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Preface

Many methods of obtaining confidence limits for system
reliability exist in both practice and literature. The
understanding and use of these techniques are often quite
difficult. Because of this, I embarked on an effort to
devise a technique that was theoretically sound, easy to
understand, and simple to use. This report discusses that
technique and its accuracy.

Sincere gratitude is extended to Dr. Albert H. Moore

for his guidance, expertise, and motivation toward comple-
tion of this study. Thanks also goes to Mr. Joseph J. Meli,

ASD/ENADC, who was my sponsor. ?

Roy E. Rice

ii




; Contents

Page
? Preface . « ¢« « ¢ ¢ ¢ o ¢ ¢ ¢ o o o o o o s o 4 e e ii
j List of Figures . . . ¢ ¢ ¢ ¢ ¢ o o o s o o s o o o iv
List of TablesS . ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o @ v
i
: AbsStract . & & ¢ 4 ¢ 4 e o o e o a s o o 4 o e o o vi
I. INEtrodUuCtion .« « « v « ¢ o o o 0 e e 4 e e e 1
: Background . . . . ¢ « +« o c o o s & & o & o @ 1
Approach . . . ¢ & ¢ ¢ o o o o o o o o o o o 1
ASSUMPLIONS . « « + ¢ o o o o o o o o o o o o @ 3 g
II. Background of Estimating Techniques . . . . . . 4
Mellin Transforms . « ¢« ¢ « ¢ « o o o o o o o = 4 f
Approximate Optimality . . « « « ¢« & + o & + & 5
Gatl iffe ' s Method - - L] L] - - - L] . . L] - L] ] L ] 7
ITI. Proposed Method . . . +. ¢ & ¢ &« o o « o« & o &« o 11
Parameter Estimates . . ¢ ¢« ¢ ¢ ¢ « « o o o o 11
Monte Carlo Simulation . . ¢« ¢« ¢« ¢ & ¢« o« o« « & 12
Outline of Procedure . . . ¢ ¢ ¢ o o« o« o« o o = 13
REeSULES « ¢« ¢ ¢ «o ¢ o o o o o o s o o o o o o = 14
Iv. Verification of Accuracy . . « ¢« ¢ « ¢« « o « & 19
Parameter Est mMates . . ¢« ¢ ¢ ¢ o ¢ « o « o o 19
Monte Carlo Simulation . . « ¢« ¢ ¢ ¢« o o o o &« 20
Outline of Procedure . . . . . e e e o e e 21
ReSULtS . . & ¢ ¢ ¢ ¢ o o o o o o o o o o o« o » 22
ExampleS . ¢ ¢ o« o o o o o o o o o o o o s o s 25
V. Conclusions and Recommendations . . . . . . . . 29

Bibliography . . « ¢ ¢« ¢ ¢ o ¢ o o o o o o o« « o » 30

Appendix A: Case of P | 33
Appendix B: Computer Program to Determine Limits . . 36
Appendix C: Computer Program to Verify Accuracy . . 39
Vita ¢ ¢ ¢« 6 4 o 4 6 e 4 e e e s e e e e e e e e 44

iii




List of Figures

Figure Page
1 Three Component System . . . . . . . . . . . 27
2 Five Component System . . . . . . . s e e e 27




List of Tables

Table Page
I 90% Limits, Two Components . . . . « « . + . 15

11 95% Limits, Two Components . . « « « « o« + 16
I1I 90% Limits, Three Components . . . . . . . . 17
v 95% Limits, Three Components . . . « « « . &« 18

v Two Component System . . . « « ¢« &« & ¢« « « = 23
VI Three Component System . . . . . . . . . . . 24

isiiikoen,




A v— e —

AFIT/GOR/MA/79D~8

Abstract

Several methods for estimating lower confidence limits
were examined. A proposed technique was developed and used
to obtain limits for selected systems. These limits were
compared to those obtained by other methods. Then the pro-
posed method was tested to verify its accuracy. Results
indicate that the proposed method is simple to understand,

easy to implement, and accurate.




