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SELECTING PROCEDURES FOR OPTIMAL SUBSET
01 REGRESSION VARTABLILS*

by
Shanti S. Gupta, Purdue University

and
Deng-Yuan Huang, National Taiwan Normal University

Recently, a number of methods have been developed for selecting the
"hest' or at least a ''good" subset of variables in regression analysis.
For various reasons, we may be interested in including only a subset, sav,
of size r < p, the number of independent variables. Various authors have
considered this problem and a variety of techniques are presently being
used to construct such subsets.

Arvesen and McCabe (1975) proposed a procedure for selecting a subset
within a class of subsets with t (fixed) independent variables, taking into
account the statistical variation of the residual mean squares. Huang and
Panchapakesan (1982) proposed a selection procedure based on the expected
residual sums of squares. Hsu and Huang (1982) studied a sequential selection
procedure for good regression models.

In this paper, wc arc interested in deriving an optimal decision procedure
bhased on residual mean squares to select a subset excluding all "inferior"
independent variables. This kind of optimalitycriterion is related to the
approach of Gupta and Huang (1977).
denote k+1 normal populations with unknown variances

lLet = ]

IR

) R4 7

do,al,...,nk

5
said to be superior (or good) if o; < B 03, to be inferior (or bad) if

respectively. Assume that cg is known. A population (model) is

"*This recsearch was supported by a grant from the National Science Council of
Republic of China. It is also supported by the Office of Naval Research
Contract N00014-75-C-0455 at Purdue University.
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c? > A oé, where A is a specified constant greatcer than 1. Let & be the
parameter space which is the collection of all possible parameters.

Let CDh stand for a correct decision which is defined to be the
selection of any subset which excludes all the inferior populations.

Assuming the following model

(1) Y= XB + €
where X = [},51,...,§p_1] is an nxp known matrix of rank p < n,
. 2
[ . . At o ver . s .
g' = (80,81,...,Bp_1) is a 1xp parameter vector, and € ~ N(O, ooln), and

v - (s an identi I . '
1 [l,...,]jlxN, In is an identity matrix with nxn

In what follows, (1) which has p-1 independent variables, will be viewed
as the true model. Without loss of generality we can assume that oé = 1.

Consider the models for any r, 2 < r < p-1,

7 =
(2) Y xri §ri * §ri
where X_. is an nxr matrix of rank r with X! = [1,...,1] , B_. is a rxl
ri 11 Ixn’ =ri
Y
parameter vector, and € . v N(O, 07 4 )i = 1,2,...,h_~ (R l). et
-ri - rin r r-1
p-1
k = Z kr' It should be noted that in stating the reduced model (2), our
r=2

comparisons of models are made under the true model assumptions. The goal
is to include all the designs Xri (or sets of independent variables) associated

with c%j], j=1,...,k-t, where o are ordered values

2 < 2 < < 2
(11 = %2) == Ok-t)

from some of ori's, i= 1""’kr’ r=2,...,p-1.

Accrssion For

Note that for any r, 2 < 1 < p-1, if _}TIF
SS_ . = Y'"{1-X_.(X'.X .)"lx' Y = Y'QY DT TS
ri - ri‘ri‘ri ri’l T I Ve
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S8 v X [vr, (X(_{)'Qri(X(’.)/l}

(under the true model), where V. = n-r, for 1 < i :_kr. Note that the

noncentrality parameter, in general, is not zero, and that

ori = 1+(X§)rQri(xg)/vr.

Now we need some notation. Deleting a set of Bi's without specifying which
ones are deleted, we use ri to denote the special subset that is not deleted.
For example, if p = 3, r = 2 then there are three subsets with size 2; namely,
{81,62}, {81,83} and {62,33}. Then rl denotes the set {31,62}, r2 denotes
{8,,B§} and r3 denotes {81.83}. Then, we use B to denote the vector with the
following subsets: {8,,8,} with (84,8,,0), {81,63} with (8,,0,8;), and
{87’81} with (0,82,63), where 0 is the parameter value which is omitted from

the true modcl of the appropriate Bi's. Thus, in the following, we will

use QO ri to denote those sets of é as described above with the further
s e

"
condition that oii = g 1. Similarly, Q will be used to denote the

0 1,ri

~ . . . L 2
sets of g as described above with the further restriction that Opi > A.

Formally, we write

o = (élcz. 11,

o,ri -tTr

be]
1]

(Blo?, > a3,

= 1l,...,k_; r=2,..,,p-1, and let

Q. = U U @ ., and




k
p-1 r
Q= N N a ..
0 re2 4oy Ot

Let g 2 (Sri) denote the probability density of Sri depending on the

o_.-
Tl

2 . .
parameter O wherce Sri = y 1= 1,000,k 5 r=2,...,p-1.

Consider a family of hypotheses testing problems as follows:

(3) H .1 é € Q vs K _.: é €Q .3

i=1,...,p-1, r=2,...,p-1. A test of the hypotheses (3) will be defined
to be a vector (@1(2),...,@k(x)), where the elements of the vector are

ordinary test functions; when y is observed we recject H0 with probability

t
@t(Z), 1 <t < k. The power function of a test (yl,...,pk) is defined to be

the vector (pl(é),...,pk(é)) where
P (B) = Eg 9, (N,
1 <t < k. Let S(y) be the set of all tests Gpl,...,@k) such that

(4) Eé e, (Y) <v, BE Q.

We define wo = Gpg,...,wg) as

1! lf gA(Srl) i c gl(sri))

@gi(Z) =

0, if g,(s.;) <cgls;),s

0 ~ . . .
such that Eé Qri(!) =y, B € QO’ where sri is the observed value of sri'

It can be shown that @0 maximizes

iAotk ettt




min _ inf Eé @t(!)
1<t<k s_aeszl ¢ -

among all tests ¢ = (@1,...,¢k) € S(y) (cf. Gupta and Huang (1977)).
To determine the constant c, we proceed follows: for a givenn > 0,

there exists a smallest positive integer k0 such that

3y %ko*l ako
< 1 and + <1,
n ak n -
0
where
-2
T, e 1
a (s .) = ¢ A [vrsri % r(f vr)
L ril T gl 2 ré v +£)’
2 r
(A—l)vr
L =0,1,2,...; Ar = 5 For this kO’ it can be shown that
k. -1
g (s .} 0 L
A ril
0 < ——o——r - Z a,(s_.) = Z a < n,
g8 (spy)  gzp 2riT g Kotk
where
gp(s,y)

gl(sri) i L
Thus, approximately,

gA(Sri) k-1

L= 7 oa (s )
80s) gz TR

with crror less than n. For B € QO’
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p~{ z a,(S..) > ¢}
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where gl(sri) is the central x2 with V. degrees of frcedom and IA(x) = 0

for x é A, IA(x) =1 for x € A. The constant ¢ can be determined.
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