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ABSTRACT

A new verification strategy for iterative programs is
described. The technique is based on the idea of applying a
correctness/incorrectness preserving transformation to the pro-
gram to be verified. The transformation is performed in such a
way that the new program is substantially easier to verify than
the original. Examples which illustrate the use of the technique
are presented. The method is compared and contrasted with
subgoal induction and the inductive assertion technique.

KEYWORDS and PHRASES: program verification, proof transformation,
reduction hypothesis, subgoal induction, inductive assertion
technique
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i. Introduction

The difficulties associated with the general verification of
computer programs are well known. Chief among these difficulties
is the problem of creating a suitable inductive hypothesis (e.g.
loop invariant) for programs which use iteration or recursion. A
large number of guidelines or heuristics for the construction of
these hypotheses have appeared in the literature. Particularly
promising are results in [Mills 75, Basu & Misra 75, Wegbreit 77,
Morris & Wegbreit 77] which show that for a particular class of
program/specification pairs, an adequate inductive hypothesis can
be obtained in a straightforward deterministic manner. A conse-
quence of this determinism is that for a verification problem in
this class, the program can be proven/disproven correct with
respect to its specification (assuming termination) by testing
several verification conditions based on the specification and
characteristics of the program components. Unfortunately, this
class is rather restricted and, as a result, many verification
problems which arise naturally in practice are not covered by
these results.

In this report, a verification strategy is described which
is based on the idea of applying a correctness/incorrectness
preserving transformation to the program under consideration.
The motivation behind the transformation is to produce a verifi-
cation problem such that, in a manner similar to that in the
above mentioned work, an inductive hypothesis can be created in a
deterministic fashion. Thus we are proposing replacing the prob-
lem of synthesizing an inductive hypothesis with one of discover-
ing an adequate correctness/incorrectness preserving transforma-
tion. In a number of examples we have studied, the latter prob-
lem appears to be more tractable.

In the remainder of this section we discuss a general verif-
ication problem which occurs often in practice and then suggest
the idea of a transformation as a means to solve the problem. A
number of heuristics for discovering an appropriate transforma-
tion are given in Section 2 and are illustrated with examples.
In Section 3, the proposed solution is compared and contrasted
with the inductive assertion and subgoal induction approaches to
the verification problem. Finally, the application of the tech-
nique to more complex program forms is discussed in Section 4.

In our analysis, we will consider a program P of the form

X :=KW;
while B(M) do

X := H(X)
od;

X := Q(X)

where X is the program data state, K, H and Q represent data-
state-to-data-state functions and B is a predicate on the data



state. For the present we assume each of the functions and the
predicate is explicitly known; this requirement regarding the
function Q is relaxed in Section 4. We assume that the program
specification is formulated as a function mapping the input data
state to the portion of the output data state which corresponds
to the program variables whose final values are of interest. We
will use a function e which extracts from any data state the data
state portion corresponding to these variables. If f is the
specification function, the domain of f, written D(f), is the set
of input data states for which a corresponding output is speci-
fied. Furthermore, the notation [P] will be used for the data-
state-to-data-state function computed by the program P. Thus for
this verification problem, P is correct with respect to its
specification function f if and only if for any X in D(f), [P] (X)
is defined and f(X)=e([P] (X)) .

Let TAIL be the portion of P which follows the initializa-
tion X := K(X), i.e. TAIL is the WHILE loop followed by the
assignment X := Q(X). We begin with the following:

Observation 1 - P is correct with respect to (wrt) f if and
only if (iff) TAIL is correct wrt the input/output relation

g = {(X,Y) I + XO e D(f) )- (K(XO)=X & f(XO)=Y)}.

That is, P is correct wrt f iff on data states X which are
output by K on input XO G D(f), TAIL produces f(XO). For the
moment, we make the following two assumptions:

FUNCTION: The relation g is a function, i.e.
K(XO)=K(Xl) -> f(XO)=f(Xl)

for all X0, Xl e D(f), and
CLOSURE: The WHILE loop is closed [Basu & Misra 75] for the

domain of g, i.e.
K(XO)-X, B(X) -> 4 Xl e D(f) ) K(Xl)=H(X)

for all X0 6 D(f).

Given these two assumptions, it is easy to state the neces-
sary and sufficient verification conditions for the correctness
of TAIL (assuming termination) wrt g. These are (adapted from
[Mills 75, Basu & Misra 75, Morris & Wegbreit 77])

X e D(g), B(X) -> g(X)=g(H(X))
X G D(g), -B(X) -> g(X)=e(Q(X))

and are called the iteration and boundary conditions, respec-
tively, in (Misra 781. They are equivalent to

X0 G D(f), K(XO)=X, B(X) -> g(X)=g(H(X))
XO - D(f), K(XO)=X, ~B(X) -' g(X)=e(Q(X))

i.e.
X0 G D(f), B(K(XO)) -> g(K(XO))=g(H(K(XO)))
XC 6 D(f), ~B(K(XO)) -> g(K(XO))=e(Q(K(XO)))

i.e.
X0,XI e D(f), B(K(XG)), K(X1)=H(K(XO)) -> g(K(XO))=g(K(Xl))
XO e D(f) ,-B(K(XO)) -> g(K(XO))=e(Q(K(XO)))

i.e.
ITERATION:
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XO,Xl e D(f), B(K(XO)), K(Xl)=H(K(XO)) -> f(XO)=f(Xl)
BOUNDARY:
XO 6 D(f) ,B(K(XO)) -> f(XO)=e(Q(K(XO))).

We conclude as follows:

Observation 2 - Suppose FUNCTION and CLOSURE hold. P is
correct wrt f (assuming termination) iff ITERATION and BOUNDARY
hold.

