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Summary

"The inverse Gaussian or the first passage time probability distribution for

Brownian motion with a drift is particularly important for modeling and inter-

preting observed distributions of time intervals in many different fields

of research. In this paper we deal with the problem of selecting a subset of k

inverse Gaussian populations which includes the "best"population, i.e. the

(unknown) population which is associated with the largest value of the unknown

means. The shape parameters of the inverse Gaussian distributions are assumed

to be equal for all the k populations. When the common shape parameter is

known, a procedure R1 is defined and studied which selects a subset which is

nonempty, small in size and just large enough to guarantee that it include. the

best population with a preassigned probability regardless of the true unknown

values of the means. For the case when the common shape parameter is unknown a

procedure R2 is proposed. For the procedures R1 and R2, we obtain exact results

for k=2 concerning the infimum of the probability of a correct selection. For

k - 3 a lower bound on the probability of a correct selection is derived for each

case. Formulas for the constants dI and d2 which are necessary to carry out the

procedures RI and R2 , respectively, are obtained. An upper bound on the expected

number of populations retained in the selected subset is given._.-

If the best population is defined as the one associated with the largest shape

parameter, it is shown that with a suitably chosen statistic, this problem concides

with the problem of selecting a subset of k normal populations which includes

the population with the smallest variance. Similarly, for the selection of a

subset containing the smallest shape parameter, the problem reduces to selection

in terms of the largest scale parameter of the gamma distributions.
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On Subset Selection Procedures for

Inverse Gaussian Populations*

by

Shanti S. Gupta Hwa-Ming Yang
Purdue University University of Toledo

1. Introduction, Basic Concepts and Notation

The inverse Gaussian or the first passage time probability density

function (p.d.f.) for Brownian motion with a drift is particularly important

for modeling and interpreting observed distributions of time intervals in

many different fields of research. For example, Hasofer (1964) considered the

inverse Gaussian model for the emptiness of dah, Marcus (1975, 1976) used it

in communications noise and highway noise models, Banerjee and Bhattacharryya

(1976) applied it in a study of purchase incidence models, Chhikara and Folks

(1977) studied it in reliability and life testing, among others. Also the

statistician often finds himself dealing with data of considerable skewness

with no obvious choice of distribution suggested by physical consideration.

In such cases the choice is always made upon the basis of goodness-of-fit

and upon the ease of working with the chosen distribution. Because of the ease

due to the exact sampling distribution theory of the inverse Gaussian it would

appear to be a strong candidate in such cases and for this reason, Chhikara and

Folks (1977) suggested that the use of the inverse Gaussian over the lognormal

would be perferable.

The probability distribution of the first passage time in Brownian motion

with a drift was first derived by Schr6dinger (1915). Tweedie (1956, 1957a,

1957b) studied the properties of it and proposed the name inverse Gaussian

distribution for it. This distribution is also known as Wald's distribution

(cf. Wald (1947)).

* This research was supported by the Office of Naval Research contract

N0014-75-C-0455 at Purdue University.



In this paper, we consider the problem of selecting a nonempty (small) sub-

set of k different inverse Gaussian populations which contain the "best"

i.e. the population which is associated with the largest unknown mean or the

distribution which is associated with the largest shape parameter.

The inverse Gaussian distribution has two parameters with p.d.f. expressed,

in two alternative parametizations, as

g~; , 2 a)= a La (- vx) 2
g(x; V, 0 , - exp 2 -- , xgv,o, a - 0 (1.1)o -- x3- 2-.3 x

= 0, otherwise,

and

A 2
f(x; ) (- 3) exp - , x,l,X > 0 (1.2)21Tx 2W2 x

= 0, otherwise.

Expression (1.1) is convenient for interpretation in terms of Brownian

iotion. Suppose W(x) is a Brownian motion (Wiener process, see Cox and Miller
2

(1965)) with drift v and variance pirameter u , i.e. a stochastic process with

the following properties:

(a) W(O) = 0 a.e. and W(x) has independent increments;

(b) for any time interval (xlx 2 ),W(x2 )-W(x I) is normally distributed

with mean \(x 2-xl) and variance a2(x2-xI), then formula (1.1) gives the p.d.f. of

the first passage time X of W(x) with positive drift v to barrier a 0.

