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Preface

Many methods of obtaining confidence limits for system

reliability exist in both practice and literature. The

understanding and use of these techniques are often quite

difficult. Because of this, I embarked on an effort to

devise a technique that was theoretically sound, easy to

understand, and simple to use. This report discusses that

technique and its accuracy.

Sincere gratitude is extended to Dr. Albert H. Moore

for his guidance, expertise, and motivation toward comple-

tion of this study. Thanks also goes to Mr. Joseph J. Meli,

ASD/ENADC, who was my sponsor.

Roy E. Rice
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Abstract

Several methods for estimating lower confidence limits

were examined. A proposed technique was developed and used

to obtain limits for selected systems. These limits were

compared to those obtained by other methods. Then the pro-

posed method was tested to verify its accuracy. Results

indicate that the proposed method is simple to understand,

easy to implement, and accurate.

vi



INCORPORATION OF ASYMPTOTIC NORMALITY PROPERTIES OF

THE BINOMIAL DISTRIBUTION INTO A MONTE CARLO

TECHNIQUE FOR ESTIMATING LOWER CONFIDENCE LIMITS

ON SYSTEM RELIABILITY

I. Introduction

In the late 1920's and early 1930's, prominent statis-

ticians began to realize that a single point estimate for

the probability of occurrence of an event was not suffi-

cient. Initial studies by Fischer, Neyman, Clopper, Pear-

son, and many others show the necessity and practicality of

placing probabilistic bounds on these estimates. The

application of these intervals injects confidence into the

accuracy of these point estimates. Through these pioneer-

ing efforts we arrived at the concept of confidence inter-

vals.

This analysis intends to introduce some of the more

important historical works that address the calculation of

confidence limits. It contains considerably detailed dis-

cussions of the evolution of various techniques for deniv-

ing confidence limits with major emphasis on intervals for

binomial distributed parameters. There are discussions of

techniques involving Bayesian Limits using Mellin Trans-

forms (Ref 22:611), Approximately Optimum Limits (Ref 18:

335-347), Monte Carlo simulation (Ref 19:459), and others.

There is then a discussion of the proposed method of incor-

porating the asymptotic normality assumption into a Monte



Carlo technique. Finally, a verification technique is

included that shows how accurate the confidence limits are.

Component test data is obtained where the number of

failures is assumed to be distributed binomially. Then the

components are arranged in a logically complex system and

an estimate of the reliability and confidence limit is

made. These estimates from the proposed method are then

compared with estimates from the other methods. A final

effort is made to verify the accuracy of the limits by sim-

ulating the testing of the components and determining the

number of times the limits cover the true reliability.

Of particular interest is the treatment of test data

in which no failures occur. Many of the methods are not

valid when the data shows zero failures. others simply

disregard the samples with zero failures. Still others

manipulate the data to circumvent the problem. Almost all

of this results in a biasing effect on the estimates. This

study explores another way of handling samples that exhibit

no failures.

Coupled with the improvement of these estimating tech-

niques is the advancing computer technology. High speed

computers make it increasingly easier and more efficient

to make detailed computations and simulations. Thus, it is

becoming more practical to apply these methods to systems

exhibiting pass/fail characteristics from the simple

(switches, pins, relays) to the very complex (missile

flights, docking systems, targeting).
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In the following study there are several basic assump-

tions. It is assumed that the reader is familiar with the

concept of confidence limits, the binomial distribution,

and has a basic understanding of statistics and reliability

pertaining to both components and systems.
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II. Background of Estimating Techniques

In one of the first studies in this area, Springer and

Thompson (Ref 22:611) examined the posterior density func-

tions of Ri(i=l,2,...,N), the binomial parameters of N

independent subsystems, when the prior distribution is uni-

form or Beta. The Bayes posterior density function of R.

in the uniform prior case is

(ni+l)! m. n.-m.
fi(Ri) = i- R. (1-Ri)
i i m i !n.m)1 i i

(0 5 R. i 1 I, i=l,2,...,N)

where mi = number of successes in ni trials.

