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Summary

A gThe inverse Gaussian or the first passage time probability distribution for
Brownian motion with a drift is particularly important for modeling and inter-
preting observed distributions of time intervals in many different fields
of research. In this paper we deal with the problem of selecting a subset of k
inverse Gaussian populations which includes the "best"population, i.e. the

(unknown) population which is associated with the largest value of the unknown

means. The shape parameters of the inverse Gaussian distributions are assumed

to be equal for all the k populations. When the common shape parameter is
known, a procedure Ri is defined and studied which selects a subset which is
nonempty, small in size and just large enough to guarantee that it includes the

best population with a preassigned probability regardless of the true unknown

values of the means. For the case when the common shape parameter is unknown a

procedure Ré is proposed. For the procedures R] and Ré, we obtain exact results

for k=2 concerning the infimum of the probability of a correct selection. For

k » 3 a lowerbound on the probability of a correct selection is derived for each

case. Formulas for the constants d] and d2 which are necessary to carry out the

procedures R] and R2. respectively, are obtained. An upper bound on the expected

number of populations retained in the selected subset is given.—-

[f the best population is defined as the one associated with the largest shape
parameter, it is shown that with a suitably chosen statistic, this problem concides
with the problem of selecting a subset of k normal populations which includes

the population with the smallest variance. Similarly, for the selection of a

subset containing the smallest shape parameter, the problem reduces to selection

in terms of the largest scale parameter of the gamma distributions.
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On Subset Selection Procedures for
Inverse Gaussian Populations*

by

Shanti S. Gupta Hwa-Ming Yang
Purdue University University of Toledo

1. Introduction, Basic Concepts and Notation

The inverse Gaussian or the first passage time probability density
function (p.d.f.) for Brownian motion with a drift is particularly important
for modeling and interpreting observed distributions of time intervals in
many different fields of research. For example, Hasofer (1964) considered the
inverse Gaussian model for the emptiness of dam, Marcus (1975, 1976) used it
in communications noise and highway noise models, Banerjee and Bhattacharryya
(1976) applied it in a study of purchase incidence models, Chhikara and Folks
(1977) studied it in reliability and 1ife testing, among others. Also the
statistician often finds himself dealing with data of considerable skewness
with no obvious choice of distribution suggested by physical consideration.

In such cases the choice is always made upon the basis of goodness-of-fit

and upon the ease of working with the chosen distribution. Because of the ease
due to the exact sampling distribution theory of the inverse Gaussian it would
appear to be a strong candidate in such cases and for this reason, Chhikara and
Folks (1977) suggested that the use of the inverse Gaussian over the lognormal
would be perferable.

The probability distribution of the first passage time in Brownian motion
with a drift was first derived by Schrodinger (1915). Tweedie (1956, 1957a,
1957b) studied the properties of it and proposed the name inverse Gaussian
distribution for it. This distribution is also known as Wald's distribution

(cf. Wald (1947)).

* This research was supported by the O0ffice of Naval Research contract
NOU14-75-C-0455 at Purdue University.
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In this paper, we consider the problem of selecting a nonempty (small) sub-
set of k different inverse Gaussian populations which contain the "best"
i.e. the population which is associated with the largest unknown mean or the
distribution which is associated with the largest shape parameter.

The inverse Gaussian distribution has two parameters with p.d.f. expressed,

in two alternative parametizations, as

2
g(x; v, 02, a) = a —- exp ’-(35352—-, Xsvs0, @ - 0 (1.1)
avenXx 257 X
= 0, otherwise,
and
A ! A X=u 2

f(xs uor) = {- 3) “ exp - =5 s Xslsh > O (1.2)

2nx 2u° X

0, otherwise.

Expression {1.1) is convenient for interpretation in terms of Brownian
motion. Suppose W(x) is a Brownian motion (Wiener process, see Cox and Miller
(1965)) with drift v and variance parameter 02, j.e. a stochastic process with
the following properties:

(a) W(0) = 0 a.e. and §(x) has independent increments;
(b) for any time interval (xl,xz),w(xa)-w(xl) is normally distributed
with mean v(xz-x]) and variance az(xz—x]), then formula (1.1) gives the p.d.f. of
the first passage time X of W(x) with positive drift v to barrier a . 0.
txpression (1.2) is useful for deriving some results which are parallel to

that of the usual normal distribution. It is known that the parameter . is the

mean and . is a shape parameter.