INCORPORATION OF ASYMPTOTIC NORMALITY PROPERTIES OF
THE BINOMIAL DISTRIBUTION INTO A MONTE CARLO
TECHNIQUE FOR ESTIMATING LOWER CONFIDENCE LIMITS

ON SYSTEM RELIABILITY

I. Introduction

In the late 1920's and early 1930's, prominent statis-
ticians began to realize that a single point estimate for
the probability of occurrence of an event was not suffi-
cient. Initial studies by Fischer, Neyman, Clopper, Pear-
son, and many others show the necessity and practicality of
placing probabilistic bounds on these estimates. The
application of these intervals injects confidence into the

accuracy of these point estimates. Through these pioneer-

ing efforts we arrived at the concept of confidence inter-
vals.
This analysis intends to introduce some of the more

important historical works that address the calculation of

confidence limits. It contains considerably detailed dis- ;
cussions of the evolution of various techniques for deriv-

ing confidence limits with major emphasis on intervals for

binomial distributed parameters. There are discussions of
techniques involving Bayesian Limits using Mellin Trans-
forms (Ref 22:611), Approximately Optimum Limits (Ref 18:
335-347), Monte Carlo simulation (Ref 19:459), and others.
There is then a discussion of the proposed method of incor-

porating the asymptotic normality assumption into a Monte




Carlo technigue. Finally, a verification technique is
included that shows how accurate the confidence limits are.

Component test data is obtained where the number of
failures is assumed to be distributed binomially. Then the
components are arranged in a logically complex system and
an estimate of the reliability and confidence limit is
made. These estimates from the proposed method are then
compared with estimates from the other methods. A final
effort is made to verify the accuracy of the limits by sim-
ulating the testing of the components and determining the
number of times the limits cover the true reliability.

Of particular interest is the treatment of test data
in which no failures occur. Many of the methods are not
valid when the data shows zero failures. Others simply
disregard the samples with zero failures. Still others
manipulate the data to circumvent the problem. Almost all
of this results in a biasing effect on the estimates. This
study explores another way of handling samples that exhibit
no failures,

Coupled with the improvement of these estimating tech-
niques is the advancing computer technology. High speed
computers make it increasingly easier and more efficient
to make detailed computations and simulations. Thus, it is
becoming more practical to apply these methods to systems
exhibiting pass/fail characteristics from the simple

(switches, pins, relays) to the very complex (missile

flights, docking systems, targeting).




In the following study there are several basic assump-
tions. It is assumed that the reader is familiar with the
concept of confidence limits, the binomial distribution,

and has a basic understanding of statistics and reliability

pertaining to both components and systems.




II. Background of Estimating Techniques

In one of the first studies in this area, Springer and
Thompson (Ref 22:611) examined the posterior density func-
tions of Ri(i=1,2,...,N), the binomial parameters of N
independent subsystems, when the prior distribution is uni-
form or Beta. The Bayes posterior density function of Ri
in the uniform prior case is

(ni+l)! m n.-m.

= i,4_ ii
£, (R = m T (n,-m )1 R, "(1-R,)

(0 < Ri <1, i=1,2,...,N)

where m, = number of successes in n, trials.
Epstein gives the Mellin integral transform of fi(Ri)

as i

{n.+1)! (s+mi)

i
.1 +n.+ !
m, (s n, 1)

M{fi(Ri)ls} = R (s) > m, .

Huntington shows that the Mellin convolution of fl(Rl) and

fz(Rz) is exactly the probability density function of the

product Rle and that the repeated convolution of the
probability density functions is equivalent in the trans-
form to repeated multiplication of the Mellin transforms.

From this, Springer and Thompson derive a closed form of f

the posterior distribution function for N independent sub-
systems in series, H(R). At this point, they emphasize
that, for large N, computation of H(R) is tedious for hand ‘1
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computations and extensive using computers. Thus, they
conclude that some asymptotic method might warrant investi-
gation. For more detailed investigation of their method,
see Reference 22.

Later, in a study by Mann and Grubbs (Ref 18:335-347),
confidence bounds for system reliability are derived based
on component test data when the components are assumed to
be (1) exponentially distributed with censoring or trunca-
tion of tests for a fixed number of failures, (2) exponen-
tially distributed with truncation of tests at fixed times,
and (3) binomially distributed (pass-fail) with fixed but
different sample sizes and random numbers of failures for
subsystem tests. With regard to the binomial distribution,
Mann arrives at approximate expressions for mg and Vg the
mean and variance of -1ln Rs which corresponds to these
optimum nonrandomized confidence bounds for series systems.

These are

l A
m,6 = s— * —
S n (1-.5P)
and
1
s n° !

where n® = n(l)(l-.sﬁz)(l-.sﬁ)

n(l) is the smallest of the nl,nz,...,nk.




N

k .
P=1-~ 7w R. is the max-likelihood estimate of the

j=1
probability of failure of the series system.

[+
n

n(l)i(l/nj) which is a restricted sum.

The n.'s for all zero~failure subsystems are omitted
in calculating the value of a = n(l)i(l/nj) except for a
single zero~failure subsystem with its sample size equal to
nyy- Mann and Grubbs point out that this subsystem is
also ignored if at least one of the other subsystems which
exhibit some failures has the smallest sample size Mgy
or if the lower confidence bound obtained by not ignoring
it is larger than that obtained by ignoring it.

