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RELIABILITY GROWTH OF
CONTINUOUS SYSTEMS

By

Qarrell D. Penrod

ABSTRACT

The prediction and assessment of reliability growth in a test-amalysis-
and fix program has gained importance in recent years and methodology is still
being developed to perform the required analyses. The results of this study
of a particular model (based on a stochastic learning model) of the process
provide analytical tools appropriate to the underlying model. Some comparisons
with existing methods are made and a number of possible applications of the
methods are explored.
1. INTRODUCTION

ReTiability growth planning and assessment continue to be important topics
surrounding development and testing of new complex systems. This report con-
tains the description of a conceptual model of the process of test-analysis-
and fix of an evolutionary system and associated mathematical tools for analyzing
the progress of a program. The type of system under consideration is one which
operates continuously until a failure occurs, at which point the failure is
analyzed and, if appropriate, the system is modified to reduce the 1ikelihood
of a subsequent failure of the same type. An earlier report [1] dealt with
discrete or "one-shot" systems which were tested for success or failure. For
such systems, it is the probability of success which changes as the program
unfolds. The continuous case, under consideration here, is characterized by
mean time between failures (MVBF) and it is this parameter which must be

scrutinized.
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2. THE MODEL
The model presumes-a test-analysis-fix program being carried out on a
system which is modifiable at the point of each failure. The intent of such
modifications (in design or components) is assumed to be to reduce the
probability of a subsequent similar failure. The mathematical description
of the process is as follows:
A. Between failures (and fixes), the behavio} of system
failures is Poisson, *n  being the failure rate
after n failures and fixes.
B. A relationship exists between failure rates of the

form

n-]'z\u) n= ], 2’ o (2.])

Since most programs of this type will show improvement in MTBF (reduction in An).

the most important class of problems will have

O<a< 1 and Ao > Xu.

Notice that

n
Ay = Ay % a (Ao -

). (2.2)

u

If O<a<l, then *n approaches A, 28 @ limit. Typical growth curves for

the most important cases are shown in Fig. 1.
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Fig. 1. TYPICAL GROWTH CURVES

The three parameters which determine the curve are A the failure rate of the
system at the start of the program; Ay the ultimate failure rate pf the mature
system; x, a parameter which determines the shape of the curve.

Assessment of a program involves the determination of these three
parameters from test data. Planning requires that they be predicted at the
start of a test program in order to estimate the proper length of the test
phase. Assessment is easier to deal with mathematically and can be approached
by classical and Bayesian methods. Planning, without extensive analysis and
modelling, is more subjective. In fact, it is safe to say that it is almost
always done on the basis of informed judgment. It appears that this is the
principal reason that most of the work in reliability growth deals with

assessment. This supject will be dealt with first here as well.




3. ASSESSMENT h

, Two approaches will be formulated. Maximum likelihood will be discussed 4

‘i_{% first followed by a Bayesian analysis.
| A. Maximum Likelihood

N The assumptions of the model imply exponentially distributed MTBF's

with parameter An' Hence the likelihood function for the failure truncated

_ case is
_ -2 Ty -MT2 =in-1Tn
L = lOA]..An-] e [o] e e e e (3-])
where Tn is the time elapsing between failure number n-1 and failure number n.
The procedure is to find values of the parameters which maximize L.(or LnL).

Recalling that

_ n
» g TRyt (Ao-\u) (3.2)
' and substituting into eq. (3.1) and taking derivatives, one obtains the follow- -
ing equations for an extreme value: -
n") 1' ﬂ-]
3L[|L - 0 - - [+ ] iT (3 3)
3 = = Z —-—-(—-_—r - _).' a I, .
xo i=0 xu+u1 Ao Xu i=Q i+l
n-1 j n-1
Al g« _.(T(_l_r‘*“ - 1 (1-ahy7 (3.4)
Ry, j=0 AgteT(A7y i=0 i+l
| n-1 i ai-] (<3 ) n-1
) 3%55 =0= 1 : o ¥ . z 1@1'1(:\04“)‘{1+1 (3.5)
i=1 At (A°~«u) i=1
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i . The result is three simultaneous nonlinear equations for XJ, Au’ and a. There
are several stardard numerical approaches to the solution of these equations.
; ; The method used here is relaxation, that is, solving the equations one at a
time, and iterating until convergence. The method of solution of each individual
. equation is Newton-Raphson. It should be noted that time truncated testing

