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RELIABILITY GROWTH OF

CONTINUOUS SYSTEMS

By

Darrell 0. Penrod

ABSTRACT

The prediction and assessment of reliability growth in a test-analysis-

and fix program has gained importance in recent years and methodology is still

being developed to perform the required analyses. The results of this study

of a particular model (based on a stochastic learning model) of the process

provide analytical tools appropriate to the underlying model. Some comparisons

with existing methods are made and a number of possible applications of the

methods are explored.

1. INTRODUCTION

Reliability growth planning and assessment continue to be important topics

surrounding development and testing of new complex systems. This report con-

tains the description of a conceptual model of the process of test-analysis-

and fix of an evolutionary system and associated mathematical tools for analyzing

the progress of a program. The type of system under consideration is one which

operates continuously until a failure occurs, at which point the failure is

analyzed and, if appropriate, the system is modified to reduce the likelihood

of a subsequent failure of the same type. An earlier report [1] dealt with

discrete or "one-shot" systems which were tested for success or failure. For

such systems, it is the probability of success which changes as the program

unfolds. The continuous case, under consideration here, is characterized by

mean time between failures (MTBF) and it is this parameter which must be

scrutinized.
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2. THE MODEL (

The model presumes.a test-analysis-fix program being carried out on a

system which is modifiable at the point of each failure. The intent of such

modifications (in design or components) is assumed to be to reduce the

probability of a subsequent similar failure. The mathematical description

of the process is as follows:

A. Between failures (and fixes), the behavior of system

failures is Poisson, An being the failure rate

after n failures and fixes.

B. A relationship exists between failure rates of the

form

Xn - Au =  (n-l X ) n - 1, 2, ... (2.1)

Since most programs of this type will show improvement in MTBF (reduction in A),

the most important class of problems will have 4

O<C< I and A > x0 u
Notice that

% n" n(A -nu). (2.2)

If O<a<l, then % n approaches Xu as a limit. Typical growth curves for

the most important cases are shown in Fig. 1.
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Fig. 1. TYPICAL GROWTH CURVES

The three parameters which determine the curve are ' the failure rate of the

system at the start of the program; x , the ultimate failure rate of the mature

system; a, a parameter which determines the shape of the curve.

Assessment of a program involves the determination of these three

parameters from test data. Planning requires that they be predicted at the

start of a test program in order to estimate the proper length of the test

phase. Assessment is easier to deal with mathematically and can be approached

by classical and Bayesian methods. Planning, without extensive analysis and

modelling, is more subjective. In fact, it is safe to say that it is almost

always done on the basis of informed judgment. It appears that this is the

principal reason that most of the work in reliability growth deals with

assessment. This sunject will be dealt with first here as well.

d5
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3. ASSESSMENT

Two approaches will be formulated. Maximum likelihood will be discussed

first followed by a Bayesian analysis.

A. Maximum Likelihood

The assumptions of the model imply exponentially distributed MTBF's

with parameter xn" Hence the likelihood function for the failure truncated

case is

L = X 0 X..*A n-l e'oTI e-lIT2... e "An' I Tn (3.1)

where Tn is the time elapsing between failure number n-i and failure number n.

The procedure is to find values of the parameters which maximize L.(or LnL).

Recalling that

n  Au + an(,,-,u) (3.2)

and substituting into eq. (3.1) and taking derivatives, one obtains the follow-

ing equations for an extreme value:

n-i i n-1
DL nL = 0 = ~ T (3.3)

o i=O u o i=0

n-I n-I
- =0= Z (L.i) - Z (1-ai )Ti ~ (3.4)

Au I=0 Xu+21 (XO U iO

n-I I i-1 ( 1 n-I
i=nL 0 u ou i 1  ('; - u)Ti (3.5)

A + 1(11 U) 1: u ,+l
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The result is three simultaneous nonlinear equations for X. ' u' and . There

are several star.dard numerical approaches to the solution of these equations.

The method used here is relaxation, that is, solving the equations one at a

time, and iterating until convergence. The method of solution of each individual

equation is Newton-Raphson. It should be noted that time truncated testing

where the sequence does not end with a failure, but rather at a specific time

changes the problem only slightly. If the amount of time expired after the nth

failure is T, then the likelihood function is

L = lA2***X.nl e- AOTl e-AT2 ... e-n-ITne-AnT  (3.6)

The corresponding numerical problem is essentially the same as the failure

truncated case and the solution method is the same as previously indicated.

