ASSOCIATlON
DF IENTlSTS
AND NGINEERS

DESIGNING SHIPS TO THE NATURAL ENVIRONMENT
SUSAN L. BALES

Q
"t‘ srsTemsS ‘d‘

'f' -y 18TH ANNUAL (Ji%g |
: C‘;" "\,“ [ & :.{
-5 ¢ TECHNICAL [ &5 1
f , ‘~ e !
| =i SYMPQO SIUMQ T
B 1982 |
LIS N
i |
| 2?: ,/4 st“""sfs“‘l .-.j
2, w ASSOCIATION OF SCIENTISTS AND ENGINEERS OF F
;‘ % THE NAVAL SEA SYSTEMS COMMAND
- L l DEPARTMENT OF THE NAVY — WASHINGTON, D.C. 20360 ‘

mﬁ
Apmmoved for DRDEE o . . NP
p m.mhuﬁoﬁ Unuﬂli‘:e—".#“ b pe o (k)} i.:) U 49




T

T —e

-
H

b

T T e s Ty

VIR o

DESIGNING SHIPS TO THE NATURAL ENVIRONMENT

Susan L. Bales
Head, Ocean Environment Group
Surface Ship Dynamics Branch
Ship Performance Department
David W. Taylor Naval Ship R&D Center
April 1982

Approved for Public Release
Distribution Unlimited

The views expressed herein are the personal opinions of the author
and are not necessarily the official views of the Department of Defense or of
the Department of the Navy.

R L R S S ST o N N NG F W ¥ U R A W

st

i

Wy



- E

———

ABSTRACT

Until recently, the natural environment has played a very mincr role
in ship design. The considecation of ship performance in the prevailing
- environment was focused primarily on optimization of calm water resistance and
: other factors related to the ship's propulsion system. During the 1970's, the .
Navy recognized the need to "design in" better ship performance and initiated
the R&D efforts necessary to establish a technology base for doing so.

This paper outlines the state-of-the-art for environmental (primarily
wave) modeiling in the emerging seakeeping performance oriented design
procedures. The sensitivity of the ship system to the environment is briefly

. examined. A standard procedure for specifying wave and wind conditions for
ship design is recommended. Revision of U.S. Navy applied Sea State numeral
definitions is discussed. A standard for specifying Sea State occurrences is
offered as a new design tool,

— e e s c————————

Accession or

NTIS  CRASL w |

DTIC TAB 0]
Unanwounud O
Justification . _____ |
P e e
BY e e ]

_Q}q}r}pution/
-Availablltty Codoes

i Avail andzor ] P
Dist ' Zpocial

bDTIC

copPY
INSPECTED

o2

3
b
f

St B i i et G et T U N VPR OO TR \ SpPO




il

%

ABSTRACT. ¢« « « v ¢ 5 o &+ o o« &
LIST OF TABLES. . . . « « « . &
LIST OF FIGURES + &« « « « & « &
DEFINITIONS « . . . « ¢ ¢« & « &
INTRODUCTION. « +« 4 ¢ ¢ & & o &
SHIP PERFORMANCE ASSESSMENT . .
SHIP SENSITIVITY TO THE NATURAL
Waves. . « & o « o o &
Windse o« + ¢ ¢ o o o &
3
STATE-OF-THE-ART IN WAVE MODELS
Open Ocean Spectra . .
Fetch-Limited, Coastal
Model. . . . + « ¢« « &
SEA STATE DEFINITIONS . . . . .
SEA STATE STANDARD', , . « + o+
SUMMARY « & + v ¢ 4 o o o o o+ &

1Y

ACKNOWLEDGEMENTS. . . . . . . .

REFERENCES. . « &« v &4 ¢ & & o o ¢ o ¢ o o o o « »
ii
vh’ ’ (R - PO WL R S

TABLE OF CONTENTS

. o & s .

