific models which are more easily interpret-
able but fit less well. Thus, the diagnosis by orthogonality
simplifies the model to o, + ekw while hardly worsening the
fit. On the other hand, the K collinearity diagnosis appre-
ciably reduces the fit in this example. A good model to
settle on might be a. + Ky + gknw which has a goodness-of-fit
of 0.9921~-this was diagnosed by the W-collinearity alone.

Again, biplot patterns have diagnosed models very similar
to those suggested by John Tukey (1977) using pencil-and-paper

EDA methods.
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coast of South America-~-Figure 17.

easier to look at--Table V B.

subtracted out--Table V C.

between these ports are given in Table V A.

Seven South-American ports.

Our last example deals with ports along the western

Ship route distances

To begin with,

these are arranged in a North-South order so they are a little
Then the mean distance is

This makes for a straage kind of




TABLE V A. Shiproute Distances Between S. American ports.?

(distances in sea miles)

Ant  Arr Cal Cogq Iqu Lota P A Val

Ant 0 325 215 396 224 828 1996 576
Arr 325 0 522 702 110 1134 2301 882
Cal 215 522 0 196 420 628 1795 376
Coq 396 702 196 0 602 455 1623 203
Iqu 224 110 420 602 0 1033 2201 782
Lota 828 1134 628 455 1033 0 1191 268
PA 1996 2301 1795 1623 2201 1191 0 1432
val 576 882 376 203 782 268 1432 0

o and

a
From J. W. Tukey, EDA, Chapter 1ll; originally The World Almanac
Book of Facts, New York World-Telgram and Sun.

TABLE V B. N-S Order.

Arr Igqu Ant Cal Cog .Val Lota P A

Arrxr 0 110 325 522 702 882 1134 2301
Iqu 110 0 224 420 602 782 1033 2201
Ant 325 224 0 215 396 576 828 1996
Cal 522 420 215 0 196 376 628 1795
Coq 702 602 396 196 0 203 455 1623
val 882 782 576 376 203 0 268 1432
Lota 1134 1033 828 628 455 268 0 1li9
PA 2301 2201 1996 1795 1623 1432 1191 0

TABLE V C. Mean-Centered Data.

Ant Ary Cal Cog Igu Lota P A val

Ant -732. -407. -517. -336. -508. 96. 1264. -156.
Arr -407. -732. -210. - 30. -622. 402, 1569. 150.
Cal -517. -210. -732. -536. -312. -104. 1063, -356.
Coq -336. - 30. -536. -732. =130, =-277. 891, =-529.
Igu ~-508. -622. =312, -130. =732, 301. 1469. 50.
Lota 96. 402. -104. -277. 301. -732. 459. -464.
P A 1264. 1569. 1063. 891. 1469. 459. -732, 700.

-156., 150. =-356. -529, 50. -464. 700. =-732.
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Fig. 18. Biplot of distances between South American ports
(mean~centered) .

distance, but one that is easier to biplot.- Figure 18 shows
the biplot of these_mean—qenteﬁed distances. It is immediately
evident that the row markeré ;re an exact reflection of the
column markers. This is not really surprising since the matrix
isksymmetric.

It is of interest to consider what is special about biplots
of symmetric matrices. Since Y = Y' it follows that in the
factorizations AB' = BA'. Thus, one may wonder whether A = B or
A = -B, or what else may account for this symmetry. If A = B,
one may display an ordinary biplot of factorization AA' in which

row markers coincide with column markers: one set of markers
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suffices. On the other hand, if A = -B, the display of factor-
ization -AA' leads to 2 biplot like Figgre 18 in which the row
markers are reflections -a; of the corr;sponding column markers
+a;. This redundancy on the biplot can be eliminiated by dis-
playing markers a; along imaginary axes--an imaginary biplot, so
to say. One may also achieve this by displaying only the gi's--
and not displaying their negatives--but defining the representation
by means of the negative inner product, i.e., yi,e = -g{;e.
Geometrically, this can be visualized exactly as an ordinary
inner-product except that the sign is negative when the a, pro-
jection onto a, is in the direction of a, and positive if it is

in the opposite direction. That is quite easy to use in practice.
Algebraically, we should be thinking of factorization AA' where

s

. 1 ] -
the e~th row of A is §e =i

1
so that gegg

And the representation of §'s along two imaginary axes looks

ag (ige)'(igg) = —gégg.
exactly like that of the a's but the imaginary units on the axes
produce negative inner-products. (See also Gabriel, 1978, for
a biplot with one real and one imaginary axis.)

In the present example of distances the representations and
inner-product relations are shown in Figure 19. Large distances,

small distances and average distances translate to mean-centered

distances above zero, below zero and about zero, respectively.

Mean- If a's lengths constant

Centered a'b
Distance Distance —e=g

- &1 ' angle (a_,a ) a , a

etog Ye,g S8y 2g3, —e'~g e’ =g
Large >0 >0 <0 (n/2,m] distant
Average 0 0 0 n/2 orthogonal
Small <0 <0 >0 [o,m/2) close

Fig. 19: On the biplot representation of geographic dis- i
tances. ,
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In the ordinary biplot representation these (ye -y)'s are
14

g
properly represented by gégés. But that is equal to ééég =
(ige)'(igg). If one leaves out the i and keeps only the real
part, then the sign changes, i.e., §é§g= -gégg. Thus for large
distancesye’g,the inner-product gégg would be negative; for

small distances, it would be positive; and for average distances,
it would be about zero. Moreover, if the a's are all of equal
length, the inner-product is simply the cosine and varies as the
distance between the a points. What this means is that when gégg
is large, there is an obtuse angle. When gégg is zero, there

will be a 90° angle, and when gégg is positive, the angle will

be acute. 1In terms of distances between the a's these correspond
to large, average and small distances, respectively. This rela-
tion between the a's thus turns out to be the same as the relation

of the original distances y That is why it was convenient

e, g’
to mean-center these distances: the representation along two
imaginary axes turned out to be much the same as the original
pattern of distances. With this in mind, it is enough to plot
the a's, which is eguivalent to plotting the §'s along imaginary
axes, and to consider only the column markers on Figure 18.