Expression (1.2) is useful for deriving some results which are parallel to

that of the usual normal distribution. It is known that the parameter 1 is the

mean andA is a shape parameter.
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From (1.1) and (1.2) it is easy to see that the relations P = a/v and

A a2/a2 hold. Therefore, comparing k inverse Gaussian means ,ii's is

equivalent in some sense to comparing the associated drifts of Brownian motion.

Note that the inverse Gaussian distribution is a member of the exponential family.

From now on we will use (1.2) to formulate our problem.

For a random variable X distributed according to (1.2), we denote

X , I(pA). For this distribution .x is a shape parameter, the mean is p and the

3
variance is 3/A. If Xl .... Xn is a random sample from , Schr6dinger

(1915) showed that the maximum likelihood estimates of and \ are given by

n
= X and X n/ (I/X i -IX),i=1l

where

n
= Xi/n.
i=l

n2

Tweedie (1957a) proved that X J(n.,), O Z (/Xi - 1/R) ,X , the chi-square

distribution with n-l degrees of freedom and that they are stochastically inde-

pendent. The statistics R and 2:(I/X i - I/) jointly are sufficient and complete

for (u,x), and R is a complete sufficient statistic for , if A is known.

Let 7, .... "k be k independent inverse Gaussian populations with means

9 ..... "k and shape parameters A,, ..... k respectively. Let up] .. '[k]

be the ordered 0i's. It is assumed that there is no prior knowledge of the

correct pairing of the ordered and the unordered i  Let Xij . ...

i=l,...,k be independent samples for 1I . .k' respectively, and let

X = X ij/ni i=l....k denote the sample means. Let X(i) and n(i) denote

j=l

3



the sample mean and sample size associated with the unknown population

S(i) with mean p[,], i=l,... ,k.

Given any P*, 1/k . P* < 1, our goal is to select a subset of these k

populations such that the subset contains the best population with probability

at least P*, no matter what the true configuration of pi's. Selection of a subset

which contains the best population is called a correct selection and is denoted

by CS. Therefore, we are interested in defining (and studying) a selection

procedure R such that

inf P (CSjR) > P* (1.3)

where is the set of all k-tuples (vi 5k)' wi > Os i l ... k. This require-

ment will be referred to as the P*-condition. In Sections 2 and 3, we discuss

the cases of known and unknown common shape parameter , respectively. For

each case, a conditional selection procedure is proposed and studied. In

Section 4, the problem of selecting a subset which contains the larges shape

parameter is considered. It is shown that with a suitably chosen statistic this

problem is equivalent to the problem of selecting a subset of k normal populations

which includes the population with the smallest variance. In other words, the

problem of selecting the inverse Gaussian population with the largest (smallest)

shape parameter reduces to the problem of selecting the gamma population with

tne smallest (largest) scale parameter.

2. Selection of the Inverse Gaussian Population with the Largest Mean When

l, i=1...,k is Known

2.1. A Conditional Selection Procedure RI

When the common shape parameter is known, we propose the following

conditional selection procedure Rl:

4



R Select the population 7.if and only if

l<i> mx<R - d,(t), given T ~jX. = t

where t > 0 and d 1(t) is the smallest positive value to satisfy the P*-condition.

It is known that for two independent random samples Xl,... Xln fromi

1',A adX21' 2n 2 fom I(P2'x), the joint p.d.f. constitutes a three-

parameter exponential family and may be written in the form

exp(pt + eu + nv),

where = ~ I'lln-p 2 + n 2"22 )/2(n,+n 2), (2.1)

0 A(P - P2 ) n 1n 2/2(n 1+n 2),

and t, u, v denote the values of the statistics

T X + ~'X.

n.i

U = I X 2 1 where X. i X .z/nil i 1,2,

*n
1  n2

and V X 1i + 2i-

respectively.

