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NOMENCLATURE

A9, Surface area of a rectangular beam stressed by four-point loading
A£ = 2t(b+d)

AL Surface area of a rectangular beam stressed by three-point loadingAL = 2L(b+d)

ANS4 , ANS3  Surface area of a nonstandard four-point and three-point loaded beam

ARS4 ', ARS3  Surface area of a reference standard four-point and three-point
loaded beam

E Young's modulus of the test material

Ec  Young's modulus in compression of the test material

ET Young's modulus in tension of the test material

G Shear modulus of the beam material

I Moment of inertia for a rectangular beam (I = bd3/12)

(Ixx)c Moment of inertia ior a rectangular beam with 450 chamfered corners
(see Appendix F)

(Ixx)r Moment of inertia ior a rectangular beam with rounded corners
(see Appendix F)

L Outer span length for a four-point and a three-point loaded beam

LT Total length of a beam

M Weibull slope parameter associated with volume-sensitive material

Mb General moment applied to beam

Ms  Weibull slope parameter associated with surface-sensitive material

Mx  Bending moment as a function of x (see Appendix D or E)

P General applied force

P1,P2,P3 ,P4  Forces applied to a beam (see Figure 1)

RRS Risk of rupture - surface basis

RRV Risk of rupture - volume basis

Tb Torque associated with beam twisting (see Figure 3 and/or Appendix C)

Estimated torque when bottoming within the load fixture occursTbe (see Appendix C)

V9 Volume of a four-point loaded beam (V£ = tbd) in the risk of rupture
equation.

VL Volume of a three-point loaded beam (VL = Lbd) in the risk of rupture
equation

VNS4,VRS4  Volume of the centrally loaded section of the nonstandard and reference

standard four-point loaded beam

VNS3,VRS 3  Volume of the nonstandard and reference standard three-point loaded beam

a Half the distance between the inner span and outer span for a four-point
loaded beam, i.e., (L-k)/2 or a=L/2 for a three-point loaded beam
(note a, = a 2 = a)
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a, and a2  A beam dimension (see Figures 1 and 2)

b Beam width (see Figure 1 or 5)

c Chamfer of a corner of a beam with 450 chamfers (see Figure 5)

d Beam depth (see Figure 1 or 5)

e Load eccentricity equal to (a,-a)

e/L Load eccentricity ratio equal to (a1 -a)/L

ec  Shift of neutral axis in an initially curved beam

hl, h2  Horizontal shift of contact and load points due to beam bending
(see Figure 4)

kj, k2  A numerical factor dependent upon b/d (see Appendix C)

i Inner span length of a four-point loaded beam (see Figure 1)

92 Either equal to "a" or L/2 for four-point or three-point beam systems

n Numerical factor (see Equation 14b)

Pmax Maximum contact pressure at the load application point

r Radius of the corners of the beam (see Figure 5)

s Speed of loading

t Time of loading

x1 ,x2,x3  Variable beam distances (see Figure lc)

x' Variable distance (failure site location) on either side of the
load contact point (see Appendix D)

xy Coordinate axes (see Figure 1)

ab,ac Beam curvature parameters (see Equations 3a and 4a)

8 Anticlastic curvature factor (see Appendix A)

BT  A numerical factor associated with the tensile stress caused by load
contact (see Appendix D)

Y Y = 4 3(1-v 2)/d2p2 (see Appendix A)

Ex,'yCEz Strain in the x, y, and z directions

c Strain rate

Percent error, usually defined as [(Ob-ox)/Ox1l00

8 Angle of a plane inclined to x-axis

8* Angle of a plane inclined to the x-axis at which the principal
stress is maximum

Surface area parameter (b/d)

XNS4,'NS3  Surface area parameter of a nonstandard four-point and three-Ooint
loaded beam

ARS.,XRS, Surface area parameter of a reference standard four-point and
three-point loaded beam

Coefficient of friction
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v Poisson's ratio

p Radius of a curvature of a beam due to bending

P1 Contact radius of a support point (see Figure 4)

P2 Contact radius of a load point (see Figure 4)

PC Initial radius of the curvature of a beam

ob  Bending stress in a beam as defined by simple beam theory or
mean fracture stress

abnS4~,3  Average bending stress of a nonstandard four-point and three-point
loaded beam
Average bending stress of a reference standard four-point and

0bRs4'a three-point loaded beam

On  Normal stress (see Appendix C)

Onmax Maximum principal stress (see Appendix C)

o Scale parameter or characteristic value associated with a
Weibull analysis

ox  Stress in the x direction (along the beam length)
0 z  Stress in the z direction (along the beam width)

Shear stress due to torsion (see Appendix C)

Angle of twist along the specimen length (see Figure 3 and Appendix C)

OF Angle of twist between a pair of load and contact points relative
to Os (see Apppendix C)
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INTRODUCTION

There has been an increase in interest and activity in recent years in both
the research and development of ceramic materials and their practical application
to engineering structures. Much of the impetus is due to the Defense Advanced
Research Projects Agency (DARPA) program1 where the objective is to develop ceramic
turbine engines for vehicular use and electric power generation. It was recognized*
during the course of this program that technical progress would be improved by having
available unified standard testing methods so that the interchange of test data be-
tween involved organizations would have the same reference base. This requirement
is vital because ceramic materials need particular kinds of mechanical tests suit-
able to their brittle nature so that valid test data will result.

Action was initiated to determine what kind of standards, if indeed any, were
available for mechanical testing of brittle materials.t It was determined from this
study that "of some 80-odd existing ceramic standards reviewed (c.f. NBS SP 329, and
Index of U.S. Voluntary Engineering Standards and DoD Index of Specifications and
Standards), only one was found suitable for testing structural ceramics. An in-house
review and survey of cognizant government and nongovernment activities confirmed both
the lack of test method standards, and the real need for such standards."

As a result of the above exercise, a tentative unapproved set of standardst was
prepared by the Army Materials and Mechanics Research Center (AMMRC) and distributed
to interested and involved organizations. This set of unofficial'standards, which
included such test methods as flexure, tension, creep, stress rupture, fatigue, and
spin testing, was discussed at several meetings of government and industry repre-
sentatives. A number of worthwhile suggestions evolved. However, it was apparent
that these tentative standards could be improved, and such comments were invited.