"The exclusion of some subsystems in calculating

series-system confidence bounds also is necessi-

tated when all sample sizes are large and most

of the failures pertain to a single subsystem.

In this case the bound obtained based on all sub-

system failures can be larger than that based on

the single subsystem exhibiting nearly all the

failures." (Ref 18:337)

In their analysis they compare their bounds with those
based on Buehler's exact methods, those based on maximum
likelihood normal approximations, the modified maximum
likelihood procedure of Easterling, and the likelihood
ratio method of Madansky. These last three procedures can-
not be applied effectively when one or more subsystems

exhibit zero-failures. This comparison, along with the

estimates from the proposed method, is shown in Tables I,

II, III, and IV.




Another technique that is of extreme importance is

that developed by Gatliffe (Ref 7).

Mathematically, Gat-

liffe begins by stating that, for systems with k components

in series,

k
R = m P, , P. is the
] i=1 * i
component
Qi = 1 - Pl .
k
Let s = =lnR_=-2 1ln(l - 2.)
K o o?
s = Z(Qi+-2-+—3-+...)
i=1
k Q?L k
~ L (Q. +T) = I T, , T
i=1 * i=1 1

The unbiased estimator, @

i
N _ (2Ni - 3)
i ~ (2N, - 2)
i 2Nl 2)
N,
B, = = ,
i Ni 1
F.
= X =
9 * § - F;

reliability of the i

th

_ A I\2
= AiQi + Bi(Qi/Z)

the number of failures
resulting from Ni mis-

sion tests conducted

th component.

on i




He establishes another unbiased estimator,

N k .
s = LT
j=1 *
R k
with Var(s) = z (T./N.) .
i=1 *

He intuitively assumes the probability distribution of s is

gamma with parameters r and 6,

fg(x,r,e) =

0 , X <0

with mean = r6, variance = re2 .

E(S)

(1]
@
]
([
3

]
H
@

]

Var (s)




Since s is distributed as gamma (r,8), %? will be X%Zr)'

From

" A
_ o2, 2
l-a = P52 X(2r,l—a)] and

r ~
1-a = pPlo g <2

N

E(s)
r

5 ] and since 8 = and
L X(2r,1-a)
E(g) = -ln(Rs), he has obtained a 100(l-a)% lower confidence
limit, Rs(a), for Rs
R* (a) = exp[—:ill—} .
s 2
X(2r,1-a)

A 100(l-a)% lower confidence limit estimate, ﬁ;(a), for Rs

would be

ﬁ;(a) = exp[———z_zi\:g ]
X(2r,1-a)

It is apparent that a problem arises in the event of
no failures in any components. This yields an S value of
zero, thus, a system reliability confidence limit estimate
of one (1).

Gatliffe outlines his procedure to deal with such an
event as follows:

(1) Find the series component with the smallest actual
or equivalent number of trails, N or N'.

(2) Change the number of component or subassembly

failures to F' by the following scheme:

o MRLialhad e e oo




- £
.2 .37
.1 .25
.15 .16

(See derivation in Appendix A.)
(3) Recompute the lower confidence limit estimate
using the basic log~-gamma procedure with the revised fail-~

ure data. This estimate is approximately equivalent to
(a)l/N.

Gatliffe's scheme to arrive at equivalent failures was
used in the proposed method. It is an amazingly simple,
yet effective tool; and, for this reason, it is recommended
that the reader refer to Appendix A.

The techniques discussed in this chapter were not
used directly in the proposed method. Yet, they give dif-
ferent approaches that are of historical and analytical
importance. They are primarily doorways that open up into

a vast and intriguing area of study.




III. Proposed Method

The essence of this study is to examine a series-system
with components that experience failures distributed binom-~
ially and derive a simple, yet accurate, method for esti-
mating confidence limits for system reliability. The
method of obtaining lower confidence limits that is proposed
in this study draws upon two important concepts; the asymp-
totic normality properties of the binomial distribution and
Monte Carlo simulation. Both warrant discussion.

It has been shown that, when a pass-fail component is
tested a sufficient number of times (20 or more), its fail-
ures are distributed normally with a mean of ﬁ and a vari-
ance of %?. In this treatment, P is defined as the proba-
bility of success, q is l-ﬁ, and n is the number of trials.

So for any component i,

g

51 = 1 - Hi ' Fi = the number of failures of ith
i
component in n, trials,
9 = 1l-p; -

Note that if there are no failures, ﬁi = 1 and the variance
equals zero. The existence of components with a reliabil-
ity absolutely equal to 1 is, to say the least, a rarity.