For k = 2, the following theorem gives us an exact result.

5



Theorem 2.1. For a given P*, l/k • P* 1, k 2, let d1 (t) be the smallest value

such that
P _L 0 (X 2 < dlI(t)]T=t) :p*

where 0= _ o S-Cil='... =k > O.

Then, inf P (CSiR) = P , (CSIR P*

Note that the infimum of P(CSjR) does not depend on the common value of pl=12= P

Proof: Since A is known, the joint p.d.f. of Xll .... IXnI and X21 ..... X2n 2

belongs to a two-parameter exponential family. It follows from an argument similar

to that in Lehmann (1959, p. 136) that

P (CSIR) = PO<O (X(1) - X(2 ) dI(t)IT=t)

--Pe=o (X(1) - X(2 ) 
< dI(t)ITVt)

=P_ (CSIR 1 )

Hence inf P (CS!R ) = P*

Lemma 2.1. If two random variables Z and X are independent of another random

variable Y, and if the just p.d.f.'s fZX and fZX+Y exist, then

f zX y(z,t) = (ZX)fy(t-x)dx ; (2.2)

t
= fz,x(zx)fy(t-x)dx, (2.3)

0

if both random variables X and Y take only positive values.

Proof: The proof is straight forward and hence is omitted.

For k > 3, based on the Bonferroni inequalities and Lemma 2.1, we drive

a lower bound on the probability of a correct selection in Theorem 2.2.
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Theorem- 2.2. For k- 3, and given P*. 1/k -P* I 'Ind I X X.. t, let

P* and let d )( be the sMallest value such ta o n

I 'j 01, and any i,j,j/i,

P (U d(1)(r IT r) P(24
P (U. d.. (r) I ~ ) 24

where

Uij ()-(j)

Ti. n(, +~) nj 1 (j) i j _- k.

Ltd (t) = max {d..) (r) 11< i /j k, 0 r t} (2.5)

then

inf P (CSJR > P

Proof: For all jEs

P~ (CSIR1 )

=PI( (k) > max X j) -dl(t)ITht)
_ 1<j<k-1

I - P (Xk < max X -dl~)Tt

j (k 1<j <k1 _I ()- (fTt

k-i

> 2 - k + P U <d~)Tt (2.6)

For any j, 1-j--k-1, using Lemma 2.1 we have

I7



P (Uk d, d(t) IT t)

t

0 k jk

SP(Uj d~l)(r):Tk r) fT (r)-fT ~(t-r)dr/fT M

Hence inf P (CSIR) 2-k + (k-1) P*

2.2. Evaluation of Values of d,(t) for the Procedure R

for two independent random samples X1 ,,...,IX I from IG~,,) andX2 .. ,2n

from I1 2 ),let T =7X 1  + 7X2. then it follows from Tweedie (1957a) that
1j'

T ', I((n,+n 2) , (n,+n 2 ) if "'l= 2=' Chhikara (1975) derived the conditional

p.d.f. g(u~t) of U 1 - 2' given T =t, "1=12', as

- ~ ~ 3 1/2 [ ~ 2 n-- 2
2 > 2 ],(27

27tn2U3(t-n lu) e 2t(t+n 2u)(t-n 1 u

t t
_u .- _

By using the one - to-one transformation

y (2.8)

Lt(t+n 2u) (t-n lu)TV



it can be shown that the P*-percentile point i(P*) i(P* , n,, n2, t) of U,

given T=t i.e., the solution of the equation

i(P*)
S g(ujt)du = P*

is given by the following equation

n2n l )l-[(d2(t) + 1 2 (2.9)
p (do(t)) + 1 ... l- (2n.nt9)4

where

do0(t) = i(P*)(n I+n 2 )  [nlIn 2  A/t(t+n 2  i(P*))(t-n I1 i(P*)] ,( .O

and is the cumulative distribution function (c.d.f.) of a standard normal

distribution.

