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Similarity Parameters

The partial differential equations governing various transport

processes can be simplified by similarity analysis. The various

independent variables of the transport problem are combined by dimen-

sional analysis into dimensionless numbers, each of which is a

similarity parameter or scaling factor that characterizes some

aspect of the problem under investigation. The cogent similarity

parameters of this report are:

kinematic viscosity
Pr. Prandtl Number = kiemat isoity

thermal diff sivity

Re Re d Ninertial forcesReynolds Number viscous forces

Sc Schmidt Number = kinematic viscosity
mass diffusivity

Le Lewis Number Pr
Sc
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Notation

M = Mass

AL = Length

t = Time

E = Energy

T = Temperature

A area

CD drag coefficient

C constant pressure heat capacity E/MT

CT total concentration moles/L 3

2D. effective diffusivity of species i L /t

H slab thickness L

-0. 2Ji molar flux of species i moles/L t

K rate constant

k thermal conductivity E/tLT

M molecular weight

N. moles of species i

n stoichiometric coefficient

U terminal velocity L/t

V local molar average velocity L/t

w width L

Xi  mole fraction of species i

p density M/L3

stream function L2 A

dynamic viscosity M/Lt

V kinematic viscosity L2 /t
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GAS-SOLID REACTIONS PART I:

EXTERNAL DIFFUSION-CONTROLLED REACTIONS

I) Introduction

This report is concerned with the description of exothermic

chemical reactions between gaseous reactants and macroscopic solid

surfaces. The observed rate of reaction (global rate) is assumed

to be governed by external diffusion of gaseous reactants to the

surface. Since these reactions are heterogeneous, any intrinsic

chemical kinetics enter into the mathematical formulation as boundary

conditions for the coupled partial differential equation describing

mass transport to the surface. At the reacting surface, the molar

flux (moles/cm2-sec) of reactant i can be equated to the rate of

chemical reaction:
+ ax.

[D.CT ]S = [K(CTXi) CS ]S

or in dimensionless variables

-i

I K T  C sL S

At elevated temperatures the reaction rate constant (K) is

augmented much more by the temperature increment than the effective

diffusivity (Di). Consequently, the ratio

Di diffusion rate <<
Z-1 m chemical rate

KCT sL

and the appropriate boundary condition for the mole fraction of

species i (Xi) on the reaction surface is:

(Xi)s= 0 . (1-2)
Manuscript submitted February 17, 1982.
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As the reaction proceeds, the macroscopic reaction surface

recedes at a rate simply dependent upon how fast the gaseous reactants

are able to arrive. From a microscopic point of view, the actual surface

area of the solid reactant at any particular instant of time is un-

known. However, if the reacting solid maintains a certain geometric

shape during the majority of available reaction time an approximate

analysis of the system's time evolution is possible. The primary

effect of the solid reactant geometry is the modification of the

hydrodynamic flow of gaseous reactants.

Consider the combustion of a chunk of charcoal in a flowing

stream of air. Imagine that this chunk of charcoal is tightly

enclosed within a geometric surface, which is not in actual contact

with the solid. The integral of the oxygen flux over this closed

surface eauals the accumulation of gaseous reactant (02) within the

volume. If the chemical rate of reaction is sufficiently rapid so that

there is no accumulation inside the volume or, in other words, the

solid acts as an oxygen sink, then the integral of the flux over the

closed surface is zero:

ds = 0. (1-3)

This formulation is equivalent to a steady-state approximation

in the gas phase. The validity of such an approximation is dis-

cussed in Appendix A.

By the application of Gauss's theorem, the surface integral

can be converted into a volume integral:

Ji dS =f 0 JidV = 0. (1-4)

Since the integration volume is arbitrary, the integrand of (1-4) must

equal zero:
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V Ji= 0. (1-5)

This partial differential equation is an equation of continuity

for the gaseous reactant flux. Its derivation rests upon the

assumptions of a steady-state profile in the gas phase, instantaneous

* chemical reactions at the adsorption sites, and the absence of

homogeneous reactions.

