AD-Al14 115

UNCLASSIFIED

TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES F/6 1271 C
UNCONSTRAINED MINIMIZATION BY INTERPOLATION: RATES OF CONVERGEN==ETC (L)

AUG 81 J BARZILALI | NUODI“-TS-C-0569
CCS=411

IENRNEREEEEE




ADA114115

CENTER FOR
CYBERNETIC
STUDIES

The University of Texas
Austin, Texas 78712




Research Report CCS 411

UNCONSTRAINED MINIMIZATION BY
INTERPOLATION: RATES OF
CONVERGENCE

by
J. Barzilai

August 1981

This research is supported in part by ONR Contract NOOO14-75-C-0569
with the Center for Cybermetic Studies, The University of Texas at
Austin. Reproduction in whole or in part is permitted for any purpose
of the United States Govermment.

CENTER FOR CYBERNETIC STUDIES

A, Charnes, Director
Business-Economics Building, 203E
The University of Texas at Austin

Austin, Texas 78712

——SEITTION EYATENENT X (512) ¥71-1821
‘—‘_—___...—.——‘—'-'—'—‘
for reloansl
\ Rppecrred for TabiE )

@




S er———— ———
e J—'--"-"-.‘"-"-“'-'!!!!!-'“""“"WEEEESIIIIIIIIIIII-“

! ABSTRACT

|

We analyze the rate of convergence of a class of algorithms based on n~dimensional

interpolation. In particular, we present a class of algorithms which use first order

information only, while maintaining quadratic convergence.
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1. Introduction

Most of the commonly used algorithms for the unconstrained minimization of
£:R" >R for n> 1, are descent methods. These are based on the iteration
n
X1 x1-+a1d1, where d1 € R© 18 a search direction, and oy
size, usually determined by a line search as a minimizer of f(xi-+adi) over a > 0.

€ R 1s the step-

The exception is Newton's method, which is based on interpolating f by a quad-
ratic and minimizing this quadratic at each step of the algorithm.

For a generel discussion of unconstrained minimization techniques see {1,8].
The following points are relevant to our ‘discussion.

The classical steepest descent method uses first order (i.e., gradiemt) in-
formation only. Its main drawback is its linear rate of convergence.

Newton's method converges quadratically. However, it necessitates the costly

computation of the Hessian at each iteration.

Other methods based on first order information are known to converge super-

linearly (e.g., [6]).

Many of these methods approximate Newton's method in the sense that the search
direction they generate can be shown to be a direction along which an appropriate
quadratic is minimized. ‘

A different approach is based on the unfounded assumption that algorithms
having the finite termination property (i.e., solution in a finite number of steps)
for a class of functions wider than the class of quadratics, are faster than those
having the quadratic termination property. Thus, Jacobsou and Oksman [7] generalize
from quadratic termination to homogeneous functions termination. This was further
generalized (see e.g., [4]).

Another step twoard discarding the quadratic model has receuntly been taken

by Davidon [5]. His motivation, however, partly coincides with ours.




In this paper, we analyze the rate of convergence of n-dimensional interpolation
algorithms for unconstrained minimization. We note the following.

Most of the commonly used algorithms for one-dimensional minimization are based
on polynomial interpolation. It is well known that Newton's method in this case is
inefficient in the sense that quadratic convergence can be achieved using first order
information only (e.g., (8, p. 142]), by using two interpolation points rather than
one. This should make one doubt whether Newton's method is a suitable model for
efficient algorithms.

Quadratics are inadequate for n-dimensional two-point interpolation with zero
and first order information (see Davidon [5]). Therefore, non-polynomial interpolation ?
is necessary. Our analysis shows that the rate of convergence is independent of the
interpolating function. For interpolatory algorithms, therefore, the question whether

the search direction coincides with Newton's direction or generalizes it, is irrele- L

vant to the rate of convergence analysis. The same is true for terminationm properties.
The main difficulty in the analysis of n-dimensional interpolation algorithms is

that the formulas for the error in n-dimensional interpolation are not suitable for

this purpose. We overcome this difficulty by reducing the n-dimensional problem to

an appropriate one-dimensional interpolation problem.