When nI = n2 = n, the equation (2.8) will simplify to d0(t) = z(P*), the

P*-percentile point of the standard normal distribution. Hence we have

i(P*)= 4 z2 (p ,)t n (2.11)

which is increasing in t, if n is fixed. Note that i(p*) 0 as n . if t O(n).

Corollary 2.1. For k=2, the constant dl(t) associated with the procedure R1 is

given by

dl(t) = i(P*), (2.12)

where i(P*) is given by (2.9) or (2.11).

Corollary 2.2. For k > 3, the constant d (t) associated with the procedure R1

is given by

dl(t) = maxfi(P1, n., n., r) I 1 i / j k, 0 r t

= i(P*, n, n, t), if nI  =... nk = n. (2.13)
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2.3 An Uoper Bound on the Expected Subset Size and Other Properties of Procedure RI

For any given values of k and P*, the size of the selected subset S by using

the procedure R1 is a function of the true configuration !. ,. .. k and it

also depends on n ... nk . Note that S is an interger-valued random variable which

takes values 1 to k inclusive. Hence, (in alalogy with power of the hypothesis
testing problem) E.; (SIR) can be looked upon as a measure of the efficiency of

the procedure R . We now discuss how to evaluate it. We consider the space of

all slippage configurations of the type [l]=...='[k 1] and ;[k]= . , 1; and

we denote this space by I(). We also assume that nI = n2  n... nk n.

Then, for any t:(<\), the expected size of the selected subset is

Ep (SIR) I P (k) iax X( -d(t)IT=t)
E R = (k) l<j<k-I

+ (k-) P ( > max X - dI(t)IT=t)

~ '~2_<j< k

(k-i) P±(X(1 -~ d X< P dXI - ~ ) <d(t)!T=t)

+ (k-1) P dX ) X( ) d (t)IT=t)

t/n x+d1 (t) (2.14)1 + (k-1) f f fR( T/n(Yit/n ) f R T/n (XiL/n)dydx (.4

0 0 (k)

where

t/n
f l IT ln (x it/n )=,'O fx()Tjn-XRk (x,r)fxR) (t-r)dr/f T/n (t/n),
(1)( (k) (k)

f R kIT/n(Xlt/n)f (x) ':T/n-X()/fT/ (t/n),

X(k)IT (k) ,n- (k) n

and
t/n

(r) (t/n-r)dr.fT/~t/ 0= fTnXk )  f(k )

10



Note that fT/n-X(k)(-) is the p.d.f. of I((k-l)l,, n(k-l) 2 x).

Remark: The density function of statistic T in () or in any other non-

homogeneous space is difficult to evaluate in an exact form. One of the

reasons for such difficulty is that the inverse Gaussian random variables

have only restrictive additive property as explained below (see Chhikara

and Folks (1975)). We know that if Xl,X2 ..... Xk are independent inverse

Gaussian variables with parameter 0i and i, then 2XI( i i2

2
if and only if xi/ i= for all i. The sufficient part was shown by

Tweedie and the necessary part was given by Chhikara (1972) and Shuster

and Miura (1972).

Let X=(Xl ... X 21 ... X2n2 '...' X kl ..... knk) be a random vector,

then X=xEIRN, where N=nl+...+nk A selection rule can be denoted by

V( )( l (x),.....p C()), where yi (2: IR -LO,1] is the probability that

-. is included in the selected subset when X=x is observed. Similarly,

T T T
a conditional selection rule can be denoted by (r (XM) Ic (x)(x)),

T

where yi (x) is the conditional probability that Ti is included in the

selected subset, given T=t, when X=x is observed. It is easy to see that

T=T, 4i (x)=O or 1 and yT (x) O when rule R is used.

Definition: A selection rule is scale invariant if for every x(- , for

every real number c--O and for every i=l, ... ,k, y i (cx)= i (x).

We may define scale invariance for conditional selection procedures

11i



in a similar way, then we have the following theorem:

Theorem 2.3. With equal sample size, the procedure with constant dl(t)

given by Theorem 2.1. or Theorem 2.2. is scale invariant.