Epstein gives the Mellin integral transform of f (Ri

as

(ni+1)! (s+mi)
M{f i (Ri )js} mi ! R (s) > m.

i i in. (s+n.+l)IT e1

Huntington shows that the Mellin convolution of fl(Rl) and

f2 (R2 ) is exactly the probability density function of the

product RIR2 and that the repeated convolution of the

probability density functions is equivalent in the trans-

form to repeated multiplication of the Mellin transforms.

From this, Springer and Thompson derive a closed form of

the posterior distribution function for N independent sub-

systems in series, H(R). At this point, they emphasize

that, for large N, computation of H(R) is tedious for hand

4



computations and extensive using computers. Thus, they

conclude that some asymptotic method might warrant investi-

gation. For more detailed investigation of their method,

see Reference 22.

Later, in a study by Mann and Grubbs (Ref 18:335-347),

confidence bounds for system reliability are derived based

on component test data when the components are assumed to

be (1) exponentially distributed with censoring or trunca-

tion of tests for a fixed number of failures, (2) exponen-

tially distributed with truncation of tests at fixed times,

and (3) binomially distributed (pass-fail) with fixed but

different sample sizes and random numbers of failures for

subsystem tests. With regard to the binomial distribution,

Mann arrives at approximate expressions for ms and vs , the

mean and variance of -ln R which corresponds to theses

optimum nonrandomized confidence bounds for series systems.

These are

.5(1+-)
m a +

s 0n (1-.5P)

and

Va s
s 0

n

0 -2where n = n(1 ) (1-.5P2) (I-.5P)

n(l) is the smallest of the nl,n 2,..., nk.
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P n 1 R~ is the max-likelihood estimate of the

probability of failure of the series system.

a n~(/n)which is a restricted sum.

The n.sfralzr-failure subsystems are omitted

in calculating the value of a = nl(1/nl~ except for a

single zero-failure subsystem with its sample size equal to

nl (1. Mann and Grubbs point out that this subsystem is

also ignored if at least one of the other subsystems which

exhibit some failures has the smallest sample sizen

or if the lower confidence bound obtained by not ignoring

it is larger than that obtained by ignoring it.

series-system confidence bounds also is necessi-
tated when all sample sizes are large and most
of the failures pertain to a single subsystem.
In this case the bound obtained based on all sub-
system failures can be larger than that based on
the single subsystem exhibiting nearly all the
failures." (Ref 18:337)

In their analysis they compare their bounds with those

based on Buehler's exact methods, those based on maximum

likelihood normal approximations, the modified maximum

likelihood procedure of Easterling, and the likelihood

ratio method of Madansky. These last three procedures can-

not be applied effectively when one or more subsystems

exhibit zero-failures. This comparison, along with the

estimates from the proposed method, is shown in Tables I,

II, III, and IV.
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Another technique that is of extreme importance is

that developed by Gatliffe (Ref 7). Mathematically, Gat-

liffe begins by stating that, for systems with k components

in series,

k
= r Pi p. is the reliability of the ithi=1

component

Qi = 1 - Pi"

k
Let s = -ln Rs  E ln(l-?)

i=1

k 2 31 1

S = Z (Q +-+-+i 2 3

kQ k Q2
i~l1 i=1 1 '1"

2%, El( + E T. T. Q +

a 2

The unbiased estimator, Ti = A.Qi + Bi (

(2N. - 3)1
A. = (2N. - 2)

11

N.
B. 1

3. Ni -1

F.
Q - F = the number of failures

resulting from N. mis-

sion tests conducted

on ith component.
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He establishes another unbiased estimator,

k
s = Z T.

i=l1

k
with Var(s) = Z (Ti/NI ) .

