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/ ABSTRACT

We analyze the rate of convergence of a class of algorithms based on n-dimensional

interpolation. In particular, we present a class of algorithms which use first 
order

information only, while maintaining quadratic convergence.
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1. Introduction

Most of the commonly used algorithms for the unconstrained minimization of

f: Rn R for n > 1, are descent methods. These are based on the iteration

xi+l =x +a i d , where di e R is a search direction, and c i e R is the step-

size, usually determined by a line search as a minimizer of f(xi +adi) over m > 0.

The exception is Newton's method, which is based on interpolating f by a quad-

ratic and minimizing this quadratic at each step of the algorithm.

For a general discussion of unconstrained minimization techniques see [1,8].

The following points are relevant to our discussion.

The classical steepest descent method uses first order (i.e., gradient) in-

formation only. Its main drawback is its linear rate of convergence.

Newton's method converges quadratically. However, it necessitates the costly

computation of the Hessian at each iteration.

Other methods based on first order information are known to converge super-

linearly (e.g., (6]).

Many of these methods approximate Newton's method in the sense that the search

direction they generate can be shown to be a direction along which an appropriate

quadratic is minimized.

A different approach is based on the unfounded assumption that algorithms

having the finite termination property (i.e., solution in a finite number of steps)

for a class of functions wider than the class of quadratics, are faster than those

having the quadratic termination property. Thus, Jacobsoa. and Oksman [7] generalize

from quadratic termination to homogeneous functions termination. This was further

generalized (see e.g., (41).

Another step twoard discarding the quadratic model has recently been taken

by Davidon 15]. His motivation, however, pertly coincides with ours.
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In this paper, we analyze the rate of convergence of n-dimensional interpolation

algorithms for unconstrained minimization. We note the following.

Moat of the commonly used algorithms for one-dimensional minimization are based

on polynomial interpolation. It is well known that Newton's method in this case is

inefficient in the sense that quadratic convergence can be achieved using first order

information only (e.g., (8, p. 1421), by using two interpolation points rather than

one. This should make one doubt whether Newton's method is a suitable model for

efficient algorithms.

Quadratics are inadequate for n-dimensional two-point interpolation with zero

and first order information (see Davidon [5]). Therefore, non-polynomial interpolation

is necessary. Our analysis shows that the rate of convergence is independent of the

interpolating function. For interpolatory algorithms, therefore, the question whether

the search direction coincides with Newton's direction or generalizes it, is irrele-

vant to the rate of convergence analysis. The same is true for termination properties.

The main difficulty in the analysis of n-dimensional Interpolation algorithms is

that the formulas for the error in n-dimensional interpolation are not suitable for

this purpose. We overcome this difficulty by reducing the n-dimensional problem to

an appropriate one-dimensional interpolation problem.

2. Minimization by Interpolation

The interpolation algorithm we study generates a sequence (xi) as follows.

Let s > 1, m > 0 be fixed integers. Given m+1 approximants x0 3 ..., xm+1  to

the solution of

(1) Vf(x*) -0,

do
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we use xi, x 1 ,..., xi to construct a new approximant x 1 . First we interpo-

late f by T requiring

(2) T(k)(x 1 1 ) f f(k(xl 1 ) J=O,...,m; k-O,...,s-.

Here f(1) =Vf, f (2)=v2f etc., and T: R n R is assumed to depend on some param-

eters to be determined by (2). The new point xi+1  is determined by

(3) VT(xi+I) 0.

In the following, we assume that equations (1)-(3) have solutions.

We define the rate (or order) of convergence of a sequence [xii converging

to x as the number p (if it exists) such that

A. 
Ixi+x*0

I Jxi-x*Ilp

Here II.II is a fixed arbitrary norm. Ortega and Rheinboldt [9, 19] refer to the

rate p defined above as the C-order of the sequence (xii. When it exists, it

coincides with their Q- and R-orders. We will unify our results for the C-, Q-

and R-orders through the use of the C-order of convergence.

We derive the rate of convergence of the n-dimensional interpolating algorithm

by establishing some difference relations for the errors 11xi-x* l. To derive then *"
basic difference relation we need, we pass a curve in Rn  through the points x

and x..., xi 3 , i.e., we determine a function : R Rn  such that

*(t1 1 ) - xii J =-1,0,1,...,m

* *
whr te(t*) - * ,

, I where the parameter t is chosen so that
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(5) ti j  I.j-x*ll t - IIx*-X*I - 0

We will later discuss this construction. Note, however, that the construction

of * is a part of the analysis of the properties of the algorithm, not a part of

the algorithm itself.

Henceforth we will asstue 00 ti- j i ti-k for all i and J,k-l,0,...,m.