Proof: From Corollary 2.1. and Corollary 2.2. we see that the constants

dl(t) given by Theorem 2.1. or Theorem 2.2. have the property

dl(ct)=cd1 (t) for all c>O,

so we have
T(cx) T

Yi (cx)=Y i  (x) for all c>O, and i=l,...,k,

hence the theorem is proved.

2.4 Applcations to a Test of Homogeneity for PC=...=k

When the common shape parameter x is known, for the problem of the

test of homogeneity of k inverse Gaussian populations, i.e. the test of

hypothesis:

null hypothesis H0 :111 = 2=...:l k

versus HI: i s are not all equal,

we propose the following conditional procedure (at level a) (T).

The procedure Y(T) is:

The null hypothesis H0 is rejected if and only if R[k]- Rll.dl(t),

given T--t. where dl(t) is given by (2.12) or (2.13) with P*=l-cx/k.

It is easy to see that the procedure Y(t) has the probability of

12



of type-one error less than a, since under null hypothesis

P ( [k]- R[I1" ], I (t)'.T=t)

= P(R[ 1]<X R[k]- d1 (t)IfT=t)

= P(R <R[k]-dl(t) for some j!T=t)

k
P( [R d(t)IT=t)-j~lXJ<[k]'dI

k-kP( >R [k]-dl(t)IT=t)

k-kP*

For k=2, it has been shown that the procedure Y(t) is an UMP unbiased test,

see Chhikara (1975) (also Lehmann (1959)).

3. Selection of the Inverse Gaussian Population with the Largest Mean
when the Common Shape Parameter X is unknown k ni 1

With the same notations as before and let V= X Y' X;.
i=l j1 Uj

3.1. A Conditional Selection R2

R2 : Select the population ni if and only if

R,> max R.-d 2 (t,v), given T=t, V=v
i <j<k

where t>O, v>O; d2 (t,v) is the smallest positive values chosen to satisfy

the P*-condition.

For k=2, we have the following theorem:

13



Theorem 3.1. Given 2. 1, k =2, T = t and V =v, let

h(u) 12 2 Tn+n)
t[tv-(n I+n 2) 

2 (T+ )(T1 )J

f l f l 2 f l 2 2_ (3 .1)

[tv-(n +n ) ](t+n Lu)(t-nu)J

where

(n Inj.))-(n I+n 2 )u __

-1t[tv-(n I+n 2) 
2j(t2 )(trj1

and let

d 2(t,v) =h- 1 (c(t,v)), (3.2)

where the constant c - c(t,v) is determined by

n2-n [tv(n 1- 2) (nl+n -3)12

I~I I +n -I +(12)t1+ 2  (C'))= p

(3.3)

where

C, = tc2 + 4n1n 2(nI+r)2 2)/[t-nI-n2

and H t,, I +n-2 denotes the c.d.f. of students's t-distribution with ni +n2-2

degrees of freedom. Then inf P(CS R) inif P(CSIR) P*.

Proof: For fixed t and v, h(u) is a monotone nondecreasing function in u, hence

h-1 exists and

h1 (w) =~ 2- t1 + t[(I+n)2  y + 4]' 1/2(1+n 2) (3.4)

14



where y =w[tv-(n I+n 2) 2]'/(n In 2)-01 1 +r 2)[n 1 +112 -2+w 2

With the same notations as that in Section 2, it follows from an argument similar

to that as in Lehmann (1959) [see P.136] that

inf P (CSR R2)

= i nf P_ M-(]R (2) d 2(t,v)IT=t, V=v)

= o=O (h(U) <h(d (t,v))IT=t, V=v)

= o0 r 0 (h(U) < c(t,v)iT=t, V=v)

by the definition of c(t,v) (see Chhikara (1975), p.81).