T

From (1.1) and (1.2) it is easy to see that the relations u = a/v and

A= a2/o2 hold. Therefore, comparing k inverse Gaussian means ui's is
equivalent in some sense to comparing the associated drifts of Brownian motion.
Note that the inverse Gaussian distribution is a member of the exponential family.
From now on we will use (1.2) to formulate our problenm.

For a random variable X distributed according to (1.2), we denote
X v I{psr). For this distribution » is a shape parameter, the mean is ; and the
variance is ua/x. If X],...,Xn is a random sample from I(u,»), Schrodinger

(1915) showed that the maximum likelihood estimates of . and 1 are given by

- ~ n -
n = Xand A= n/ E (]/X.| - 1/X)o
i=1
where
B n
X = .E Xi/n.
i=1

n
Tweedie (1957a) proved that X ~ I(u,1), A_Z]O/Xi -1/%) ~ XE_], the chi-square
'l:

distribution with n-1 degrees of freedom and that they are stochastically inde-
pendent. The statistics X and x(]/Xi - 1/X%) jointly are sufficient and complete
for (u,r), and X is a complete sufficient statistic for u if A is known.

Let = CaTy be k independent inverse Gaussian populations with means

100
Hyseeesby and shape parameters A],...,Ak, respectively. Let u[]] R “[k] ]

be the ordered ui's. It is assumed that there is no prior knowledge of the

correct pairing of the ordered and the unordered ui's. Let Xii’ j=1,...n

e

i!

i=1,...,k be independent samples for PRI I respectively, and let

n.
X = L j= X Y .
X; = j§1 xij/"i‘ i=1,...,k denote the sample means. Llet X, and n,y denote




the sample mean and sample size associated with the unknown population
() with mean Ik i=1,...,k.

Given any P*, 1/k « P* < 1, our goal is to select a subset of these k
populations such that the subset contains the best population with probability
at least P*, no matter what the true configuration of ui‘s. Selection of a subset
which contains the best population is called a correct selection and is denoted

by CS. Therefore, we are interested in defining (and studying) a selection

procedure R such that
inf P _(CS|R) > P* (1.3)
pea ®
where . is the set of all k-tuples (u1,...,pk), uy 2 0, i=1,...,k. This require-
ment will be referred to as the P*-condition. In Sections 2 and 3, we discuss
the cases of known and unknown common shape parameter %, respectively. For
each case, a conditional selection procedure is proposed and studied. In
Section 4, the problem of selecting a subset which contains the larges shape
parameter is considered. It is shown that with a suitably chosen statistic this
problem is equivalent to the problem of selecting a subset of k normal populations

which inciudes the population with the smallest variance. In other words, the

problem of selecting the inverse Gaussian population with the largest (smallest)
shape parameter reduces to the problem of selecting the gamma population with

tne smallest (largest) scale parameter. ’

2. Selection of the Inverse Gaussian Population with the Largest Mean When

v, = A, i=l,...,k is Known

2.1. A Conditional Selection Procedure R

When the common shape parameter is known, we propose the following

conditional selection procedure Ry:




T EmTIITY TR A

R]: Select the population s if and only if

X, > max X, - d,(t), given T= J X..=1t,
1 ]fjfk J 1 i,j 1)
where t > 0 and d](t) is the smallest positive value to satisfy the P*-condition,
It is known that for two independent random samples X]],...,X]n, from

from I(uZ,A), the joint p.d.f. constitutes a three-
2

parameter exponential family and may be written in the form

I(u],x) and X21""’X2n

exp(yt + ou + nv),

where o= - A(n]u]_2 + n2u2_2)/2(n]+n2), (2.1)
6 = - A(U]_z = U2-2) n]n2/2(n]+n2),
n = - A/Za

and t, u, v denote the values of the statistics

™ N,
T = iZ] X1 +j§1 X5 o
N
U= X] - X,» where Xi = le Xig/ngs 1= 1.2,
" q n, q
and V = iZ] X]i + jZ] X2j s

respectively.