ENV IRONMENT

o e v e e .

y or Shallow

¢« o
¢ o b
. . L]

¢« e e
¢« s e
« & 0
LI T ¥

Spectra . .

v

e i N b T

+]

Eo S

[¥5]
e by A ik o o O o macniienter, MR o o ) . e Sl i e i, i < ity WS

~

v
et sl e e mmi

o meamben

L e

9

(W ~AS__ . .J



D e s

AT ————

LIST OF TABLES

1 - Typical Top Level Requirement (TLR) . « . « ¢ « ¢ o o « « o & & 11
. 2 - Natural Environment Versus Ship Function. . .+ « ¢ & ¢ o o o o & 12
3 - Beaufort Wind Scale With Corresponding Sea State Cedes. . . . . 13
4 - Wave and Sea Scale for Fully Arisen Seas (Neumann). . . . . . . 14
) 5 - 0ld (Neumann, Pierson-Moskowitz) Versus New (WMO) Sea State
Definitions o o o + o o & o o & 4 s e 4 e v e e e s e e e e 15
6 - Annual Sea State Occurrences in the Open Ocean North Atlantic . 16
f 7 - Annual Sea State Occurrences in the Open Ocean North Pacific. . 17
8 - Annual Sea State Occurrences in the Open Ocean Northern
HemiSPhere. « o« « & ¢ o o o o o o & o s o s o s o 5 o v o o o s 18
:
’ iii
X

& . "

o —— e WP

e S s -

nd



LIST OF FIGUAES

Figure

1

One Comparison of U.S. and Soviet Destroyer Seakeeping (Soviet
Kotlin-Class Destroyer on Right, U.S. 710 Class on Left). . . .

Outline of Seakeeping Performance Assegsment Methodology. . . .

Typical Performance Figure of Merit (Comparison of Ship VTO
Functional Capability). + « ¢ v & 4 ¢ o ¢« o ¢ o o o o o o o &

0ld (Neumann, rierson-Moskowitz) Versus New (WMO) Sea
State Definitions . + « & v ¢ ¢ & « o o o o & o o 4 s n s 4 s s

Sea State Percent Frequencies of Exceedance for North Atlantic,
North Pacific, and Northern Hemisphere. . . . « « « &+ + + « « &

Modal Wave Period Ranges Versus Sea State for the North Atlantic
and North Pacific + ¢« v & v 4 4 o o ¢ o 4 o o o o & o o o o o «

Most Probable Modal Periods Versus Sea State for the North
Atlantic, North Pacific, and Northern Hemisphere. . . . . . . .

Estimated Modal Wave Periods for the Northern Hemisphere. . . .

iv

Page

19

20

22

23

24

25

26

»

il i i,

ki

4
p

L 24 i p— e et L o — i . e -.Jgulg\‘z;—\\_.u__._L.‘:__rL_.J




E DEFINITIONS
3
| .
: , CCA Combatant Capability Assessment
Fully-Developed A seaway which can grow no further regardless of wind i

duration

e e
.

g * Modal Wave Period The wave period associated with the peak energy of the
density wave spectrum

PR R

Significant The wave height associated with the average of the one-third ;

. Viave Height highest crest~to-trough waves in a wave record. ;
SS Sea State

i

TLR Top Level Requirement '
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INTRODUCTION

Remarkable as it may seem, until the 1970's, the U.S. Navy rarely
considered the natural environment in the design of its surface ships. Even
more remarkable is the fact that no ships have been lost due to excessive
environmental loadings since Admiral Halsey's flotilla encountered the
catastrophic typhoon of 1944 in the Western Pacific, see Reference 1. Wnile
one might argue that such losses just couldn't occur during peacetime .
operatious, it is true that even in peacetime, millions of dollars a year are 3
expended for ship and aircraft repairs caused by excessive wave and wind
loadings, see Reference 2.

Over the years, naval hull forms have been designed primarily for
calm water performance, e.g., by optimization of calm water ship resistance
and other factors related to the ship's propulsion system. However, in the
1970's, it became clear that often our ships just could not keep up with those
of our adversaries or even our allies in moderate to heavy weather
conditions. In the early 1970's, CAPT J.W. Kehoe alerted us to our poor
performance with a comparison of U.S. and U.S.S5.R destroyer seakeeping
behavior, see Reference 3:

"IN 1967, WHILE STEAMING IN HEAVY WEATHER INTO HEAD SEAS, THE
COMMANDER OF A U.S. NAVY DESTROYER SQUADRON IN THE MEDITERRANEAN NOTED HIS
DD-445, DD-682, AND DD-710 CLASS DESTROYERS TAKING SOLID GREEN WATER OVER THE
BOW AND VERY HEAVY SPRAY ON THE BRIDGE. THE SOVIET KOTLIN-CLASS DESTKOYER
OPERATING IN CLOSE PROXIMITY TO THE CARRIER TASK GROUP APPEARED TO BE TAKING
NO WALTER OVER THE BOW AND ONLY GCCASIONALLY RAISED SPRAY ABOVE THE FO'C'S'LE
DECK EDGE. U.S. SAILORS WORE FOUL WEATHER GEAR AND STAYED OFF THE FU'C'S'LE;
SOVIET SAILORS PARADED ON THE FO'C'S'LE IN THEIR SHIRTSLEEVES."

