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SELECTING PROCEDURES FOR OPTIMAL SUBSET
OF REGRESSION VARIABLI:S*

by

Shanti S. Gupta, Purdue University
and

l)eng-Yuan luang, National Taiwan Normal University

Recently, a number of methods have been developed for selecting the

"best" or at least a "good" subset of variables in regression analysis.

For various reasons, we may be interested in including only a subset, sa',

of size r - p, the number of independent variables. Various authors have

considered this problem and a variety of techniques are presently being

used to construct such subsets.

Arvesen and NMcCabe (1975) proposed a procedure for selecting a subset

within a class of subsets with t (fixed) independent variables, taking into

account the statistical variation of the residual mean squares. Huang and

I'anchapakesan (1982) proposed a selection procedure based on the expected

residual sums of squares. Hisu and Huang (1982) studied a sequential selection

procedure for good regression models.

In this paper, we are interested in deriving an optimal decision procedure

based on residual mean squares to select a subset excluding all "inferior"

independent variables. This kind of optimalitycriterion is related to the

approach of Gupta and luang (1977).

l'et T 0 , n...... k denote k+l normal populations with unknown variances

2 2 2 .
0.1O.. respectively. Assume that 0 is known. A population (model) is

2 2
said to be superior (or good) if oi < t a, to be inferior (or bad) if
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2 2i >A .0 where A is a specified constant greater than 1. Let si be the

parameter space which is the collection of all possible parameters.

Let CD stand for a correct decision which is defined to be the

selection of any subset which excludes all the inferior populations.

Assuming the following model

(1) Y = + E

where X= [1,X .... Xp is an nxp known matrix of rank p < n,

(6 is a lxp parameter vector, and E N(O, o21), and

1' = 11... ,lJx, I is an identity matrix with nxn.

In what follows, (1) which has p-1 independent variables, will be viewed

2
as the true model. Without loss of generality we can assume that ao0 = 1.

Consider the models for any r, 2 < r < p-1,

(2) Y =Xri -ri +E-ri

where X is an nxr matrix of rank r with Xl is a rxl

11 lxn' -ri

parameter vector, and - 2 n ) ,- I ). lEr--'ri '1 r r-I

p-I
k = k . It should be noted that in stating the reduced model (2), our

r=2
comparisons of models are made under the true model assumptions. The goal

is to include all the designs Xri (or sets of independent variables) associated

22 2 2
with a 2,j = 1,...,k-t, where a < a[2] <...< a are ordered values

all [] [ [] 'k-ti
fromsomeof a's, i = 1,... ,kr, r = 2,.... ~p- 1  

__
from some of a ri' s, .)

Accoson For
Note that for any r, 2 < r _ p-I, if r.-"

SS y,{lX i(XriXri)-lri}Y YQy '"
ri - ri- ri r") ri -- -

then ,JU "
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SSri ' X fvr' (") ' ri(X /2}

(tinder the true model), where v = n-r, for 1 < i < k . Note that ther - - r

noncentrality parameter, in general, is not zero, and that

2
2 = 1+(Xa)'rQ (X)/v
ri - ri - r-

Now we need some notation. Deleting a set of 8.'s without specifying which1

ones are deleted, we use ri to denote the special subset that is not deleted.

For example, if p = 3, r = 2 then there are three subsets with size 2; namely,

B1l.2 } , fol 3} and {2,O3} . Then rl denotes the set {01,82}, r2 denotes

{62 ,43 } and r3 denotes { 3 }. Then, we use 8 to denote the vector with the

following subsets: {01,82} with (01,42,0), {a1,83 } with ($1,O,63), and

{Y13} with (0,62,3), where 0 is the parameter value which is omitted from

the true model of the appropriate a.'s. Thus, in the following, we will1

use O,ri to denote those sets of 8 as described above with the further

condition that a2 2 1. Similarly, will be used to denote the
ri '0 Siial, i,riw

2
sets of a as described above with the further restriction that ari > A.

Formally, we write

O~ri { Io°  = 1},
-~r ri

and

Il,ri - ri A ,

where i = 1,... ,kr; r = 2,...,p-I, and let
rr

k
p-1 r

fil = U U SIl~i and
r=2 i=l



p4
, k

,fp-1 rO

0 r=2 i=l

Let g 2 (Sri) denote the probability density of Sri depending on the

ri

2 SS
parameter ari, whre S ri r , ... ; r ....

r

Consider a family of hypotheses testing problems as follows:

(3) Ho,ri: _ E Q 0 vs Kri: _ E Ql0ri;

i = 1,...,p-i, r = 2,...,p-1. A test of the hypotheses (3) -till be defined

to be a vector (YI(y), ... cPk(y)) , where the elements of the vector are

ordinary test functions; when y is observed we reject 1iI t with probability

Yt(y), 1 < t < k. The power function of a test (:p 1 ... pk) is defined to be

the vector (pl().... pk()) where

Pt ( -) = E :pt (Y),

1 < t < k. Let S(y) be the set of all tests 1 .... k) such that

(4) Ei yotCY ) < y, $ E Q0O-

0 0
We define y : (1.... o) as

1, if gA(sri) > c gl(Sri),

0

/' if 9A ri) < c g1 (sri)

0
t ri E where s is the observed value of

It can be shown that (0maximizes



5r

min inf E yt(Y)
l<t<k _EQ 't

among all tests y= (Cl,... k E S(y) (cf. Gupta and Huang (1977)).

To determine the constant c, we proceed follows: for a given n > 0,

there exists a smallest positive integer k0 such that

aako+l ak

- 1 and _+ < 1
T)a k -T

where

e X r s X(-Vr r ri9 2r )

a9 (Sr) = i 1r

9.= 0,1,2.... ; rA - . For this kO , it can be shown thatr 2 0

whe're 1 ( ri X=g[~j a(r)=[aok<n
0 < gl(Sri) =0kO

[hus, approximately,

g(s ri) k-i

gl(sri) ,=O ri

ith error less than n. For ES2
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ET zp0 (Y) = PY{g(Sri) > c ri

k o - 1

- t aS r i) > c}

I kl (S ri)gl (S ri)dsri y'
0 0 i 1 i r

[I X a(sri) > c]2=0

2where g1 (sri) is the central X with vr degrees of freedom and IA(x) ()

for x 4 A, I (x) = 1 for x E A. The constant c can be determined.
A
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