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Similarity Parameters

The partial differential equations governing various transport
processes can be simplified by similarity analysis. The various
independent variables of the transport problem are combined by dimen-
sional analysis into dimensionless numbers, each of which is a
similarity parameter or scaling factor that characterizes some
aspect of the problem under investigation. The cogent similarity

parameters of this report are:

kinematic viscosity

- Prandtl Number = sHormal diffusivity
_ inertial forces
Re Reynolds Number viscous forces
sc Schmidt Number = kinematic viscosity
mass diffusivity
Le Lewis Number = g%
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GAS-SOLID REACTIONS PART I:
EXTERNAL DIFFUSION-CONTROLLED REACTIONS

I) Introduction

This report is concerned with the description of exothermic
chemical reactions between gaseous reactants and macroscopic solid
surfaces. The observed rate of reaction (global rate) is assumed
to be governed by external diffusion of gaseous reactants to the
surface. Since these reactions are heterogeneous, any intrinsic
chemical kinetics enter into the mathematical formulation as boundary

conditions for the coupled partial differential equation describing

mass transport to the surface. At the reacting surface, the molar

flux (moles/cmz-sec) of reactant i can be equated to the rate of
chemical reaction:
BX
(D, CTB'_] = [R(CpX,) Cs]s ' (1-1)

or in dimensionless wvariables

- b' Xy 2
"21—"5— = X3)g -

At elevated temperatures the reaction rate constant (K) is
augmented much more by the temperature increment than the effective

diffusivity (Ei). Consequently, the ratio

Di diffusion rate
Kcé-lch chemical rate

<< 1,

and the appropriate boundary condition for the mole fraction of

Species i (xi) on the reaction surface is:

(Xi)s =0 . (1-2)

Manuscript submitted February 17, 1982.




As the reaction proceeds, the macroscopic reaction surface
recedes at a rate simply dependent upon how fast the gaseous reactants
are able to arrive. From a microscopic point of view, the actual surfacéj
area of the solid reactant at any particular instant of time is un-
known. However, if the reacting solid maintains a certain geometric
shape during the majority of available reaction time an approximate

analysis of the system's time evolution is possible. The primary

effect of the solid reactant geometry is the modification of the
hydrodynamic flow of gaseous reactants.

Consider the combustion of a chunk of charcoal in a flowing
stream of air. Imagine that this chunk of charcoal is tightly
enclosed within a geometric surface, which is not in actual contact
with the solid. The integral of the oxygen flux over this closed
surface ecquals the accumulation of gaseous reactant (02) within the
volume. If the chemical rate of reaction is sufficiently rapid so that
there is no accumulation inside the volume or, in other words, the

solid acts as an oxygen sink, then the integral of the flux over the

- ->
ﬁJi « ds = 0. (I-3)

This formulation is equivalent to a steady-state approximation

closed surface is zero:

in the gas phase. The validity of such an approximation is dis-
cussed in Appendix A.
By the application of Gauss's theorem, the surface integral

can be converted into a volume integral:

"+ +> -
?Ji « ds =f\7 . JidV = 0. (I-4)

Since the integration volume is arbitrary, the integrand of (I-4) must

equal zero:




e -

->
V . Ji =0 . (I-5)

This partial differential equation is an equation of continuity
for the gaseous reactant flux. Its derivation rests upon the
assumptions of a steady-state profile in the gas phase, instantaneous
chemical reactions at the adsorption sites, and the absence of
homogeneous reactions.

The preceeding formulation of the continuity equation is
analogous to the application of Gauss's Law in electrostatics to
a dipole. The net charge (accumulation) contained within the Gaussian
surface is zero. The integral of the electric field intensity (flux)
over the closed surface is zero. However, local regions of the
Gaussian surface have electric fields associated with them. 1In
other words, the condition expressed by (I-3) does not imply that the
local flux on a portion of the surface must vanish. The determination
of this local flux is facilitated by the presence of symmetry and the

judicious selection of a coordinate system for the gradient operator.