The preceeding formulation of the continuity equation is

analogous to the application of Gauss's Law in electrostatics to

a dipole. The net charge (accumulation) contained within the Gaussian

surface is zero. The integral of the electric field intensity (flux)

over the closed surface is zero. However, local regions of the

Gaussian surface have electric fields associated with them. In

other words, the condition expressed by (1-3) does not imply that the

local flux on a portion of the surface must vanish. The determination

of this local flux is facilitated by the presence of symmetry and the

judicious selection of a coordinate system for the gradient operator.

The calculation of this local reactant flux will provide an

approximate analysis of the reacting gas-solid system. For purposes

of the model calculations, a Gaussian surface is selected so as to

approximate the macroscopic geometry of the reacting solid. Bulk

portions of the solid are assumed to be inert, so as to maintain an

approximate geometry during reaction in the flowing gas stream. In

particular, we will consider a reacting slab whose edges and one

face are made inert by a nonreactive coating such as a metal foil. In

this model the surface reaction can be considered as occurring on a

mathematical plane, whose position is a function of time. The details

of what happens to species i once it crosses the local reaction surface

and reacts with the individual microscopic components contained within

3
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the solid are neither necessary nor relevant to the description of

the external diffusion-controlled process.

This external diffusion occurs through a thin gaseous layer

adjacent to the reacting surface termed a boundary layer. Within

the boundary layer, there are sharp gradients of flow velocity,

temperature, and composition. The thickness of the boundary layer

is a function of geometry and the Reynolds number (Re). Outside

of the boundary layer, the gaseous reactant mixture is assumed to

- ' have a uniform composition and temperature. In this outer region,

the flow velocity of the gaseous mixture can be calculated as the

gradient of a scalar potential function. This region is called the

potential flow region and it provides part of the boundary conditions

for the partial differential equations (Appendix B) describing trans-

port processes within the boundary layer.

One of the primary objectives of this report is to establish a

rational procedure to calculate the local reactant fluxes from known

bulk gas stream properties. We are dealing with reactant gases whose

physical properties such as density, viscosity, and thermal con-

ductivity vary with temperature. Since these gases react exothermically

with a surface, they encounter a substantial temperature gradient. This

temperature gradient is in turn determined by the reactant flux to the

surface. Once this procedure has beei. established, the reactant flux

will be used to calculate the total available reaction time for a

proposed amount of material to be completely reacted. Temperature-

time evolution of the reacting system is then determined with the in-

clusion of convective and radiative losses. Quantitative calculations

are presented for the oxidation of graphitic carbon.
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II) Calculation of Local Gaseous Reactant Flux

The molar flux (Ji) of a chemical species i is a vector quantity

which denotes the nunber of moles of species i that pass through a

unit area per unit time. In a stationary coordinate system the molar

flux is given by:

i= CT[XiV - DiVi]" (II-1)

This equation shows that there are two contributions to the molar

flux of any species i. The first term is the molar flux of i re-

sulting from the bulk motion of the fluid with a local molar average

velocity V. The second term is the molar flux due to molecular

* diffusion (Fick's Law) superimposed on the bulk flow.

Potential flow

Boundary layer

u Viscous flow

Reacting Slab

Along the x direction, the dominant transport mechanism is

bulk flow. This can be made evident by consideration of the x

component of equation (II-1):

Jix = CT[XiV - Di Ox (11-2)

A typical value for an effective diffusivity (D) is 2.2 x 10- 4 ft 2/sec.

At a flow rate of 5 ft/sec over a distance of one inch, the ratio of

bulk flow in the x direction to molecular diffusion is approximately

2000; therefore, the molar flux of species i along the x direction is

given by:

Ji - CTXiVx (11-3)
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This flux relation is valid in both the potential flow and viscous

flow regimes.

In the potential flow region, there is no component of velocity

in the y direction. The y component of flux in this region is

entirely due to molecular diffusion. Within the viscous flow region,

there are large gradients of reactant concentration and velocity.