These unofficial standards have remained unchanged and unapproved. Recently,
however, interest was revived at AMMRC in finalizing standard tests for brittle
materials. It was viewed that the original tentative standards, dated 2 April 1973,
represented the ideal goal but were far too inclusive to realistically establish
testing requirements which would provide valid results at this time. It had also
been decided that each subject should be separately treated as sufficient test
methodology knowledge evolved. Since flexure testing to determine bend strength
met this criterion, it was decided to standardize such a test. Other specific recom-
mendations regarding flexure testing resulting from the AMMRC committee were proposed
and are as follows:

The standard at the present time would consider only beam testing methodology.

The test would have to conform within the requirements of simple beam theory,
thus the test would be restricted to a temperature environment of 70°F or less.

*The Ford Motor Company, in a letter dated 31 April 1972, cited the problem of nonexisting standards for testing structural ceramic
materials and appealed to AMMRC to initiate action to develop appropriate standards.

tTrip to Ford Motor Company, Dearborn, Michigan, on 9 May 1973, by H. F. Campbell, S. Acquaviva, and L. G. MacDonald,
dated 15 May 1973.
Army Materials and Mechanics Research Center, "Military Standards - Test Methods for Structural Standards," 2 April 1973.
• VAN REUTH, E. C. The Advanced Research Projects Agency's Gas Turbine Program. Proc. of the Second Army Materials

Technology Conference - Ceramics for 1hgh Performance Applications, J. J. Burke, A. E. Gorum, and R. N. Katz, ed.,
Brook Hill Publishing Company, Chestnut Hill, Massachusetts, 1974.
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Although two beam testing systems are to be used, i.e., size, dimensions,
loa,!ings, etc.. and called reference standards, other systems will be accept-
able as long as strength relationships are determined and an estimate of the
errors are reported along with the test data results.

The author, who had presented a critique* of the tentative standard, was charged
with the task of providing backup material in the form of a formal report. This work
is a result of that request.

OBJECTIVE

The objective of this report is to recommend beam test systems such that accu-
rate fracture strength utilizing simple beam theory will result. Such recommendations
will be used as the basis of a military standard for flexure testing of brittle
materials within the elastic regime.

SIMPLE BEAM THEORY ASSUMPTIONS

The rectangular beam configuration is attractive as a strength-test vehicle
because of its simple shape and apparent ease of load application, as well as analysis
and reduction of data. Rods of circular cross section are also used in beam tests,
but usually for specialized testing. Because a beam of circular cross section is not
as frequently used as the rectangular beam, the circular cross section is not consi-
dered a reference standard candidate; therefore only the rectangular cross section is
examined in the discussions to follow.

A critical review of simple beam theory assumptions will yield ranges of geometry
ratios by which the theory can be validly applied. These assumptions are listed below,
as well as their associated inferences in terms of an error analysis:

1. Transverse planes perpendicular to the longitudinal axis of the beam
remain plane after the beam is bent.

2. The modulus of elasticity in tension is equal to the modulus of elasticity

in compression. Also, the beam material is isotropic and homogeneous.

3. The maximum deflection must be small compared to the beam depth.

4. The beam must deflect normally under elastic bending stresses but not
through any local collapse or twisting.

Each of the above assumptions is examined in detail, where possible, so that the
required rectangular beam geometry ratios can be determined as a function of the
associated errors.

Assumptions I and 2 together imply that stress and strain are proportional to
the distance from the neutral axis, and the stress does not exceed the proportional
limit of the material. These assumptions disregard the effect of any shearing resist-
ance and make impossible the use of the flexure formula for curved beams of large
curvature.

*Memorandum - Review of "Military Standard Test Method for Structural Ceramics," by F. i. Baratta, AMMRC, December 1973,
revised February 1974.
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Assumption 1 and the above implication infer that there is a linear relationship
of stress between the fibers of the beam. Timoshenko and Goodier 2 give the more exact
distribution of stress as the function of the distance from the neutral axis for a
simply supported beam loaded by distributed pressure. Although the candidate beams
to be considered here will be four-point and three-point loaded beams, these different
loading conditions should not yield markedly different results from those taken from
the above reference.* From Reference 2 an estimate of the error incurred when assuming
a linear stress distribution can be obtained from the following equation:

0x b  + 4/1) L ) (1)

The above equation is approximately applicable for both four-point and three-point
loading. The beam geometries and loading configurations considered are shown in
Figures la and 2a. The error resulting from assuming a linear stress distribution
when in fact nonlinearity exists is given in Table 1. (Tables begin on page 25.)

Regarding the assumption that the modulus of elasticity in tension is equal to
that in compression, ET = Ec, Chamlis 3 has derived in closed form the solution for
the tensile bending stress when ET / Ec . After some manipulation of appropriate formu-
las in Reference 3, the tensile stress due to bending is given by:

!

Ox  ( /2)[1 + (ET/Ec) 2 ], (2)

for both the four point and the three-point loaded beams. The resulting percent error
is given in Table 2.

Although the errors associated with neglecting to account for anisotropy and
nonhomogeneity of the test material are not considered here, they are briefly mentioned
in the following paragraphs so that the reader will be aware of such possibilities.

If the beam is anisotropic, the bending stress formula is exactly the same as
the elementary theory except that the application of a bending moment produces a twist-
ing moment, and vice versa. According to Lekhnitskii, determining the accompanying
shear stress produced by bending a rod of rectangular cross section, having only one
plane of elastic symmetry normal to the axis, is very complicated. (Composite and
crystal structures are excluded here as test materials.) If the degree of anisotropy
for ceramic material is slight, it may be permissible to assume that the error when
ignoring this effect on the fracture stress will also be small.