2. Minimization by Interpolation

The interpolation algorithm we study generates a sequence [xi] as follows.

to

Let 8> 1, m> 0 be fixed integers. Given m+1 approximants Xgoeror X4y

the solution of

1) VE(x') = 0,
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ga1°° xi-m to construct a new approximant x

late £ by T requiring

ve use X, , X First we interpo-

i+l °

(2) Tm)& )=f“)u ) j=0,...,m; k=0,...,8-1 .

i-j i-]

(2)

Here f(l) =vf, £ =v2f etc., and T: R" > R is assumed to depend on some param-

eters to be determined by (2). The new point x ie determined by

i+l

3) vT(x, ) =0.

iHl

In the following, we assume that equations (1)-(3) have solutions.
We define the rate (or order) of convergence of a sequence {xi} converging

to x* as the number p (if it exists) such that

egyy =l
—_— > C#0.

*
-

Here ||+|| is a fixed arbitrary norm. Ortega and Rheinboldt [9, §9] refer to the
rate p defined above as the C-order of the sequence {xi}. When it exists, it
coincides with their Q- and R-orders. We will unify our results for the C-, Q-
and R~orders through the use of the C-order of convergence.

We derive the rate of convergence of the n~dimensional interpolating algorithm
by establishing some difference relations for the errors "xi-x*". To derive the
*

basic difference relation we need, we pass a curve in R" through the points x

and x i.e., we determine a function V: R » R® such that

1+1,81,..., Xi_m,

V(t, ) = x j=-1,0,1,...,m,
@) bt
V(t) =x ,

where the parameter t 1is chosen so that




) tey = eyl - -0

We will later discuss this construction. Note, however, that the construction
of ¥ 1is a part of the analysis of the properties of the algorithm, not a part of
the algorithm itself.

Henceforth we will assume O# ti_ja‘ti_k for all 1 and 3,k=-1,0,...,m.
This is a natural assumption. If t1=0 for some i, the algorithm terminates,
while the assumption ti-j # ti-k j,k=-1,...,m has to be made even in the one-di-
mensional case (cf. Traub {14, Ch. 4]).

New define O(t)=TW(t)),¢(t) =£(W(t)). Note that V¥,¢,0 depend on 1.
Following Traub [14] and Tamir [12,13), we will not make this dependence explicit

in order to simplify notation. Equations (2) and (4) imply

6) 6™, p = 4®, 0. 1m0 mike0,. 01

i-)

.

It follows that (6) defines one-dimensional interpolation for which a convenient
error formula exists (see Ostrowski [10, p.12]). Henceforth, we assume &,¢ € CH'1
in a neighborhood of t*- 0, where r=s(m+1). Using the one-dimensional error

formula we have

(r) (r) m
¢ €0 ®) 7, °,

@ $(e) - 9(t) =
o 1

where ¢ 18 a point in the interval determined by t, t:l. soees Note that

»Yem

formula (7) holds for general (not necessarily polynomial) interpolation.

We now differentiate (7) and set t=0. From (1) and (2) we have

- ' - ' - ' = ¢ - ' =
4'(0):0'«“1) 0, so that ¢'(0)~0'(0)=-0'(0)=0 (t4) =0 (0) =, .0"(Q),
where ¢ 18 a point between t£+l and 0. Differentiating the right hand side of
- (7) using Ralston's result [11] on the differentiation of the error term generalized

for the hyperosculatory case (see [2]), we finally have
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Lemma 1. Under the assumptions made above, the errors in the n-dimensional interpo=
lation algorithm satisfy the difference relation