Consequently, both terms in equation (II-1) are of comparable

magnitude; and the y component of flux is given by:

Siy = CT [XiV y I (11-4)

Substitution of (11-3) and (11-4) into (1-5) gives an equation

for the mole fraction of species i (Xi) as a function of the spatial

coordinates x and y:

-XiC~x] + . [XiCTVy] = [C 3i-X-. I5

(XC I+ .I CV C U 1]j. (11-5)

By application of the principle of total mass conservation

(B-1), equation (11-5) can be written in the form:
X i  9Xi  3 X

ax  + PVy = - ". (I-6)

In order to develop the solution to this convective diffusion

equation, it is necessary to calculate the fluid velocity profiles

near the reaction surface. These profiles are governed by equation

(B-1), the conservation of total mass and (B-2), the conservation of

momentum.

The total mass conservation equation can be formally satisfied

by the introduction of a stream function (1):

QVx = P'y PVy = -Q-£ . (11-7)
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In order to solve the variable property Navier-Stokes equation, a

similarity transformation is employed. This technique converts a partial

differential equation into an ordinary differential equation with an

independent variable which is some combination of the original

independent variables.

As a convenient similarity parameter let us define:
2

n E p(z') dz' (11-8)

This particular combination of variables allows for the variation of gas

density across the boundary layer with temperature. Substitution of

relation (11-8) into (B-2) converts the Navier-Stokes equation into the

following third-order ordinary differential equation:

S 2  d f 2 f = 0, (11-9)
dn [ (P- dn 2 d 2

with boundary conditions

f(0) = f'(O) = 0 lim f'(n) 2,

where f is related to the stream function by

f(n) = / x (11-10)

The dynamic viscosity (i) of gases at low density increases

with temperature roughly as the 0.6 to 1.0 power of the temperature.

Since the density (p) decreases inversely with temperature, the product

pp should be roughly constant. In particular, a least squares analysis

of the ratio for air over a 1000 K temperature range gave:

P =P 1.14 - 4.92 x 10- 4T. (II-11)
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4This equation fits the tabulated experimental data within 5% over
most of the temperature range.

The actual temperature variation is less than 10% over the

fitted interval and will be regarded as a perturbation:

p = 1.0 + cG(T). (11-12). P" E<<1

In a zero-order approximation, equation (11-9) can be written

as:

d3 f 0d2 f 0
df d~f

dn +  0 dn--2 - 0. (II-13)
dri 3- o dn2

The solution of this differential equation has been tabulated

by Blasius3 for a constant property fluid:

2 a2 n ll 3n8  375 n 4 11
fo(r ) = + . ll. + (I-14)

a E 1.32824.

The velocity profiles can now be determined from (11-14), (11-10) and

(11-7).

By the application of the similarity transformation (11-8) to

the convective diffusion equation (11-6), the following second-order

ordinary differential equation is obtained:

d __ 1c dXi dXi 0dp -Sc-1 + f(n) =

lim X i = X . lim Xi = 0. (11-15)

The zero-order solution for this equation is:

8
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(fl)= Xi  nexp[-Sc f (z)dz]d81f;() i.0 f (11-16)
f"exp[-Sco fo(z)dz]d8

Since we are primarily interested in the flux of reactant i near

the reaction surface (n = 0), only the first term in the Blasius

solution (11-14) need be retained. Substitution of this term into

(11-16) gives the mole fraction profile through the boundary layer

in terms of an incomplete gamma function:
4

X. (T) - xi exp(-Sc(an3/3)dn-17)

J exp[-Sc(an /3!) ]dn
T0

- 3C(.774cl3nre-(_cin/3)Iin.

The flux of reactant species i across the reaction surface can be

calculated by the application of the chain rule to equation (11-17):

J. dXi
iy [iCT ]y=0 =  [DiCT dn 3y y=0 (11-18

=(5 C _I X
i [iT~ly=0 Xii- T Y O 0 6 774Sc I /  -- .

The effective diffusivity, total gas concentration, and density in

equation (11-18) are to be evaluated at the temperature of the

reaction surface. Since this temperature is itself dependent upon

the flux, the problem does not seem soluble at first sight. However,

equation (11-18) can be simplified by the introduction of a dimension-

less Nusselt number evaluated for gas properties in the bulk flow

region:

9
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IDiCTP X. "Nuco = = -/ (6774Sc 11 ) (11-19)

The effective diffusivity of gases varies as the square of the

temperature. Since both the density and species concentration are

inversely proportional to temperature, the product of these three

variables is independent of temperature and equal to a constant.