Figure 1 illustrates the conditions which Kchoe describes. In 1975,
VADM R.E. Adamson, Jr., then Commander, Naval Surface Forces Atlantic
(COMNAVSURFLANT), stressed the gravity of the problem at the Seakeeping
Workshop held at the U.S. Naval Academy, see Reference 4:

"SEAKEEPING, AS IT PERTAINS TO THE U.S., NAVY, IS THE ABILITY OF OUR
SHIPS TO GO TO SEA, AND SUCCESSFULLY AND SAFELY EXECUTE THEIR MISSTON DESPITE
ADVERSE ENVIROMMENTAL FACTORS.

AS WE KNOW, A SHIP IS MORE THAN JUST A PLATFORM WITH EQUIPMENT. IT
IS HER PEOPLE, OUR SAILORS, WHO WILL IN NO SMALL MEASURE DETERMINE THE SUCCESS
OR FAILURE OF THE SHIP'S MISSION. 1I USED THE TERM "ADVERSE ENVIRONMENTAL
FACTORS". 1N THIS CONNECTION I REALIZE ONLY TOO WELL THAT THERE ARE LIMITS AS
TO HOW FAR WE CAN OR SHOULD GO IN DESIGNING A SHIP SO AS TO COPE WITH THE
ENVIRONMENT. FOR EXAMPLE, 1 COULD NOT EXPECT A SHIP TO BE ONE HUNDRED PERCENT
READY WHILE SHE IS CAUGHT IN A TYPHOON OR HURRICAKE.

NOW LET ME GIVE YOU A RECENT EXAMPLE OF HOW "SEAKEEPING" ABILITY HAS
AFFECTED OUR SHIPS. ON A FLEET EXERCISE CONDUCTFD SEVERAL MONTHS AGO, OUR
SHIPS WERE SIMPLY NO MAYTCH AGAINST THE SEA AND WINDS FOR WHICH THE NORTH
ATLANTIC IS NOTORIOUS. OUR COMMANDERS AND COMMANDING OFFICERS WERE FORCED TO
FOREGO MANY OF THE OBJECTIVES OF THE EXERCISE IN ORDER TO ACCOMMODATE TO THE
WEATHER. 1IN SOME CASES:
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OUR SHIPS WERE FORCED TO SLOW TO PREVENT OR LESSEN THE IMPACT OF
DAMAGE,

EXERCISES WERE CANCELLED,

WE COULD NOT REFUEL OUR SHIPS,

EQUIPMENT WAS DAMAGED AND

PERSONNEL WERE INJURED,

HOWEVER, SEVERAL SOVIET WARSHIPS WHICH WERE IN COMPANY AS OBSERVERS DID NOT
APPEAR TO SUFFER THE SAME DEGREE OF DEGRADATION WE DID. THEY STEAMED SMARTLY
AHEAD AND APPARENTLY WITHOUT DIFFICULTY. FURTHERMORE, IT WAS FOUND THAT WE
SIMPLY DO NOT FARE AS WELL REGARDING THE SEAKEEPING ABILITY OF OUR SHIPS WHFN
COMPARED TO SHIPS OF OUR ALLIES,

GOING TO SEA IS AN ADVENTURE. HOWEVER, WE ARE, IN ESSENCE, ASKING
OUR SATIL.ORS TO BATTLE NOT OMLY A POTENTIAL ENEMY THREAT ON THE SEAS, BUT THE
SEAS THEMSELVES.

WE MUST DO BETTER. WITH OUR NAVY DOWN TO ITS PRESENT RELATIVELY LEAN
(VERY LEAN) SIZE, THE SHIPS WE INTRODUCE FOR THE FUTURE MUST HAVE EVERY
TECHNOLOGICAL EDGE POSSIBLE IN ORDER TO ENSURE THE SUCCE3S OF THAT SHIP'S
MISSION. OUR ERST-WHILE FOES SEEM 70 BE DOING RATHER WELL. 1 CERTAINLY HOPE
WE WILL DO BETTER."