The growth curve is a plot of the expected value of MTBF against time.

In order to make this computation, we introduce

Pn (t) = Probability of exactly n failures by time t.

Since the process is assumed Poisson between failures, P n(t) satisfies

dP
= -0 P (3.7)dt 3 o

dPn
dt n n 'n- n-i n= 1,2,... (3.8)dt - ~ -~-

The expected time between failure M(t) is, then

9(t)= z L P(t) (3.9)
j=O i

7
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The solution to the system of equations (3.7) and (3.8) is given below

for the case where all the x n are distinct, and there are no failures at

time t 0. Then,

Po(t) e " A 0t

0 __

Pl(t) = e-Ilt  0 eo

and

n
P n(t) = z Aine- i

i=o

where

n-I
- Xk

k=o

k 0(xk-xi)
k~ ok#i

This method of solution, although exact, is not the most efficient

numerically. A Monte Carlo method, which is described in the appendix,

is useful for generating M(t).

8
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Sample cases are given below for both time and failure truncation. These were

taken from a previous report £23 which used the AMSAA model for deriving the

growth curves. Those results are reproduced here for comparison.

Table 1. System Failure Times

Failure Number Time to Fail Cumulative Time

1 1.5 1.5

2 1.7 3.2

3 8.6 11.8

4 17.8 29.6

5 24.0 53.6

6 11.6 65.2

7 54.2 119.4

8 145.9 265.3

9 28.7 294.0

10 147.1 441.1

11 24.0 465.1

12 101.9 567.0

13 118.8 685.8

14 145.6 831.4

15 118.3 949.7

These data were used to calculate k., Au' and (using equations 3.3 - 3.5).

The results being x = .672 per hour, xu = .00919 per hour, = .476.

Table 2 displays the M(t) calculations for both methods.

9



Table 2. MTBF Calculations - Failure Truncated

Time (Hrs) M(t)-Current Method R(t)-AMSAA

200 78.3 59.3

400 102.3 86.2

600 105.7 107.2

800 107.5 125.2

949.7 1O7.g 137.3

1000 108.0 141.2

A related, but time truncated case assumes the system just discussed was tested

beyond the fifteenth failure until 1000 hours at which point testing ceased.

This time truncated case gives

x = .649, x .00848, = .487

Table 3. MTBF Calculations - Time Truncated

Time (Hrs) M9(t)-Current Method M(t)-AMSAA

200 77.3 61.1

400 104.5 89.5

600 111.7 111.8

800 114.5 130.9

1000 116.9 148.0

The application of the two methods is further illustrated by two cases which

were generated by simulation of a system which was Poisson between failures

having the following failure rates.

10



Case 1

Xo = .0625 X5 = .02048 XlO - .0067108

XI = .05 16 = .016384 1 .0053686

2 = .04 X7 = .0131072 X12 = .0042948

73 = .032 A8 = .0104857 X13 = .0034358

A4 = .0256 A9 = .0083885 '14 = .0027486

= .0021988

The randomly generated failure times are:

Failure Number Time to Fail Cumulative Time

I 23.9 23.9

2 21.0 44.9

3 64.8 109.7

4 37.7 147.4

5 81.4 228.8

6 146.0 374.8

7 104.6 479.4

8 35.4 514.8

9 179.4 694.2

10 163.9 858.1

11 292.7 1150.8

12 99.8 1250.6

13 339.4 1590.0

14 603.7 2193.7

15 192.1 2385.8

Application of the current method, the AMSAA model, and the underlying MTBF

are given in the next table.

11
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Table 4. Model Generated Case 1

Time MR(t)-Current Method MR(t)-AMSAA f(t)-Model

300 100.5 114.0 91.0

600 163.0 153.6 166.0

900 206.1 182.0 241.0

1200 247.2 205.6 316.0

1500 291.0 225.5 391.0

1800 321.3 244.0 466.0

2100 356.0 260.3 541.0

2400 381.0 276.6 616.0

Case 2 is produced in exactly the same manner as Case 1, however, different

values of j are used.