where the sequence does not end with a failure, but rather at a specific time
changes the problem only slightly. If the amount of time expired after the nth

failure is T, then the likelihood function is

- -3 -in-1Tn -
L= \jipeeeh @ ATl =417z, g=in-1Tng-1nT (3.6)

The corresponding numerical problem is essentially the same as the failure
} truncated case and the solution method is the same as previously indicated.
The growth curve is a plot of the expected value of MTBF against time.

In order to make this computation, we introduce
Pn(t) = Probability of exactly n failures by time t.

Since the process is assumed Poisson between failures, Pn(t) satisfies

222 = -3 P (3.7)
dt s o '
b
dPn i
& = - )‘npn + ‘n-1pn-1 n=1,2,... (3.8)

The expected time between failure M(t) is, then

M(t) = 1 = P.(t) (3.9)




The solution to the system of equations (3.7) and (3.8) is given below
for the case where all the xn are distinct, and there are no failures at

time t = 0. Then,

- - .t
Po(t) = e "0
A . A .
p1(t) = [s] e-.\]t - 0 e \ot
(A ‘A]) ()\0')‘])
and
n
-x.t
P(t)=c¢ A, e i
n j=0 1N
where
n-1
- X
kso K
Ain = n ( |
1 (a2
k=0 k "1
k#i

This method of solution, although exact, is not the most efficient
numerically. A Monte Carlo method, which is described in the appendix,

is useful for generating M(t).
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~ Sample cases are given below for both time and failure truncation. These were
taken from a previous report {2 ] which used the AMSAA model for deriving the

growth curves. Those results are reproduced here for comparison.

Table 1. System Failure Times

Failure Number Time to Fail Cumulative Time
1 1.5 1.5
2 1.7 3.2
3 .6 11.8
4 17.8 29.6
5 24.0 53.6
6 11.6 65.2
7 54.2 119.4
8 145.9 265.3
9 28.7 294.0

10 147.1 441 .1
11 24.0 465.1
12 101.9 567.0
13 118.8 685.8
14 145.6 831.4
15 118.3 949.7

These data were used to calculate As Ay and o (using equations 3.3 - 3.5).
The results being \0= .672 per hour, \u = ,00919 per hour, o = .476.

Table 2 displays the M(t) calculations for both methods.

O




Table 2. MTBF Calculations - Failure Truncated
Time (Hrs) M(t)-Current Method M(t)-AMSAA
200 78.3 59.3
400 102.3 86.2
600 105.7 107.2
800 107.5 125.2
949.7 107.9 137.3
1000 108.0 141.2

A related, but time truncated case assumes the system just discussed was tested
beyond the fifteenth failure until 1000 hours at which point testing ceased.

This time truncated case gives

A= .649, A = .00848, o = .487
[¢] u

Table 3. MTBF Calculations - Time Truncated
Time (Hrs) M(t)-Current Method M(t)-AMSAA
200 77.3 61.1
400 104.5 89.5
600 111.7 111.8
800 114.5 130.9
1000 116.9 148.0

The application of the two methods is further illustrated by two cases which

were generated by simulation of a system which was Poisson between failures

having the following failure rates.

10
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Case 1
ap = .0625
A] = 005
32 = 04
x3 = .032
14 = 0256

A = .02048

A\ = .016384
= ,0131072
= .0104857
Aq = .0083885

The randomly generated failure times are:

Failure Number

00 N O 0 W NN —

—-— b ol b emd -
"N A w NN - O W

Application of the current method, the AMSAA model,

are given in the next table.