Example 1 - Consider the following program

{a>=0}
a := a/2;
while a q {0,1} do

a := a - 2
od;

a := (if a=O then 1 else 0)
{ a=EVEN (aO/2) T.

In this program, the data state consists of the single integer
variable a and will be represented by <a>. The function EVEN(a)
appearing in the program postcondition returns 1 if its argument
is even and 0 otherwise. The specification function f for this
program is

f(<aO>)=a <-> aO>=O & a=EVEN(aO/2)
which implies

<aO> G D(f) <-> aO>=0.
This program relates to the general program form above as follows

K(<aO>)=<a> <-> a=aO/2
B(<a>) <-> a q {0,I}
H,<a0>)=<a> <-> a=aO-2
Q(<a0>)=<a> <-> (aO=0 & a=l) OR (a0#0 & a=0)
e(<a>)=a.

Note that assumptions FUNCTION and CLOSURE hold. If the program
terminates for all inputs in D(f), it is correct wrt its specifi-
cation iff conditions ITERATION and BOUNDARY hold. These can be
written

aO>=Q, al>=0, aO/2 0 {0,1}, al/2=aO/2 - 2
-> EVEN (a/2) =EVEN (al/2)

and
aO>=0, aO/2 Q {0,1} -> EVEN(aO/2)=(if aO/2=0 then 1 else 0)

respectively.

At this point we stop to consider the assumptions we have
made. Suppose assumption FUNCTION is false, but CLOSURE holds.
Thus we have XO, X1 e D(f) satisfying

K(XO)=K(Xl) & f(X0)#f(Xl).
Now if B(K(XO)), then K(X2)=H(K(XO)) for some X2 e D(f) by CLO-
SURE. If ITERATION was valid, we would have f(XO)=f(X2) as well
as f(Xl)=f(X2). Since this contradicts our hypothesis, ITERATION
does not hold. On the other hand, suppose -B(K(XO)). If BOUN-
DARY held, we would have f(XO)=e(Q(K(XO))) as well as
f(Xl)=e(Q(K(Xl))). The contradiction leads us to conclude that
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if FUNCTION is false, but CLOSURE holds, (at least) one of ITERA-
TION and BOUNDARY is false. Since FUNCTION being false implies P
is not correct wrt f (i.e. [PI(X0)=[P](Xl), but f(XO)0f(Xl)),
this leads us to the following:

Observation 3 - Suppose CLOSURE holds. P is correct wrt f
(assuming termination) iff ITERATION and BOUNDARY hold.

Unfortunately, it is much more difficult to deal with the
reliance on assumption CLOSURE. We can, however, gain insight
into the problem by studying CLOSURE and its relation to condi-
tion ITERATION. Imagine P executing on some input in D(f) and
consider the sequence of intermediate data states on which the
predicate B is evaluated. CLOSURE requires that each of these
intermediate states be "reachable" through the function K for
some input element of D(f). It is this reachability that enables
condition ITERATION to test whether this sequence of states stays
on the right "track," or more specifically, that the inverse
images of these states through K remain in the same level set of
f.

Most often in practice, however, the purpose of the initial-
ization K is to "constrain" the data state, thereby providing
some specific "starting point" for the loop execution. In this
case, the intermediate data states will not be reachable through
K and, as a result, condition ITERATION may well hold for the
simple reason that it is vacuously true, i.e. the term
K(Xl)=H(K(XO)) will be false for all Xl. Rather than abandoning
this approach to the verification of P, however, the solution
suggested here is to "correct" the problem and proceed.

Consider substituting for K a suitable replacement initiali-
zation K'. By "suitable" here, we mean that the output of K'
must be sufficiently unconstrained so that CLOSURE holds for K',
and furthermore, that the substitution preserves the termination
and correctness/incorrectness properties of the program P. The
following definition formalizes this idea.

Definition - Let P' be the program P with the initialization
K replaced by K'. K' is a reduction hypothesis iff CLOSURE holds
for K' and each of

TERMINATES: For inputs in D(f), P terminates -> P' terminates,
and

PRESERVES: P is correct wrt f iff P' is correct wrt f
is satisfied.

The significance of the definition is that once a reduction
hypothesis K' has been located, we can prove/disprove the
correctness of the original program by proving its termination
and verifying ITERATION and BOUNDARY with K" substituted for K.

The proposed solution of finding a reduction hypothesis is
analogous to finding an adequate loop invariant for an inductive
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assertion proof [Hoare 69], or finding an appropriate loop func-
tion for a functional [Mills 75] or subgoal induction [Morris a
Wegbreit 771 proof. We justify proposing an alternative to these
standard techniques for the following reasons:
a) a reduction hypothesis has a unique intuition behind it;

in a number of cases, this leads rather naturally to a
solution,

b) the class of reduction hypotheses bears an interesting
relationship to the class of adequate loop invariants
for P,

c) unlike the technique of inductive assertions, it is possible
to disprove an incorrect program without considering the
program beyond the loop, i.e. by disproving ITERATION,

d) in the case there is no initialization (i.e. K is the
identity function) and the loop is closed for D(f) (or,
more generally, any time CLOSURE holds for K) , a very
efficient proof results since K itself is a reduction
hypothesis, and

e) the reduction hypothesis solution provides continuity
between the cases where CLOSURE does and does not hold;
an understanding of "why" CLOSURE does not hold, for
example, can provide insight into how to create K' from K.

2. Constructing a Reduction Hypothesis

In this section we will consider several heuristics for
creating a reduction hypothesis for P and will illustrate their
use on example programs. We begin with some preliminary remarks.