To eliminate this problem, an equivalent number of failures, j

F;', is assigned according to Gatliffe's method (see




Appendix A). Once these initial estimates have been
obtained, they can be used in a Monte Carlo simulation.
This Monte Carlo method begins by assigning failures
or equivalent failures to each component in a series sys-
tem. From this a ﬁi is obtained for each component. Now,
using the asymptotic normality property, a random variable

from a normal distribution, with mean = 0 and variance = 1,
P9y

is drawn. If is the asymptotic variance, then the
i
square root of this value is the standard deviation. Since

a N(0,1) random variable is

one can take this random variable, multiply it by the

asymptotic standard deviation, and add it to the mean, ﬁi.

What is obtained is a second estimate of Py

. ba
Pi = N(pi' ni

L

If this is done for each component, one can obtain an esti-

mate of the system reliability for k components in series,

k
m

Lo B3

i=1 t
A Monte Carlo simulation (Ref 9,10,15,19,20,21) is
used to generate a number of these system reliability esti-

mates. These estimates are then ranked in ascending order.

12




The ordered reliabilities partition the interval [0,1] into

n+l equally probable intervals. For simplicity, let n+l
equal 1000. From the ordered simulation reliabilities one
can obtain any desired lower confidence limit by extracting
the 100(1l~a) percentile value. For instance, with 999
ordered reliability estimates, the 90 percent lower confi-
dence limit would be the 99th ordered estimate.

The outline of this procedure is as follows:

{1) For each component in turn assign the number of
failures, Fi’ or equivalent failures, F!,

i
(2) Calculate the first estimate

R Fi Fi
p = l-—o0r1l--—,
i n, n,
G = 1-p;.
. : Pidj
asymptotic variance = n ’
i

(3) Draw a random variable from N(0,l) for each com-

ponent,

AN

~ pP.4d.
v NPy, ——=) by
1

n

(4) Obtain a second estimate, ﬁi

taking the N(0,1) random variable, multiply by the asymp-
totic standard deviation, and add it to ﬁi for each compo-
nent,

(5) With the components in a logically complex system,
A k 2
arrive at a system reliability estimate, Rs = T Py

1

1




(6) Repeat steps (3) through (5) 999 times,

(7) Rank order these 999 estimates of Ry,

(8) Extract the 100(l-a) percentile value to obtain a
100(1l-a)% lower confidence limit.

This procedure was applied to systems of 2 and 3 com-
ponents in series. The computer program used (see Appendix
B) shows that, with minor adjustments, larger systems can
be examined. 1In these 2 and 3 component systems, various
numbers of failures and tests were analyzed. These partic-
ular values were chosen so as to give a basis of comparison
(see Tables I, II, III, and IV). The proposed method pro-
duces values that compare extremely well with those used
in the Mann and Grubbs study (Ref 18:345).

Several points in the tables deserve note. First, the
values obtained in this method most closely compare with
those from the maximum likelihood method. Secondly, in
every case, they are slightly higher than the "exact" val-
ues which tends to indicate upward biasness in the esti-
mates. This latter aspect is what led to further investi-
gation as to the accuracy of the estimates. The next chap-

ter examines this area.
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IV. Verification of Accuracy

To merely derive an estimating technique and its sub-
sequent estimates is not sufficient. Analysis must be con-
ducted to verify the accuracy of the method. As discussed
in Chapter I of this study, the concept of confidence
intervals and limits evolved from the need to know the
accuracy of point estimates. But it is obvious upon exam-
ining Tables I, II, III, and IV that, depending on which
method is used, values of these confidence limits vary con-
siderably. This leads to an effort to verify the accuracy
of the proposed method of obtaining lower confidence limits.

Basic to the theory of confidence limits is the fact
that, if a system of known reliability is tested a number
of times, the estimates of a 100(l-a)% confidence interval
should include the true system reliability 100(l-a)% of the
time. From this fact came the motivation for the subsequent
analysis.

Given a system with known reliability that is made up
of components with established probabilities of success,
one can apply the procedures described in Chapter III to
estimate desired lower confidence limits and compare these
limits with the true system reliabilities. Then, by gen-
erating many of these limits, it can be determined how
often the true reliability is in the interval [LCL,l]. For
example, if 1000 80% lower confidence limits are generated,
it is expected, theoretically, that 800 of the limits are

lower than the true reliability.

