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In the following pages we wish to discuss briefly floating point

computation as performed on a typical digital computer. Our objective

-willbe two-fold: to illustrate the peculiarities of arithmetic in such

an environment caused by the imprecise representation of the real number

system, and to indicate how various choices in representation and arith-

metic algorithms impinge on mathematical software.

1. Basic Issues

As usual, we assume a positional or polynomial representation of

whole numbers, i.e. for a given value x we have

n-1i

x P E) = 1 1i  (1)
i=O

where P is the base or radix of the representation of x, n the number of

base 1 digits do, dl, .. , d n_ with di C fO,l, ... , - often ex-

press the base 5 representation of x in (1) as

x =(dn-1 dn- 2 ... d2 d1 d) (2)

As usual a sign is prefixed to (1) to extend the representation to the

integers. Note that for fixed n, it is obvious that (1) or (2) can

represent only values in the range

0 ' x 4 D n -1 (3)

(or, with a sign , -1n + 1 4 x < 1n -1). To extend (1) for

range of the rationals, negative indices or exponents are permitted:

n
P n,m (-) = (4)

yielding n+m digit base 1 rationals, i,e., we can rewrite (4) as

x + (dn_ 1 dn- 2  d2 dI d0 dI d_2 ... d_m)1 (5)

3 OTtO
3 4Cj

00,y . ..
/ XCTZ*
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Example 1.

P4 . 4 (10) 1.103 + 2.102 + 3.101 + 4.100 + 5.10- 1 + 6.10- 2 + 7.10- 3 +

8.10-4 . (1234.5678)10

P3,3(2) = 1.22 + 1.21 + 0.20 + 1.2
-1 + 1.2-2 + 1.2- 3  .(110.111)2

= (6.875)10

Note that in (4) or (5) if the number of base 3 digit to the right

of the radix point is fixed a priori regardless of the number we wish to

represent we have a fixed point notation or number system which is limited

to representing magnitudes in the range

0<x< n -1

as before, but now with the smallest non-zero magnitude representable

being -m With the addition of a scale factor, s range of representa-

ble numbers can be expressed as

Bs (n-) x s ( n -1

The range of useful values in our system of representation can be

greatly increased if we use a scheme similar to "scientific notation" for

physical constants, i.e. quantities are represented in terms of signed

fraction or mantissa and a signed exponent or characteristic. Thus we

have now to specify the number of digits, e and the base, -e' of the

exponent and the number of digits, m and the base, a, of the mantissa.

Thus we have a two part representation (f,c) where f, the fraction, is a

fixed point number with base 1m , m 1 - digits and scale factor s and c,

the exponent a base Oe' e digit fixed point number with scale factor se

(usually se = 0 hence the exponent is an integer). In addition, the

exponent may be biased, i.e. if the exponent lies in the range -N1 ( expo-

nent 4M 2 then to avoid the explicit sign, M1 may be added to all exponents;
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hence an excess -M notation. If the scale factor, s is zero, then the

radix point is at the right of the mantissa (e.g. Burroughs, CDC hardware)

while a factor of S - -m yields an implied point at the left hand side

(e.g. the IBM S/360/ S/370) orI fj 4 1, hence J3"' f is an integer and
m

m Cf C 1m
m m

Note that up to this point we have distinguished between 1e , the ex-

ponent base and 0m, the mantissa base. Almost without exception these are

powers of the hardware base, (y which is usually 2. (e.g. for the IBM

S/360-S/370, 3e = 2, 13m = 16). To avoid fractional exponents, we refer to

0, the floating point base/radix and assume ( - (m . Clearly the largest e
edigit exponent then is (e -1. Hence the largest representable number is

equal to
e(7

(the largest mantissa) x B (e -i (7)

Assuming 3 =v k then the right hand terms becomes 1v k (1e -i1; we define

the exponent range to be k (a e_1). With respect to the mantissa in (7)

if the scale factor, s , is zero, then the largest mantissa is e3 -1, the

smallest, 1. If s = -m on the other hand, then the largest mantissa is

3-m ((3 -1) -i -0 - m =I. (8)

and the smallest is 
-m

Thus, assuming an exponent scale factor of 0, we can denote our

floating point number system by FL (3 e , D, M, e s) (9)

where 3e is the base of the exponent, (3 the base (of the mantissa), m. the

number of digits in the mantissa, e the number of digits in the exponent

and s the (mantissa) scale factor.

If s f -m, then we car, simplify (9) to FL (e' 0, m, e) (10)

with (10) the representable values of the system, denoted s (3, , m, e),

are given by

eei13lIM-i e x..( - r ) . e x- 0

-(i - )  e -- l -  - e

5



If 3 e e  2, then S (2,2,m,e) becomes

21-m-2e _x e( 1-2 - m) 2 2 e _1 xt0 22e_ 1

(12)

-(1-2 - f 22 e- x e -2 (l-m-2e)

The precision of the set S (1 , 1, m, e) is defined to be the number of
e

digits representable in the mantissa, normally in base 3 digits, i.e.