Nonhomogencity of the test material infers variation of the elastic modulus.
It has been observed4 that in plates of hot-pressed silicon nitride, the modulus of
elasticity at the surface is several percent different than that of the center. This

*Recent finite element computer results by' H. I aou and R. J. t1. Bollard of the University of Washington indeed show this to be true.
See Flexure Test Method TI0, Proceedings of the Sixth Army Materials Technology Conference. "Ceramics for High Performance
Applications - III - Reliability," held at Orcas Island. Washington, July 1979.

tPrivate discussion with F.. M. Lcnoe. AMMRC.
2. TIMOSHENKO, S.. and (;oO)IFR, J. N. TheorY of Elasticitv. 2nd 'd.. McGraw-lHill Book Co., Inc., New York, 1951.
3. CIIAMLIS, C. C. Anah'sis of Three.Point-Bend Test for Materials with Unequal Tension and Compressive Properties. NASA TN

D7572. March 1974.
4. LFKIINITSKII, S. G. Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day Series in Mathematical Physics,

J. L. Brandstatter, ed.. 1963, p. 204.
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is also an area in which further analysis will be required to assess the error appli-
cable to four-point and three-point loaded beams when the modulus of elasticity varies
through the beam thickness.

If a rectangular beam has initial curvature pc, the error can be determined from
an analysis provided by Timoshenko.5 The general bending stress ax in a curved beam
due to a pure moment is given by the following:

-x ac (Mb/bdpc) (3)

where

(d/2pc) - (ec/pc) (3a)
(eC/pc) [I -(d/2,c) ]

e [/pc = [(d/pc) 2/121[l + (d/pc) 2 /151. (3b)

Since the bending stress, according to simple beam theory, is Ob = 6Mb/bd 2, and
putting cb in the same terms as (3) above, we have:

ab = ab(Mb/bdpc), (4)

where

ub = 6(pc/d). (4a)

The percent error Te for a bent beam of rectangular cross section and of beam-
to-depth initial curvature pc/d resulting in a neutral axis shift of ec/pc is:

-= 100[(tb - ac)/tc]. (5)

The resulting error for a beam of rectangular cross section bent by a pure moment as
obtained from (5) is given in Table 3 as a function of initial curvature. It is as-
sumed that an analogous analysis applied to a three-point loaded beam would produce
similar results.

The validity of the inference that the strain is proportional to the distance
from the neutral axis is dependent upon the ratio of thic beam width to its depth.
Anticlastic curvature of rectangular beams or plates with intermediate ratios of b/d
can lead to erroneous results using simple beam theory; see Timoshenko. 6 Of course,
if the beam can be considered infinite in width, like a plate, the correction of the
bending stress is simply 1/(1 - v2). The question arises as to what ratios of b/d
are appropriate for the application of simple beam theory. Ashwell 7 examined in detail
the anticlastic curvature of rectangular beams and plates and provided the answer to
this question. The pertinent formulas taken from Reference 7 are given in Appendix A.
These equations were applied to ceramic materials with Poisson's ratio V equal to 0.25
and the ratio of Young's modulus to fracture stress E/ob of 1 x 103 to determine the
percent error* using simple beam theory as a function oF b/d which is shown in Table 4.

•Ashweil considered a beam bent by a constant moment analagous to the four-point beam loading case, which should represent a
conservative bound on bid for the three-point beam, as well.

5. TIMOSHENKO, S. Strength nf Materials. Parts I and ii, D. Van Nostrand Co., Inc., New Jersey, 1976.
6. TIMOSHENKO, S. Letter to the Editor. Mechanical Engineering, v. 45, no. 4, April 1923, p. 259-260.
7. ASHWELL, D. G. The Anttclastic Curvature of Rectangular Beams and Plates. J. Roy. Aero. Soc., v. 54, 1950, p. 708-715.
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If the maximum deflection is not small compared to the beam depth, linear beam
theory cannot be employed without an error. West8 examined large deflections of three-
point loaded beams, and from such results a definitive ratio of beam length to depth
can be determined for valid application of simple beam formulas. Since for most brittle
materials values of E/ob range from approximately 0.5 x l03 to 1 x 103,the former val-
ue was used to compute the percent error because it would yield the largest error. Al-
though the analysis was applied to a three-point loaded beam, the method was extended
to determine errors for four-point loaded beams as well. The results of the calcula-
tions using the mentioned analysis are presented in Table S, which gives errors for a1/3-four-point, a 1/4-four-point, and a three-point loaded beam as a function of L/d.

It is implicit in the assumptions given in Reference 8 that the loads and moments
are applied to the beam in an ideal manner with no friction occurring between the load
application points and the beam. Ritter and Wilson 9 have determined a beam length-to-
depth limit based on the minimization of friction effects when large deflections occur.
The friction effect considered is that which gives rise to a moment caused by the slope
at the load application point. Not considered in the analysis 9 are the effects of fric-
tion due to a moment acting out of the neutral plane of the beam, lateral contraction
or extension, and changes in moment arms due to contact point tangency shift. These
factors will be discussed later.

Returning to the results of Reference 9, an inequality for the four-point-loaded

beam which provides a limit is given in the following:

(L/d - a/d)/(E/ob) < 0.3 (6)

to insure negligible nonlinear deflections and friction effects. The value of 0.3 was
obtained from limiting the slope to less than 15' between the beam in the loaded and
unloaded positions at the outermost support point. If the minimum value of E/Gb is
chosen to be 0.5 x 103 , then we determine that for a four-point loaded beam (6) becomes:

L/d - a/d < 1SO. (7)

It is noted from Table 5 that neglecting beam deflections resulted in greater
error in calculation of bending stress for the four-point loaded beam than for the
three-point loaded beam. For conservatism, therefore, it will be assumed that (7) is
applicable to the three-point loaded beam as well, with a/d = 0. Thus (7) becomes

L/d < 150. (8)

It appears that these limits are compatible with those values given in Table 5 such
that reasonable L/d ratios can be chosen that will result in small errors when mini-
mizing deflection.