In the discussion in the preceding section, we assumed that
the program pieces corresponding to K, H and Q were determinis-
tic, that is, we assumed their semantics (i.e. their input/output
behavior) could be represented by data-state-to-data-state func-
tions. The above results, however, extend in the natural way to
the case where subprograms in P are nondeterministic provided one
switches to a slightly more awkward relational notation for
representing these subprograms. In particular, we will be
interested in the case where the initialization is nondeterminis-
tic since it turns out that this kind of initialization is often
a reasonable choice for a reduction hypothesis. If this new ini-
tialization is represented by a data-state-to-data-state relation
K , ITERATION and BOUNDARY translate to
ITERATION':

XO,Xl G D(f), K-(XO,X), B(X), K-(Xl,H(X)) -> f(XO)=f(xl)
BOUNDARY:

XO G D(f), K-(XO,X), ~B(X) -> f(XO)=e(Q(X)),
where K'(XO,X) is a notation we will use which stands for (XO,X)

K'.

Now suppose this relation K' satisfies CLOSURE, i.e.
K'(XO,X) & B(X) -> + Xl e D(f) ) K'(Xl,H(X))

for all XO C D(f). The program P derived from P by replacing
the initialization K with K', i.e. by replacing
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X K(X)
with

X "any Y satisfying K'(X,Y)",
is correct wrt f (assuming termination) iff ITERATION' and BOUN-
DARY' hold. If K' has been chosen so as to be a reduction
hypothesis, the original P is correct wrt f iff P terminates for
inputs in D(f) and ITERATION' and BOUNDARY' hold.

As an aid in expressing nondeterministic program segments,
we will use a notation defined in [Dijkstra 76]. Specifically,
an execution of the program

if Bi(X) -> Pl7 B2(X) -> P2

Bn(X) -> Pn
fi

calls for the execution of any single program Pi provided guard
Bi(X) holds.

We now consider two opposing alternatives to constructing
K'. Each is based on a different philosophy for insuring that
PRESERVES is satisfied. The first is a program-oriented approach
and is characterized by selecting K" so that the programs P and
P' are equivalent, i.e. so that P and P' exhibit identical
input/output behavior. Such a K' trivially guarantees PRESERVES
is satisfied. The other approach is a specification-oriented
approach and is characterized by selecting K- as a superset of K
in such a way that executions of PA which use the extended aspect
of the initialization are guaranteed to be correct, i.e. execute
in accordance with the program specification. Such a K' satisfies
PRESERVES since the correctness of P' implies the correctness of
P (since K' is a superset of K) and the correctness of P implies
the correctness of PA (the additional execution paths in P' are
known to be correct). Thus each approach chooses a different
technique aimed at meeting PRESERVES. If, in addition, CLOSURE
holds for this new initialization and TERMINATES is satisfied,
then K" is a reduction hypothesis.

We will begin by considering several program-oriented
heuristics and will make use of the following definition.

Definition - Let G be a data-state-to-data-state relation
and let P' be the program P with initialization K replaced by G.
G is an alternative initialization to K iff P and P' have identi-
cal input/output behavior for inputs in both D(f) and D(G).

Thus if G is an alternative initialization to K, then, for a
restricted set of inputs, G can be used in place of K without
affecting the externally observable behavior of P. In what fol-
lows, we will make use of the following properties which are
derived trivially from this definition:
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- K is an alternative initialization to itself,
- the union of any number of alternative initializations is

an alternative initialization, and
- any subset of an alternative initialization is an

alternative initialization.
Our interest in alternative initializations is due to the follow-
ing theorem.

Theorem 1 - Any alternative initialization G whose domain
includes D(f) and which satisfies CLOSURE is a reduction
hypothesis.

Proof - Let G meet the conditions stated in the theorem and
let P' stand for the program P with initialization G substituted
for K. From the definition of an alternative initialization, P
and P' have identical input/output behavior over D(f). Thus TER-
MINATES and PRESERVES are trivially satisfied and G is a reduc-
tion hypothesis.

The implication of Theorem 1 is that a reduction hypothesis
may be created by discovering a suitable alternative initializa-
tion. This is the basis for all program-oriented approaches to
synthesizing a reduction hypothesis. The following theorem sug-
gests three techniques for constructing alternative initializa-
tions.

Theorem 2 (Program-Oriented Heuristics) - Let KI, K2 and K3
be any functions satisfying

LONGCUT: Kl(X)=Y -> B(Y) & H(Y)=K(X)
SHORTCUT: K2(X)=Y -> B(K(X)) & Y=H(K(X))

NOCUT: K3(X)=Y -> B(K(X)) & B(Y) & H(Y)=H(K(X))
for all X G D(f). Then each of Kl, K2 and K3 is an alternative
initialization.

Proof - We will make repeated use of the WHILE loop property
B(X) -> [TAIL] (X)=[TAIL] (H(X)).

Let X e D(f) and X G D(Kl). Then
[TAIL] (Kl(X))L=TAIL] (H(Kl(X)))=[TAIL] (K(X))=[P] (X),

hence Kl is an alternative initialization. Let X G D(f) and X G
D(K2). Then

[TAIL] (K2(X))=[TAIL] (H(K(X)))=[TAIL] (K(X))=[PJ (X),
hence K2 is an alternative initialization. Finally, let X G D(f)
and X e D(K3). Then

[TAILI(K3(X))=[TAIL](H(K3(X)))=[TAIL] (H(K(X)))
=[TAIL] (K(X))=[F] (X)

hence K3 is also an alternative initialization.

The labels on the conditions in Theorem 2 are motivated by
the effect replacing K with the alternative initializations has
on the number of iterations of the WHILE loop. K1 causes the
loop to execute 1 additional iteration, K2 saves the loop an
iteration, and K3 has no effect on the number of iterations. The
significance of the theorem is that any combination of K, KI, K2
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and K3 whose domain includes D(f) and which satisfies CLOSURE is
a reduction hypothesis.