Case 2

X0 = .06 X5 .008 10 - .0056
= .048 X6  .007 A11 - 15 = .0055

2 = .0336 X7  .0065

A3 = .02 X8 = .0061

4 - .01X9 = .0058

The randomly generated failure times are

Failure Number Time to Fail Cumulative Time

1 12.2 12.2

2 2.6 14.8

3 .7 15.5

4 4.9 20.4

5 43.1 63.5

6 37.6 101.1

7 74.6 175.7

12 (
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Failure Number (Continued) Time to Fail Cumulative Time

8 16.4 192.1

9 480.3 672.4

10 253.4 925.8

11 19.0 944.8

12 203.8 1148.6

13 26.9 1175.5

14 259.0 1434.5

15 69.7 1504.2

The results of MTBF calculations are given below.

Time M(t)-Current Method M(t)-AMSAA M(t)-Model

300 119.2 90.0 134.6

6C0 160.0 128.3 159.8

900 179.7 158.0 172.2

1200 188.7 182.7 178.0

1500 194.1 204.9 180.4

B. Bayesian Formulation

This method treats X09 xu and a as random variables with some prior

distribution functions. As test data become available, posterior distributions

are calculated by Bayes theorem and the "updated" distributions are used to

predict MTBF.

Let x. have possible values x for i = 1, 2,..., No; have values.

for j = 1, 2,..., Nu and a have values ak for k = 1,2,..., Na. The prior

distribution is given by 'ijk ' Probability [ ox = u =uj a 1 k]

The posterior distribution 'ijk' given a set of N failure times T, T2..., Tn

is calculated to be

13



S l".n-le-  Tl e-lT2...e'"nlTn] ik Uijk (3.10)

"ijk N N u N LT" - " I x ' \"n-1 e " T 1  e- lT2 ... e "\-n-l~

i=l j=l k=l Tnijk ijk

where the notation

1- n-i e'J T e-lT2 ... e-;'n'lTn]ijk (3.11)

indicates that the ',.'s in the expression are calculated according to eq. (3.2)

with \- = ' u = uj and a = ak There is a set of state probabilities

corresponding to each i, j, k. Namely

dP ijk
dt ijk P ijk

dt nijk nijk +  n-i ijk n-l ijk (3.12)

The expected MTBF for these values of i, j, k is

-qijk(t) = 1 RW (3.13)

Mij~J n=0 I-lijk ni

and, averaged over all values of i, j, k, yields

NO  Nu N:,
M(t) = zo z ijk M ijk(t) (3.14)

i-I j =l l=j

It is readily seen that the number of required calculations can be very large

since a system of differential equations must be solved for each i, j, and k.

The process of finding posterior distributions is illustrated below using, once

again, the data from Table 1. 0 has three possible values .6, .7, .8; "u has

five possible values .007, .008, .009, .01, .011; and a has four possible values

.3, .4, .5, .6. The prior distribution is uniform

"ijk = 1/60 all i, j, k.



The posterior distribution, given the fifteen failure times in Table 1 is given

by three matrices (corresponding to X = .6, .7 and .8).

.. 6
0

= .007 X = .008 Xu a .009 Xu a .01 * a .011

= .3 .0026 .0043 .0060 .0075 .0083

= .4 .0123 .0174 .0215 .0237 .0239

= .5 .0323 .0373 .0386 .0367 .0325

= .6 .0087 .0076 .0062 .0047 .0035

.7

= .3 .0036 .0057 .0080 .0097 .0107

.4 .0159 .0219 .0265 .0288 .0287

= .5 .0318 .0357 .0360 .0335 .0290

= .6 .0036 .0031 .0024 .0018 .0013

.= .8

= .3 .0045 .0072 .0098 .0118 .0129

= .4 .0186 .0252 .0300 .0321 .0315

= .5 .0278 .0304 .0300 .0274 .0233

" .6 .0013 .0011 .0008 .0006 .0004

Unfortunately, the calculation of Mijk(t) and subsequently the final growth

curve 1(t) is very time consuming, a fact which renders this approach undesirable.

A modified Bayesian approach assumes that I and a are known, and that x has a
o u

distribution. This method is illustrated next, again with data from Table 1.

Take . - .672 and . - .476 and let have five possible values .007, .008,
U

.009, .010, .011 with a uniform prior.