For k = 2, the following theorem gives us an exact result.




Theorem 2.1. For a given P*, 1/k - P* - 1, k = 2, let d](t) be the smallest value

where 2 = Ui6§“p]=...=pk > 0} .

Then, inf P (CS|R) =P (CS|Ry) =P* .
v U s 1
pes =70

Note that the infimum of P(CS|R) does not depend on the common vaiue of MyTHoTH

'

Proof: Since x is known, the joint p.d.f. of X]]""’X1n] and XZI""’X2n2

belongs to a two-parameter exponential family. It follows from an argument similar

to that in Lehmann (1959, p. 136) that

It

PHKCS[R) Po<o (X(]) - X(z) < dy(t)|T=t)

= Pasp Ky = X2y = (0 [T-t)

= PiEL%fCSIR]).
c 1 v ! = = *
Hence inf P“ (CS,R]) P“tiz (CS]R]) P
e & ==70
Lemma 2.1. If two random variables Z and X are independent of another random
variable Y, and if the just p.d.f.'s fZ,X and fZ,X+Y exist, then
= { F - \ M
f7 xeylzot) -{ f x(Zx)fy(t=x)dx 5 (2.2)
t
= ) -
é fz’x(z,x,fy(t X)dx, (2.3)

if both random variables X and Y take only positive values.

Proof: The proof i1s straight forward and hence is omitted.
For k > 3, based on the Bonferroni inequalities and Lemma 2.1, we drive

a lower bound on the probability of a correct selection in Theorem 2.2.




Theorem 2.2. For k - 3, and given P*, 1/k - P* - 1 and 1 Y_Xij t, let

L 1epr (1) ‘ wch
Py = T -7 and let dij (r) be the smallest value such that for any
E@ZO = {'u_lu] = ... 0= M =y - 0}, and any 1,J,j#1,
P U, <dD () T =) = e (2.4)
RN iJ 1J 1 )
where
=X, .. - X
eI VR E)
.. = . X . + . X R 1 < 14 i - k.
Tig =%y *ay F gy Ry T
Let (])
d](t) = max {dij (r) T<i#§ <k, 0<r ~t} (2.5)
then

inf P (CS[R]) > P*
ube  —

Proof: For all p€y

=1 - PEFX(k) < ]<?iﬁ-] X(j) - dy(t)[T=t)

k-1
>2 -k + .E

P (U
j=1 t

s = 4 (D1T=t) (2.6)

For any j, Y-j<k-1, using Lemma 2.1 we have




P, (Uj = 4y (t)]T = t)
t
- 4 - .
= é P(Ujk < d]\t)}Tjk—r) ijk(r)-fT_Tjk(t-r)ar/fT(t)
; (1)
=] P(Ujy = 45, (1) 1T5 = 1) ijk(r)-fT_Tjk(t—r)dr/fT(t)
~ P*

Hence inf P (CSIR;) - 2-k + (k-1) p;' - p"
ST

2.2. Evaluation of Values of d](t) for the Procedure R]

Ffor two independent random samples X1],...,X]n] from I(u],x) and X21""’X2n2
from I(uyy2)s Tet 7= 7 Xiu + ] X,;» then it follows from Tweedie (1957a) that
1 J
T I((n]+n2)u, (n]+n2)2 a) if Ty Chhikara (1975) derived the conditional
p.d.f. g{ult) of U - X] - XZ’ given T = t, uy=u,, as
1/72
n]nz(n]+n,.)2 At3 / n]nz(n]+n2)2 >u2
glujt) = e ——— - , (2.7)
2+(t+n, u)”(t-n,u) exp 2t(t+n,u) (t-n u)
t t
P u . —_—
"2 M

By using the one - to-one transformation

Sn 1" \;); ( nyn _2.)_U“ )

[t(t+n2u)(t—n]u)]#




YT,

it can be shown that the P*-percentile point i(P*) . i(P* , Nys Ny t) of U,
given T=t i.e., the solution of the equation

i(P*)

/ g(ujt)du = P*

-0

is given by the following equation

where

do(t) = 1(P*)(n +n2) [n]nz (4, 1'(P*))(t—n] i(P*) ]~ (.10)
and ¢ is the cumulative distribution function (c.d.f.) of a standard normal
distribution.