We now define a specification-oriented heuristic for creat-
ing a reduction hypothesis.

Theorem 3 (Specification-Oriented Heuristic) - Let G be any
alternative initialization to K whose domain includes D(f) and
let K4 be any function satisfying

VERYSHORTCUT: K4(X)=Y -> -B(Y) & e(Q(Y))=f(X).
Let K' be the union of G and K4 and suppose K' satisfies CLOSURE.
Then K' is a reduction hypothesis.

Proof - Let K' be as stated in the theorem and let P' stand
for the program P with initialization K' substituted for K. Let
X e D(f) and suppose P terminates for input X. If P' executes on
X and the aspect of the initialization K' from G is used, P" must
also terminate since G is an alternative initialization to K; if
the aspect of the initialization K' from K4 is used, P' must ter-
minate since the output of K4 causes B to evaluate to false.
Hence in any case, P' terminates on the input X and TERMINATES
holds. The remainder of the proof consists of showing that
PRESERVES is satisfied. Suppose P is correct wrt f. Let X e
D(f). If P' executes on X and the aspect of the initialization
K' from G is used, then P' is also correct on the input X since G
is an alternative initialization to K; if the aspect of the ini-
tialization K' from K4 is used, then P' must produce

e([TAIL](K4(X)))=e(Q(K4(X)))=f(X),
hence P' is again correct on the input X. Thus in any case, the
program P' is correct wrt f. To show the converse, suppose P' is
correct wrt f. We must show that this implies P is correct wrt
f. Let X e D(f). Then X e D(G). By the correctness of P' and
the fact that K' includes G, the program P" derived from P by
replacing the initialization K with G produces f(X) for the input
X. Since G is an alternative initialization to K, P and P"
exhibit identical input/output behavior for X, hence P produces
f(X) for the input X and thus P is correct wrt f. This completes
the proof of the theorem.

As in Theorem 2, the label on the condition in Theorem 3 is
used to suggest the effect the initialization K4 has on the exe-
cution of the program. The output of a function satisfying VER-
YSHORTCUT causes the predicate B to evaluate to false, and conse-
quently, the WHILE loop in P will execute zero times. We repeat
that the functions KI, K2 and K3 represent program-oriented
heuristics since they are designed specifically to preserve the
effect of the program P (possibly over a restricted domain).
Function K4, on the other hand, represents a specification-
oriented heuristic since its purpose is to insure program
behavior which is in agreement with the program specification.
Now that these heuristics have been defined, we will illustrate
their use with a number of examples.
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Example 2 - This example illustrates a circumstance in which
assumption CLOSURE "almost" holds but "not quite." In this
situation it may be clear how to "expand" the initialization in
order to satisfy CLOSURE in such a way that preserves the effect
of the program. The program

{a>=O}
a := a*2;
while a>O do

a a -- 1;
b b + 1
od;

a := b
ta=aO*2 + bOl

does not satisfy CLOSURE since only even values of a are output
from the initialization K and the WHILE loop is not closed for
this set. This problem could be "fixed" by supplementing K with
another initialization, selected nondeterministically, which pro-
duced odd values of a. The combined effect would be an initiali-
zation which was capable of producing all (nonegative) values of
a and would consequently satisfy CLOSURE. Based on this reason-
ing, we could supplement K with the initialization

a := a*2 + 1,
but an inspection of the loop-body text indicates that we must
compensate in this case by subtracting 1 from b if the effect of
the program is to be preserved. This is actually an application
of heuristic LONGCUT of Theorem 2; specifically, the initializa-
t ion

Kl(<aO,bO>)=<a,b> <-> a=aO*2+l & b=bO-l.
satisfies LONGCUT and is thus (by Theorem 2) an alternative ini-
tialization. In the above notation for nondeterminacy, the com-
bined initialization may be written

if TRUE -> a a*2
7 TRUE -> a a*2 + 1; b := b-1
fi.

and the relation K' which represents this initialization is
K'(<aO,bO>,<a,b>) <-> ((a=aO*2 & b=bO) OR (a=aO*2+l & b=bO-1)).

Since K' is the union of two alternative initializations (K and
KI), K' itself is an alternative initialization, and thus, apply-
ing Theorem 1, it is a reduction hypothesis. Hence the program
can be verified correct with respect to its specification (assum-
ing termination) by showing that ITERATION' and BOUNDARY' hold.
Condition ITERATION' has the following two aspects, which
correspond to the cases where a is even and odd, respectively:

aO>=O, al>=O, a=aO*2, b=bO, a>O, al*2+l=a-l, bl-l=b+l
-> aO*2+bO=al*2+bl

and
aO>=O, al>=O, a=aO*2+l, b=b0-l, a>O, al*2=a-l, b2=b+l

-> aO*2+bO=al*2+bl.
These can be simplified (by eliminating aO, bO, al and bl) to

a>O -> a+b=(a-2)+(b+2)
and
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a>O -> (a-l)+(b+l)=(a-l)+(b+l),
both of which hold. Condition BOUNDARY" is

aO>=O, a=aO*2, b=bO, a<=O -> aO*2+bO=b
which simplifies to

a=O -> a+b=b,
and thus also holds.