i=1

He intuitively assumes the probability distribution of s is

gamma with parameters r and e,

1 xr e-X/ ,x > 0
rr. r

f-(x,r,O)
S

0 ,x < 0

with mean = rO, variance = r62

k
E(s) = rO = Z T.

i=l

k
Var(s) = rO2 = Z (Ti/Ni )

i=1

(T i) 2
r = T

i

N.
1

r-Ti/N i

.T.1

A 2
(E (.i)

r
ZTi/N i
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Since s is distributed as gamma (r,),L will be X(2r)

From

i-a = P 2: > X2 an
- (2r,l- ) and

2s E (s)ad
1- = P 2 and since e r and

E(s) = -ln(R s ), he has obtained a 100(l-a)% lower confidence

limit, Rs (), for Rs

R*(a) = exp[ 2rs]
[(2r, l- )]

A 100(1-a)% lower confidence limit estimate, R*(), for R
5 5

would be

R*(a) = exp .
X (2r, l-a)

It is apparent that a problem arises in the event of

no failures in any components. This yields an s value of

zero, thus, a system reliability confidence limit estimate

of one (1).

Gatliffe outlines his procedure to deal with such an

event as follows:

(1) Find the series component with the smallest actual

or equivalent number of trails, N or N'.

(2) Change the number of component or subassembly

failures to F' by the following scheme:

9



F'
.2 .37

.1 .25

.15 .16

(See derivation in Appendix A.)

(3) Recompute the lower confidence limit estimate

using the basic log-gamma procedure with the revised fail-

ure data. This estimate is approximately equivalent to

1/N

Gatliffe's scheme to arrive at equivalent failures was

used in the proposed method. It is an amazingly simple,

yet effective tool; and, for this reason, it is recommended

that the reader refer to Appendix A.

The techniques discussed in this chapter were not

used directly in the proposed method. Yet, they give dif-

ferent approaches that are of historical and analytical

importance. They are primarily doorways that open up into

a vast and intriguing area of study.
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III. Proposed Method

The essence of this study is to examine a series-system

with components that experience failures distributed binom-

ially and derive a simple, yet accurate, method for esti-

mating confidence limits for system reliability. The

method of obtaining lower confidence limits that is proposed

in this study draws upon two important concepts; the asymp-

totic normality properties of the binomial distribution and

Monte Carlo simulation. Both warrant discussion.

It has been shown that, when a pass-fail component is

tested a sufficient number of times (20 or more), its fail-

ures are distributed normally with a mean of p and a vari-

ance of In this treatment, P is defined as the proba-n

bility of success, q is l-p, and n is the number of trials.

So for any component i,

F.

Pi= 1 ni , Fi = the number of failures 
of th

component in n. trials,
3.

11

qi =1-Pi"

Note that if there are no failures, p. = 1 and the variance

equals zero. The existence of components with a reliabil-

ity absolutely equal to 1 is, to say the least, a rarity.

To eliminate this problem, an equivalent number of failures,

Fi , is assigned according to Gatliffe's method (see

11



Appendix A). Once these initial estimates have been

obtained, they can be used in a Monte Carlo simulation.

This Monte Carlo method begins by assigning failures

or equivalent failures to each component in a series sys-

tem. From this a is obtained for each component. Now,

using the asymptotic normality property, a random variable

from a normal distribution, with mean =0 and variance - 1,

is drawn. If is the asymptotic variance, then the
n1

square root of this value is the standard deviation. Since

a N(0,1) random variable is

one can take this random variable, multiply it by the

asymptotic standard deviation, and add it to the mean, p1.

What is obtained is a second estimate ofpi

=i N(P~il n.-

If this is done for each component, one can obtain an esti-

mate of the system reliability for k components in series,

A k

S i~l Pi

A Monte Carlo simulation (Ref 9,10,15,19,20,21) is

used to generate a number of these system reliability esti-

mates. These estimates are then ranked in ascending order.