( k .2 k = 1...,5

15
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Calculation of the posterior distribution using equation (3.10), modified for a

fixed value of X and =, yields

Prob (Xu = X uk Test data)

Xu (.007) .1713

Xu2(.008) .2047

xu(.009) .2185
u3

Au4 ( .010) .2129

(u5( .011) .1925

The corresponding Mk(t) are

Time (hrs.) -R1(t) R2(t) R3(t) R51(t0

100 68.1 67.1 62.2 59.1 58.6

200 103.9 90.8 85.6 79.1 76.6

300 118.0 107.1 96.7 87.7 83.8

400 127.6 114.4 101.5 93.5 87.2

500 133.6 117.4 105.5 96.9 88.5

600 136.1 119.9 107.6 98.3 89.6

700 137.6 120.8 109.4 98.8 90.1

800 139.0 122.0 110.2 99.4 90.4

900 140.4 123.0 110.6 99.7 90.6

1000 141.3 123.5 110.7 99.8 90.7

The composite MTBF R(t) is

Time (Hrs) R(&) Time (Hrs)

100 62.9 600 109.5

200 86.7 700 110.6

300 98.1 800 111.4

400 104.1 900 112.1

500 107.6 1000 112.4

A, 16
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This method is tractable and relatively simple to use. It has capability

to match the early data (influenced mostly byA 0 and a), and the later data

(represented more by XU).

C. Sensitivity

A complete sensitivity analysis of the model described herein is beyond

the scope of this study. However, some excursions about the base case (Table l)

have been taken to get an indication of how certain parameters are affected by

these changes. Specifically, the values of . , x , and x were calculated on the

basis of 5, 10, and 15 tests.

5 Tests

X .817 AU a .0215 .- 379

10 Tests

X 0 .656 X= .00790 a = .487

15 Tests

= .672 Xu .00919 = - .476

In addition, changes were made in T1 and T2, in Table 1, which held T1 + T2

constant. All other times to fail were the same. The results were:

TI = .4 , T2 - 2.8

x = 1.034 Nu M .00982 * .407

T= 1.5, T2 = 1.7

X a .672 u a .00919 -. 4873

T1  2.8, T 2 -. 4

A = .5199 ',u " .00879 , .516

4- 17
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These excursions were chosen because of the intuitive conclusion (based on the

underlying model) that x u should be more sensitive to late test data while 1

should be most sensitive to early test data. These results tend to support

this conclusion, but in-depth analysis would be required for proof.

D. Block Data

There are situations in many test programs which make it impossible to

report exact failure times. In such cases, it may be possible to report

the number of failures in a given time. This block reporting modifies the

maximum likelihood formulation slightly. Poisson processes have a

"memoryless" character. That is, succeeding failures do not depend on the

time at which previous failures occurred. Only the rate of failure changes,

and that only depends upon how many failures have preceded, not upon when

they occurred. Therefore, the likelihood function is:

L = Pnl (T1) Pn2 (T2). .... Pnk (Tk)

where Pnl(T 1 ) is the probability that nl failures occur in time T1 (with

failure rates A., A1, A2. . An]) Pn2 (T2) is the probability that n2

failures occur in time T2 (with failure rates xnl+l, xnl+2, . . .xnl+nZ)

etc.

Since each of the Ak is a function of A., Au and a, the likelihood

function is also. This leads to an optimization problem in these para-

meters much like the previous cases.

4. PREDICTION

The problem of prediction of the growth process is probably more

important, from the program management point of view, than is assessment.

This is so because prediction is required at the outset to establish program

goals and a consistent test program. Yet, prediction is less studied and

d 18



less rigorous than analysis. Historical data and comparative analysis are

the basis of an earlier method [3].

The model described herein is an attempt to describe mathematically the

underlying test-analysis-and fix process. It is this view which also pro-

vides insight into the prediction problem.

The development of most new complex systems involves incorporation of a

number of subsystems each with a varying degree of maturity of design. The

early failures in a development program generally come as a result of immature

designs in some subsystems, or, in interfacing previously unrelated subsystems.

It is felt that the ultimate failure rate of each subsystem can be estimated

rather well by summing the stated failure rates on all the components. Hence

Au in the model is predicted on the basis of a "parts count" reliability

estimate. The two parameters X and a are not estimated directly. Rather,

the number of interface and immature design mistakes are estimated, on the

basis of complexity and maturity (subjective). These are then used to cal-

culate the predicted growth curve. As an example consider part of a fire

control system which includes four major subsystems: radar, computer, power

system, communications link. The radar is state-of-the-art and on the basis

of experience has an MTBF of 1000 hours. The computer, although state-of-the-

art, incorporates completely new packaging and hardening. It has an estimated

ultimate MTBF of 500 hours, but a "new environment" type failure is probable

(with A = .1/hr) and an interfacing failure (- .01/hr) may also occur.