Example 3 - We noted above that the purpose of loop initial-
ization is often to set the data state to some specific "starting
point" for the execution of the loop. Once the loop begins exe-
cution, the data state leaves this starting point and takes on
more general values. With this in mind, we note that the program
P is equivalent to the program

X := H(K(X));
while B(X) do

X := H (X)
od;

X := Q(x)

on executions of P which require at least one loop iteration.
Since the initialization in this new program includes an execu-
tion of the loop body, the hope is that the output of the new
initialization will be general enough to satisfy CLOSURE. This
observation is the motivation behind heuristic SHORTCUT in
Theorem 2 and can be applied as follows: convert (if necessary)
the verification problem to one over a domain where the loop will
execute at least once and try the initialization H o K for the
reduction hypothesis K' (where "o" stands for function composi-
tion). As an illustration, consider the program

pa := 0;
while s / NULL do

pa := pa + head(s);
s := tail(s)
od;

if pa <= 0 then pa := 0 else pa := 1 fi
fpa=PAVG ( sO)T-

which determines whether the arithmetic average of the integers
appearing in the sequence s is positive or negative. The func-
tion head(s) for a nonempty sequence s returns the lead element
in s, tail(s) returns s with head(s) removed, and NULL denotes
the sequence containing 0 elements. The function PAVG(sO)
appearing in the postcondition has the value 1 if the average of
the elements of sO is positive and 0 otherwise. CLOSURE is not
satisfied for this ptogram since pa takes on values other than 0
as the loop iterates. Suppose we can convince ourselves that the
program executes correctly when the input s is the empty sequence
and the loop is bypassed. The remainder of the proof then con-
sists of verifying the program assuming the precondition
{s#NULL}. Accordingly, we will now use the program specification
func tion
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f(<paO,sO>)=pa <-> s0#NULL & pa=PAVG(sO).
The heuristic suggested above is to try the initialization

K2(<pa0,sO>,<pa,s>) <-> s0#NULL & pa=head(sO) & s=tailks0)
as a reduction hypothesis. This function satisfies SHORTCUT and
is thus an alternative initialization. Its domain includes D(f)
(i.e. {<pa,s> I s#NULL}) and since it satisfies CLOSURE, it is a
reduction hypothesis. To apply this result in a demonstration of
the correctness of the program, we must show ITERATION' and BOUN-
DARY' hold (using K2 for K'). Condition ITERATION' is
s0#NULL, slNULL, pa=head(sO), s=tail(sO), sANULL,

pa+head(s)=head(sl), tail(s)=tail(sl) -> PAVG(sO)=PAVG(sl)
which simplifies to

s#NULL -> PAVG(<pa>lls)=PAVG(<pa+head(s)>Iltail(s)).
where <x> is the sequence containing the single element x and I
denotes concatenation of sequences. Condition BOUNDARY' is

sO#NULL, pa=head(sO), s=tail(sO), s=NULL
-> PAVG(s0) =POSITIVE (pa)

where POSITIVE(pa) is a function which has the value 1 if pa is
positive and 0 otherwise. This condition simplifies to

sO=<pa> -> PAVG(s0)=POSITIVE(pa).

Example 4 - We now illustrate an application of the
specification-oriented heuristic VERYSHORTCUT of Theorem 3.
Since any output Y of a function K4 satisfying VERYSHORTCUT must
satisfy -B(Y), this approach is most appropriately used when CLO-
SURE holds for all loop iterations except the last, i.e. the only
lack of values in the range of K is where B is FALSE. The idea
is to add to the initialization the production of these values in
such a way that assures the correct execution of the program.
The following program serves to illustrate this kind of tech-
nique. It searches a linked list for an element containing a key
field with the value 17:

found := FALSE;
while p # NIL & -found do

if p^.key=17 then
found := TRUE

else p := p^.link fi
od

{found=INCHAIN(pO,17) }

The program notations p^.key and p^.link are the key and link
fields, respectively, of the node pointed to by p. A link field
of NIL is used to mark the end of the list. The function
INCHAIN(pO,17) appearing in the postcondition is a predicate
which holds iff the chain pointed to by p0 contains an element
with a key field of 17. Note that since there is no program text
following the loop, Q is the identity function. CLOSURE is not
satisfied for this program since the variable found may take on
the value TRUE on the last loop iteration. The initialization is
extended by alternatively assigning the value TRUE to found, but
only in the case where INCHAIN(p,17) holds. Specifically, we
propose to supplement the given initialization with the function
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K4(<foundO,pO>)=<found,p> <-> INCHAIN(pO,17) & p=p0 & found
to yield the new initialization

if TRUE -> found FALSE
-T INCHAIN(p,17) -> found := TRUE
fi.

Note that K4 satisfies VERYSHORTCUT, i.e. on executions of the
program which follow the second path, the loop body is bypassed
and the program necessarily behaves in accordance with its
specification. The combined initialization is represented by the
input/output relation

K (<foundO,pO>,<found,p>) <->
(-found OR found=INCHAIN(pO,17)) & p=pO.

Since arbitrary values of found and p may emerge from this ini-
tialization, CLOSURE is satisfied. By Theorem 3 (using the ori-
ginal initialization K for G), K' is a reduction hypothesis. We
now use K" to state the necessary and sufficient conditions
(assuming termination) for the correctness of the program.
Corresponding to the two paths through the loop body of this pro-
gram, there are two ITERATION' conditions

(-found OR found=INCHAIN(pO,17)), p=pO, p#NIL, -found,
p^.key=17, (-TRUE OR TRUE=INCHAIN(pl,17)), p=pl

-> INCHAIN(pO,17)=INCHAIN(pl,17)
and

(-found OR found=INCHAIN(pO,17)), p=pO, p#NIL, round,
p^.key#17, (-FALSE OR FALSE=INCHAIN(pl,17)), p^.link=pl

-> INCHAIN(p0,17)=INCHAIN(pl,17),
which simplify to

-found, p#NIL, p^.key=17, INCHAIN(p,17)
-> INCHAIN(p,17)=INCHAIN(p,17)

and
-found, p#NIL, p^.key#17

-> INCHAIN(p,17)=INCHAIN(p^ .link,17) ,

respectively. Condition BOUNDARY' is
(-found OR found=INCHAIN(pO,17)), p=pO, (p=NIL OR found)

-> found=INCHAIN(pO,17),
which simplifies to

(found & INCHAIN(p,17)) OR (-found & p=NIL)
-> found=INCHAIN(p,17).