One of the last requirements, no buckling of the beam, is easily fulfilled for
ceramic materials with beam dimensions of practical test configurations. The reader
can readily verify this statement by referring to Timoshenko and Gere. 10

Accuracy, which is inferred in the above restrictions, is also dependent upon the
manner of load application, beam geometry, loading fixtures, and surface preparation.
Although specimen size will not affect accuracy except for extremely small geometries,

8. WEST, D. C. Fexure Testing of Pastics. Exp. Mech., v. 21, no. 2, July 1964.
9. RIlrER, J. E., and WILSON, W. R. D. Friction Effects in Four-Point Bending. ASLE Transactions, Y. 18, no.2. p. 130-134,

presented at the 29th annual meeting, April 28-May 2, 1974.
10. TIMOSHENKO, S., and GERE, J. M. Theory of Elastic Stability. McGraw-Hi Book Co., Inc., New York, 1961.
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it will alter the magnitude of the stress level at failure, and this must also be con-
sidered. These subjects are discussed in the following paragraphs, and guidelines for
specimen geometry and minimization of errors are provided.

First to be considered, however, are the merits of a four-point beam loading
system as compared to the three-point beam loading system.

FOUR-POINT AND THREE-POINT LOADING

The bending moment, from which the desired fracture stress is computed in an
idealized four-point beam loading system, as shown in Figure la, is constant, anmd
there are no horizontal or vertical shear stresses within the inner span. However,
the bending moment in an idealized three-point beam loading system, shown in Figure 2a,
is linearly dependent upon the distance from the nearest support to the fracture ori-
gin, and thus requires an additional distance measurement to determine the fracture
stress. Also, the shear stresses for the three-point beam loading system are devel-
oped over the full span, thus deviating from the ideally sought uniaxial stress state
present in the four-point beam loading system.

Wedging stresses occur under all points of load application during flexurt
testing of beams. The effect of the wedging stress occurring at the inner load points
of a four-point beam test is to cause a deviation from the idealized calculated constant
stress at the two local regions. However, if the ratio of half the distance between the
outer span 1, and inner span £, called a, to beam depth d is great enough,* the stress
reduction will not only be small but will decay rapidly, and the stress predicted by
simple beam theory will be developed. Yet, the maximum stress computed by simple beam
formula for the three-point beam system is never attained. The actual maximum stress
occurs at a short distance either side of the center of the load application point,
which can cause fracture at these sites, rather than at the center, according to
Rudnick et al. 11 This observation has also been confirmed by Oh and Finnie, 12 where
only for a material with no scatter in strength will the fracture location of a three-
point loaded beam be theoretically-t- located at the central load point.

Brittle materials are affected by size. Compensation can be realized through the
use of statistical analysis offered by Weibull. 1 3 Although the four-point beam system
assures a simple stress state which is easier to analyze' than the more complex biaxial
stress state associated with the three-point beam specimen, this will be less of a con-
sideration if the beam is designed properly. Nevertheless, the three-point loaded beam
system is preferred when investigating material or process development, because of
smaller specimen size, or when attempting to pinpoint fracture origin location.t On
the other hand, the four-point loaded beam is preferred when determination of strength
for design purposes is desired, because the center span is uniaxially stressed, i.e.,
no shear stresses exist. It is concluded that each of these systems is suited for a
particular application and each has different advantages and disadvantages. Thus both
types of loading systems, the four-point beam system shown in Figure 1 and the three-
point beam system shown in Figure 2, will be considered as reference standards.

'This requirement will be discussed subsequently.
In Reference 12, the authors considered only a statistical analysis and ignored wedging stress considerations.
Private communication with R. W. Rice of N. R. L.

II. RUDNICK, H., MARSCIIALL, C. W., DUCKWORTH, W. H., and FNRIC, B. R. The Evaluation and Interpretation of Alechanical
Properties of Brittle Materials. AFME TR 67-316, April 1968.

12. OH, II. L., and FINNIE, I. On the Location of Fracture in Brittle Solids - 1, Due to Static Loading. Int. J. of Fracture Mechanics.
v. 6, no. 3. September 1970, p. 287-300.

13. WEIBULL, W. Statistical Theory of'Strength of Materials. Royal Swedish Institute for Engineering Res., Proc. no. 151, 1939. p. 1-45.
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Each of these beam systems will be subjected to external influences which will
affect the accuracy of the test results. These external influences, directly or indi-
rectly caused by the application of loads through the test fixtures, will lead to
either configuration constraints or errors.

EXTERNAL INFLUENCES

The major influence on the accurate determination of flexure strength of a beam
in bending arises from the application of load through the fixtures to the specimen.
The idealizations indicated in Figures la and 2a are rarely met, and usually tests
are conducted using a convenient rigid loading head and support member as depicted in
Figures lb and 2b. The constraints on either the loading fixture or the specimen
and/or errors resulting from such fixture designs are many. Such constraints or errors,
which are discussed in turn, are caused by:

1. load mislocation

2. beam twisting

3. friction

4. local stresses

5. contact point tangency shift

6. surface preparation

1. Load Mislocation

a. Four-point loaded beams

When calculating bending stress by simple beam theory formula for four-point
loaded beams, it is usual to assume that the moment within the inner span Z is constant.
However, if a loading head that can only translate is used, as idealized in Figure lb,
it is impossible to attain this idealized moment condition when x, # x 3 - x2 ;11.1 this
is shown in Figure 1c. The ratio of ax/Ob, from Appendix B, is:

[ P1  1 x1/a (9)
I (P2 + P3)/2 I

The loads and distances are also shown in Figure lc, and a is the value of a, with
perfect load location. The error is magnified by the ratio of xl/a. (Of course, if
PI = P2 = P3, which implies exact location of the points of load application, there is
no error.) In order to estimate the magnitude of such an error it was assumed in
Appendix B that the upper two load points in Figure ic were at a fixed distance X2-xI =
and were constrained to translate vertically during loading, and that the loading head
would be located such that x, $ x3 - x2. This method of loading, being the most conveni-
ent, is usually adopted by many investigators, and therefore the resulting error deter-
mination is not unrealistic.