12



The ordered reliabilities partition the interval [0,1] into

n+l equally probable intervals. For simplicity, let n+l

equal 1000. From the ordered simulation reliabilities one

can obtain any desired lower confidence limit by extracting

the 100(1-a) percentile value. For instance, with 999

ordered reliability estimates, the 90 percent lower confi-

dence limit would be the 99th ordered estimate.

The outline of this procedure is as follows:

(1) For each component in turn assign the number of

failures, Fi, or equivalent failures, F!,

(2) Calculate the first estimate

F. F!
p _ _- or 1_ _!

2. n. n.

A A

qi= 1-Pi

piqi

asymptotic variance =n. ni

(3) Draw a random variable from N(0,1) for each com-

ponent, A ^
^ Piqi

(4) Obtain a second estimate, pi nu N(^i'n. ) by

taking the N(0,1) random variable, multiply by the asymp-
totic standard deviation, and add it to pi for each compo-

nent,

(5) With the components in a logically complex system,
A k

arrive at a system reliability estimate, Rs Pi'
i=l

13



(6) Repeat steps (3) through (5) 999 times,

(7) Rank order these 999 estimates ofR A

(8) Extract the 100(1-at) percentile value to obtain a

100(1-at)% lower confidence limit.

This procedure was applied to systems of 2 and 3 com-

ponents in series. The computer program used (see Appendix

B) shows that, with minor adjustments, larger systems can

be examined. In these 2 and 3 component systems, various

numbers of failures and tests were analyzed. These partic-

ular values were chosen so as to give a basis of comparison

(see Tables I, II, III, and IV). The proposed method pro-

duces values that compare extremely well with those used

in the Mann and Grubbs study (Ref 18:345).

Several points in the tables deserve note. First, the

values obtained in this method most closely compare with

those from the maximum likelihood method. Secondly, in

every case, the~y are slightly higher than the "exact" val-

ues which tends to indicate upward biasness in the esti-

mates. This latter aspect is what led to further investi-

gation as to the accuracy of the estimates. The next chap-

ter examines this area.

14
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IV. Verification of Accuracy

To merely derive an estimating technique and its sub-

sequent estimates is not sufficient. Analysis must be con-

ducted to verify the accuracy of the method. As discussed

in Chapter I of this study, the concept of confidence

intervals and limits evolved from the need to know the

accuracy of point estimates. But it is obvious upon exam-

ining Tables I, II, III, and IV that, depending on which

method is used, values of these confidence limits vary con-

siderably. This leads to an effort to verify the accuracy

of the proposed method of obtaining lower confidence limits.

Basic to the theory of confidence limits is the fact

that, if a system of known reliability is tested a number

of times, the estimates of a 100(1-at)% confidence interval

should include the true system reliability 100(1-a)% of the

time. From this fact came the motivation for the subsequent

analysis.

Given a system with known reliability that is made up

of components with established probabilities of success,

one can apply the procedures described in Chapter III to

estimate desired lower confidence limits and compare these

limits with the true system reliabilities. Then, by gen-I

erating many of 1-hese limits, it can be determined how

often the true reliability is in the interval [LCL,lI. For

example, if 1000 80% lower confidence limits are generated,

it is expected, theoretically, that 800 of the limits are

lower than the true reliability.

19



Monte Carlo simulation, again, is the tool. Given k

components with known probabilities of success, pi, con-

nected in series, a true system reliability is calculated,

k
Rs = w Pi

i=l

Next, one must specify the number of tests that each com-

ponent is to be subjected to, NT. To simulate the testing

of each component, simply draw a uniform random variable in

the interval [0,1] for each test. Now compare each of

these NTi random variables with pi. If the random variable

is greater than pi, a failure is recorded. By doing this

for each component, one obtains the first estimate of pi,

F.
^ 1
Pi = 1 NT.

= 1-
qi = I - Pi'

asymptotic variance = NT."
1

As done in the previous chapter, if no failures are exper-

ienced, Gatliffe's method is used to assign equivalent

failures. This is done for each component. The proposed

method then produces a second estimate of pi by drawing a

random variable from a N(0,1), multiplying by the asymp-

totic standard deviation, and adding this to pi. These

estimates, pi, are then combined to produce an estimate of Rs ,

20



kRs = Pi
i=l

Again, 999 of these estimates, Rs, are generated and ranked

in ascending order. Then the 100(1-a) percentile value is

extracted to yield a 100(l-a)% lower confidence limit esti-

mate, R ().S.