The calculation of this local reactant flux will provide an
approximate analysis of the reacting gas-solid system. For purposes
of the model calculations, a Gaussian surface is selected so as to
approximate the macroscopic geometry of the reacting solid. Bulk
portions of the solid are assumed to be inert, so as to maintain an
approximate geometry during reaction in the flowing gas stream. 1In
particular, we will consider a reacting slab whose edges and one
face are made inert by a nonreactive coating such as a metal foil. 1In
this model the surface reaction can be considered as occurring on a
mathematical plane, whose position is a function of time. The details
of what happens to species i once it crosses the local reaction surface

and reacts with the individual microscopic components contained within
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the solid are neither necessary nor relevant to the description of
the external diffusion~controlled process.

This external diffusion occurs through a thin gaseous layer
adjacent to the reacting surface termed a boundary layer.1 Within
the boundary layer, there are sharp gradients of flow velocity,
temperature, and composition. The thickness of the boundary layer
is a function of geometry and the Reynolds number (Re). Outside
of the boundary layer, the gaseous reactant mixture is assumed to
have a uniform composition and temperature. In this outer region,
the flow velocity of the gaseous mixture can be calculated as the
gradient of a scalar potential function. This region is called the
potential flow region and it provides part of the boundary conditions
for the partial differential equations (Appendix B) describing trans-
port processes within the boundary layer.

One of the primary objectives of this report is to establish a
rational procedure to calculate the local reactant fluxes from known
bulk gas stream properties. We are dealing with reactant gases whose
physical properties such as density, viscosity, and thermal con-~
ductivity vary with temperature. Since these gases react exothermically
with a surface, they encounter a substantial temperature gradient. This
temperature gradient is in turn determined by the reactant flux to the
surface. Once this procedure has beei. established, the reactant flux
will be used to calculate the total available reaction time for a
pProposed amount of material to be completely reacted. Temperature-
time evolution of the reacting system is then determined with the in-
clusion of convective and radiative losses. Quantitative calculations

are presented for the oxidation of graphitic carbon.
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( II) Calculation of Local Gaseous Reactant Flux
-+

The molar £lux (Ji) of a chemical species i is a vector quantity

which denotes the number of moles of species i that pass throuch a
unit area per unit time. 1In a stationary coordinate system the molar
-t flux is c¢iven by:

- > —_
Ji = CT[XiV - Diin] . (II-1)

This equation shows that there are two contributions to the molar

flux of any species i. The first term is the molar flux of i re-

sulting from the bulk motion of the fluid with a local molar average
>

e velocity V. The second term is the molar flux due to molecular

diffusion (Fick's Law) superimposed on the bulk flow.

A v Potential flow

|
i Boundary layer
Ul —> Mﬂw
X

L;ﬁ Reacting Slab

Along the x direction, the dominant transport mechanism is
bulk flow. This can be made evident by consideration of the x

component of equation (II-1):

-~ [3X.
= - i)y, -
Jix CT[XiVx Dl(ﬁ—)] (I1-2)
A typical value for an effective diffusivity (ﬁi) is 2.2 x 1074 £e?/sec.

At a flow rate of 5 ft/sec over a distance of one inch, the ratio of
bulk flow in the x direction to molecular diffusion is approximately
2000; therefore, the molar flux of species i along the x direction is
given by:

J., - C X.Vx. (II-3)




This flux relation is valid in both the potential flow and viscous
flow regimes.

In the potential flow region, there is no component of velocity
in the y direction. The y component of flux in this region is
entirely due to molecular diffusion. Within the viscous flow region,
there are large gradients of reactant concentration and velocity.
Consequently, both terms in equation (II-1l) are of comparable
magnitude; and the y component of flux is given by:

3. = Cnlx.V. ~ D.( %i)]. (II-4)
iy T iy 1k§?~>

Substitution of (II-3) and (II-4) into (-5) gives an equation
for the mole fraction of species i (Xi) as a function of the spatial
coordinates x and y:

Efi
iy °°

) 3 - 9 =
TR XiCpVx] * 53 [XiCaVy) = 33160

7 (I1I-5)

By application of the principle of total mass conservation
(B-1), equation (II-5) can be written in the form:

39X, 9X. X,

, i I N S -
Ve 35t oYy Ty 7505 551 (II-6)

In order to develop the solution to this convective diffusion
equation, it is necessary to calculate the fluid velocity profiles
near the reaction surface. These profiles are governed by equation
(B-1), the conservation of total mass and (B-2), the conservation of
momentum.