The analysis was accomplished by simply enforcing the condition that the displace-
ment at x, must be equal to the displacement at x2 in the deflection equation. This
results in the following relationships between ax and ub in terms of the load eccen-
tricity ratio e/L:

14. HOAGLAND, R. G., MARSCHALL, C. W., and DUCKWORTH, W. H. Reduction of Errors in Ceramic Bed Tests.J. Amer.
Cef. Soc., v. 59, no. 5-6, May-June 1976, p. 189-192.
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[(e/L + a/L) / (a/L) J[1- (e/L + alL) - L/L] { (/L) [2- (e/L + a/L) ] -2 [1- (e/L + a/L)] 2 }

3(e/L + a/L)[1- XlL -(e/L+ aIL)]-(l- EiL) 2

(10)

where the parameters a, k and L are shown in Figure 1.

Most workers in the testing field utilize either a 1/3-point (a/L 1/3 and
k/L = 1/3) or a 1/4-point (a/L = 1/4 and t/L = 1/2) loading. Thus by substitution of
these parameters into Equation 10, we obtain:

[3(e/L)+1](l/3 - e/L)[1/3(5/3 - e/L)-2(2/3 - e/L)2] (11)
(x/Ob) , =3 [3(e/L)+1](1/3 - e/L) - 4/9

[4(e/L)+1](1/4 - e/L)[1/2(7/4 - e/L)-2(3/4 - e/L)2 ]
CGx/Gb)k/L=21 [3(e/L) + 3/4](1/4 - e/L) - 1/4 (2)

The reader is cautioned that for given values of ilL there exists a limit on elL
in (10), (11), and (12); that is, a, can be such that either P2 or P3 = 0 because the
test system changes from four-point to an eccentric three-point loading. (See App. B.)

The error, defined as [(O-ox)/aOx100, was determined from (11) and (12) for the
1/3-point and 1/4-point loaded teams and is shown in Tables 6 and 7 as a function of
e/L. Even though these tables show ±e/L values, only negative values of e/L were con-
sidered in (11) and (12) because when e/L < 0, ax > ab" Tables 6 and 7 show that for
corresponding e/L, when al/L j a2/L, the 1/3-point loading system results in lesser
error than the 1/4-point loading system. Also, in accordance with the above discus-
sion, e/L in Tables 6 and 7 is limited to a range of ±0.0443 and ±0.0465. The errors
indicated in these tables can be minimized by designing the loading fixture so that
the inner and outer spans are independently fixed. Also, the inner span should be
designed with accurate location adjustment and allowed to pivot as recommended by
Hoagland et al. 1

4

b. Three-point loaded beams

The same type of analysis was applied to the three-point loaded beam. The
ideal system is shown in Figure 2a and the system analyzed is shown in Figure 2b. The
resulting percent error due to an eccentric load application is given by

S(1/4) -a/L )11100. (13)

The percent error as a function of e/L is given in Table 8.

Notice that the percent errors given in Table 8 are always positive, and when
the load application point is misplaced, such errors are much less than those of

9
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equivalent e/L values shown in Tables 6 and 7 for the four-point loaded beams.
Notice also that when -e/L = 0.500, the error is infinite, i.e., the three-point
loading model is no longer valid.

2. Beam Twisting

A net torque can result from line loads being nonuniform or nonparallel between
pairs of load contact points or if the cross section of the specimen is skewed over
its length.'

1'14

Such a condition is shown schematically in Figure 3 for a four-point bending
specimen. The error due to twisting has been estimated14 for both the plane stress
and plane strain conditions by examining the maximum principal stress due to bending
and torsion and comparing it to the bending stress. Only the details of the plane
stress analysis were given in Reference 14, and bottoming of the specimen on the
fixture was not considered. For the sake of completeness, the plane strain condi-
tion and bottoming are considered in the analysis given in Appendix C.

The maximum principal stress for either a skewed four-point or three-point
beam in bending, considering a plane strain condition, is given by:

(Ob/2){l+v+(l/3k2)[(n/'/b) 2 + 9k2
2(1-V) 2]1 (14a)

where ob is the apparent bend strength and V2 is either equal to "a" for four-point
bending or equal to L/2 for three-point bending. Also:

n = [3k1(E/ab)/(l+v)][(d/LT)s + (d/i')4F](b/i') (14b)

where for Case I: n = 1, failure occurs prior to bottoming of the specimen in the
loading fixture, and for Case II: n < 1, failure occurs after bottoming.

The factors k, and k2 , obtained from Reference 2 and given in Table 9, are
numerical values associated with the torsional stress component which are dependent
on the ratio of b/d. The measured angle of twist (or skew angle) along the total
length LT of the specimen is *s (see Figure 3),and along the fixture from one support
point to the adjacent load point, it is F"

The maximum principal stress* as given by (14a) can be utilized to determine
the percent error for various ratios of n, .2/b, and b/d. This was accomplished and
is shown in Table 10. Notice that the range of n varies from 0.20 to 1.00. It is
expected that if bottoming does not occur prior to fracture because of an excessive
twist angle, the maximum ratio of n that can be attained is 1.0 and thus the tables
do not accommodate n > 1.0. The use of such tables is demonstrated in "Discussion
of Errors."

3. Friction

It has already been shown in Table 5, for the two beam systems considered, that
the error due to deflection will be equal to or less than 1% if L/d 1 25. It appears
that these limits are well within the geometry ratios required for the reference stan-
dards to be proposed here. Therefore, friction at the load and support points will

The maximum principal stres, assuming a plane stress condition, can be realized by simply allowing Polsson's ratio V' to be zero in
Equation 14a, However, this will result in a lesser error than when assuming the plane-strain condition.
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Figure 3. Twisting of a four-point beam specimen.

have a negligible effect with regard to the use of simple beam theory. This also
implies that there will be no effect from friction on the contact tangency shift.
(These factors will be discussed subsequently.) However, friction will cause a
moment acting out of the plane of the beam that can not be ignored. This factor is
considered in the following.