Now, to test the accuracy of this method, many more

repetitions of this testing and limit estimating are done.

This yields a number of lower confidence limits that can be

compared to the true system reliability. As stated before,

one would expect 100(1-a)% of these 100(1-a)% lower confi-

dence limits to include the true system reliability.

The outline of this procedure is as follows:

(1) Establish the value of pi for each component and

the number of tests to subject each component to, NTi,

(2) For each component in turn, draw NTi random vari-

ables from Uniform (0,11,

(3) For each component, compare these NT. random var-

iables to pi; for each random variable that is greater than

pi, record a failure,

(4) Calculate the first estimate

F. F!
pi = ' or 1 - g-T,

3. NT. NT.
i 3.

qi = P-

21
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asymptotic variance -T

(5) Draw a random variable from N(0,1) for each com-

ponent,

(6) Obtain a second estimate, p~i, by taking the N(0,1)

random variable, multiply by the asymptotic standard devi-

ation, and add it to pi for each component,

(7) With the components in a logically complex system,
kA

calculate a system reliability estimate, R~ s 7r1P

(8) Repeat steps (5) through (7) 999 times,

(9) Rank order these 999 estimates ofRs

(10) Extract the 100(1-at) percentile value to obtain a

100(1-at)% lower confidence limit,

(11) Repeat steps (2) through (10) 1000 times to obtain

1000 of these 100(1-at)% lower confidence limits,

(12) Determine how many of these lower confidence limits
k

are covering the true system reliability, Rs n itp.
i= 1

The above procedure was applied to systems containing

2 and 3 components in series. The computer program used

(see Appendix C) shows that, with minor adjustments, larger

systems can be examined. In these 2 and 3 component sys-

tems, known probabilities of success, pi, of 0.6, 0.8, 0.9,

and 0.95 were examined to find 80%, 90%, and 95% lower

confidence limits. Table V and Table VI show the number

of lower confidence limits that contained the true system

reliability for each of the systems with various values of

pi, , and number of tests.
22
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Close examination of Table V and Table VI points out

that accuracy declines as pi gets larger and as a. gets

smaller. These results verify, as Mann and Grubbs men-

tioned (Ref 18:343), that an upward biasness might exist.

By studying the computer program in Appendix C, the

reader should note several points. At higher values ofpi

some tests will exhibit no failures. Hence, it is possible

that ~.can be greater than unity. To eliminate this event,

pis chosen to be the minimum [N(P~i, N~--)l]. Also, the

reader should note that, on output, he is provided with an

average lower confidence limit. In the generation of the

1000 lower confidence limits, they are averaged to produce

the most accurate estimate.

To illustrate the utility and simplicity of this tech-

nique, consider the mission profile of an air-to-ground

missile. Assume that it has eight independent mission

stages with associated probabilities of success:

(1) Release from aircraft, p1 = 0.95

(2) Air start, P2 = 0.95

(3) Deploy flight control surfaces, P3 = 0.9

(4) Arrive at battle area, P4 = 0.95

(5) Terrain following/avoidance, p5 = 0.85

(6) Penetrate defenses, P6 = 0.75

(7) Hit target, P7 = 0.95

(8) Detonate, P8 = 0.95

These stages are analogous to a system with eight compon-

ents in series. By multiplying all of the pi 's, the true
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system reliability (probability of killing the target) is

determined to be 0.42059. Exercising the proposed method

with 100 tests per component with the above psa 90%

lower confidence limit for system reliability is 0.3665.