The power system is very reliable with MTBF of 10,000 hrs. and only an inter-

facing failure of X - .001/hr. Likewise, the communications link is very

reliable (0TBF - 10,000 hrs.) with an interfacing failure estimated as

- .001/hr. The predicted growth process can now be simulated. As a failure

occurs, it is corrected. If it is an interface or immature design failure,

it is assumed corrected after it occurs. If a routine failure occurs, no

19
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change in any subsystem is assumed. A summary of the subsystems, with their

failure types and rates is given below

Subsystem Failure Type Failure Rate (\)

Radar Routine .001

Computer Routine .002
Immature Design .1
Interface .01

Power System Routine .0001
Interface .001

Communications Link Routine .0001
Interface .001

A test analysis and fix program on this system was simulated with the

following results:

Failure Number Elapsed Time (hrs.) Subsystem Type of Failure

1 8.9 Computer Immature Design

2 43.5 Computer Interface

3 86.0 Computer Routine

4 43.2 Power System Interface

5 251.0 Radar Routine

6 205.4 Communications Interface
Link

Such a program on this hypothetical system starts with an overall system MTBF

of 8.7 hours. Because of the failures which would have been discovered and

corrected (failures 1, 2, 4, 6), the MTBF at the end of six test-analysis-and-

fix steps would be 238 hours. The ultimate MTBF (all discoverable failures

corrected) is 312.5 hours. This simulation process would be replicated

several times to get an expected growth curve for this system. This would

then be used to establish an initial growth curve for the program.

5. CONCLUSIONS

The intent of this study was to model, as tractably and accurately as

possible, the test-analysis-and-fix of continuous systems. The model is

20
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described, along with the analytical methods required to apply it to assess-

ment or prediction. The results of such calculations on some given data and

some simulated data yield encouraging results. Because the model is a three-

parameter it is more flexible in fitting a wider range of data than two-

parameter models such as Duane. However, some of the numerical analysis

required for application of the larger model are likewise more demanding.

Of the two formulations, Maximum Likelihood and Bayesian, the former is

more tractable and would be the recommended alternative on the basis of time

and effort required to apply the method. However, further work in this area

might lead to more practical methods of generating the Bayesian growth curves

and this is one areas of future work which warrants consideration. More

work is also needed to develop algorithms for block data applications.

Prediction applications require detailed case studies to determine

whether interface and immature design failures can be adequately predicted.

It should be noted that this is in fact being done when the number and type

of tests are specified. It is recommended that this be formally recognized

and incorporated into a plan.

The results, then, are:

I. The model appears to have the necessary flexibility (more than
some other models) to be applicable in assessment and prediction.

2. Efficient numerical routines are required for full application
of the method.

3. The potential in prediction is great and the methodology needs
considerable effort.

21



APPENDIX

1. Monte Carlo Method forGrowth Curves

Integration of eqs. (3.8 ), particularly for long times, uses considerable

computer time. The underlying process is, however, Poisson. Therefore MTBF's

are exponentially distributed. Consequently it is easy to simulate the under-

lying process. The steps are as follows:

(a) For a given ', 'u and a calculate 1' '2 ..... N

(b) Generate a random number X1 (presumably uniformly distributed).

(c) Convert this uniform random number to an exponentially distributed
one with mean x0 by the transformation T = - l/.' zn (l4 1).
This is the elapsed time until failure number 1.

(d) Repeat steps b and c using '1 instead of x to get the time T2.

(e) Continue generating T3, T4 , etc.

(f) Terminate the process when the total time reaches or exceeds the
period of interest.

These steps provide one realization of the process. Replication of this method

yields other realizations, and these can be used to calculate approximate values

of P n(t). These, in turn, are used in the calculation of M(t)

nn

n=O n

A computer program to accomplish 50 replications has been run on a POP 11-70 in

less than one minute. Solving the exact differential equations for P nt) for

the same problem and same length of time requires an order of magnitude more

computer time.

2. Single Differential Equation Approximation

The difference equation form of eq. (2.1) is

n *n-I =- (l-)nl + (l-- u
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The differential equation approximation to this is

dn ' ; l (- u

where n is the number of failures. Changing to time as the independent variable,

one can write

dt dt _ (l- )x(t) + (l-=) u

Moreover,

dn
t

Hence,

t (-)t)+il.iU,

Finally, M(t) = 1/(t)

which gives
dM _ (1-a) + (l-a)x M.

dt u

The solution to the previous equation is

M(t) = e-- + /
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