19




Monte Carlo simulation, again, is the tool. Given k
components with known probabilities of success, p;, con-

nected in series, a true system reliability is calculated,

Next, one must specify the number of tests that each com-
ponent is to be subjected to, NTi. To simulate the testing ;
of each component, simply draw a uniform random variable in
the interval [0,1] for each test. Now compare each of

these N'I‘i random variables with p;- If the random variable

is greater than p;r @ failure is recorded. By doing this

for each component, one obtains the first estimate of Py \

F.
5. = - L
Pi -
QG = Ll-p;
: : Pidy
asymptotic variance = T c

As done in the previous chapter, if no failures are exper-
ienced, Gatliffe's method is used to assign equivalent
failures. This is done for each component. The proposed
method then produces a second estimate of P; by drawing a
random variable from a N(0,1), multiplying by the asymp-
totic standard deviation, and adding this to ﬁi. These

-~

estimates, ﬁi’ are then combined to produce an estimate of R

20




Again, 999 of these estimates, ﬁs’ are generated and ranked
in ascending order. Then the 100(l-oa) percentile value is
extracted to yield a 100(l-a)% lower confidence limit esti-
mate, ﬁs_(a).

Now, to test the accuracy of this method, many more
repetitions of this testing and limit estimating are done.
This yields a number of lower confidence limits that can be
compared to the true system reliability. As stated before,
one would expect 100(l-a)% of these 100(l-a)% lower confi-
dence limits to include the true system reliability.

The outline of this procedure is as follows:

(1) Establish the value of P for each component and
the number of tests to subject each component to, NTi’

(2) For each component in turn, draw NTi random vari-
ables from Uniform [0,1],

(3) For each component, compare these NTi random var-
iables to Pyi for each random variable that is greater than
p; s record a failure,

(4) Calculate the first estimate

F F!
A~ 1 1
P; = l-grorl-g5
311 = 1= E’l ’
21




. . isiai
asymptotic variance = T
i

(5) Draw a random variable from N(0,l) for each com-
ponent,

(6) Obtain a second estimate, éi' by taking the N(0,1)
random variable, multiply by the asymptotic standard devi-
ation, and add it to ﬁi for each component,

(7) With the components in a logically complex system,
calculate a system reliability estimate, ﬁs = izl Si

(8) Repeat steps (5) through (7) 999 times,

’

(9) Rank order these 999 estimates of Rg.,
(10) Extract the 100(l-a) percentile value to obtain a
100(1-a)% lower confidence limit,
(11) Repeat steps (2) through (10) 1000 times to obtain
1000 of these 100(l-a)% lower confidence limits,
(12) Determine how many of these lower confidence limits

k
are covering the true system reliability, Rs = T p. .

i=1 *

The above procedure was applied to systems containing
2 and 3 components in series. The computer program used
(see Appendix C) shows that, with minor adjustments, larger
systems can be examined. In these 2 and 3 component sys-
tems, known probabilities of success, Py of 0.6, 0.8, 0.9,
and 0.95 were examined to find 80%, 90%, and 95% lower
confidence limits. Table V and Table VI show the number
of lower confidence limits that contained the true system

reliability for each of the systems with various values of

Py O and number of tests.

22
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Close examination of Table V and Table VI points out
that accuracy declines as P; gets larger and as o gets
smaller. These results verify, as Mann and Grubbs men-
tioned (Ref 18:343), that an upward biasness might exist.

By studying the computer program in Appendix C, the
reader should note several points. At higher values of Py
some tests will exhibit no failures. Hence, it is possible {

that ﬁi can be greater than unity. To eliminate this event,

~
~

n pP:d.

P; is chosen to be the minimum [N(pi, T%ri),ll. Also, the
i

reader should note that, on output, he is provided with an

average lower confidence limit. In the generation of the

1000 lower confidence limits, they are averaged to produce
the most accurate estimate.
To illustrate the utility and simplicity of this tech-
nique, consider the mission profile of an air-to-ground
missile. Assume that it has eight independent mission
stages with associated probabilities of success:
(1) Release from aircraft, Py = 0.95
(2) Air start, p, = 0.95
(3) Deploy flight control surfaces, Py = 0.9
(4) Arrive at battle area, p, = 0.95 %
(5) Terrain following/avoidance, Pg = 0.85
(6) Penetrate defenses, Pg = 0.75
(7) Hit target, p, = 0.95
(8) Detonate, Pg = 0.95

These stages are analogous to a system with eight compon-

ents in series. By multiplying all of the pi's, the true
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system reliability (probability of killing the target) is
determined to be 0.42059. Exercising the proposed method
with 100 tests per component with the above pi's, a 90%
lower confidence limit for system reliability is 0.3665.

In this particular case, 91.3% of the 1000 limits cover the
true reliability. Therefore, we would say that it is a
very accurate estimate.