In this particular case, 91.3% of the 1000 limits cover the

true reliability. Therefore, we would say that it is a

very accurate estimate.

Another example of the usefulness and simplicity of

this technique is shown by estimating the lower confidence

limits for the two simple parallel-series systems shown in

Figures 1 and 2. In analyzing the three component system

shown in Figure 1, the probability of success for each com-

ponent, pi, was chosen to be 0.9; and each component was

tested 100 times. This design yields a system reliability

of 0.891. The estimating technique provides an 80% lower

confidence limit of 0.86842 with the lower limits covering

the system reliability in 75% of the 1000 Monte Carlo repe-

titions. This would indicate that the LCL estimate is

slightly high.

The five component system in Figure 2 was assigned the

following p t's:

(1) p1 = 0.95

(2) P2 = 0.75

(3) P3 = P4 = 0.90

(4) p5 = 0.80

Calculations yield a system reliability of 0.9006 and a 90%

lower confidence limit of 0.8671. These limits cover the
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Figure 1. Three Component System

Figure 2. Five Component System
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system reliability in 87.8% of the 1000 cases which indi-

cates again that the LCL estimate is slightly optimistic.
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V. Conclusions and Recommendations

Stated very simply, it has been shown that this method

of estimating lower confidence limits is accurate, practical,

and simple to use. One need only supply the component reli-

abilities, the number of component tests, and the desired

level of confidence; and he obtains, not only an estimated

lower confidence limit of the system reliability, but also

an indication of how accurate this estimate is.

It is worth re-emphasizing that, where most of the

other techniques are not valid in the case of zero-failures,

this method accurately and easily accommodates such a situ-

ation. This method is also not restricted to series sys-

tems; it can easily handle parallel configurations. A

logical next step would be to incorporate such a method

into a system where other components exhibit different

failure distributions as in the work done by Moore, Harter,

and Snead (Ref 20).

This next generation of systems to be analyzed obvi-

ously provokes one to imagine all the possible applications.

These methods could be applied to an entire spectrum of

systems from simple hardware items to strategic mission

planning.
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Appendix A

Case Where s=O

In Gatliffe's method (Ref 7), he must deal with the

case of 9=0. In his study, the number of mission successes,

W, can be related to mission reliability, Rs, by

N R3 (1-RsNj = Prob (# successes i W)

j=W 
s

where N = number of mission trials. The 100(l-t)% Lower

Confidence Limit estimate for system reliability would be

the solution for R* in

N N j N-j
E (.) (R*) 3 (l-R*) =

j=w 3

which, when W=N, reduces to

(R*) = a or R* (a) I/N

Now, R*(a) = exp -2s ] )/N
LX (2r, l

where s ZT i , r = max , :j

which reduces to s = Ti and r = max(l, TiNi), since only

one component contributes non-zero failures.
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Now if r =1.0, then TiN. 1 implies that

T. 1
1 N 1

^ "2

T. = AiQi + Bi/2 Qi

2N.-3 N. F.
A. 1 B I Q

1 2N.-2 , - ' "1 1 1

B. 2 A.
Thus, (--) F + (--!)Fi - T = 0 or

2N. 21 111i

N. 2 2N -3

2 )F2 + (2N )F N
2(Ni-1)(N) -1)(N i

F + (2Ni-3)Fi - 2(Ni-1) & 0

(Fi-l)(F i + 2(Ni-1)) 0

The only positive values for F that can satisfy this equa-
1

tion are between zero (0) and one (1). Also, for any size

Ni , 2r = 2. Hence,

exp [2-2rs ] = (a) 1I/N

(2r,l-a)J

2 2
2 A.F* B. (F )

A (il. U)(na) = -A+ 1- 1
2N N 2N2

which implies (F) 2 + (2N-3)F* + (N-l) lna(X(2,l_)) = 0.1

Solving for F* as a function of N and a, Gatliffe obtains
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N2 c.05

5 .3888 .2670 .1713

10 .3721 .2531 .1610

20 3652 .2475 .1570

100 .3603 .2435 .1542

1000 .3593 .2427 .1536
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Appendix B

Cornputer Program to Determine Limits

The computer program contained herein determines the

100(1-a)% lower confidence limits on system reliability.