® t ™My kgotii 120 tay * Yy jfot:-j ’
j#k
where
- MG, (e, ) D) e . N, (£, ) (DT
1 CHIC S T
M - 2000@ Nee) = é(“l’(gi;?(’“’ (&) {

and where gi(t), qi(t) are in the interval determined by .t,t
0. O

141°°° Y

and g(tﬂ_l) is in the interval determined by t1+1’

It follows from (8) that if the initial errors ¢t cos tn are small enough,

0o’
and if the coefficients {Mi), [Ni) are bounded, the sequence [t’.] converges to

*
zero, i.e., X, *x . Moreover, if s > 2, (8) implies

t
+
(9 Lo,

i

(i.e., superlinear convergence). If s=1, we assume m > 2. For m=2, (8) is
the basic difference relation governing the behavior of the Quadratic Fit algorithm, ’
which is known to converge superlinearly (see Theorem 3.4.1 in Brent [3]). "It is
evident ffom (8) that the rate for m > 2 {s not less than the rate for m=2,

Therefore, (9) holds for all s >1, m> 0 1if r=s(m+1) > 3. Rewriting (8) in

the form
g-1 T & n t:1 Ni
t - M.t nme [1+ z —— g ==t ]
i+l b A jml i=3 kel ti-k Mi. i

we finally have




Lemma 2. Under the assumptions made above, and if Mi +>M#%#0, the sequence ¢t

i
satisfies the difference relation

- s-1 O s
(10) €41 " Aty jfl"x-j

with A, T M Qa

Defining yi=log|til and Bi'-loglAil, (10) implies the difference equation

Yiqg = (8-D)yy -8

L
Yi.3 =B
=1 171 i

with indicial equation

1) ey T e -0 ,
j=0
vhere the sum in (11) is taken as zero if m=0.

Tamir [12,13] proves that under our assumptions the C-rate of convergence of
the sequence { til (hence {xi]) is given by the unique positive root of the in-
dicial equation (11). 1In this case, the C-, Q-, and R-rates of convergence are
exactly p, where p 1is the positive solution of (11).

If the limit of Mi exists and i{s zero, or if this limit does not exist, but

the sequences [Mi]’ [Ni] are bounded, equation (8) can be rewritten in the form

t = t’-l n e M, [1+ % —ti ] +N,t )
- ’
i+l i =1 i-3"1 k=1 ti-l i1

which implies that the Q- and R-rates of convergence are still at least p.
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We now summarize our results:
(r+l)
Theorem 1. If equations (1)-(4) have solutions, the functions T,f,y € C ,

if the sequences {Mi) and [Ni) are bounded, and if the initial errors of

the interpolation algorithm are small enough, then the sequence {xi} converges
*

to the solution x with C- (when it exists), Q- and R-rates of convergence at

least p, where p is the unique positive solution of (11).

Corollary 1. The rate of convergence of the sequence generated by the interpo-

lation algorithm is independent of the interpolating function.

The reader should note that while the curve V(t) may be constructed in in-
finitely many ways, it is sufficient to establish the existence of just one such

curve (for each i). We now turn our attention to this problem.

Lemma 3. If to =0 and ti # tj for 1,3=0,1,...,k the determinant

2 3 k+1

1 to to ces to
2 .3 k+l

1 e ¢t .o t

D = 1 1 1

2 3 k+1

1 tk tk see

does not vanish.

Proof. Since t0=0 we have




2 3 k+1 kel
cl tl LK N J tl 1 tl LN tl
4
2 3 k+1 k-1
t2 t2 ces t2 1 t2 P tz
k
D = . - L . . - L . L = n ti L . . . L . . L . Ll
i=] 1
2 .3 k+1 ‘ k=1 )
tk tk coo tk 1 tk ) tk |

The last determminant is a Vandermonde determinant, and since £ # tj i,3=1,...,k,

it does not vanish., &

k+1
Lemma 4. Let p(t)=at+ . a ti, and let t,.=0, t,#t, for 1,j=0,1,...,k. I
- 1=0 1 0 17 ]
i#1 '

Then the system of equations

P(tj)=B J=0,...,k,

3

i=0,2,3,...,k+1 has a solution for all «,pB

for the unknowns a

i 3

Proof. This is an immediate consequence of Lemma 3. a

Since p'(0)=0 and p(t) is a polynomial, taking k=m+2 in Lemma 4 we

have

Lemma 5. If the errors satisfy O0# ti-j* tx for all 1 and j,k=-1,0,...,m,
ﬁ there exists a curve Ve C. satisfying (4). Moreover, we may require ‘1’(0) =a

with a e R" arbitrary. D

We can now state our main result.