Example 5 - This example illustrates a circumstance where
several of the above heuristics are applied in order to create a
reduction hypothesis. The following program sums the elements of
a sequence:

{s#NULL}
sum := 3;
while s#NULL do

sum := sum + head(s);
s := tail(s)
od;

{sumSUM(s0) .
The notation SUM(sO) appearing in the postcondition stands for
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the summation of the elements of sO. We begin our reasoning as
follows. CLOSURE is not satisfied for this program because sum
is constrained to the value 0 by an assignment statement. What
would be the effect on the program of removing this assignment?
After the first loop iteration, sum would have the value
sumO+head(sO), rather than head(sO). We could compensate for
this discrepancy by subtracting sumO from head(sO) before the
loop begins execution. Thus we choose to replace "sum:=O" with
"head(s) :=head(s)-sum." This is an application of heuristic NOCUT
of Theorem 2. Indeed, the function corresponding to this new
initialization,
K3(<sumO,sO>)=<sum,s>) <-> sONULL & s#NULL & sum=sumO &

head(s)=head(sO)-sumO & tail(s)=tail(sO),
satisfies NOCUT and is thus an alternative initialization. We
note that CLOSURE is satisfied for this initialization on all but
the final loop iteration (i.e. K3 cannot produce an output which
satisfies s=NULL). As in Example 4, the solution under these
circumstances is to supplement the initialization with a function
satisfying VERYSHORTCUT; in this example such a function would be

K4(<sumO,sO>)=<sum,s>) <-> sum=SUM(sO) & s=NULL.
Note that the output of K4 causes B to evaluate to FALSE and
forces the program to be correct wrt its specification. The com-
plete initialization is then

if s#NULL -> head(s) := head(s) - sum
7 TRUE -> sum := SUM(s) ; s := NULL
fi.

Let K"-represent this initialization (i.e. let K' be the union of
K3 and K4). By Theorem 3 (using K3 for G), K' is a reduction
hypothesis. Corresponding to whether K3 or K4 is used in the
term K'(Xl,H(X)), condition ITERATION' has the following two
aspects:

s0$NULL, sum=sumO, head(s)=head(sO)-sumO, tail(s)=tail(sO),
s#NULL, slNULL, tail(s)#NULL, sum+head(s)=suml,
head(tail(s))=head(sl)-suml, tail(tail(s))=tail(sl)

-> SUM(sO)=SUM(sl)
and
sONULL, sum=sumO, head(s)=head(sO)-sumO, tail(s)=tail(sO),
s#NULL, sum+head(s)=SUM(sl), tail(s)=NULL

-> SUM(sO)=SUM(sl)
which simplify to

s#NULL, tail(s)#NULL->
sum+head(s)=SUM(tail(s) )=
sum+head(s)+head(tail(s))+SUM(tail(tail(s)))

and
tail(s)=NULL -> sum+head(s)+SUM(tail(s))=sum+head(s).

Condition BOUNDARY is
sum=SUM(sO), s=NULL -> SUM(sO)=sum.

3. Relation to Standard Correctness Techniques

In this section, we discuss the relationship between the
proposed verification strategy and the subgoal induction [Morris
& Wegbreit 77] (see also [Manna & Pnueli 70, Manna 71]), and
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inductive assertion [Hoare 69] correctness techniques. We will
define these methods in the framework of the verification problem
described above, i.e. in each case we wish to prove/disprove the
program P correct wrt its specification function f.

All three techniques call for creating and verifying an
hypothesis concerning some aspect of the behavior of P and then
applying the hypothesis to prove/disprove the correctness of the
program. In the proposed technique, this hypothesis is a reduc-
tion hypothesis; in subgcal induction, we will refer to the
hypothesis as a tail function; in the inductive assertion tech-
nique, the hypothesis is an adequate inductive assertion.

A tail function g in a subgoal induction proof is a general
description of the input/output behavior of program TAIL.
Specifically, g has the same functionality as the specification f
and must satisfy each of

SII: X e D(g), B(X) -> H(X) e D(g)
S12: X e D(g), B(X) -> g(X)=g(H(X))
S13: X 6 D(g), ~B(X) -> g(X)=e(Q(X))
S14: X 6 D(g) -> TAIL terminates with input X
SI5: X 6 D(f) -> K(X) G D(g).

The first four of these conditions establish that TAIL is correct
wrt g, SI5 assures that D(g) is sufficient for testing the
correctness of the program P. When such a function g has been
found, the program P is correct wrt f iff

SI6: X G D(f) -> g(K(X))=f(X).

In the inductive assertion technique, an adequate inductive
assertion is a sufficiently strong invariant relation between
initial data states and data states occurring at the loop predi-
cate B. Specifically, an adequate inductive assertion is a
binary relation A over the data state of P which satisfies

IAl: X e D(f) -> A(X,K(X))
IA2: X G D(f), A(X,Y), B(Y) -> A(X,H(Y))
IA3: X G D(f), A(X,Y) -> TAIL terminates with input Y
IA4: X G D(f) , A(X,Y) , -B(Y) , A(XZ), -B(Z)

-> e(Q(Y))=e(Q(Z)).
If we view X and Y as representing the initial and current data
states, IAl and IA2 prove that A(X,Y) is a "loop invariant," IA3
is the necessary termination condition based on A, and IA4 tests
whether A is sufficiently strong to verify the correctness of the
program. When such a relation A has been found, the program P is
correct wrt f iff

IA5: X e D(f), A(X,Y), -B(Y) -> f(X)=e(Q(Y)).