When ny =n, =n, the equation (2.8) will simplify to do(t) = z(P*), the

P*-percentile point of the standard normal distribution. Hence we have
1

20 puy 43
1(P*)=[Z—§r*)—)%——w-2—] (2.11)

4n x+z°(P*)tn

which is increasing in t, if n is fixed. Note that i(p*) ~ 0 as n =+ » if t = 0(n).

Corollary 2.1. For k=2, the constant d](t) associated with the procedure R, is

given by
d (t) = i(P¥), (2.12)

where i(P*) is given by (2.9) or (2.11).

Corollary 2.2. For k > 3, the constant d](t) associated with the procedure R,

is given by
d](t)

max{i(P¥, n., nyo r) ] T i FG -k, 0 r ot

i(P?, n, n, ty, if Ny =...=n =n. (2.13)




2.3 An Upper Bound on the Expected Subset Size and Other Properties of Procedure R

For any given values of k and P*, the size of the selected subset S by using
the procedure Ry is a function of the true confiquration j f(p],...,pk) and it
also depends on Nyseasny . Note that S is an interger-valued random variable which
takes values 1 to k inclusive. Hence, (in alalogy with power of the hypothesis
testing problem) E2>(S!R]) can be iooked upon as a measure of the efficiency of
the procedure R]. We now discuss how to evaluate it. We consider the space of
all slippage configurations of the type pfl]z"':“[k-]]:“ and “[k]:éu’ & - 1; and

we denote this space by «:(s). We also assume that Ny =N, ... m = on.

Then, for any s u

£y (SIR;)

(o), the expected size of the selected subset is

P

(X

H (k) i]

=Jzk-1

+

where

and

(k-1) PU ()'(m

0

>

- 2<j< k

J

0

< d

max

1

t/n xfd](t)
<1+ (k-1)

X(.

J)

(t)!T=t)

max X(j)-d](t)|T=t)

- 4y (t)]T=t)

d,(t)(T=t)

f5 ‘ (yit/n) fg {(xjt/n)dydx

xit/my={ fo i %

. O f
(]yl/r X(k) Xar

X(k)

)(x)fT/n~X(k)/fT/n (t/n),

10

(t—r)dr/fT/n(t/n),

(2.14)




(+) is the p.d.f. of I{{k-1)y, n(k-])zx).

Note that f

T/n—X(k)

Remark: The density function of statistic T in w(®) or in any other non-
homogeneous space is difficult to evaluate in an exact form. One of the
reasons for such difficulty is that the inverse Gaussian random variables
have only restrictive additive property as explained below (see Chhikara

and Folks (1975)). We know that if XI’XZ"“’Xk are independent inverse
Gaussian variables with parameter uy and i then ZXiwI(zui,g(xui)z)
if and only if Ai/u12=g for all i. The sufficient part was shown by

Tweedie and the necessary part was given by Chhikara (1972) and Shuster
and Miura (1972).
Let X=(X]],...,X

In]’x21""’X2n2""’Xkl""’xknk) be a random vector,

then 5?56“1”, vihere N=n.+...+n A selection rule can be denoted by

1 k®
g ( 5)=(¢] (5),...,@k (x)), where % (x): B%N»Lo,l] is the probability that
m; 1s included in the selected subset when X=x is observed. Similarly,

T T T
a conditional selection rule can be denoted by ¢~ (X)=(g{ (x),....g& {(x)),
T . .. .
where €3 (x) is the conditional probability that g s included in the
selected subset, given T=t, when X=x is observed. It is easy to see that

T=T, 1 (x)=0 or 1 and ¢ (x)#0 when rule R, is used.