As a result of this focus, several options to remedy the situation
were identified:

1. Improve ship design through performance assessment (e.g.,
translate mission requirements into seakeeping performance
requirements, integrate assessment technology into the design
process for all ship typee, and improve/develop combatant
capability assessment {CCAY technology).

2. Improve environmental wsupport to the fleet (e.g., onboard
instrumentation, global and nested area long term forecasting,
climatology, and cperational guidance (identify ship behavior
and missicn sensitivity re *he prevailing environment)).

3.  Adopt novel or advanced ship types.
4.  Adopt larger convaisioral ships.

5. Adopt optimum huli forws (e.g., synthesis of best hull geometry
for both seakeeping and resistance).

Continuing research and development have permitted most of these
options to impact recent ship designs. The progress is largely due to several
exploratory development programs administered by the Naval Sea Systems Command
and executed by the David W. Taylor Naval Ship R&D Center. This paper
sumnarizes the results of some of the efforts aimed at developing the first
option, i.e., improved ship design through performance assessment. In
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particular, the state-of-the~art for modelling the environment for naval ship
performance assessment i3 outlined. The utilization of Sea State descriptors
is discussed and percent frequencies of occurrence for the North Atlantic and

North Pacific are introduced. A Sea State chart applicable to the open ocean !
Northern Hemisphere is offered as a design standard.

S SHIP PERFORMANCE ASSESSMENT

* Before proceeding, a few words must be said about the requirement for
environmental data in ship design.

Naval ships must survive and withstand two environmental forcing
functions in order to accomplish their missions. These environmental loadings
consist of the man-induced threat and the prevailing natural environment
factors which influence the ship's activity and performance.

; Ship performance assessment methodology has evolved substantially in
i the past seven years and is depicted in Figure 2. The methodology permits the
ship designer to address specific requirements such as those illustrated in

: the Top Level Requirement (TLR) of Table 1. For example, for the given ship

f : configuration and specified environment, ship responses (e.g., roll angle) are
: predicted using standard techniques, see Reference 5. If they exceed the

i given criterion (such as 5 degrees for operation of embarked helicopters),

‘ then the operability in that condition is considered degraded. 1In short,

| mission requirements are translated into seakeeping performance requirements.
' The natural environuent must be specified here in order to define the total
operating environment.

et N, o T . it

| An example of a recent effort to compare the relative ability of a

] variety of notional and real ship designs to operate aircraft is given in
Figure 3, from Reference 6. The results indicate degraded operability in Sea
States &4, 5, and 6 for some ships for Vertical Take-Off and Landing (VTOL)

operations.
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! Other examples of performance assessment are found throughout the
literature, and a methodology review is provided in Reference 7. Clearly,
performance assessment results are only as reliable as the input sets defined

b( in Figure 2. The deficiencies of these sets are addressed in Reference 4, and

] hence will not be restated here. The research undertaken since 1975 to i

improve the natural enviromment inputs is described in internal Navy program

planning documents. Specific vesults of recent Navy environmental research

and development efforts are found in References 8 to 16.
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SHIP SENSITIVITY TO THE NATURAL ENVIRONMENT

Table 2, from Reference 9, defines probable environmental factors

which degrade ship performance. The table can te simplified, however. In
short, it is hypothesized that the three most important surface environmental
degraders to naval systems are:
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1. Waves
2. Winds
3. Precipitation (rain)
T
@‘ : Waves
A Surface(d) ships are degraded by the combined effects of wave height,

wave period (or length), and wave direction. Taken together, these three
variables describe a Sea State, Greater ship performance degradation in lower
Sea States can occur depending upon the combination of height, period, and
directional properties. 1In general, the designer requires the following
resolution for both sea (local wind driven) and swell (from decaying local
winds or distant storms) waves:

3 1. Height - #* 0.3 meter (1 foot) of significant wave height

' 2, Period - + 1 second of modal wave period for at least the
: corresponding range of wave lengths of 0.75 to 1.25 of the ship

2 length

3. Direction - + 7.5 degrees for each frequency (or period)
component of the seaway.

= Winds

& . Wind loadings on surface ships can introduce drift forces which

; retard stationkeeping functiouns. Like waves, winds also introduce structural
3 damage to topside equipments. While a modelling capability in this area is

B clearly desirable, one does not exist except for higher altitudes than are

y pertinent to the ship structure. 1In fact, the only existing near surface wind
: models have been developed for civil engineering applications over land (e.g.,
i skyscraper design), The resolution required for a marine model is unknown,

P , except, of a course, that small scal- gustiness factors should bde included.