The results of this section are contained in the following
two theorems. They define a relationship between the three forms
of program hypotheses and give a technique for transforming tail
functions and adequate inductive assertions into reduction
hypotheses.
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Theorem 4 - Let g be a tail function for a subgoal induction
proof of P, and let K' be a relation defined by

K(XO,X) <-> g(K(XO))=g(X).
Then K' is a reduction hypothesis.

Proof - We must prove that K' satisfies CLOSURE and that
TERMINATES and PRESERVES hold where P' is P with initialization
K' substituted for K. To see that K" satisfies CLOSURE, let

XO G D(f) & K-(XO,X) & B(X)
i.e.

XO G D(f) & g(K(XO))=g(X) & B(X).
By SIl and S12, g(X)=g(H(X)); hence g(K(XO))=g(H(X)) and

XO G D(f) & K'(XO,H(X)),
thus CLOSURE holds for K0. TERMINATES must be satisfied since the
range of K' contains only elements of D(g) and S14 is satisfied.
Finally, to show that PRESERVES holds, we will prove that P and
P' compute the same function (in the variables of interest) over
the domain D(f). Let XO G D(f). On input XO, P produces a
result Y satisfying

K(XO)=X & Y=e([TAIL] (X))
for some state X. On input XO, P' produces a result Y satisfy-
ing

K'(XO,X') & Y'=e([TAIL] (X'))
for some state X. These may be rewritten

K(XO)=X & Y=g(X)
and

g(K(XO))=g(X') & Y'=g(X')
using the definition of K' and the fact that SIl-SI4 imply TAIL
computes g. These imply

Y=g(K(XO))=Y',
hence P and P' compute the same function over D(f).

Thus a tail function g together with program initialization
K can be used to construct a reduction hypothesis. The (perhaps)
surprising result in the following theorem is that an adequate
inductive assertion (by itself) is a reduction hypothesis, i.e.
the class of reduction hypotheses for P contains the class of
adequate inductive assertions for P.

Theorem 5 - If A is an adequate inductive assertion for P,
then A is a reduction hypothesis for P.

Proof - We must show A satisfies CLOSURE and that TERMINATES
and PRESERVES hold where P" is P with initialization A substi-
tuted for K. To see that A satisfies CLOSURE, let

XO C D(f) & A(XO,X) & B(X) .
By IA2, A(XO,H(X)), thus CLOSURE holds for A. TERMINATES follows
directly from IA3. Finally, to show that PRESERVES holds, we
will show that P and P' compute the same function (in the vari-
ables of interest) over the domain D(f). Let XO G D(f). On
input XO, P will produce Y satisfying

K(XO)-X & Y=e([TAIL] (X))
for some state X. By IAI, A(XO,X). By IA3 the WHILE loop
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terminates on input X giving some result T where -B(T). Repeated
application of IA2 and the loop property

B(Z) -> [TAIL] (Z)=[TAIL] (H(Z))
gives A(XO,T) and [TAILI(X)=[TAIL](T)=Q(T). Thus on input XO, P
produces Y satisfying

(1) A(XO,T) & -B(T) & Y=e(Q(T))
for some T. P' on the other hand, with input XO will produces Y'
satisfying

A(XO,X) & Y=e([TAIL] (X'))
for some state X'. Again by IA3, the WHILE loop terminates on
input X' giving some result T' where ~B(T'). Repeated applica-
tion of IA2 and the above loop property gives A(XO,T") and
[TAIL](X')=[TAIL](T)=Q(T). Thus P' produces Y' satisfying
(2) A(XO,T-) & ~B(T') & Y'=e(Q(T'))

for some T'. In light of IA4, (1) and (2) imply Y=Y', thus P and
P" compute the same function over D(f).

Example 6 - To illustrate these ideas, we consider again the
program discussed in Example 2:

{a>=0}
a := a*2;
while a>O do

a := a-l;
b :=b+l
od;

a := b

{a=aO*2 + bO}.

The following are possible tail functions for a subgoal induction
proof of the program

gl(<aO,bO>)=a <-> aO>=O & a-aO+bO
g2(<aO,bO>)=a <-> a=MAX(aO,O)+bO.

Several adequate inductive assertions are
Al(<aO,bO>,<a,b>) <-> b=bO+2*aO-a & a>=O
A2(<aO,bO>,<a,b>) <-> b=bO+2*aO-a & a>=O & aO>=O
A3(<aO,bO>,<a,b>) <-> b=bO+2*aO-a & aO>=a>=O
A4(<aO,bO>,<a,b>) <-> b=bO+2*MAX(aO,O)-MAX(a,O).

By Theorem 4,
Kl(<aO,bO>,<a,b>) <-> gl(K(<aO,bO>))=gl(<a,b>)

and
K2(<aO,bO>,<a,b>) <-> g2(K(<a0,bO>))=g2(<a,b>),

i.e.
Kl(<aO,bO>,<a,b>) <-> 2*aO>=O & a>=O & 2*aO+bO=a+b

and
K2(<aO,bO>,<a,b>) <-> MAX(2*aO,O)+bO=MAX(a,O)+b

are reduction hypotheses. Theorem 5 states that each of Al-A4 is
also a reduction hypothesis. Thus any of these can be used in
place of K' in the proof in Example 2. We remark that the rela-
tion K' used in that example is not an inductive assertion, hence
the class of adequate inductive assertions is a proper subset of
the class of reduction hypotheses.
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4. Proof Transformations

Applying the verification technique proposed above based on
ITERATION' and BOUNDARY' requires ascertaining the input/output
behavior of the loop initialization, loop body and program text
following the loop. In many cases, this ascertaining process may
be difficult (e.g. if these program segments contain additional
WHILE loops). In view of this problem, we now consider the
situation which occurs when the input/output behavior of the pro-
gram text following the WHILE loop is not explicitly known. The
verification problem under consideration, then, will be of the
form

{X0 G D(f) & X=X0}
X := K(X);
while B(X) do

X := H(X)
od;

T
{e(X)=f(X0) }

where K, B and H are as before and T represents some unspecified
block of program text. Again our intention is to prove/disprove
the program correct wrt its specification function f.