- i
Definition: A selection rule is scale invariant if for every 5&.RN, for
every real number c-0 and for every i=1,...,k, g)i(c§)=q,i(5).

We may define scale invariance for conditional selection procedures

I PTRS




in a similar way, then we have the following theorem:

Theorem 2.3. With equal sample size, the procedure with constant d,(t)
given by Theorem 2.1. or Theorem 2.2. is scale invariant.
Proof: From Corollary 2.1. and Corolliary 2.2. we see that the constants

d](t) given by Theorem 2.1. or Theorem 2.2. have the property
d](ct)=cd](t) for all c¢>0,

so we have

(1) (cx)=g; (x) for all c>0, and i=1,....k,

hence the theorem is proved.

2.4 Applications to a Test of Homogeneity for HpTeeTh

When the common shape parameter ) is known, for the problem of the
test of homogeneity of k inverse Gaussian populations, i.e. the test of
hypothesis:

null hypothesis Hozu]=u2=...=uk
versus H]ZLiIS are not all equal,

we propose the following conditional procedure (at level o) ¥(T).
The procedure ¥(T) is:

The null hypothesis Hy is rejected if and only if X[k]-X[]]~d](t),
given T-t. where d](t) is given by (2.12) or (2.13) with P*=1-a/k.

It is easy to see that the procedure ¥(t) has the probability of




of type-one error less than o, since under null hypothesis

PE(X[k]-X[]]>d](t)fT=t)
= P(X[]]<X[k]-d](t)lT=t)

= p(Xj<X[k]-d](t) for some jiT=t)

iA

P(XJ<X[k]—d](t)!T=t)

]
31
K-

"

kP(X]>X[k]—d](t)IT=t)

k-kPp*

1

= Q.

For k=2, it has been shown that the procedure ¥(t) is an UMP unbiased test,

e o i S

see Chhikara (1975) {also Lehmann (1959)).

3. Selection of the Inverse Gaussian Population with the Largest Mean
when the Common Shape Parameter ) s unknown

k i

-1

n
With the same notations as before and let V=] 7} X35
i=1 3=1

3.1. A Conditional Selection R2

Select the population s if and only if

X,> max R.-dz(t,v), given T=t, V=v
Mgk

where t>0, v>0; dz(t,v) is the smallest positive values chosen to satisfy

the P*-condition.

For k=2, we have the following theorem:

13




Theorem 3.1. Given ! < P* < 1, k=2, T=1¢tand V =v, let

1
L"I"Z("]f"Z-Z{Jh (n]+n2)u

h(u) = 5 :
{[tv—(n1+n2) ](T+n2u)(T—n1u)}'<
2 2 .
X []_ mnp(nytng)” u J E , (3.1)
[tv-(n]+n2)2](t+n2u)(t—n]u)
where )
o Eflhz)c(n]+nz)u ]
T ULtv-(n#n,) “T(trnu) (tongu) 12
and let
d,(tsv) = 07 (c(t,v)), (3.2)

where the constant ¢ = c(t,v) is determined by
2(n]+n2-3)/2

n,-n tv-(n,-n,)
2 1 172
Ht;n]+n2-ﬂc) Y [ 2] <]'Ht;n

+n,,-2 (c')>= P*

172 tv«(n]+n2) 1772
(3.3)
where
' 2 / 2
¢' = (¢ + Qn]nz(n]+n2-2\/[tv—\n]-n2) 1%
and Ht;n]+n2-2 denotes the c.d.f. of students's t-distribution with n]+n2-2
degrees of freedom. Then inf P(CS{RZ) = inf P(CSjRZ) = p*,

3 20

Proof: For fixed t and v, h(u) is a monotone nondecreasing function in u, hence

h exists and

-1 2 ¢ 2

ho(w) = ({ny-ny) ty™ + ty[(ny+n,)" y© + 4];}/2(1+n]n2y2) (3.4)

14




91 1 . 1
where y = w[tv-(n]+n2)z]f/(n]n2)L(n]+n2)[n]+n2-2+wz]@

With the same notations as that in Section 2, it follows from an argument similar

to that as in Lehmann (1959) [see P.136] that

1gf P, (CSIR,)

= i:f Pli (5((])-)_((2) R dz(t’V)JT=t, V:v)

= Piso (X(])'X(g) - dy(t,v) [T=t, V=v)

Po=0 (h(U) < h(d,(t.v))]T=t, V=v)

2
= Paz0 (h(U) < c(t,v)|T=t, V=v)

= P*,

by the definition of c(t,v) (see Chhikara (1975), p.81).