This is a natural assumption. If tim 0 for some i, the algorithm terminates,

while the assumption t i J,k'.-l,...,m has to be made even in the one-di-

mensional case (cf. Traub [14, Ch. 4]).

New define Q(t)=T(*(t)),4(t)- f((t)). Note that *,4, depend on I.

Following Traub [14] and Tamir [12,13], we will not make this dependence explicit

in order to simplify notation. Equations (2) and (4) imply

" (6) 0 (k) ( t (k) (
(6 0 k)(tip j) k (ti~j) , J=0,...,m; k-0,...,s-1

It follows that (6) defines one-dimensional interpolation for which a convenient

error formula exists (see Ostrowski [10, p. 12]). Henceforth, we assume 0,4 £

in a neighborhood of t -0, where r -s(m+l). Using the one-dimensional error

formula we have

4(r) (,).(r) M_) m
(7) (t) - (t) = , r! 11 (t-t4 i ) s

where E is a point in the interval determined by t,t , . i-m * Note that

formula (7) holds for general (not necessarily polynomial) interpolation.

We now differentiate (7) and set t -0. From (1) and (2) we have

0-' ( '(t 1 ) -0, so that 4'(0) -'(0) - -'(0) O'(ti+) -9 '(0) - t 1" (),

where C is a point between ti41  and 0. Differentiating the right hand side of

(7) using Ralston's result [111 on the differentiation of the error term generalized

for the hyperosculatory case (see (21), we finally have

ag
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Lemna 1. Under the assumptLons made above, the errors in the n-dimensional interpo-

lation algorithm satisfy the difference relation

m s-1m m
(8) ti+=i kLOLk = t;.j + "L 11 tt 1j ,

k JiWo
j~k

where

r-r
M= *"((tj+ I ) ' i

M(t) N(r) (t). (r) (t) N(t) ( (t).,(r+l) (t)= r! (r+l) .

and where gL(t), 9i(t) are in the interval determined by t,t ,.. t .-n

and C(ti+I) is in the interval determined by t+ 1 , 0. CO

It follows from (8) that if the inLtLal errors to ,..., tn are small enough,

and if the coefficients [ML), [Ni) are bounded, the sequence fti) converges to

zero, i.e., xI * x Moreover, if s > 2, (8) implies

(9) t L+- * 0,
ti

(i.e., superlinear convergence). If s- 1, we assume m > 2. For m= 2, (8) is

the basic difference relation governing the behavior of the Quadratic Fit algorithm,

which is known to converge superlinearly (see Theorem 3.4.1 in Brent [3]). 'It is

evident from (8) that the rate for m > 2 is not less than the rate for m- 2.

Therefore, (9) holds for all s > 1, m > 0 if r-s(m+l) > 3. Rewriting (8) in

the form

m n t N

t+1  L M + j=l k-Zk tik MU t

we finally have

d
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Lem a 2. Under the assumptions made above, and if M MO 0, the sequence ti

satisfies the difference relation

- (10) ti+1  A i+ltt tji-i i-i

with A i+ +M. C3

Defining Y1 =loglti and Bim logjAi1, (10) implies the difference equation

mYi+l "(')i" s. i-J = i+l

with indicial equation

rn-i

(11) tlfl+l-(s-l) m -s Z t j = 0,
J=0

where the sum in (11) is taken as zero if m=0.

Tamir [12,13] proves that under our assumptions the C-rate of convergence of

the sequence Iti) (hence [xi)) is given by the unique positive root of the in-

dicial equation (11). In this case, the C-, Q-, and R-rates of convergence are

exactly p, where p is the positive solution of (11).

If the limit of Mi exists and is zero, or if this limit does not exist, but

the sequences (Mi), (Ni) are bounded, equation (8) can be rewritten in the form

m n t +
t t l Ht s 4(M [1 + E Ni

ti+l Ji M ' i k-l t i-k ]  i

which implies that the Q- and R-rates of convergence are still at least p.
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We now summarize our results:

Theorem I. If equations (1)-(4) have solutions, the functions T,f,* C C(r+l)

if the sequences (Mi) and [N ) are bounded, and if the initial errors of

the interpolation algorithm are small enough, then the sequence [x i converges

to the solution x with C- (when it exists), Q- and R-rates of convergence at

least p, where p is the unique positive solution of (11).

Corollary I. The rate of convergence of the sequence generated by the interpo-

lation algorithm is independent of the interpolating function.

The reader should note that while the curve (t) may be constructed in in-

finitely many ways, it is sufficient to establish the existence of just one such

curve (for each i). We now turn our attention to this problem.