When determining bend strength by simple beam theory, it is usual to assume
that the supports and load points are frictionless, whereas in fact they are not.
The presence of friction in flexure tests with fixed load and support points gives
rise to couples at such locations as well as axial forces at the neutral axis of the
beam. The net axial force is relatively small and therefore is ignored here. How-
ever, if the moment is not corrected to account for the couple in the determination
of flexure stress, an error will result. Error equations adapted from the results*
available in the literature14- 16 are given below for the four-point and three-point
loading systems:

100 a/d- 

(

and

= 100 (lb)
L/2d - 4'

Such errors as defined by the above equations can be significant, according to
References 14, 16, and 17. Newnham'6 and Weil1 7 reported that the experimental dif-
ference in failure stress using rigid knife edges as compared to roller-type contact
points was as high as 12% for silicon nitride and 13% for graphite.

*Beam width constraint occurs also because of friction transverse to the beam's long axis. However, this effect (see Newnham 1 6) is
small and thus not considered here.

15. DUCKWORTH, W. H., et al. Mechanical Property Tests on Ceramic Bodies. WADC TR 52-67. March 1952, p. 67-70.
16. NEWNHAM, R. C. Strength Tests for Brittle Materials. Proc. of the British Cer. Soc., no. 25, May 1975, p. 281-293.
17. WEL, N. A. Studies of Brittle Behaviour of Ceramic Materials. ASD TR 61-628, Part il, April 1962, p. 38-42.
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4. Local Stresses

Loads on bend specimens applied through knife edges or small-diameter rolILrs
result in high stresses under these line loads. High compressive contact stresses
can result and cause local crushing. Localized contact can cause a more subtle prob-
lem, which is referred to as the wedging stress.

Also, shear stress near the locality of the load point can be several times
higher than that predicted by beam theory.

a. Contact stress

Reference S gives equations for determining the contact pressure between a
cylinder (or roller) and a flat surface (see Figure 4) as a function of the applied
load, modulus of each material, and the roller radius. if it can be assumed that the

two materials are identical and that the allowable bearing pressure or contact pres-

sure can be as high as twice the bend strength of the material, then limits on the
roller radius for both loading systems will result. For example, from Reference S
we have:

= 59vPE/2bp1  (17)

where Pmax is the maximum contact pressure. (Note that the roller radius can be
either P, or P2.) However, we shall assume that Pmax S 2%. Also for four-point
loading, ab = 6Pa/bd 2 , and for three-point loading, Ob = (3/2) PL/bd2 . Substituting
of ab into (17) and solving for p1/d we obtain

pl/d a 7.25/a/d, for the four-point loaded beam, and (17a)

p1 /d 29.0/L/d, for the three-point loaded beam, (17b)

where it was assumed that E/ob = 1 103.

P P

T( P 1 P -I

p 0 Figure 4. Contact point tangency shift.

h2  
2

4- +

' " ... . " . .. .. . ' • ' ' -- fi...



b. Wedging stress

The effect of the wedging stress is to provide a substantial tensile stress con-
tribution at the compressive side of the beam adjacent to the load points. A net ten-
sile stress can not be created if d/2X' < 1, according to Reference 14. More impor-
tantly, a tensile stress is added to that already present due to beam bending at the
tensile side of the beam, thereby causing a deviation from the assumed stress calcu-
lated by simple beam theory.

This problem is fenerally treated in Reference 2 and particular results from
von Kdrm~n and Seewald a for a similar situation are used to estimate this error.
An analysis for this error is given in Appendix D. The resulting error determination
for four- and three-point loaded beams is given in Table 11. In the calculation of
the errors, which are a function of a/d or L/d, as well as x'/d, the computed ab
corresponds to the failure site location (x'/d).

c. Beam overhang

The overhangs of the beam must be great enough so that the local stresses at
the beam support points are not amplified due to beam-end effects. These stresses
are damped out within a distance equal to one beam depth.' 8 Thus, by allowing

LT L + 2d (18)

we avoid beam-end effects.

d. Fracture origins

Since the contact stress is damped out with a distance d, fracture origins
for the four-point loaded beam should be located within the inner span and be no
closer than the beam thickness to either of the inner loading points so that test
data results can be considered valid.

The distance from the closest support point to the fracture origin of a three-
point loaded beam should be used to determine the moment and thus the failure stress.
Also, if the failure origin is closer to either of the support points rather than the
center load point, the result should be considered invalid.

5. Contact Point Tangency Shift

Significant changes in span length can occur in both four-point and three-
point loading systems if contact radii of support and load points are large com-
pared to beam depth. The shift in point of tangency, as shown by h, and h2 in
Figure 4, is a function of the contact radii, specimen thickness, and the ratio of
the modulus of elasticity to the bend strength. For materials that behave elastic-
ally, such as those considered here, the change in tangency point and thus the error
arising because of the change in moment arm from the ideal can be predicted mathemati-
cally for linear systems. This is accomplished and is presented in Appendix E. The

18. VON KARM N, T.. and SEEWALD, F. Alhandl Aerudynam, last. Tech. Hochschule, 1946. p. 256.
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approach was patterned after Westwater'9 who corrected for span shortening but ignored
friction at the support points of a three-point loaded beam.*

In Appendix E the formulas are derived for a four-point loaded beam and then
reduced to the special case of a three-point loaded beam. These results are put in
terms of error functions assuming the simple beam theory is applied without correcting
for span shortening, as in the case of the lower support, and span lengthening between
the upper loading points shown in Figure 4.

The errors are determined for four-point loaded beams of 1/3 and 1/4 loading
points as a function of pl/d and p2/d, and the the three-point loaded beam as a func-
tion of pl/d only. It was assumed that E/o=lxl0 3. These errors are given in Table 12.

6. Surface Preparation

The flexure strength of each brittle material is not only supersensitive to the
final surface finish because the maximum tensile stress occurs at the beam surface,
but is also highly sensitive to prior finish history. For this reason it is impossi-
ble to specify an optimum surface finish procedure for all brittle materials, so that
failure will be due to inherent flaws related to the material or material processing,
rather than an imposed defect resulting from the finish process. Indeed, the designer
or materials developer may not be able to specify a particular finish procedure.
Therefore, rather than attempt to dictate surface finish requirements, it is suggested
that each set of reported test data results be accompanied by surface finish history
and/or material process history, whichever is applicable.