Rain

Y 7 P

Clearly, rain degrades sensors and other systems., For most combatant
capahility assesgments, a rain drop size of about 2 mm is assumed.

Most of the remainder of this paper is focused on wave environment
modelling which is certainly the single most important environmental degrader

(excluding fouling) of ship hull performance.

O

STATE~OF-THE-ART IN WAVE MODELS

Wave modelling is described in detail in Reference 14. The reference
provides a standard for conducting comparisous of predicted performance of
NATO ships. It outlines curreant U.S. Navy practice and contains a data base
of seasonal wave and wind statistics for NATO waters. The state-of-the-art in
wave modelling in the U.S. Navy is described in such sutficient detail in
Reference 14 that it is only briefly stated here.

i
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Open Ocesn Spectra

Bretschneider two-parameter wave spectra are employed. The spectra
are defined by the two parameters significant wave height and modal wave
period. For operationally average values, the spectra are treated with a
cosine squared spresding function about + 90 degrees. This produces a
spectrum representative of short-crested seas. Otherwise, worst case or
long-crested spectra are retained. Only unimodal seas are modelled,

Fetch-Limited, Coastal, or Shallow Water Spectra

A modified JONSWAP spectrum is employed. It too is define?! by
significant wave height and modal wave period. Generally, only long-crested
seas are considered, though, there is some suggestion that higher-crdered
cosine functions may provide good directional representation, see Reference
16.

Model

Fur many U.S. Navy design support evaluations, e.g., to address
TLR's, the following steps provide sufficient wave inputs:

1. Determine Sea State(s) in which missions must be performed with
soue degree of success

2. Identify significant wave height end modal wave period pairs
associated with those Sea States

3. Develop either Bretschneider or JONSWAP wave spectra using the
wave height and wave period pairs (long- or short-crested) for
implementation in the met. >dology outlined in Figure 2.

4. Develop percent times of operation hy application of the percent
frequencies of occurrence of the wave height and period pairs
(Figure 3 was thusly developed).

An important feature here is that the first step really drives all of
the rest. The initial specification of Sea State has the most important
impact on the prediction of seakeeping performance. It is recognized that the
use of Sea State numeral tables is a widespread practice employed by operators
to describe wave and wind conditions. It is also recognized that many
different tables are in use by naval, government, and maritime organizations
throughout the world. This can lead to misunderstanding and poor
coumunication, see Reference 17. A nationally, if not internationally,
recognized standard is clearly required.

SEA STATE DEFINITIONS

In the early nineteenth century Admiral Beaufort of the British Navy
invented a system for estimating and reporting wind speeds, see Reference 18.
The system was originally based on the effects of various wind speeds on the
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amount of canvas that a full-rigged frigate of the periond could carry. It has
since been modified, see Table 3 from Reference 19, and equates Becaufort force
(or number) and wind speed to the state of the sea. Even in this century,
shipboard observers have used the table to estimate wind speeds (e.g., ships
without wind measuring devices). Table 3 includes a Sea State numeral
definition s¢ill in worldwide use today. 1In fact, the World Meteorological
Organization (WMO) has endorsed this definition as an international staudard.

However, it is noted that for some decades, the U.S5. Navy has
utilized a Sea State definition based upon the relationships between wird
speed and siznificant wave height for fully-developed seas, see Tables 4.
Tabie %4 was developed by Wilbur Marks using the Neumann wind/wave
relaticnship. The Neumann wind speed versus wave height relationship assumes
the winds to be averaged at 7.5 m above the surface. This wind/wave
relationship was superceeded by the Pierson-Moskowitz formulation in the late
1950's and Table 4 was thence modifiad for uigher Sea States.

During a recent sucvey of NATO nations with regard to environmen*al
modelling, it beczme clear that most nations have adopted the WMO standard.
Therefore it was utilized in some recent U.S. Navy work, see Reference 15,
which provides a data base of wave and wind conditions fo. NATO waters.
Further inquiry, e.g., Reference 20, led to the observation that U.S. Navy
cperators alsc use the WMO standard and to the conclusion that the U.S. Navy
design and research communities are probably the sole remaining users of Table
4 (or its modified version for higher-Sca States). Consideration of a change
of practice is suggested.