This example shows that on ‘occasion one ean make use of
imaginary biplots for gooa éisplay of data. John Tukeé's (1977)
treatment was quite different. Instead of looking at the data,
he first tried a model which was intuitively appealing. He pos-
tulated that the distance between port e and port g is the sum
of (1) a local distance le from port e to the shipping lane,

(2) a distance p along the shipping lane, and (3) a distance
e,

g
lg from the lane into port g. He further postulated that shipping

lane distances p are simply additive, thus p =p +p
e 1,4 1,2 2,3

r
g
+ p3'4, etc. This model is shown in Figure 20. If one takes
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Distance Port 1 Port 2 Port 3

Port 1 0 1, + + 1 11 + + 1
or 17 P12 2 |*t1 T P1,2 " Py 37F 43
Port 2 0 12 + p2'3 + 13
Port 3 : 0

Fig. 20. Tukey's model for nautical distances.

any tetrad on one side of the diagonal of this distance matrix,
its four points show additivity, e.g., (1l + Py 3 + 13) -

(1} +py,5* 150 - Iy 4 py 3% 13 + (1 +py 5+ 1) =0 On
the other hand, a tetrad across the diagonal does not have zero

differences. In other words, Tukey's model has Yi,j'"%qg - ye,j

+'ye,g = 0 whenever i < e < j < g. What would happen in factori-
zation ¥ = AA' (or Y = 4AA') of such a matrix? The above tetrad
condition is readily seen to become (gi-ge)'(gj-gg) = 0 for
i <e < j<g. Inother words, a;-ag is orthogonal to ij_ég
whenever i < e < j < g. A display of such a model for eight
ports is readily seen to require eight vectors a,,...,ag such
that a)7a, aj-a,s 3573 and a,-ag are mutually orthogonal.
These are only part of the orthogonalities postulated by the
model, but they already feéuire a seven dimensional space to
represent them. Evidently such a model cannot be diagnosed on a
biplot which is two-dimensional, nor on a 3D bimodel. It is
essentially a higher dimensional model.

We have discussed this model in some detail because it is
an example of what a biplot cannot diagnose. We have found
the biplot to be good for diagnosing some models which are
(close) to being two or three dimensional, but this is a case

of a model which the biplot just cannot represent because the

model cannot be collapsed into a plane or three-space.
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Finally, what have we learned from these examples? How
does biplot inspection compare with the EDA methods proposed
in Tukey's (1977) book? Parenthetically, we want to remark
that the issue is not one of pencil-and-paper methods of
median polish versus computer fitting by least squares,
because EDA methods have been computerized. The issue we
are addressing is which method gives more insight into the

‘ form of models that £it the data. Our experience suggests

! that in using the biplot, a few displays suffice to reveal
relevant patterns in a pretty striking manner. EDA, on the

f other hand, requires several stages of median polish,
inspection of residuals, modelling, and re-expression, further
median polish, etc., until one may diagnose a model. The
biplot is more immediate: It allows one to see things at a

| glance.

EDA may show more detail if one inspects fits and residuals
: carefully at each stage, but it reguires iterative cycles of
modelling, fitting, residuals inspection, re-expression and

decisions. If one fit is inadequate, anothér is tried until

a model is judged adeguate. ?His is a search by trial and
error rather than by a systematic method. Moreover, the

decisions on model choice are based at each stage on I.I.I.--

inspired inspection of irregularities. Irregularities are

AT § Yl A

provided by data, inspection takes time, but inspiration is
something that may be difficult to come by. In summary, the
EDA modelling procedure is in general not systematic. (An
exception-to this is Tukey's diagnostic plot which uses com~

parison values systematically for diagnosis of models and

re-expressions.)
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And yet, there is also an interactive and somewhat subjective

Biplot diagnostics are more systematic and direct. One
does not start by guessing a model, but rather displays data
and inspects it--the diagnosis is then often immediate. We
know what biplot collinearities mean; we know what right angles
mean; we know what coplanarity means and we know something
about distances. Identification of any of these patterns makes

modelling automatic and hence, to a large extent, objective.

aspect to biplot modelling. One may use one's prior knowledge
about the subject matter to choose among various patterns
apparent on the biplot. Tsianco (1980) and Gabriel saw the
ellipse in the temperature data, though they were not loocking
for it and at that time had no idea of how to use such a pattern.
But as they traced the seasonal variation of the monthly temp-
eratures, they were led to the elliptical pattern. Similarly,
when we identify subtables with simple patterns, we interact
with the data's display. So biplot modelling is partly systema-

tized and yet allows the investigator to interact with his

data and look for interesting patterns.

To sum up, we have sbuéht to demonstrate, by the examples
of this paper, that the EDA methods presented in Tukey's (1977)
"Golden Book" are not the only ones available. Much can also
be learned about suitable models, and most of the messy trial
and error of EDA can be avoided, by displaying the data in a

»

biplot.
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