Equation (11-19) can now be written as:

IN = Xi X( .6774Sc 1 ~) (11-20)

This is a central result of the calculation. It indicates that

the flux at the highly exothermic reaction surface can be

calculated from known bulk fluid properties far from the reaction

zone. The flux at the reaction surface is given by:

(.6774Sc 1/ 3 )  CO 0 W -
j iy 2 CT Dii . (1-21)

It is to be noted that the reaction surface for this specified

orientation is not uniformly accessible from a diffusional point

of view. In particular, the leading edge (x=0) has an infinite

flux. This explains ignition at the forward edge of the gas flow.

If the slab were oriented so that its surface would be normal to

the gas flow (stagnation flow) the flux would be reduced about 15%,

but the reaction surface would be uniformly accessible. Stagnation

flow geometry is the preferred orientation in experimental work

where the external transport problem is coupled with intrinsic

chemical kinetics.
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The consumption rate of species i (in moles per second) at the

reaction surface is given by:

dN rwzLl/30 W
= "do d  Ji d x - -6774Sci(C XiD )w1 =U . (11-22)

The decrease in moles of solid per second may be equated to this

rate:

dN 1d PS (LwH! 1-3a iT = u- [CsVs( = -23)

Equations (11-23) and (11-22) can be combined to give a differential

equation for the slab thickness (H) as a function of time:

(r = -.6774Sc .3 /e_ TXi iMS (11-24)
L

This equation is readily integrated to give:

H(t) = H (l-t/tc), (11-25)

where the total available reaction time (t c ) is given by

t = HOP L(L. 477)

M~n(DiX',CT) iR-L (Sc)-/3 (11-26)

III) Temperature-Time Profiles

In order to describe the temperature-time profile, the system

is treated by a lumped thermal analysis. In such an analysis, internal

temperature gradients are neglected and the object is assumed to have

a mass-averaged temperature. The validity of this approach can be

established by consideration of a dimensionless ratio known as the Biot

modulus. The Biot modulus is the ratio of internal heat flow

resistance to external heat flow resistance. If the Biot modulus is

L jh 11
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less than 0.1, the resulting error in the temperature calculation is

less than 5%.

Since the slab is assumed to be quite thin (H - 15 mils) and

have a finite thermal conductivity, the internal heat flow resistance

is small. For convective cooling with air flow rates of 5.5 ft/sec,

the Biot modulus is approximately .14 which justifies a lumped analysis'.

The accumulation of thermal energy inside the slab can be

written as a simple energy balance:

(Interior Energy Accumulation) = (Energy Input) - (Energy Output).

The energy input (Q) is provided by the highly exothermic

surface reaction. The rate of heat generation is determined from

equation (11-24):

dNS  AP S dH
Q = (-AH°) at = -AH MS - (III-1)

The enthalpy of reaction (AH ) varies with temperature. From

thermodynamics, this temperature dependence can be calculated through

differences in the heat capacities of the products and the reactants.

For the carbon systems in the present calculations, this enthalpy

variation is less than 1% and is neglected. All calculations are

performed with AH° = -94.0 Kcal/mole. The reaction is assumed

to be:

C + 02 - CO2.

The energy output mechanisms are convection and radiation.

Convective losses tend to dominate the energy balance in the first

few seconds until the system attains steady-state behavior. The

convective loss coefficients (FQ) are evaluated through bulk fluid

properties in exact analogy to the mass transfer problem developed

12
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':4 in Section II.

The radiative losses depend upon the values assumed for the

emissivities. Since one surface is assumed to be an inert metal foil,

its emissivity is held constant at .2 which is typical of oxidized

aluminum. The emissivity of the reacting surface is allowed to

vary from 0 to 1.0. Steady-state temperatures are plotted against

the sum of the two surface emissivities in Appendix C. For the

carbon system, realistic values of this sum are probably anywhere

from .9 to 1.1. Such a total emissivity corresponds to a steady-state

temperature of roughly 650°C. If the total emissivity is above .3,

radiative losses exceed convective losses for an air flow rate of

5.5 ft/sec. Realistic values of the radiative losses appear to be

about 65%.