Table 5 and Figure 4 provide ccwparisons of the old
(Pierson-Moskowitz based) and new (WMO) Sea State numeral definitious. Figure
4 also compares the mean significant wave height values at each Sea State for
each definition. Frequently, TLR's indicate required performance for Sea
States 4, 5, and 6, see Table 1. Fortunately, the variation between the
definitions of these three is not very substantial, see Figure 4. However,
the older definition indicates higher wave heights for both lower and higher
Sea States.

In general, the initial definitior of required performance for a new
ship design is in terms of Sea State. Thus the importance of Sea State
definition is in the identification of significant wave heights for which
seakeeping performance is assessed. The older definition of Sea State
potentially permits the overpredicticn of performance degradation in lower and
higher Sea States. Generally, Sea States below State 4 are considered
uaimportant to performance so the former is not significant, However, the
later implies overprediction of failures in heavy weather. Generally, only
limited capability is expected in Sea States 7 and above, see Table 1.

Considering that the impact upon current design practice is not
substantial, it is recommended that the new (WMO) Sea State definition be
adopted by the U.S. Navy design and research communities. This permits much
more effective communication with our operators and with other NATO nations.
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SEA STATE STANDARD

sl Table 6 provides annual percentage probabilities of occurrence for
each Sea State in the North Atlantic. It also identifies associated modal
wave period ranges, The table was developed using hindcasting technicues
described elsewhere, see Reference 14, Table 7 provides similar data for the
North Pacific. It was also developed nsing hindcasting techniques.

Figure 5 provides a comparison of the Sea Sate occurrences in the two
basins. Clearly, the North Pacific is a more hostile operating region. If
the exceedances for the two are averaged (treating basin size as negligible),
the occurrences associated with the open ocean Northern Hemisphere result,

_ Figure 6 provides a comparison of the modal wave periods associated
with each Sea State. Genmerally, the North Pacific provides a richer (broader)
range of periods and they tend to be somewhat longer than those in the North {
Atlantic, which is probably due to the greater fetch., However, for Sea States
7 and above, somewhat longer wave periods are noted in the North Atlantic.

The reason for this is unclear and warrants further investigatiom. J

Figure 7 compares the most probable modal wave period for each Sea
State and basin. The most probable modal wave period is frequently used in
association with the mean significant wave height of the Sea State (e.g., as
was the case in Figure 3 and as described in Table 1). A faired line through
the data points provides a Sea State versus most probable modal wave period
for the Northern Hemisphere. Figure 8, derived from Figure 6, provides an
estimated summary of the modal wave period ranges for the Hemisphe. .

ntindh. o win el

Table 8 provides a complete summary of estimated Sea State
occurrences for the Northern Hemisphere. The table is recommended for generic
application to ship design problems. It provides. the only known (to this
author) large area Sea State occurrence data. The table provides useful data
for TLR definition and together with specific percentage frequencies of
occurrences of modal wave period, can be applied in all of the available naval
seakeeping performanc: assessment methodologies. The table replaces a
previous one, based solely on the North Atlantic and Sea State numerals of
dubious universal acceptance.

o e mma s

SUMMARY

Table 8 is recommended as a design standard for specifying open ocean
wave conditions in the Northern Hemisphere.
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SIGNIFICANT WAVE HEIGHT

oon METERS FEET
Number old New old New

0-1 0.0 - C.6 0.0 - 0.1 0-19 0-03
2 0.6 - 1.3 0.1 - 05 19 - 4.1 3-16
3 13-17 05 - 1.25 a1-57 16 - 4.1
4 17 - 22 1.25 - 25 5.7 - 7.4 41 - 82
5 22 - 40 25 - 4.0 7.4 - 13.0 82 - 13.1
6 4.0 - 6.3 4.0 - 6.0 130 - 20.8 131 - 19.7
7 6.3 - 123 6.0 - 9.0 208 - 40.3 19.7 - 295
8 12.3 - 18.8 9.0 - 14.0 403 - 61.5 295 - 45.5
>8 >18.8 >14.0 >61.6 >45.5

TABLE 5

OLD (NEUMANN, PIERSON — MOSKOWITZ) VERSUS NEW (WMO)
SEA STATE DEFINITIONS
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3 NORTHERN HEMISPHERE
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Modal Wave Period, Sec
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FIGURE 8

ESTIMATED MODAL WAVE PERIODS FOR
THE NORTHERN HEMISPHERE
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