Lemna 3. If t =0 and t 4 t  for i,j=0,1,...,k the determinant

2 3 k+l1to  to  ... tO

2 3 k+1

tI  tI . . . .t 1.

1 tk k ... k

does not vanish.

Proof. Since t0  0 we have

a
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2 3 k+l 1 . k-
t1  t1  ... I 1  . 1

2 3 k+l k-lt 2  t 2  . .. t 2  1..- t 2

k 2
D . . . . . . . . 1 H t . . . . . . . . ." It-1 t

2 3 k+l 1 t k-
tk tk  ... tkk •. tk

The last determinant is a Vandermonde determinant, and since t # t i,j= 1,...,k,

it does not vanish. C
k + l = , t t f r i J 0 1 . . k

Lemma 4. Let p(t)=t+ aiti, and let to=0, tf tj for i,J,1,...,k.
i=0
0 1

Then the system of equations

p (t = r j J-0,...,k

for the unknowns aI  i= 0,2,3,...,k+1 has a solution for all c,p

Proof. This is an immediate consequence of Lemma 3. C3

Since p' (0) =m and p(t) is a polynomial, taking k=m+2 in Lemma 4 we

have

Lemna 5. If the errors satisfy 0 it j  t k  for all i and j,k=-1,0,...,m,

there exists a curve * e Co satisfying (4). Moreover, we may require 4(0) = a

with a e Rn  arbitrary. C3

We can now state our main result.

Theorem 2. Assume that equations (l)-(4) have solutions, f has continuous deriv-

atives of order r +1, the parmters of T depend continuously on the data through

d
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(2), T has continuous derivatives of order r +1 for the appropriate values of

the parameters. Assume also that V2 f(x*) 0 and O t iji t ik for all i and

jk= -1,0,...,m, then if the initial errors of the interpolation algorithm are

small enough, the sequence (x i) converges to the solution x with C- (when it

exists) Q- and R-rates of convergence at least p, where p is the unique positive

solution of (11).

Proof. By the above it is sufficient to show that under the assumptions of

the theorem, the sequences (Mi), [Ni are bounded. This is the case if

(O)T V 2f(x *)*(0)10, for which it is sufficient to choose the vector a in Lemma 5

as an eigenvector of V 2f(x ) corresponding to a nonzero eigenvalue. M

Stummary and Conclusion

We have shown that the rate of convergence of n-dimensional interpolation al-

gorithms is inherited from the underlying one-dimensional interpolation, that it is

independent of the interpolating functions, and is given by the unique solution of

the equation
tm+1 m-1

(12) tm+l - (s -1)m-s F, t 0
j=O

where m+l interpolation points and s derivatives (of orders zero to s-I)

are used.

Our work is based on the results of Traub [14] and Ostrowski [10] for the one-

dimensional root-finding problem. Tamir [12,13] adapted these results for the mini-

mization problem. In [12] he studies the rate of convergence of algorithms using

function values only (m- O) with a superfluous assumption and a false conjecture.

This detailed analysis is repeated in (131 for the case m > 0. He treats polynomial

interpolation only, and shows that for fixed a and m + o, the rate p tends to

A
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(13) + ()+1

However, he neglects to realize the effect of memory on the rate of convergence,

which is implied by (11) and (12).

Indeed, for fixed s, the rate is obtained for m= 0 and m- 1 by solving

the indicial equations t - (s-I) = 0 and t2 - (s-l)t - s - 0, respectively. There-

fore, p=s- 1  for m=O, p-s for m-l and p)!+l( +I for m *. It

follows that algorithms using more than two interpolation points are inefficient,

and two-point algorithms are substantially faster than one-point algorithms.

In particular for m-I and sa-2 we have a two-point algorithm using first-

order information with second-order rate of convergence (which is a well-known re-

sult in the one-dimensional case).

Note that no line search is needed in this class of algorithms, and they they

may be designed to locate saddle points rather than minimum points. A line search,

however, may serve as part of a globalizing procedure.

Compare also the discussion in Davidon [5] regarding the difficulty of determ-

ining the effect of memory on the performance of descent algorithms.

We have not computed the asymptotic error constant, since it depends on the

norm used (see Ortega and Rheinboldt [9]). This can be computed, however, under

the appropriate assumptions (cf. Tamir [12,131). We have also made no attempt at

giving the strongest results (i.e., the weakest assumptions) possible. Compare, for

example, Brent [3].

Finally, note that Theorem 1 holds for infinite dimensional spaces, and that

our analysis is applicable with the obvious modifications to the solution of systems

of equations, for which the indicial equation analogous to (11) is

SM+l J- 0
J-0o

[ -A
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