Another example of the usefulness and simplicity of
this technique is shown by estimating the lower confidence
limits for the two simple parallel-series systems shown in
Figures 1 and 2. In analyzing the three component system
shown in Figure 1, the probability of success for each com-
ponent, p;, was chosen to be 0.9; and each component was
tested 100 times. This design yields a system reliability
of 0.891. The estimating technique provides an 80% lower
confidence limit of 0.86842 with the lower limits covering
the system reliability in 75% of the 1000 Monte Carloc repe-
titions. This would indicate that the LCL estimate is
slightly high.

The five component system in Figure 2 was assigned the

following pi's:
(1) p, = 0.95 )
(2) p, = 0.75
(3) Py = Py = 0.90
(4) pg = 0.80
Calculations yield a system reliability of 0.9006 and a 90%

lower confidence limit of 0.8671. These limits cover the
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Figure 1. Three Component System

Figure 2. Five Component System
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system reliability in 87.8% of the 1000 cases which indi-

cates again that the LCL estimate is slightly optimistic.
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V. Conclusions and Recommendations

Stated very simply, it has been shown that this method
of estimating lower confidence limits is accurate, practical,
and simple to use. One need only supply the component reli-
abilities, the number of component tests, and the desired
level of confidence; and he obtains, not only an estimated
lower confidence limit of the system reliability, but also
an indication of how accurate this estimate is.

It is worth re-emphasizing that, where most of the i
other techniques are not valid in the case of zero-failures,
this method accurately and easily accommodates such a situ-~

ation. This method is also not restricted to secies sys-

tems; it can easily handle parallel configurations. A
logical next step would be to incorporate such a method
into a system where other components exhibit different
failure distributions as in the work done by Moore, Harter,
and Snead (Ref 20).

This next generation of systems to be analyzed obvi-
ously provokes one to imagine all the possible applications.
These methods could be applied to an entire spectrum of
systems from simple hardware items to strategic mission *

planning.
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Appendix A

Case Where s=0

In Gatliffe's method (Ref 7), he must deal with the
case of s=0. In his study, the number of mission successes,
W, can be related to mission reliability, RS, by

N oo s i
) (j) R; (l-Rs) J = prob (# successes > W) '

j=W
where N = number of mission trials. The 100(l-a)% Lower

Confidence Limit estimate for system reliability would be

the solution for R¥* in

N . .
: M@yIa-rm¥I - o
j=w
which, when W=N, reduces to
(R*)N = o or R* = (oa)l/N .
Now, R*(a) = exp[—§:2£§———] = (OL)]'/N
X(2F,1~a)
. . (T, )2
where s = IT,, r = max|l, __ﬁ%__
i
Z(ﬁf)

1

~

which reduces to s = T, and r = max(1, @iNi), since only

one component contributes non-zero failures.

TR —




"pq!!!5!""""""""""""""""""""""L | *i‘!

E
Now if r = 1.0, then ﬁiNi < 1 implies that
~ 1
T, § =
i N,
T. = A.Q. +B 52
i i*i i/2 ¥i
2N.-3 N, . F.
A, = — , B, = —= , Q. = =%,
i 2N.-2 i Ni 1 i Nl
B. A, .
Thus, (—3) Fi + (FH)F; - T, =0 or J
2N i 4
: |
N, 2N, -3 ;
2 i 1 ;
( = JFS + (5 JF, == < 0 |
2(N,-1) (v%) 1 2(Ng=LIN)TRE Ny |
1 1 |
2 i
F ]

i + (ZNi-3)Fi - 2(Ni-l) £ 0

1
(F,-1) (F; + 2(N;-1)) < 0

The only positive values for Fi that can satisfy this equa-

tion are between zero (0) and one (1). Also, for any size

Ni’ 2r = 2. Hence,

i

|

X(2r,1-a) ;

2 . ) a

s - Xefi-a g o AR, BFD) |
2N N N2

: . . 2 2 =
which implies (F%)% + (2N-3)F§ + (N-1) lna(x(Zr,l-a)) = 0.

Solving for F; as a function of N and a, Gatliffe obtains
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_N a=.2 a=.1 a=.05
5 .3888 .2670 .1713

10 .3721 .2531 .1610
20 3652 . 2475 .1570
100 .3603 .2435 .1542

1000 .3593 .2427 .1536




Appendix B

Computer Program to Determine Limits

The computer program contained herein determines the
100(1-a)% lower confidence limits on system reliability.
It is written in FORTRAN IV and utilizes AFIT and IMSL sub-
routines. At the beginning, each variable is defined.
Throughout the program, major sections are introduced with
comments that explain what is béing done so as to enhance

the flow of the program.