It is written in FORTRAN IV and utilizes AFIT and IMSL sub-

routines. At the beginning, each variable is defined.

Throughout the program, major sections are introduced with

comments that explain what is being done so as to enhance

the flow of the program.

Input: The first data card is in free field form containing:

(1) the number of components in the system,

(2) the confidence level (at = 0.05 means a 95% level),

(3) DSEED which is the double precision random number

seed used in the subroutines,

(4) the number of simulations to be performed (999).

Following this card is a card for each component, in

format, that establishes the number of tests and number of

failures for that component.

Output: On output is displayed:

(1) the number of components,

(2) the number of tests and failures for each component,

(3) the confidence level,

(4) the 100(1-a)% lower confidence limit.
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Appendix C

Computer Program to Verify Accuracy

The computer program contained herein determines the

l00(l-ai)% lower confidence limit on system reliability and

determines how accurate this liwit is. It is written in

FORTRAN IV and utilizes AFIT and IMSL subroutines. At the

beginning, each variable is defined. Throughout the pro-

gram, major sections are introduced with comments that

explain what is being done so as to enhance the flow of the

program.

Input: The first data card is in free field form containing:

(1) the number of components in the system,

(2) the confidence level (at = 0.05 means a 95% level),

(3) OSEED which is the double precision random number

seed used in the subroutines,

(4) the number of simulations to be performed (999),

(5) the number of lower limits to be generated (1000).

Following this card is a card for each component, in

format, that establishes the true probability of success

and number of tests for that component.

Output: On output is displayed:

(1) the true probability of success and number of tests

for each component,

(2) the true system reliability,

(3) the confidence level and number of limits,
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(4) the averaged l00(1-at)% lower confidence limit,

(5) the accuracy of the limit (the percent of the

total limits that covered the true system relia-

bility).
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rRCjGFAtd OIN;ZELI (IJAOPT, OUTPUT)
OIfMEtSION PIHAT(1 ) ,PSYSJ(hJOC) , (±jrO) ,FITES.T(iL) ,NITESTC13),

DOUBLE PRiECISION OSEED
C

C NITEST= 0 OF C04PO~cNT I TESTED!
C FITEST= * OF COMPONENT I FAILED [N TEST
C PIHAT= FIRST ESTIMATE (rF P FOR CJP4PONENT T
C PIHAT2= SECON3 SSTI'4ATF OF P FOR C04FONENT I
C PSYSJ= RELIABILITY OF SYSTEM ON IONTE CARLO SIM J
C NCGM= 9 OF COMPONENTS 7N THE SYSrEm
C ALPHA= iu0(i-AL2HA)% CONFIOENCE LIMIT
C F1= ECLIVALENT FAILIJREF
C OIHAT= FIRST ESTI MATE CF 0 FOR COMPONENT I.'=I-P
C SIGIHAT= ESTIMATE OF VARIANCE
C DSEEO= SEEO FOR NORMAL R.V, GENIFATICN
C R= OUTFUT VECTOR OF NOFMAL P.VeS
C NSIM= 4 OF MON~TE CARLO SIMULATI04JS
C KALPHA= THAT VALUE '4OQFESPCNDING TO LIMIT

C NOVEF=SO OF LCL 0VER THE TRUE RELTA31LITY
C NLIM=NLMBER OF LOWER CCNFIDENCE .iiTS
C TRSYS=THE TRUE SYSTEM FELIABILI'1V
C RTES1'=ARFPAY C.)NTAINING TEST RESJ,.TS OF THE PVIS
C REL= FELIA9ILITY OF THE SYSTEM FOR THAT SIMULATION
C CUMLM= ADDS ALL THE LCLOS
C AVGLIM= AVERAGES THESE LIMITS OVE-R THE TOTAL Noe GENERTTED