Corollary 3.1. In Theorem 3.1, if we have a common sample size, say ny=n,=n,

then the constant c is determined by

-1

H tsan-2 (P*)- (

tionp (€) = P* de. c=H

Thus ¢ is given by the P*-percentile of a t-distribution with 2n-2 degrees
freedom. Consequently,

tC(tv-4n2)%;
1
n[ctv+an® (2n-2) T+

d2(t,v) =

which is increasing in t and v, if n is fixed. Note that dz(t,v) - Dasn
if both t = O(n) and v = O(n).

Similar to Theorem 2.2., the following theorem gives a lower bound on
probability of a correct selection in case of k - 3 where the common shape

parameter X is unknown.

15
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Theorem 3.2. For k - 3, given P*, 1/k < P* « 1, T=t, V=v, suppose the common

-p*
shape parameter X is unknown. Let P? =] - l_? and let dij(z) (t,v) be the

smallest value such that for any uCiyg = (Elul:"'z“k » 0} 1

P (U,. « d..(z) (r,s)lTij=r, V,.=s) = px

N 13 1J
where
Uis = Xy = Xy
Tii = "a¥q) T oGy
and
o "G o
Vig Tl Xao t L Koo Teifisk

Let d,{t,v) = max{dgg) (ros)l1<i#J <k, 0-r<t, 0<s<vl.

Then inf P(CS|[Ry).. P*,
3

Proof: Proof is almost the same as the proof of Theorem 2.2., hence it is omitted.

Corollary 3.2. In Theorem 3.2., if ny=n,=...=n =n then dz(t,v) is given by (3.7)
1 *

with ¢ M n_z(P]); note that the procedure R? is scale invariant.

(94

4. Selection From Inverse Gaussian Populations in Terms of the Shape Parameters

In ranking inverse Gaussian populations in terms of their shape parameters, we
defined the best population as the one associated with *[k]' With the same

assumptions as given in Section 1, for all i = 1,...,k let

3 LN A .5 s known, (4.1)




then AiS§ nas a chi-square distribution k? with Vi degrees of freedom where
."
vj = nyoor ni-] depending on the case whether Ip is known or unknown. Therefore,

i
there is no need to deal with the cases of known or unknown means separately.
Using statistics S? » 1=1,...k, the problem of selecting from inverse
Gaussian populations in terms of shape parameter is equivalent to the problem
of selection from normal populations in terms of variances (see Gupta and
Panchapakesan (1979)).
For anequal sample size case, parallel to the rule of Gupta and Sobel (1962a),

we propose a rule R3.

R3: Select population " if and only if
2 -1 2

where 0 < C = C(v,k,P*) < 1 is determined so that the P*-condition is satisfied.
Here w = {i|x, > 0). It is easy to see that the infimum of P(CS|R3) occurs when

A[]] = A[Z] =...= A[k] and is independent of the common value. Thus we have

2

inf P, (CS|Ry) = [ [1-x2(e) 1T aix) (4.3)
8o 0 v

and also we have supEA(S[R3) = kp*

ol

The c-values can be found in Gupta and Sobel (1962b) for k=2(1) 11, .=2(2) 50
and P*=0.75, 0.9, 0.95 and 0.99.
For an unequal sample size case, some results are available in Gupta and

Huang (1976) [see also Gupta and Panchapakesan (1979)].

n, ,
i -1 .
Remark 4.1. Let X, - [( Y X;; )/rH } be the harmonic sample mean of i
J=1 ' '
m, and let
l _ g-1 5 . .
S8 = X+ ?2— (X - 2u,), if u; is known,
i
=%V oYL i s unk
i i if g is unknown, |




then using the statistic S? is equivalent to using the statistics S? » 1=1,.. .k,

since S? = "1§§ for all i.