Input: The first data card is in free field form containing:

(1) the number of components in the system,

(2) the confidence level (a = 0.05 means a 95% level),

(3) DSEED which is the double precision random number
seed used in the subroutines,

(4) the number of simulations to be performed (999).

Following this card is a card for each component, in
format, that establishes the number of tests and number of

failures for that component.

OQutput: On output is displayed:
(1) the number of components,
(2) the number of tests and failures for each component,
(3) the confidence level,

(4) the 100(l-a)% lower confidence limit.
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Ie TEST(I)EN.") FITEST(I)=FT
21 CCA f\U-:
c
i CALOULATLNG Py 1y AN VARIENCE
00 i I=14'1C0H4
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23 COrTINMLE
c
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Appendix C

Computer Program to Verify Accuracy

The computer program contained herein determines the

100(1-c)% lower confidence limit on system reliability and
determines how accurate this liwit is. It is written in
FORTRAN IV and utilizes AFIT and IMSL subroutines. At the
beginning, each variable is defined. Throughout the pro-
gram, major sections are introduced with comments that
explain what is being done so as to enhance the flow of the

program.

Input: The first data card is in free field form containing:
(1) the number of components in the system,
(2) the confidence level (o = 0.05 means a 95% level),
{(3) DSEED which is the double precision random number
seed used in the subroutines,
(4) the number of simulations to be performed (999),

(5) the number of lower limits to be generated (1000).

Following this card is a card for each component, in
format, that establishes the true probability of success

and number of tests for that component.

Qutput: On output is displayed:
(1) the true probability of success and number of tests
for each component,
(2) the true system reliability,

(3) the confidence level and number of limits,
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(4) the averaged 100(l-a)% lower confidence limit,
(5) the accuracy of the limit (the percent of the
total limits that covered the true system relia-

bility).




FROGF A¥ 2INRELL (INOUT,0UTPUT)

OIMEI SION PIHAT(L7),RSYSJ(LJUC) (L 0),FITEST(LL) NITEST(1]),
1T HAT (10) ySIGINAT (11} ,%IHAT2(3,131J) ,TRUEP(10),TEST(1400)

OOUBLE PRECISION DSEED

I Y Y Y Yy Y Y Y Y S T N Y Y R Y Y PP Y Y Y IR PP YPURY Y Y P Y YIS Y Y BT ¥ Py Y

NITEST= # QF COMPOMENT I TESTED?

FITEST= # OF COMPONENT I FAILED [N TEST

PIHAT= FIRST =STIMATE COF P FOR CIOMPONENT I
PIHAT 2= SECOND ESTIMATF GF P FOR COMFONENT I
RSYSJ= RELIABILITY OF SYSTEM ON 4ONTE CARLOC SIM J
NCGM= # OF COMPONENTS TN THE SYSFEM

ALPHA= 1uv0(1-AL2HA)Y CONFIDENCE LIMIT

FI= EGUIVALENT FAILURES

OIHAT= FIRST ZSTIMATE CF O FOR COMPONENT Itf=1-P
SIGIHAT= ESTIMATE OF VARIANCE

OSEED= SEED FOR NORMAL ReVe GENZRATICN

R= OUTFUT VECTOR OF NOFMAL R.V.S

NSIM= # OF MOWTE CARLO SIMULATIONS

KALPHA= THAT VALUE CORFESPCNDING TO LIMIT
NOVEF=N0 OF LCL OVER THE TRUE RELTA3IILITY
NLIM=NLMBER OF LUWER CCNFIDENCE .IMITS

TRSYS=THE TRUE SYSTEM FELIABILITY

RTEST=ARFRAY CIONTAINING TEST RESU.TS CF THE PI’S
REL= RELIASILITY OF THE SYSTEM FOR THAT SIMULATION
CUuMLM= ADOS ALL THE LCL’S

AVGLIM= AVERAGES THESE LIMITS OVEIR THE TOTAL NO. GENERTTED

(IS T AL R RS ESS I I R EIE R IR SIS RS SARIII R R XS R R R S TR SIS R R 2 2o L X X 2 L ]

FORMAT (2XyFE ok 91Xy13)