Theorem 2. Assume that equations (1)=-(4) have solutions, f has continuous deriv=-

atives of order r+1, the parameters of T depend continuously on the data through

AN e -




(2), T has continuous derivatives of order r+1 for the appropriate values of

4t

the parameters. Assume also that sz(x*) #0 and 0#t for all 1 and

i~ "i=k
j,k=-1,0,...,m, then if the initial errors of the interpolation algorithm are
- ¢ . small enough, the sequence {xi} converges to the solution x* with C= (when it

exists) Q- and R-rates of convergence at least p, where p is the unique positive

» solution of (11). i

Proof. By the above it is sufficient to show that under the assumptions of
the theorem, the sequences [Mi}, [Ni} are bounded. This is the case if
‘l.’(O)Tvzf(x*)\l-l(O) 40, for which it is sufficient to choose the vector a in Lemma 5

*
as an eigenvector of sz(x ) corresponding to a nonzero eigenvalue. a

B Summary and Conclusion

; We have shown that the rate of convergence of n-dimensional interpolation al-
gorithms is inherited from the underlying one-dimensional interpolatiom, that it is
independent of the interpolating functions, and is given by the unique solution of
the equation

m-1

l (-1)t™-s ¥ td=0,
1=0

(12) e
where m+1 interpolation points and s derivatives (of orders zero to s-1)
are used.

Our work 18 based on the results of Traub [14] and Ostrowski [10] for the one-
dimensional root-finding problem. Tamir [12,13] adapted these results for the mini-

mization problem. In [12] he studies the rate of convergence of algorithms using

function values only (m=0) with a superfluous assumption and a false conjecture.

This detalled analysis fs repeated in [13] for the case m > 0. He treats polynomial

interpolation only, and shows that for fixed 8 and m > », the rate p tends to
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(13) S+ »/(%)zﬂ .

However, he neglects to realize the effect of memory on the rate of convergence,
which is implied by (11) and (12).

Indeed, for fixed s, the rate is obtained for m=0 and m=1 by solving
the indicial equations t = (s-1)=0 and tz - (s=1)t =8=0, respectively. There-
fore, p=s-1 for m=0, p=s for m=1 and ‘p+§-+4(§)2+1 for m¥»o, It
follows that algorithms using more than two interpolation points are inefficient,
and two-point algorithms are substantially faster than one-point algorithms.

In particular for m=1 and s=2 we have a two-point algorithm using first-
order information with second-order rate of convergence (which is a well-known re-
sult in the one-dimensional case).

Note that no line search is needed in this class of algorithms, and they they
may be designed to locate saddle points rather than minimum points. A line search,
however, may serve as part of a globalizing procedure.

Compare also the discussion in Davidon [5) regarding the difficulty of determ-
ining the effect of memory on the performance of descent algorithms.

We have not computed the asymptotic error constant, since it depends on the
norm used (see Ortega and Rheinl):oldt [9]1). This can be computed, however, under
the appropriate assumptions (cf. Tamir [12,13]). We have also made no attempt at
giving the strongest results (i.e., the weakest assumptions) possible. Compare, for
example, Brent [3].

Finally, note that Theorem 1 holds for infinite dimensional spaces, and that
our analysis is applicable with the obvious modifications to the solution of systems
of equations, for which the indicial equation analogous to (l1) is

m
Rl B Y e ap.
i=0
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