There are, however, several specific recommendations related to surface finish-
ing procedures that can be presented. Corner flaws resulting from chipping or crack-
ing during the grinding operation are sources of low-strength failure. Rounding or
beveling of the corner as depicted in Figure 5 appears to reduce premature failure. '

Since a chamfer will double the number of edges, thus doubling the source of flaw
locations, rounding is preferred.2' Also, it is important to grind the edges and flat
surfaces2 1 by a motion parallel to, rather than perpendicular to, the specimen length.
It is further indicated ° that finishing of the corner should be comparable in all
aspects to that applied to the beam surfaces.

r cx450

d '

Figure 5. Beam cross section.

b b
(a) Rectangle with (b) Rectangle with
Rounded Corners Chamfered Corners

*Westwater also determined an approximate relationship for the horizontal load arising because of tangency shift. However, for
beams of small deflection, the error is negligible.

19. WESTWATER. J. W. fexure Testing of Plasti Materials. Proc. ASTM, v. 49, 1949.
20. RICE, R. W. Machining of Ceramics. Proc. of the Second Army Materials Technology Conference - Ceramics for High Performance

Applications, J. J. Burke. A. E. Gorum, and R. N. Katz. ed., Brook Hill Publishing Company, Chestnut Hill, Massachusetts, 1974.
21. RICE, R. W. The Effect of Grinding Direction on the Strength of Ceramics. The Science of Ceramics Machining and Surface

Finishing, S. J. Scheider and R. W. Rice, ed., NBS Special Publication 348, Washington, DC, G. P. 0. (SD Cat. No. 13.10:348),
1972, p. 365-376.
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If the corner radii or chamfer is small, the error in ignoring the change in mo-
ment of inertia will be negligible. The limiting ratio of corner radii or 45°chamfer
dimension to beam depth can be determined from the error analysis due to neglecting
the change in moment of inertia given in Appendix F. This error in determining flexure
stress, when neglecting corner radii or 450 chamfer, is given in Table 13. Limiting
ratio of corner radii or 450 chamfer is indicated by a line at an error level of
+0.5% or less.

REFERENCE STANDARD BEAMS

Geometry Ratios

From previous discussions included under "Simple Beam Theory Assumptions" and
"External Influences" a range of practical geometry ratios of b/d, a/d, L/d, and pc/d
can be chosen so that the error span is tolerable. This is given in Table 14, as well
as the source of error. Also given in the table are the limits on roller radius to
beam depth ratios so that bearing stress fracture at the contact points is precluded.
The range of practical geometry ratios are 5.0 s a/d ! 12.5 for the four-point loaded
beam and 20 < L/d :s 25 for the three-point loaded beam, with b/d £ 15.0 and pc/d > 100.
These ratios were chosen to limit the accumulated error span to a reasonable total of
less than approximately ±2%. A discussion of errors considering the external influ-
ences as well will be subsequently presented.

Beam Dimensions

Most workers in the field utilize either a 1/3 or a 1/4-point loaded beam.
For convenience we shall choose L/a = 3, because this will allow the four-point beam
length to be equal to that of the three-point loaded beams.

We have already specified that b/d £ 15 and we shall arbitrarily let b/d = 2.0
and L/d = 21.0. By choosing a convenient and practical beam width, such as 0.250 in.
(6.35 nun), we can specify all other beam diinensions for both types of reference stan-
dard beams. These dimensions are shown in Table 15. Notice that (7) and (8) are sat-
isfied, i.e., L/d - a/d - 150 and L/d -< 150, which insures negligible nonlinear effects
due to friction at the load and support points.

As indicated previously it is not the intent to require specific dimensions for
the two beam systems. Indeed, this would impose a considerable waste of effort be-
cause many organizations already have a backlog data base from which test results were
previously obtained from other than those beam dimensions shown in Table 15. Alterna-
tively, it is suggested that two sets of beam dimensions indicated in the table be
considered as reference bases to which other beam geometries can be related by statis-
tical analyses. The most generally acceptable analysis appropriate to brittle materi-
als is that conceived by Weibull.' 3 With this approach in mind, strength relation-
ships between the reference standard beams and beams of other dimensions for volume-
sensitive and surface-sensitive materials are presented in the following section.
Also given is an estimate of error of the Weibull parameters as a function of sample
size.

STRENGTH RELATIONSHIP AND SAMPLE SIZE

The use of beam configurations other than those recommended in Table IS is depen-
dent upon the establishment of a failure-strength relationship between the nonstandard
and the reference standard beam. The establishment of such relationships is considered
the responsibility of each investigator.
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The type of analysis that has been used with varying degrees of success to
relate failure strengths of brittle materials is attributed to Weibull.1 3 Many in-
vestigators have used this approach to relate strength levels of various types of
specimen configurations either on a stressed volume or surface area basis." The
reader is cautioned that confirmation of such an analysis or lack thereof may well
depend on a number of factors including the test material. As examples of such cor-
relation and lack of it, Weibull statistical correlation was justified by Davis

22

for reaction-bonded silicon nitride but inappropriate for Lewis' 2 3 work in alumina
fabricated by several processes.

A computer program for statistical evaluation of composite materials is available
in Reference 24. This program determines the desirability of a particular probability
density function in predicting fracture strength of ranked empirical data. The can-
didate functions include normal, log normal, and Weibull. Root mean square error
results can be tabulated for each functional comparison. The effects of statistical
ranking can be readily listed in the computer output.

The data mean and standard deviations with corresponding levels of confidence
can be included in the printed results. The Weibull parameters, obtained from the
maximum likelihood method, and corresponding confidence intervals can be obtained from
this program.

Since a Weibull-type analysis is applicable in many instances, resulting formulas
for the simple two-parameter system25 to determine the risk of rupture for the four-
point and three-point loading systems, are presented below, for the sake of complete-
ness.