C
2 FORMAT C2XF.4tiXI3)
3 FOPMAT CF8m6)
5 READV , NCCMALPI4AtDSFEtNSIM9NLII

IF (EOF(5LINP'JT)eNE.e3er) STOP "SNfl OF PROGRAM"
C

C TRUE PRCe OF SUCCESS AND NO.e OF TESrS FOR EACH COMPONENT
C

TRSYS=190
DO 10 11i,NCOM
READ 2, CTRUEP(I),NITEFT(I))
TR SYS =TRS YS* TRU SP (I)
PRIN14,'*THE TRUE VALUJE OF P FOR '400NENT .,~g. = ',TRUEP(I)
PRINT*PG*NUMBER OF TESTS ON COMPONENT ,eI," = "tNITEST(I)

10 CONTINUE
PRINT4,9
PRIN149"THE TRUE SYSTEM RELIABILITY IS **,TRSYS

C NOW TESTING COMPONENTS WITH UNIFORM FUNCTION
C

NOVEP=&
CUPIM: 0.0
00 160 LIMITS=19NLIM
CO 2. t'ZINCOM
N=NIT EST (M)
CALL GGUBS(DSEE0,NqRTEST)

C



C CTEST CONTAINS Tr-ST VALUEF FOR COMP)Nr-'JTS
C

00 3c. (219N
IF0PTEST(K),GTTPUSP(M)) FITEsrfil)=FITEST(M)+l

30 CONTINLE
C

C ASSIGNING EQUIVALENT FAILURES WITH SATLIFFEOS METHOD
C

IF (ALPHA*EOeG92) FT'=*360
IF (ALPHA.EO*C~ei) lr =245
IF (ALPHA*EQ*3*05) FI=.155

C

C CALCULATING ESTIMATES OF F9 0, AND V'ARIANJCE

PIHAT(M)=±.O.CFIrEST(M))/(NITEST(M))
OIHAT 0,)=1.0-PIHAT(M)
SIGIHAT(4)PIH4AT('P)*IPAT(m)/NITr-ST(M)

20 CONTINUE
C

C GENERATING NORMAL RANOOM VARIARLES RNO SECOND ESTIMATE OF P
C CALCULATING SYSTEM PELIASTLITY (SERIES)
C

00 50 zig±NCOII
CALL GGNML(OSEEONSIMF)
00 4C J=19NS14

40 CONTINUE
5o CONTINUE

00 60 J=1NSIM
REL:1.0
00 7C 1=1NC'
REL=P EL*PIHATZ CIJ)

70 CONTINLE
RSYSJ CJ)=REL

60 CONTINUE
C

C ARRANGING SYSTEM RELIA91LITY IN ASGFENDIN:G ORDER
C

CALL SCRT(NSI41,RSYSJ)
KALP4A=ALPHA*,"4SIM
Tzi.0 -ALPHA

IF(RSYSJ(KALPIA) *GT.'RSYS) NOVrER4C'VER.i
CUMLP' CUMLM.RSYSJ ('ALPHA)

£00 CONTINLE
AVGLI.M=CUMLM/4,LIM
PERCENT=NLIM-NOVER
PERCNT=(PERCE4T/NLIM)*j0Q .0
PRINT49"NUMBER OF LIWEP LIMITS Ar ALPHAz "PT9" IS **NLIM
PRINT49'AYERAGE LOWER LIMIT OF S(STE?1 RELIABILITY IS '-,AVGLIM



PRINT' ," 0 ERCE4T Or LOWFR LIMITS ',CVERINfy THE TRUE REL IS ",PERCNT
PR'&NTt
PRINT,
GO TO 5
END0
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