FORMAT (F8,6) ;
READ* 3 NCCM,ALPHA 4OSEET, NSIMyNLIM i
IF (EQF(SLINPUT)<NEsDJer) STOP "ENN QF PROGRAM®

O VTWNOOOOOODOOODOO0O00O00O00000O000O00O000

CPIIBRIBBZIIFLRBIVLSABBURBRNTI AR BRI LIRVEIBBIRIDNUNA44333284233820004s
C TRUE FRCE OF SUCCESS AND NQ., OF TESIS FOR EACH COMPONENT
c
TRSYS=1.0
DO 10 I=1,NCOM
READ 2, (TRUEP(I) ZNITEST(I)) ‘
TRSYS=TRSYS*TRUEP(I) :
PRINT?,"THE TRUE VALUE OF P FOR SOMPONENT *yI,*" = ",TRUEP(I) ;
PRINT*#,*NUMBER OF TESTS ON COMPONENT *,I," = *“4yNITEST(I)
p ) CONTINUE
pRINT'," e :
PRINT#*,"THE TRUE SYSTEM RELIABILITY IS *,TRSYS i

e P o v AWt s mm - v e =

c

CHP 3353335383333 033 0330833308380 380 3300830000003 383 8000008308 esa
C KROW TESTING COMPONENTS WITH UNIFORM FUNCTION

c

NOVEP=(

CumLM=Ge0

00 100 LIMITS=1,NLIM

CO 206 M=1,NCOM
N=NITEST(M)

CALL GGUBS(DSEEDyNyRTEST)




coc $BBEBIHBDB204BBP908RF 5B 838 B3B80B080R 0480833884802 2834920804848 " S804

€C FTEST CONTAINS T=ST VALUES FOR COMPINZNTS
C
FITEST (M) =).8
00 3¢ Kz 4 4N
IF(RTEST(K) GT,TRUSRP(M)) FITEST (M) =FITEST (M) +4
30 CONTINLE
c
c"““’*"'4’0."“‘"‘b“"""".'l‘l“‘.‘0".0.0’#4—"‘.50.““'0‘0‘
C ASSIGNING EQUIVALENT FAILURES WITH SATLIFFE®’S METHOOD
c
IF (ALPHALEQ.Ge2) FT=2,3061
IF (ALPHAEQ.Ge1) FT=,245
IF (ALPHAWSQe3.35) FI=.155
IF (FITEST(M) «ENGIeD) FITEST(M) =FI
c
c‘.““"“"‘OQ.‘Q-“‘*"“"‘4‘.““"'“‘4‘."..‘..‘."..‘..."“‘.".“
C CALCULATING ESTIMATES OF F, Qs AND VARIANCE
c
PIHAT (M) =1.,0=(FITEST(M)) /(NITEST(M))
QIHAT (M) =1,0=-PIHAT(M)
SIGIFAT(M)=PIHAT (M) *NIHAT (M) /NITZST(M)
20 CONTINUE
c
c‘.“.'l"'."““l““"“.’“4.."*‘-‘.‘3“"‘4.0'«&“"“4“‘.“4““‘4’“‘
C GENERATING NORMAL RANDOM VARIASLES AND SECOND ESTIMATE OF P
C CALCULATING SYSTEZM RELIABTLITY (SERIES)
c
D0 50 I=1,NCOM
CALL GGNML(DSEEDyNSIM,F)
00 4T JU=1,NSIM
PIHAT2 (T, J)=PIHAT(I) =(FP(J)*SQRT(SIGIFATI(I)))
IF(PIKAT2(IyJ) «GT41e0) PIHAT2(IyJ)=140
4Q CONTINUE
59 CONTINLUE
DO 606 J=1,NSIM
REL=1,.0
00 7C I=1,NCOM
REL=PEL®*PIHAT2(I, J)
70 CONTINLE
RSYSJ (J)=REL
60 CONTINUE
o]
c“““‘l't‘0“"‘.“‘3‘.“'3"““*“.“‘.‘4‘-.’l“¥“'§‘..§‘4“¥.“‘¥¥
C ARRANGING SYSTEM RELIASILITY IN ASGINDIMG OKDER
c
CALL SGCRT(NSIM,RSYS))
KALPHA=ALPHA®NSIM
T=1.0=-ALPKA
IF(RSYSJ(KALPHA) « 6T TRSYS) NOVZIR=NCVER+1
CUMLM=CUMLM+RSYSJ (KALPHA)
100 CONTINLE
AVGLIM=CUMLM/NLIM
PERCENT=NLIM=NOVER
PERCNT=(PERCENT/NLIM)*100,.0
PRINT®,"“NUMBER OF LOWEF LIMITS AT ALPHA= ",T,"™ IS *“,NLIM
PRINT#,"AVERAGE LOWER LIMIT OF SrSTEM RELIABILITY IS “,AVGLIM




PRINT?,"CERCEIT OF LOWFR LIMITS SCVERING THE TRUE REL IS *,PERCNT
PRINT#,™

PRINT®,* =

G0 To 5

END
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