The total mass conservation ecuation can be formally satisfied

by the introduction of a stream function (V):

- oy - -
on = om§§ oVy = “Pomy - (1I-7)




In order to solve the variable property Navier-Stokes equation, a
similarity transformation is employed. This technique converts a partial
differential equation into an ordinary differential equation with an
independent variable which is some combination of the original
independent variables.

As a convenient similarity parameter let us define:2

1 Y
n = EMUm j plz') dz' .
voxJy, ¢

This particular combination of variables allows for the variation of gas

density across the boundary layer with temperature. Substitution of
relation (II-8) into (B-2) converts the Navier-Stokes equation into the

following third-order ordinary differential equation:

2 2
d up )d f] + £( d _
—_— —_—) — n).___ = 0,
dﬂ [(utx)pco dnz dnz
with boundary conditions

£(0) = £'(0) = lim £'(n) = 2,

n-»oo

where f is related to the stream function by
£ = Y/VTIL% . (II-10)

The dynamic viscosity (u) of gases at low density increases
with temperature roughly as the 0.6 to 1.0 power of the temperature.
Since the density (p) decreases inversely with temperature, the product

ou should be roughly constant. In particular, a least squares analysis

of the ratio for air over a 1000 K temperature range gave:

oM - 1.14 - 4.92 x 10 4T, (II-11)

Poo Hoo




This equation fits the tabulated experimental data within 5% over
most of the temperature range.

The actual temperature variation is less than 10% over the

fitted interval and will be regarded as a perturbation:

= 1.0 + eG(T). (11-12)

- ‘f' pu/prm g<<l

In a zero—-order approximation, equation (II-9) can be written

as:

d3fo dzfo
L 2+ £ (n)—2 = 0. (II-13)
o]

dn dn

The solution of this differential equation has been tabulated

by Blasius3 for a constant property f£luid:

) 4 11
£ (n) = anz _ a?n5 + lla3n8 _ 375a nl + (II-14)
o 2! 5! 8! 11! et
a = 1.32824.

The velocity profiles can now be determined from (II-14), (II-10) and
(I11-7).

By the application of the similarity transformation (II-8) to
the convective diffusion eguation (II-6), the following second-order

ordinary differential eguation is obtained:

a w1 Ty L) Zi_,

dn poHe Sc dn dn

lim X; = X; lim X; = 0. (I1-15) :
N n+0

The zero-order solution for this equation is:




oo n B
X; (n)= Xy J expl-Sc o £o(z)dzlas

-f expl- -sef > ° fo(z)dz]dB

. (II-16)

Since we are primarily interested in the flux of reactant i near
the reaction surface (n = 0), only the first term in the Blasius
solution (II-14) need be retained. Substitution of this term into
(II-16) gives the mole fraction profile through the boundary layer
in terms of an incomplete gamma function:4

= 2 In - 3 a4
x; () = %7 [Texpl-sc(an®/3t)1an (11-17)

jZexp[-Sc(an3/3!)]dn

v x:(.6774Scl/3)jgexp[-5c(an3/3!)]dn.

The flux of reactant species i across the reaction surface can be

calculated by the application of the chain rule to equation (II-17):

3X dxl 8n

(5, Cpe] X, .
T y=0 l 1/3 ﬁi
Q,,, v (.677480 ) % °

The effective diffusivity, total gas concentration, and density in

(rr-18

equation (II-18) are to be evaluated at the temperature of the
reaction surface. Since this temperature is itself dependent upon
the flux, the problem does not seem soluble at first sight. However,

equation (II-18) can be simplified by the introduction of a dimension-

less Nusselt number evaluated for gas properties in the bulk flow

region:




p— o0
J., X D.C.p X.
Nuw = ¥ =( L2 )‘%J?—x (.67745¢*3).  (11-19)
o

CO ==l -0 00
CpD;  \9;Cpfa

The effective diffusivity of gases varies as the sguare of the
temperature. Since both the density and species concentration are
inversely proportional to temperature, the product of these three
variables is independent of temperature and equal to a constant.