10, 1, .. , 0-11 ; for purposes of comparison we speak of the binary pre-

cision, the number of the bits (base 2 digits) representable in the

mantissa. The range of FL (3 , 1, m, e, s) is defined to be the largest
e

representable magnitude, hence

~e
as (13m -1) e (13)

or with 1=2 and fractional mantissae, range YL (2,2,f,e) = (1-2m) 2

Example 2.

For some typical hardware families we have

Word Size Exponent Mantissa
Machine (bits) (bits) (bits)

Burroughs6700/7700 47 plus tag 8 7 (S-M) 39 (integer) S-M

CDC 6600/

Cyber 70 60 2 11 (Excess 210 48 (integer) l's C

DEC PDP-11 32 2 8 (Excess 27) 23 (fraction) S-M

Honeywell 48 2 7 (Excess 26 40 (Binary) S-M
H8200 10 10 (BCD)

(fraction)

IBM S/370 32 16 7 (Excess 2 ) 24 (fraction) S-M

6



Thus far, we have ignored the questions of uniqueness; clearly

for a given real value x we wish to have a representative within

S(1 , 8, m, e, s) which best approximates x in some sense. However,ee a+e
since m m 8 for any integer, a, we choose a normalized

representative, i.e. one such that the most significant digit of the

mantissa is non-zero, with the exponent adjusted accordingly by a suit-

able choice of a. The corresponding Normalized Floating Point Number

System is denoted NFL (8e, 8, m, e, s), or if fractional mantissae are

assumed NFL (1e, 8, m, e) (. s = -m). Thus the smallest representable

(non-zero) magnitudes are respectively

1m- 1 (s-0) and 8-
m ( m- 1) 1 8- 1

Example 3.

For a binary system (1=8e = 2) with m bits for the mantissae,

e for the exponent, assuming s = -m, then if we denote the set of values

in NFL (2,2,m,e) by NS (2,2,m,e), x C NS (2,2,m,e) if

2-2e x e (1-2-m )  
2 e'1 , x 0,

l2-m)22 ei -2-2e

or(1-2 -)2 
x 2

2. Relations In The Parameters

In the preceeding sections we discussed the basic normalized

floating point representation, with the tacit assumption that the number

of base 8 digits available for the mantissa and the number of exponent

(base e) digits are determined by hardware considerations. Here we wish

to examine the choices available or implied for these parameters and the

tradeoffs between allocations of resources to one versus another of them.

First, let us assume the mantissa size, m, is fixed, and that exponents

are positive. Then the representation ratio of the number of values

using a higher base that can be represented to the number of binary

values representable in the range of binary numbers, representable with

the available number of bits.

7



For example, for 13-2, in a normalized floating point system only

half of the possible representable values are used, for a given mantissa

size, i.e. those with the most significant bit - 1. On the other hand,

when a leading 0 is permitted ( = 4), 50% more values are representable.

Similar increases occur for higher values of 0.

Now consider NFL (1 , 1, m, e) (.'. s - -m) ; there are 2e

different exponents and 2m4 different normalized mantissae representable,

if e - 0- 2. Thus the total number of positive representable values with

positive exponents is 2 e+m-; since the largest representable mantissa is

=1 and the largest representable exponent is 2e -1, the largest repre-

sentable binary number is = 2 -. If we contrast this with the case 12k
,

with numbers of the form m.1e  and estimate the number of values less

than the largest representable binary number (2 2e), assume Ml and choose

p such that e 2 2S-I so that p log 21 *'2e-1. Thus, the number of

representable values between 1- 1 and 9p is approximately

(2m- + 2 m2 + ... + 2 m-log 3) (p+l) - 2' (1- - 1 ) (p+l)

where m is the number of binary digits, not base 1 digits. To compute

the representation ratio, we compare the total number of base 1 values in

the range [2 - 1 , 2 1 the total number of binary values in that range,

ie

Base 3 values in [2
- 1 , 22l 1

Representation Ratio =Binary values in [2-1 , 2 2e-]

2m (1-0 - 1 ) (p+l) 2 (1- - 1 ) (p+l) (

2
m -1 2e 

1 + p log 1

8



Example 4.

2e-1  28  =2 6

Let 13 = 16, e = 8; then p 1og2 -- lo64

lo-21 l 6

Representation Ratio 2 (1-3 - 1 ) (p+l) = 2 (1-16- ) (26+1) Z 0.475
R sa 1 -i p log 1+26.4

It is easy to see that for fixed e, m there are about 1.875 times as

many base values representable as base 2 values. Hence, for positive
1

exponents, ( 0.475/1.875) of the hexadecimal values are in the range
of the binary values, and 3/4 outside, for fixed e,m. Note that as we have

seen, more numbers are representable over a wider range by using

k
(3 2 , k7 1, on the interval where the base 13 and binary values overlap,

the binary numbers are uruch more densely distributed, hence do a better

job at representing that interval of the real numbers.

A closely related issue to consider is the choice of (3 and the
size of e: assume the word size n = m + e is fixed, and consider the

tradeoff between a choice for e (or m) and the choice of 13. Obviously

one criterion is the effect on the range of representable numbers. Let the

exponent range be k (0 e-I ) for 3 = 2k and consider the worst-case analy-

sis of the accuracy of representation. Clearly if (3 = 2 k , accuracy will

decrease automatically with k, since m-k+l bits are used in the worst case.