Suppose we have a reduction hypothesis K' for P and can show
condition ITERATION' holds. What sense does BOUNDARY" make and
how can we proceed? In this situation, condition BOUNDARY'
corresponds to a new but simpler correctness problem. Specifi-
cally, we must prove

{XO G D(f) & K (XO,X) & -B(X)}
T
{e(X)=f(X0)}.

This problem is simpler than the original due to the fact that
the loop has been eliminated from the program. Thus we have used
a reduction hypothesis and condition ITERATION' to transform the
correctness question for the original program P to a correctness
question for a substantially simpler program. If the program T
contains further looping structures, the process may be repeated.

Example 7 - The following program operates on sequences a,
x, y and z of natural numbers. The function head(s) of a
nonempty sequence s is the leftmost element of s, and tail(s) is
s with head(s) removed. The infix operator I I denotes concatena-
tion of sequences and NULL denotes the sequence with 0 elements.
The predicate odd(a) is true iff a is odd.
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while a NULL do
if odd(head(a)) then y y <head(a)>

else z z 11<head(a)> fi;
a := tail(a)
od;

while y # NULL do
x := x 11 <hea-d(y)>; y tail(y)
o6;

while z # NULL do
x x II <head(z)>; z := tail(z)
od

{x=F-x0,y0,z0, a0) }

The function F appearing in the postcondition is defined as
F(x,y,z,a) =- x 1I y I ODDS(a) 11 z I EVENS(a)

where ODDS(a) is the sequence containing the odd elements of a in
the order they appear in a (EVENS(a) is similar). In this exam-
ple, T corresponds to the last two WHILE loops and since there is
no initialization, K is the identity function. Since CLOSURE
holds for this function, K itself is a reduction hypothesis.
Corresponding to the two paths through the first loop body, there
are the two ITERATION' conditions, namely

a#NULL, odd (head (a) )
-> F(x,y,z,a)=F(x,yl I<head(a)>,a, tail(a))

a NULL, -odd(head(a))
-> F(x,y,z,a)=F(x,y,zl <head(a)>,tail(a)).

Once these have been proven, the verification problem then
transforms to

{ a=NULL}
while y # NULL do

x := x II <head(y)>; y tail(y)
od;

while z # NULL do
x := x 11 <head(z)>; z := tail(z)
od

{x=F(x0,y0,z0,a0)}.

Here T corresponds to the last loop and again K is the identity
function, CLOSURE holds and hence K itself is a reduction
hypothesis. The proof of this program thus consists of showing
ITERATION', i.e.

a=NULL, y#NULL -> F(x,y,z,a)=F(x l<head(y)>,tail(y),z,a)
and then verifying

{a=NULL & y=NULL}
while z NULL do

x : x J <hed(z)>; z tail(z)
od

{x=F(x0,y0,z0,a0)}.

Again using the identity function as a reduction hypothesis, this
remaining verification problem can be proved by showing
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ITERATION' and BOUNDARY', i.e.
a=NULL, y=NULL, z#NULL ->

F(x, y, z,a)=F(xl I <head (z)> ,y, tail(z) ,a)
and
a=NULL, y=NULL, z=NULL -> x=F(x,y,z,a).

We remark that none of the program-oriented reduction
hypothesis techniques defined in Theorem 2 assume any knowledge
of the characteristics of T. Thus these techniques can be used
for creating a reduction hypothesis in the circumstance where the

input/output behavior of this subprogram is not known. The
specification-oriented heuristic of Theorem 3, however, cannot be
employed without this knowledge.

5. Concluding Remarks

From a practical point of view, it is difficult to carefully
assess the relative merits of the proposed program verification
methodology. Preferences by people involved in verifying pro-
grams are often based on which methodology appears to be more
"natural" or "intuitive" in a given application. Furthermore,
answers to questions such as these no doubt are largely influ-
enced by the way a person was trained in the field of software
engineering.

Despite this caveat, we offer our view that in a number of
cases, it seems "easier" to create a reduction hypothesis than it
does to create an adequate inductive assertion or tail function
for a proof by the standard techniques discussed in Section 3.
Indeed, it is difficult to argue the reverse case in light of the
results of that section, which state that any adequate inductive
assertion is a reduction hypothesis, and that any tail function
can be simply transformed to one. On the other hand, our feeling
is that the verification conditions which result from the use of
a reduction hypothesis seem somewhat more complicated than their
counterparts in either of these standard techniques. This is
largely due to the necessity of having three distinct data states
appearing in condition ITERATION' and two distinct data states
appearing in condition BOUNDARY. Both of these verification
conditions, however, are usually easily simplified in practice.

In light of these comments, an interesting direction for
future research is the translation of heuristics such as those
defined in Theorems 2 and 3 into the framework of standard
correctness techniques. For example, what, if any, is the impact
of these correctness/incorrectness preserving transformations on
the synthesis of an inductive assertion or tail function for the

program under consideration? Preliminary results along this line
appear in [Dunlop & Basili 811. In that report, heuristic
SHORTCUT is applied to the problem of synthesizing tail functions
for initialized loop programs and meets with a fair degree of
success.
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The solution of any complex problem is often best decomposed
into solutions of appropriate simpler problems. This is an
important principle on which our verification strategy is based.
A search for a reduction hypothesis is really a search for a
suitable simpler problem to substitute for the original. As dis-
cussed in Section 4, proving condition ITERATION' for this
simpler problem decomposes the solution of the new problem into
the solution of a still simpler problem and so on.
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