Time to Fail

23.
21,
64.
37.
81.
146.
104.
35.
179.
163.
292.
99.
339.
603.
192.

- N PO N A A0 YN O W

1R

= .0067108
= .0053686
.0042948
= .0034358
= .0027486
= .0021988

Cumulative Time

23.9
44.9
109.7
147.4
228.8
374.8
479.4
514.8
694.2
858.1
1150.8
1250.6
1590.0
2193.7
2385.8

and the underlying MTBF
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300
600
900
1200
1500
1800
2100
2400

Time

Table 4. Model Generated Case 1

M(t)-Current Method M(t)-AMSAA
100.5 114.0
163.0 153.6
206.1 182.0
247.2 205.6
291.0 225.5
321.3 244.0
356.0 260.3
381.0 276.6

M(t)-Model
91.0
166.
241.
316.
391.
466.
541.
€16.

0O O O O O O o

Case 2 is produced in exactly the same manner as Case 1, however, different

values of .\J.

Case 2
Ag = .06
x] = .048
A = .0336
A3 = .02
g = .01
The

Failure Number

are used.

Ae = .008
Ao, = 007
Ay = .0065
Ag = .0061
lg = 0058

randomly generated failure times are

Time to Fail

1

~N OOl wWwN

12.2
2.6
g
4.9
43.1
37.6
74.6

AIO = .0056
x]1 - A]s = .0055

Cumulative Time

12.2
14.8
15.5
20.4
63.5
101 .1
175.7

. iy
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>
Failure Number {Continued) Time to Fail Cumulative Time
8 16.4 192.1
9 480.3 672.4
10 253.4 925.8
1 19.0 944.8
12 203.8 1148.6
13 26.9 1175.5
14 259.0 1434.5
15 69.7 1504.2
The results of MTBF calculations are given below.
Time M(t)-Current Method M(t)-AMSAA M(t)-Model
300 119.2 90.0 134.6
620 160.0 128.3 159.8
900 179.7 158.0 172.2
1200 188.7 182.7 178.0
1500 194.1 204.9 180.4

B. Bayesian Formulation

This method treats xo. xu and

As test data become available,

a @s random variables with some prior

distribution functions. posterior distribution

are calculated by Bayes theorem and the "updated" distributions are used to
predict MTBF.

Let »_ have possible values \oi for i =1, 2,..., N 3;

% have values?®
o u

u

for j =1, 2,..., Nu and a have values 3 for k=1,2,..., Na. The prior

distribution is given by Mgk Probability [xo =hgqr Yy T Ao T 3]
The posterior distribution “;jk’ given a set of N failure times T], T2"" T

is calculated to be

13

3

J

n




. [\\x]...xn_]e'K:T‘ e 1112, o7in-1Tn) fik ik
Lijk ) Ny Nu Ne -3 T =117 -p-1T (3.10)
e LY R S L I T
i=1 j=1 k=1 - ijk “ijk
where the notation
N "\_\T] -\]TZ -,'\n-]Tn
[\3.1... 1@ 2 e ...e ]ijk (3.11)

indicates that the :'s in the expression are calculated according to eq. (3.2)
with = l*i’ A T Ruj and 2 = a . There is a set of state probabilities
corresponding to each i, j, k. Namely

dpP

__ﬂz - Y P
dt Yijk sijk
dPnijk
gt =7 ‘nigk Prigk * Ynet dgk Pael dgk (3.12)
The expected MTBF for these values of i, j, k is
-— i ‘[
.o {(t) = —— P (t .13
My () n=0 "hijk nng (3-13)
and, averaged over all values of i, j, k, yields
Mg = 10 & A, ()
M(t) = ¢ z o uLaE MLt (3.14)
=1 =1 k=1 Wk ik

It is readily seen that the number of required calculations can be very large
since a system of differential equations must be solved for each i, j, and k.