A
Let x denote the floating point representation of x in

FL (13 , (3, m, e, s). Then, the absolute representation error is given by

I x -x the relative representation error, 6(x), by

8 (x) = x (15)
x

A
hence x = x (1 +6(x) ) (16)

An upperbound on 6 (x) is given by the smallest E such that

18(x) 4 e I V x e FL (Q , a, m, e, s); we refer to c as the Maximum~e
Relative Representation Error (MRRE) for the machine representation of x.

9
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With 1 the hardware radix, it can be shown (Brown, Richman) that

MMRE [1 -1 ?/t3 k-m] -1 (17)

Now, assume m 7. k so that at least 1 digit of accuracy is available with

= vk and consider the two normalized floating point systems

NFL, = NFL (By, 1v, M, n-m), NFL2 = NFL (3v, Ov, m-k+l, n-(m-k+l)

k-rn l-(m-k+l)
and, since v = . v  , both NFL and NFL2 have the same MRRE.

With respect to exponent range, since a = 3v for both,

Exponent Range (NFL 2) Bv(n -m+ k - l )- I  B k-i (13v' n-m_ov 1-k.

Exponent Range (NFLI) K ( vn-,-l) K ( v n- _i)
and sicee l-

Eone1 Ra k, Exponent Range (NFL2k k-I

Exponent Range (NFL K

If k = 2, then the exponent ranges are almost equal, but otherwise,
v

for a fixed MRRE, the choice 13 = 2 clearly yields a large range of expo-

nents, indicating that for these criteria, we should choose 8 = 2.

With respect to numerical computations, additional parameter

relations must hold. Clearly, for NFL (0, e9 , m, e), the maximum relative

spacing E = a l-m is critical. For simplicity (18)

below, let us denote the smallest positive number in our system by

S= ,emin s -m) (19)

and the largest representable number by

- ~e_ ma -MS= (1-3 -m) 13 e (1 f3 (l-m),s =-7) (20)

Clearly we assume 3 :2, emin emax above. To ensure that 1 is included

we require e min 5 1 4 e and to ensure that C< 1, we must have m 2.mm max
These minimal requirements guarantee a meaningful floating point system,

but to produce numerical software with proveable mathematical properties,

we need a system that is both reasonably large and well balanced.

10



Specifically to provide a useable range for any given precision, we re-

quire that

, 2 (21)

and x -2 (22)

(For example, in Brown's algorithm, for the mean of a vector, we need
4a A 4 to avoid overflow when accumulating scaled small components; in

Lawson's algorithm for the Euclidean norm of a vector, we must have
-3/2

A > E: to avoid overflow when summing the squares of small components
2

and a 4 e to avoid underflow. Thus (21) is essential for Lawson's algo-

righm, while (22) provides a safety factor). Assuming the usefulness of

(21), (22) their realism needs to be considered. Clearly for (21), (22)

to fail we would have a small range and relatively high precision. For

convenience, we restate (21), (22) as

e min 4 2-2m (23)

e max . 2m-1 (24)

Example 5.

An extreme example of high precision (1=2) with only 8 bits

allocated to the signed exponent is provided by the DEC PDP-10 and Honey-

well 6000 series; in double precision 64 bits are allocated to the (signed)

mantissae from a word size of 72 bits. These machines satisfy (23), (24)

by a very small margin. Assuming word size n=72 with e=8, m-64 we can use

an implicit normalization to yield a precision of 64. Likely exponent

ranges (setting one value aside for zero) would be [-127, 127) or [-126,128].

The proposee inequalities then are the tightest that would allow both of

these possibilities. In addition to (21), (22) we would prefer

d X 1 (25)

(cf.Reinsch) but (25) is neither essential norrealistic; instead we re-

quire the weaker

-0 -( W 6 (26)

-2
which may be written as a 2 X < (27)

and 7 X2 < E -1 (28)
11



(Note that (21), (22) imply 3 e-2 a X -C 2X). In Lawson's algorithm

previously cited, we must have aoXCl1/2 and yA 2 -71 to ensure that the

scale factors are within range, hence (27) provides a modest safety factor

and (28) a larger one. Once (27) is accepted, symmetry suggests (28).

Furthermore, (27) implies (28) in practice, since O X2l if the implicit

radix point is at the left while oX -10-1 otherwise).

(27), (28) may be re-written as

2 ei + e £3-m (29)
mn max

emi n + 2 e maxm+l (30)

If emin + emax - 0, then (29), (30) follow from (23), (24). However, if

emin + e max  2m (e.g. with radix point on the right), then by (24),

e min _ 3-3m, hence e max  2m - e mi 5m-3 and emax - emin P8 m-6,

exactly twice the exponent range specified by (23), (24). However, most

existing hardware with one implied radix point on the right has relatively

large exponent range and there appears to be no floating point system with

o E-1 LX failing to satisfy (26).
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