Equation (II-19) can now be written as:
Nu, = %[%%ﬁ Xz(.67745c1/3). (11-20)

This is a central result of the calculation. It indicates that
the flux at the highly exothermic reaction surface can be
calculated from known bulk fluid properties far from the reaction

zone. The flux at the reaction surface is given by:

1/3
_ (.67745¢c™’ ) = o o T -
iy = 5 CpD X /S”x . (11-21)

It is to be noted that the reaction surface for this specified
orientation is not uniformly accessible from a diffusional point
of view. In particular, the leading edge (x=0) has an infinite
flux. This explains ignition at the forward edge of the gas flow.
If the slab were oriented so that its surface would be normal to
the gas flow (stagnation flow) the flux would be reduced about 15%,
but the reaction surface would be uniformly accessible. Stagnation .
flow geometry is the preferred orientation in experimental work 1
where the external transport problem is coupled with intrinsic

chemical kinetics.

10




The consumption rate of species i (in moles per second) at the

reaction surface is given by:

- - 1/3 /0L -
s ngoledx = -.6774Sc (C X )w G:_" (I1I-22)

The decrease in moles of solid per second may be equated to this

rate:
aN aN [
i _ 1 s _14d _ 'S di _
T “a&E ~noa GVt mg WWgE - (11723

Equations (II-23) and (II-22) can be combined to give a differential

equation for the slab thickness (H) as a function of time:

g% = -.67745c1/3/_ReL" [CTX;-:L s ] (1I-24)
s

This equation is readily integrated to give:

H(t) = Ho(l-t/tc), (11-25)

where the total available reaction time (tc) is given by

tc = HODSL(L.477)
0 00 00 e 17?
Men(DixiCT)/ReL (Sc) . (11-26)

I1I) Temperature-Time Profiles

In order to describe the temperature-time profile, the system
is treated by a lumped thermal analysis. In such an analysis, internal
temperature gradients are neglected and the object is assumed to have
a mass-averaged temperature. The validity of this approach can be
established by consideration of a dimensionless ratio known as the Biot
modulus. The Biot modulus is the ratio of internal heat flow

resistance to external heat flow resistance. If the Biot modulus is

11




less than 0.1, the resulting error in the temperature calculation is
less than 5%.

Since the slab is assumed to be gquite thin (Ho - 15 mils) and
have a finite thermal conductivity, the internal heat flow resistance

is small. For convective cooling with air flow rates of 5.5 ft/sec,

the Biot modulus is approximately .14 which justifies a lumped analysis.
The accumulation of thermal energy inside the slab can be

written as a simple energy balance:

(Interior Energy Accumulation) = (Energy Input) - (Energy Output).

The energy input (Q) is provided by the highly exothermic
surface reaction. The rate of heat generation is determined from
equation (II-24):

dN o AoS dH

Q= (-AH°)a-E§ = -an® = H (III-1)
Mg

The enthalpy of reaction (AHO) varies with temperature. From
thermodynamics, this temperature dependence can be calculated through
differences in the heat capacities of the products and the reactants.
For the carbon systems in the present calculations, this enthalpy
variation is less than 1% and is neglected. All calculations are
performed with AH® = -94.0 Kcal/mole. The reaction is assumed
to be:
C + 0, » CO,.
The energy output mechanisms are convection and radiation.

Convective losses tend to dominate the energy balance in the first

few seconds until the system attains steady-state behavior. The

convective loss coefficients (hQ

properties in exact analogy to the mass transfer problem developed

) are evaluated through bulk fluid

12
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‘ in Section II.
The radiative losses depend upon the values assumed for the

emissivities. Since one surface is assumed to be an inert metal foil,

its emissivity is held constant at .2 which is typical of oxidized
'; aluminum. The emissivity of the reacting surface is allowed to
vary from 0 to 1l.0. Steady-state temperatures are plotted against
. the sum of the two surface emissivities in Appendix C. For the
carbon system, realistic values of this sum are probably anywhere
- from .9 to l.1l. Such a total emissivity corresponds to a steady-state

temperature of roughly 650°C. If the total emissivity is above .3,

?"5" radiative losses exceed convective losses for an air flow rate of
- { 5.5 ft/sec. Realistic values of the radiative losses appear to be
. . about 65%.

A typical temperature-time profile is presented in Apperndix C.
The energy balance equation is a nonlinear ordinary differential
equation. The total available reaction time is first determined
- from (II-26), then broken down into 100 steps, and numerically
integrated by a fourth-order Runge-Kutta procedure. The approach
of the system to a steady-state temperature is governed by the

slab thickness and material heat capacity.