Corollary3.1. In Theorem 3.1, if we have a common sample size, say n n,

then the constant c is determined by

H ie c=H-1(3.5)
t;2n-2 (c) =P* ~e Ht 2 2 (P*)'

Thus c is given by the P*..percentile of a t-distribution with 2n-2 degrees of

freedom. Consequently,

2
d (t'v) = tCt-49 (3.6)2 2 2 1!n[C tv+4n (2n-2')]'

which is increasing in t and v, if n is fixed. Note that d 2(t,v) 0 as n

if both t = O(n) and v = O(n).

Similar to Theorem 2.2. , the following theorem gives a lower bound orn the

probability of a correct selection in case of k -,3 where the common shape

parameter X is unknown.



Theorem 3.2. For k -3, given P*, 1/k < K 1, T=t, V~v, suppose the common

shape parameter A is unknown. Let P* I 1 -P and let d. (2) (t,v) be theI k-i 13

smallest value such that for any kcQ lIl.k

P (U..j d (2) (r,s)IT..j r, V..j=S) =*

where

ii -(i) - (j)

and 
n( )n j

Vj X (i) + xlj 00) 1 <i ~ jk.

Let d (t,v) =max{d 2 (r s)!l <i < k, 0 r < t, 0 < s < v0.
12 _

Then inf P(CSIR2)-. P*.
a1

Proof: Proof is almost the same as the proof of Theorem 2.2., hence it is omitted.

Coroll1ary 3.2. In Theorem 3.2., if n 1= n 2 - n. k=n then d 2(t,v) is given by (3.7)

with H ;n-~l note thit thC PIOcedurfp R2 is scale invariant.

4. Selection From Inverse Gaussian P ypulat ions in Terms of the Shape Parameters

In ranking inverse Gaussian populations in terms of their shape parameters, we

defined the best population as the one associated with X~k]. With the same

assumptions as given in Section 1, for all i ],... ,k let

2
2 = 12 A X if ~.is known, (4.1)

i~ j=l xi

n

Y- ('- - -' if, is unknown, (4.2)

16



S2 2
then x i nas a chi-square distribution , 2 with v. degrees of freedom where

i i

V= n or n -1 depending on the case whether 1i is known or unknown. Therefore,

there is no need to deal with the cases of known or unknown means separately.

2
Using statistics S. I i=l,...k, the problem of selecting from inverse

Gaussian populations in terms of shape parameter is equivalent to the problem

of selection from normal populations in terms of variances (see Gupta and

Panchapakesan (1979)).

For anequal sample size case, parallel to the rule of Gupta and Sobel (1962a),

we propose a rule R3.

R3: Select population -ia if and only if

2 - 2
Si C S []

where 0 < C - C(v,k,P*) < 1 is determined so that the P*-condition is satisfied.

Here = i > 01. It is easy to see that the infimum of P(CSIR 3) occurs when

[] = [2] = A[k] and is independent of the common value. Thus we have

inf P A (CSIR 3 ) 
= f [-X(cx)l dx (x) (4.3)

S. 0

and also we have supE,(SIR 3) 
= kP*

The c-values can be found in Gupta and Sobel (1962b) for k=2(l) 11, =2(2) 50

and P*=0.75, 0.9, 0.95 ana 0.99.

For an unequal sample size case, some results are available in Gupta and

Huang (1976) [see also Gupta and Panchapakesan (1979)].

Remark 4.1. Let H )/n be the harmonic sample mean of
j-l

7. and let
1

1 iH + 2 X - 2ii), if i is known,

Ii

R - -I if -l is unknown,
iH1  i 1

I 17



thnuigtesaitc 2 2then using the statistic S is equivalent to using the statistics S 1 "'"
sin-e S2  "

si i = niSi for all i.

Remark 4.2. It should be pointed out that the problem of selecting the inverse

Gaussian populations in terms of .\,, is equivalent to the problem of selecting
__11 e-X/ i ( x ) -

from gamila populations with densities ) e (,
*1 1

those that have large values of oi" This problem has been solved in Gupta

(1963), where appropriate tables are also provided.

18
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