Remark 4.2. It should be pointed out that the problem of selecting the inverse

Gaussian populations in terms of \[]] is equivalent to the problem of selecting
-x/n . v-1
from gamma populations with densities —J'- 1 e ! (—i—) s
i(v) 6 6
those that have large values of 0 This problem has been solved in Gupta

(1963), where appropriate tables are also provided.

I pT————




References

Banerjee, A. K. and Bhattacharyya, G. K. (1976). A purchase incidence
model with inverse Gaussian interpurchase times. J. Amer. Statist.
Assn., 71, 823-829.

Chhikara, R. S. (1972). Statistical inference related to the inverse
Gaussian distribution. Ph.D. Dissertation, Oklahoma State University.

Chhikara, R. S. (1975). Optimum tests for the comparison of two inverse
Gaussian means. Austral J. Statist., 17, 77-83.

Chhikara, R. S. and Folks, J. L. (1974). Estimation of the inverse Gaussian
distribution function. J. Amer. Statist. Assn., 69, 250-254.

Chhikara, R. S. and Folks, J. L. (1975). Statistical distributions related
to the inverse Gaussian. Commun. in Statist., 4, 1081-1091.

Chhikara, R. S. and Folks, J. L. (1977). The inverse Gaussian distribution
as a lifetime model. Technometrics, 19, 461-468.

Cox, D. R. and Miller, H. D. (1965). The Theory of Stochastic Processes.
tondon: Methuen.

Folks, J. L. and Chhikara, R. S. (1978). The inverse Gaussian distribution
and its statistical application -- a review. J. R. Statist. Soc. B,
40, No. 3, 263-289,

Gupta, S. S. (1963). On a selection and ranking procedure for gamma popu-
lations. Ann. Inst. Statist. Math., 14, 1939-216.

Gupta, S. S. and Huang, D. Y. (1976). Selection procedures for the neans
and variances of normal populations: wunequal sample size case.
Samkhya Ser. B, 38, 112-128.

Gupta, S. S. and Panchapakesan, S. (1979). Multiple Decision Procedures:
Theory and Methodology of Selection and Ranking Populations.
John Wiley, New York.

Gupta, S. S. and Sobel, M. (1962a). On selecting a subset containing the
population with the smallest variance. Biometrika, 49, 495-507.

Gupta, S. S. and Sobel, M. (1962b). On the smallest of several correlated
F-statistics. Biometrika, 49, 509-523.

Hasofer, A. M. (1964). A dam with inverse Gaussian input. Proc. Camb.
Phil. Soc., 60, 931-933.




Lehmann, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

Marcus, A. H. (1975). Some exact distributions in traffic noise theory.
Adv. Appl. Prob., 7, 593-606.

Marcus, A. H. (1976). Power sum distributions: an easier approach using
the Wald distribution. J. Amer. Statist. Assn., 71, 237-238.

Schrodinger, E. (1915). Zur Theorie der Fall-und Steigversuche an Teilchen
mit Brownscher Bewequng. Physikalische Zeitschrift, 16, 289-295.

Shuster, J. J. (1968). On the inverse Gaussian distribution function.
J. Amer. Statist. Assn., 63, 1514-1516.

Shuster, J. J. and Miura, C. (1972). Two way analysis of reciprocals.
Biometrika, 59, 478-481,

Tweedie, M, C. K. {1956). Some statistical properties of inverse Gaussian
distributions. Virginia J. Sci., 7, 160-165.

Tweedie, M. C. K. (1957a). Statistical properties of inverse Gaussian :
distributions I. Ann. Math. Statist., 28, 362-377. !