The process of finding posterior distributions is illustrated below using, once
again, the data from Table 1. 10 has three possible values .6, .7, .8; \u has
five possible values .007, .008, .009, .01, .011; and a1 has four possible values

.3, .4, .5, .6. The prior distribution is uniform

dijk b ]/60 311 i’ j, k.




g\ . The posterior distribution, given the fifteen failure times in Table 1 is given

by three matrices (corresponding to \ = .6, .7 and .8).

<

A, *® .6
Ay ® .007 Ay ® .008 Ay ® .009 Ay * .01 Ay ® 011
a = .3 .0026 .0043 .0060 .0075 .0083
1= .4 0123 .0174 .0215 .0237 .0239
a=.5 .0323 .0373 .0386 .0367 .0325
x = .6 .0087 .0076 .0062 .0047 .003%
o= .7
—_—
a=.3 .0036 .0057 .0080 .0097 .0107
a= .4 .0159 .0219 .0265 .0288 .0287
a=.5 .0318 .0357 .0360 .0335 .0290
a=.6 .0036 .0031 .0024 .0018 .0013
A =.8
—_—
a=.3 .0045 .0072 .0098 .0118 .0129
a=.4 .0186 .0252 .0300 .0321 .0315
2= .5 .0278 .0304 .0300 .0274 .0233
a=.6 .0013 .0on .0008 .0006 .0004

Unfortunately, the calculation of Fﬂjk(t) and subsequently the final growth
curve M(t) is very time consuming, a fact which renders this approach undesirable.
A modified Bayesian approach assumes that \o and a are known, and that Au has a
distribution. This method is illustrated next, again with data from Table 1.
Take 1 = .672 and 1 = .476 and let  have five possible values .007, .008,

bl

.009, .010, .011 with a uniform prior.

_-k=.2 k=1.....5

15




) Calculation of the posterior distribution using equation (3.10), modified for a
-2 fixed value of A  and ‘1, yields
“ Prob (J\u = Auk | Test data)
»
Au](.007) 713
- xuz(.OOS) .2047
Au3(.009) .2185
Ayq(-010) .2129
\us(.0]1) .1925
The corresponding ﬁk(t) are
Time (hrs.) M.l(t) Mz(t) M3(t) M4(t) Ms.(t)
100 68.1 67.1 62.2 59.1 58.6
200 103.9 90.8 85.6 79.1 76.6
] S 300 118.0 107.1 96.7 87.7 83.8
’ 400 127.6 114.4 101.5 93.5 87.2
’ 500 133.6 117.4 105.5 96.9 88.5
600 136.1 119.9 107.6 98.3 89.6
700 137.6 120.8 109.4 98.8 90.1
800 139.0 122.0 110.2 99.4 90.4
900 140.4 123.0 110.6 99.7 90.6
1000 141.3 123.5 110.7 99.8 90.7
The composite MTBF M(t) is
Time (Hrs) M(t) Time (Hrs) M(t)
100 62.9 600 109.5
200 86.7 700 110.6
300 98.1 800 111.4
* 400 104.1 900 112.1

500 107.6 1000 112.4




. This method is tractable and relatively simple to use. It has capability
to match the early data (influenced mostly hyxa and a), and the later data
(represented more by ku).
C. Sensitivity

A compléte sensitivity analysis of the model described herein is beyond

the scope of this study. However, some excursions about the base case (Table 1)
have been taken to get an indication of how certain parameters are affected by
these changes. Specifically, the values of xo. 1, and Xu were calculated on the
basis of 5, 10, and 15 tests.