A typical temperature-time profile is presented in Apperldix C.

The energy balance equation is a nonlinear ordinary differential

equation. The total available reaction time is first determined

from (11-26), then broken down into 100 steps, and numerically

integrated by a fourth-order Runge-Kutta procedure. The approach

of the system to a steady-state temperature is governed by the

slab thickness and material heat capacity.
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APPENDIX A

Terminal Velocities and the

Steady-State Approximation

In order to understand the hydrodynamically induced transport

of oxygen to the reaction surface, it is necessary to determine

the fluid velocity profiles near the falling object. These

velocity profiles are governed by the appropriate solution of the

Navier-Stokes equation which is regarded as the mathematical

formulation of the conservation of fluid momentum. If steady-

state profiles are assumed for the fluid flow, there is a substantial

simplification of the Navier-Stokes equation.

In this Appendix, we examine the validity of the steady-

state approximation for a falling particle and formulate an analysis

to determine the effect of particle geometry on the terminal

velocity. A general force balance on a particle falling through

the atmosphere can be written:

P5  dV = 5 g(pS-p) - FD. (A-l)

The drag force (FD) due to air resistance is dependent on the

projected area (As) of the particle in the direction of motion,

the kinetic energy, the Reynolds number, and at very high

velocities the Mach number. For low velocities, the drag force

follows Newton's equation:

=PV 2 AC (A-2)
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The friction factor or drag coefficient (CD) has been experimentally

determined by Becker 5 for several particle geometries. Substitution

of (A-2) into (A-1), followed by separation of variables, and

integration gives the particle velocity as a function of time:
k

V(t) = /g/b(l-p/ps) tanh gb(l-p-/PsTt ] (A-3)

where
b1 ,As.b (AS)P/ps (A-4)

In expression (A-3), the particle is assumed to start from rest

at the origin. In the limit of time approaching infinity, the

hyperbolic tangent approaches unity and the terminal velocity

is given by:

U = /g/b(l-p/p s ) . (A-5)

An identical result could be obtained from (A-l) and (A-2) by

setting the acceleration (dv/dt) equal to zero and solving for

the velocity.

If we define t, as the time required for the particle to attain

99 percent of its terminal velocity, then we find:

too tanh-1 (.99] = 2.45 (A-6)Vgb (l-P/P s ) Vgb (l-p/p S)

which provides a quantitative measure of the time required for the

falling particle to attain a steady-state velocity. This time is

1 to 2 seconds, which is much less than the available reaction time.

The position of the particle as a function of time is determined

from the integral of the velocity over time:

Z(t) -Log e (cosh[Vgb(l-p/ps)]t) (A-7)

15
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Since the position of a falling object as a function of time

can easily be determined experimentally, equation (A-7) provides

a transcendental equation for the drag coefficient contained in b.
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Appendix B

Variable Fluid Boundary Layer Equationsi

(B-1) Conservation of total mass

4. 4.4.

V * (C TV = V * (PV/M) = *(rAT) =0

(B-2) Conservation of Momentum (Navier-Stokes Equation)

W v 3V
P ax + PVya xa DI x

(B-3) Conservation of species i

ax. a X a~ ax)
x 3X + y ayp -jay

(B-4) Conservation of energy

'1 17



Appendix C

Typical Input Data, Model Equations, and

Calculated Temperatures

Typical Input Data:

Length = 3.0 inches

Width = 1.0 inches

Thickness = 15 mils

Reactant Density - .29 g/cc

Average Molecular Weight = 12

Ambient Temperature = 27 C
Air Viscosity 16.88 x 10-5 ft2 /sec

Air Pressure = 1.00 Atm

Thermal Conductivity of Air = 1.516 x 10- Btu/hr-ft-F

Air Flow Rate = 5.5 ft/sec

Enthalpy = 94.0 Kcal/mole

Schmidt Number - Prandtl Number .708

Model Equations:
dTs 4 4

PSrp (T) H(t) !!- Q - 2h (Ts - T )-(el + e2)(T - TI.

H(t) = H (1 - t/tc )
0 C 5

-03T 2.10 x 1
C (T) = (4.10 + 1.02 x 10T 2 )/12

18
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