13




APPENDIX A
Terminal Velocities and the
Steady~State Approximation
; In order to understand the hydrodynamically induced transport
of oxygen to the reaction surface, it is necessary to determine
. the fluid velocity profiles near the falling object. These
velocity profiles are governed by the appropriate solution of the
- Navier-Stokes equation which is regarded as the mathematical

formulation of the conservation of fluid momentum. If steady-

3

k“"‘ state profiles are assumed for the fluid flow, there is a substantial
simplification of the Navier-Stokes eguation.

.. In this Appendix, we examine the validity of the steady-

state approximation for a falling particle and formulate an analysis

to determine the effect of particle geometry on the terminal
velocity. A general force balance on a particle falling through

- the atmosphere can be written:

av _

VS aE - ng(DS-D) - FD. (a-1)

r s
The drag force (FD) due to air resistance is dependent on the
projected area (AS) of the particle in the direction of motion,

the kinetic energy, the Reynolds number, and at very high

velocities the Mach number. For low velocities, the drag force .ﬁ

follows Newton's equation:

1.2 ) .




The friction factor or drag coefficient (CD) has been experimentally

determined by Becker5

for several particle geometries. Substitution
of (A-2) into (A-1l), followed by separation of variables, and

integration gives the particle velocity as a function of time:

v(t) = Yg/b(l-p/ps) tanh [/§ETI:E73§Tt ] (A-3)
where
N
= 5 —;)p/os Cy- (A-4)

In expression (A-3), the particle is assumed to start from rest
at the origin. In the limit of time approaching infinity, the
hyperbolic tangent approaches unity and the terminal velocity

is given by:

U, = /g/B(I=676,) . (a-5)

An identical result could be obtained from (A-l) and (A-2) by
setting the acceleration (dv/dt) equal to zero and solving for
the velocity.

If we define t, as the time required for the particle to attain

99 percent of its terminal velocity, then we find:

-1
ew ¢ tanh "[.99]) _ 2.45 (A=6)

Ygb({1-p/0g) Ygb{l-p/p;)

which provides a quantitative measure of the time required for the

falling particle to attain a steady~state velocity. This time is

1 to 2 seconds, which is much less than the available reaction time.
The position of the particle as a function of time is determined

from the integral of the velocity over time:
Z(t) = fLog, (cosh(VFETI=5/58)]¢t) (A=7)

15




Since the position of a falling object as a function of time
can easily be determined experimentally, equation (A-7) provides

a transcendental equation for the drag coefficient contained in b.

16




Appendix B
Variable Fluid Boundary Layer Equationsl
(B-1) Conservation of total mass
-
- b -> l -»>
v - (cTV =V ¢« (pV/M) = MV « (pV) =0
-
{(B-2) Conservation of Momentum (Navier-Stokes Eguation)
v v v
- X X _ 9 X
- oV, gt pVY 3y~ 5y {u v ]
il (B-3) Conservation of species i
- 3X, X, 3x
, i i_3 (.® i
! Ve 3%t pVy 3y By(pgiay )
(B-~4) Conservation of energy
~ 9T ~ 3T _ 3 5T
Vil 3% * V% 3y T ay I Y]
f
- 17
e N Vh- I-.ll -




{ Appendix C
Typical Input Data, Model Equations, and

Calculated Temperatures

Typical Input Data:

-4 Length = 3.0 inches

Width = 1.0 inches

b Thickness = 15 mils

Reactant Density = .29 g/cc

Average Molecular Weight = 12
Ambient Temperature = 27 C

Air Viscosity = 16.88 x 10 °¢t?/sec

! Airx Pressure = 1.00 Atm
Thermal Conductivity of Air = 1.516 x 10-2 Btu/hr-£ft-F
Air Flow Rate = 5.5 ft/sec
Enthalpy = 94.0 Kcal/mole
Schmidt Number = Prandtl Number = .708
Model Equations:
(1) H(E) 8 = Q- 2B (T, - T - o(el + c2) (14 - 1
°s¥p at Q'*s ® s ®
H(t) = Ho(l - t/tc)
- -3 2.10 x 105
Cp(T) = (4,10 + 1.02 x 10 °T - —;—~—7———— ) /12
T

18
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