5 Tests

g ' ' A= .817 A = .0215 a= .379

i A = .656 A = .00790 a = .487

15 Tests

A, = .872 A = ,00919 a = .476

In addition, changes were made in T] and 72' in Table 1, which held T] + T2
constant. All other times tc fail were the same. The results were:

T = .4, TZ = 2.8
x_=1.034 A o= .00982 a = 407

% . ' b) u
E
f

T = 1.5, T, = 1.7

—

N = .67 A = .00919 x = 487
| b u
g T, =28, T,= .4
’ x = .5199 v = .00879 + = .516
i » o] u
| 17




These excursions were chosen because of the intuitive conclusion (based on the
underlying model) that A, should be more sensitive to late test data while A
should be most sensitive to early test data. These results tend to support
this conclusion, but in-depth analysis would be required for proof.
D. Block Data

There are situations in many test programs which make it impossible to
report exact failure times. In such cases, it may be possible to report
the number of failures in a given time. This block reporting modifies the
maximum 1ikelihood formulation slightly. Poisson processes have a
"memoryless" character. That is, succeeding failures do not depend on the
time at which previous failures occurred. Only the rate of failure changes,
and that only depends upon how many failures have preceded, not upon when

they occurred. Therefore, the Tikelihood function is:
L= P"1 (T]) Pn2 (Tz). e Pnk (Tk)

where Pnl(Tl) is the probability that nl failures occur in time T, (with
failure rates Ays Aps Age .An]). PnZ(TZ) is the probability that n2
failures occur in time T, (with failure rates Anl+l, Anl+2, . . .anl+n2)
etc.

Since each of the i, 1s a function of Ay Ay and a, the likelihood
function is also. This leads to an optimization problem in these para-
meters much 1ike the previous cases.

4. PREDICTION

The problem of prediction of the growth process is probably more
important, from the program management point of view, than is assessment.
This is so because prediction is required at the outset to establish program

goals and a consistent test program. VYet, prediction is less studied and

18




less rigorous than analysis. Historical data and comparative analysis are
the basis of an earlier method [3].

The model described herein is an attempt to describe mathematically the
underlying test-analysis-and fix process. It is this view which also pro-
vides insight into the prediction problem.

The development of most new complex systems involves incorporation of a
number of subsystems each with a varying degree of maturity of design. The
early failures in a development program generally come as a result of immature
designs 1in some subsystems, or, in interfacing previously unrelated subsystems.
It is felt that the ultimate failure rate of each subsystem can be estimated
rather well by summing the stated failure rates on all the components. Hence
Au in the mode) is predicted on the basis of a "parts count" reliability
estimate. The two parameters xo and 1 are not estimated directly. Rather,
the number of interface and immature design mistakes are estimated, on the
basis of complexity and maturity (subjective). These are then used to cal-
culate the predicted growth curve. As an example consider part of a fire
control system which includes four major subsystems: radar, computer, power
system, communications link. The radar is state-of-the-art and on the basis
of experience has an MTBF of 1000 hours. The computer, although state-of-the-
art, incorporates completely new packaging and hardening. It has an estimated
ultimate MTBF of 500 hours, but a "new environment" type failure is probable
(with A = .1/hr) and an interfacing failure (1 = .01/hr) may also occur.

The power system is very reliable with MTBF of 10,000 hrs. and only an inter-
facing failure of » = .001/hr. Likewise, the communications link is very
reliable (MTBF = 10,000 hrs.) with an interfacing failure estimated as

A = .001/hr. The predicted growth process can now be simulated. As a failure
occurs, it is corrected. If it is an interface or immature design failure,

it is assumed corrected after it occurs. If a routine failure occurs, no
19




change in any subsystem fs assumed. A summary of the subsystems, with their

failure types and rates is given below

Subsys tem Failure Type Failure Rate (%)
Radar Routine .001
Computer Routine .002
Immature Design |
Interface .01
Power System Routine .0001
Interface .001
Communications Link Routine .0001
Interface .001

A test analysis and fix program on this system was simulated with the

following results:

Failure Number Elapsed Time (hrs) Subsystem Type of Failure
1 8.9 Computer Immature Design
2 43.5 Computer Interface
3 86.0 Computer Routine
4 43.2 Power System Interface
5 251.0 Radar Routine
6 205.4 Communications Interface
Link

Such a program on this hypothetical system starts with an overall system MTBF
of 8.7 hours. Because of the failures which would have been discovered and
corrected (failures 1, 2, 4, 6), the MTBF at the end of six test-analysis-and-
fix steps would be 238 hours. The ultimate MTBF (all discoverable failures
corrected) is 312.5 hours. This simulation process would be replicated
several times to get an expected growth curve for this system. This would
then be used to establish an initial growth curve for the program.
5. CONCLUSIONS

The intent of this study was to model, as tractably and accurately as

possible, the test-analysis-and-fix of continuous systems. The model is

20




described, along with the analytical methods required to apply it to assess-
ment or prediction. The results of such calculations on some given data and
some simulated data yield encouraging results. Because the model is a three-
parameter it is more flexible in fitting a wider range of data than two-
parameter models such as Duane. However, some of the numerical analysis
required for application of the larger model are likewise more demanding.

Of the two formulations, Maximum Likelihood and Bayesian, the former is
more tractable and would be the recommended alternative on the basis of time
and effort required to apply the method. However, further work in this area
might lead to more practical methods of generating the Bayesian growth curves
and this is one areas of future work which warrants consideration. More
work is also needed to develop algorithms for block data applications.

Prediction appiications require detailed case studies to determine
whether interface and immature design failures can be adequately predicted.
It should be noted that this is in fact being done when the number and type
of tests are specified. It is recommended that this be formally recognized
and incorporated into a plan.

The results, then, are:

1. The mode! appears to have the necessary flexibility (more than
some other models) to be applicable in assessment and prediction.

~N

Efficient numerical routines are required for full application
of the method.

3. The potential in prediction is great and the methodology needs
considerable effort.

21
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APPENDIX
1. Monte Carlo Method for Growth Curves
Integration of eqs. (3.8 ), particularly for long times, uses considerable
computer time. The underlying process is, however, Poisson. Therefore MTBF's
» are exponentially distributed. .Consequent1y it is easy to simulate the under-
lying process. The steps are as follows:
(a) For a given \o, \y and x calculate ERRPTRRRRR vy
(b) Generate a random number X (presumably uniformly distributed).
(c) Convert this uniform random number to an exponentially distributed
one with mean A, by the transformation T, = - 1/x, 2n (1-X ).
This is the elapsed time until failure nuhber 1. !
(d) Repeat steps b and ¢ using Y instead of 3 to get the time TZ'
;' (e) Continue generating T3, T4, etc.

(f) Terminate the process when the total time reaches or exceeds the
period of interest.

These steps provide one realization of the process. Replication of this method
yields other realizations, and these can be used to calculate approximate values

of Pn(t). These, in turn, are used in the calculation of M(t)

M(t) =

Wty 8

Lo ()

n=0 ‘n

A computer program to accomplish 50 replications has been run on a PDP 11-70 in

less than one minute. Solving the exact differential equations for Pn(t) for

the same problem and same length of time requires an order of magnitude more
computer time.
2. Single Differential Equation Approximation

The difference equation form of eq. {2.1) is

R C AR (B

‘n " n-l u
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. The differential equation approximation to this is

dr . . .
Lo (1ma)n s ()

where n is the number of failures. Changing to time as the independent variable,

one can write

d» dt _ X .
E ai = - (]'J)\(t) + (]'X)Au~
Moreover,
dn _
a
Hence,
L8 oL (1ea)a(t) + (1-a):
x dt *ue

Finally, M(t)

1/:(t)

which gives

= - (1-2) + (l-u)xuM.

The solution to the previous equation is

M(t) = %— M UVANER VAW e (1-a)3yt
y 2
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