Tweedie, M. C. K. (1957b). Statistical properties of inverse Gaussian
distributions Il. Ann. Math. Statist., 28, 696-705. i

Wald, A. (1947). Sequential Analysis. Wiley, New York.




e ———

UNCLASSTETED

SECURITY CLASSIFICAYION OF Tii§S PAGE /MWhen Nate Enterad)
REPOR READ INSTRUCTIONS
E 0 T DOCUMENTAT|ON PAGE BEFORE COMPLETING FORM
1. REPORY NUMBER 2. GOVY ACCESSION NOJ ). RECIPIENT'S CATALOG NUMBER
Technical Report #82-7
4 TITLE (and Subtitie) $. TYPE OF REFORT & PERIOD COVERED
ON SUBSET SELECTION PROCEDURES FOR INVERSE
CALSSTAN POPULATIONS Technical
6. PERFORMING ORG. REPORT NyuMBER
Iechnical Report #82-7
?. AUTHORre) 8. CONTRACT OR GRANT NUMBER(s)
Shanti S. Cupta and Hwa-Ming Yang N0O0Q14-75-C-0455
9 PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT. PROJECT TASK
Purduc University AREA & WORK LN!T NUMBERS
Department of Statistics
West Lafavette, IN 47907
1. CONTROLLUING DFF!7E NAME AND ADCRESS 12. REPORT DATE
Office of Naval Rescarch March 1982
Washington, UC 13 NUMBER OF PAGES
20
e — S - e — e ——
T4 MUNITORIND AGEN Y NAME & AZDRES . 1 S Herent from Canteolling Offi-a) 15 SECURITY CLAGS /nf thre report,
Unclassificed
18a DECL ASSIFICATION DOWNGRAGING
SCHEQULE :
16 DiSTRIBUTION STATEMENT rof this Repaort) W

Approved for public relcase, distribution unlimited.

te-t en'ered in Block 20, If dilferent from Report)

17 DISTRIBUTION ST.  (ENT ‘ol - - ahs

18 SUPPLEM: NTAR. ey

<& v a7V S, /Lontinue on reverse s:dp f necevssars and ifeptif: bv block number.

Orownian Motion, Wiener Processes. Viest passage time, Positive drift inverse
Gis<ian distributions, Subset sclection procedures, Conditional selection pro-

cedure, Pxponential family, Camma distributions.

TﬁEYﬁACT clortinue or reverse a2-da {f necasxany and identifv by block numbter,

fne anverse Gaussian or the first passage time probability distribution for
Brownize metion with a drift i particularly important for modeling and interpret -
ino obscrved distributions of time intervals in many different tficlds of rescarch.
In this paper we deal with the problem of sclecting a subset of b oinverse Gaussian
populations which includes the “hest™ population, i.c. the (unknown! population
which is associated with tne largest value of the unknown means. lhe shape parame
ters of the inverse Gaussian distributions are assumed to be cqual for all the k

populations. When the common shape parameter is known, a procedure R] is detfined

DD | 553%, 1473 UNCLASSTETED

SECURITY CLASSIFICATION CF THIS PAGE (When Date Enterad)

!




SECURITY CLASSIFICATICN OF THIS PAGE(When Data Entered)

and studied which selects a subsct which is nonempty, small in size and just
large enough to guarantee that it includes the best population with a preassipned
probability regardless of the true unknown values of the means. For the casewhen
the common shape parameter is unknown a procedurce R, is proposed. TFor the proce-

e ot e et

dures Rl and R,, we obtain exact results for k = 2 concerning the intimum of the

probability of a correct selection. lFor k ~ 3 a lower hound on the probability
of a correct sclection is derived for cach case.  Pormulas tor the constants dl
and d2 which are necessary to carry out the procedures Rl and R,, respectively,

are obtained. An upper bound on the expected number of populations retained in
the selected subset is given

If the best population is defined as the one associated with the largest
shape parameter, it is shown that with a suitably chosen statistic, this problem
coincides with the problem of selecting a subsct of k normal populations which
includes the population with the smallest variance. Similarly, for the selec-
tion of a subset containing the smallest shape parameter, the problem reduces to
selection in terms of the largest scale parameter of the gamma distributions.

¥ e A

[T

Vi rr A KIS WS RN SR T

UNCLASSTEIED

SECURITY CLASSIFICATION OF THIS PAGE/When Dara Entered)