Volume-Sensitive Material

If the strength of material is dependent upon the volume of stressed material,
the following risk-of-rupture equations are applicable for a beam stressed in pure
bending* (four-point loading):

RRV = [Vt/2(M+l)](ob/ao)M (19)

and for a beam stressed under three-point loading, we have:

RRV = IVL/2(M+l)2](ob/Go)M ; (20)

where RRV is the risk of rupture (volume basis). The volume for a four-point loaded
beam in (19) is Vt = tbd and the volume for a three-point loaded beam in (20) is
VL = Lbd; also, ab is the mean fracture stress; Oo is a normalizing parameter, also
called the characteristic value; and M, the Weibull slope, also called the shape pa-
rameter, is the reciprocal function of the variability of the failure stresses of the
specimens in the sample. Note co has units of stress times volume (1/M).

M can be determined by a number of different methods (see References 22, 25, 26,
and 27). The accuracy by which M can be determined is discussed later under "Weibull
Parameter Estimate and Sample Size."

*Since one of the requisites for a valid test is that failure occur within the center span, only the constant moment section or pure
bending form is considered for the reference standard.
22. DAVIS, D. G. S. 7he Statistical Approach to Engineering Design in Ceramics. Proc. Br. Ceramics Soc., no. 22, 1973. p. 429452.
23. LEWIS, D.. and OYLER, S. . An Experimental Test of Weibuli Scaling Theory. J. Amer. Cer. Soc., v. 59, no. 1 -12, November

December 1976, p. 507-510.
24. AMMRC Interim Report No. I to MIL-HDBK 17, Composite Materials for Aircraft and Aerospace Applications (Proposed), December 1980.
25. DeSALVO. G. J. Theory and Structral Design Applications of Weibull Statistics. Westinghouse Astronuclear Laboratory,

WANL-TME-2688, 1970.
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If the average strength of a nonstandard four-point or three-point loaded beam
is to be compared to that of its reference standard beam, the following relationships,
obtained by simply equating the risk of rupture, are:

bNS4 IVRS4 01/ and bNS 3  (VRS3)l/' (21)

GbRS4  NS4  ObRS 3  VNs3

where abNS4,3 and obRS are the average fracture stress in bending of a nonstandard
and reference standard 6eam, and VNS ,3 and VRS4  are the volumes of the four-point
or three-point loaded nonstandard an reference 'andard beams, i.e., VRS4 = kbd or
VRS 3 = Lbd.

If the average strength of the reference standard three-point loaded beam is to
be compared to the reference standard four-point loaded beam, then

[bRS3/ObRS. = [(1/3)(M+1)]1 /1; (22)

note

VRS 4/VRS 3 = 1/3.

Surface-Sensitive Material

If the strength of the material is dependent upon the surface-stressed material,
the following general risk-of-rupture equations2 5 are applicable for a rectangular
beam stressed by pure bending (four-point loading):

RRS b)+ M (23)
2(M+l) (M+l G

and a beam stressed by three-point loading:

/MAL I +1 'J
RRS= aL(I 0  (24)

2(X+l) (M+I) (M+1 0

where RRS is the risk of rupture (surface basis); X is defined as b/d; AZ in (23) is
defined as 2e(b+d); A, in (24) is defined as 2L(b+d); and Ms is the Weibull slope
parameter for a surface-sensitive material.

The Weibull slope parameter for the surface material in general is not the same
as that for the interior material. According to Paluszny and Wu2 7 these differences
can be minimized by improving surface finishes. Regardless, for such a case, (19)
and (20) are still applicable.

26. McLEAN, A. F.. and FISHER, E. A. Brittle Materials Design. High Temperature Gas Turbine. Ford Motor Company,
Contra t DAAG46-71-C-0162, Interim Report, AMMRC CTR 77-20, August 1977.

27. PALUSZNY, A., and WU, W. Probabilistic Aspects of Designing with Ceramics. Presented at the 22nd Annual Gas Turbine
Conference of A.S.M.E.. Philadelphia, Pennsylvania, March 27-31, 1977.
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However, if the average strength of a nonstandard four-point or three-point
loaded beam, sensitive to surface area, is to be compared to that of its reference
standard beam, the following relationships are appropriate:

ObNS4 I-ARS 4 \ I/(M+l)+XRS4 1
I/Ms

-bRS4  IANSJ /(M+)+NS4)1 and

bNS 3 - JARs3 /(XNS3+1\ (/(M+
I)+XRS 1) 1 / s (

abRS 3  1AN!s4 XRS 3+
1V 1/(M+I)+XNS3fj

where ANS4 ,3 and ARS4,3 are surface akeas of the four-point or three-point loaded
nonstandard and reference standard beams, i.e., ARS. = 2k(b+d) and ARS 3 = 2L(b+d)
where XNS and XRS are the width-to-height ratio of the nonstandard and reference
standard 6ms. S, 3

Weibull Parameter Estimate and Sample Size

Flexure tests on hot-pressed silicon nitride material reported by McLean and
Baker2 8 show the effect of Weibull slope M for specific component reliability. The
strength requirement for a specific component reliability was decreased 16% by a
reported 20% increase in M from a nominal value of 10, and was increased 27% by a
20% decrease in the slope.

Different techniques will produce somewhat different results, according to
McLean and Fisher, 26 when estimating the Weibull parameters. Two statistical methods
had been used during preliminary analysiv of hot-pressed silicon nitride material
strength data, and results indicated that the estimate of the characteristic value

a (or scale parameter) were very close while the Weibull slope estimates vary and
thus would yield considerable differences in the component strength requirement.

The following is quoted directly from Reference 26 (except to change reference
and figure numbers appropriate for this report) because it succinctly addresses the
answer to the question of proper sample size: "The exact confidence intervals for
the parameters are based on the distributions obtained by Monte Carlo methods presented
in Thoman et al. 2 9 It is not unexpected that the uncertainty in the estimation of a
parameter will increase as the sample size decreases. This uncertainty, however, has
rarely been quantified. The width of the confidence intervals for the parameters is
a measure of the uncertainty and aids in the selection of the sample size of a test.
Figures 6 and 7 are drawn from Reference 29 and show the 90% confidence bounds for
the Weibull slope and the characteristic value." (Figure 7 differs from that given
in Reference 26 in that two additional M values were computed and shown.) "The bounds
for the Weibull slope are a function of sample size only, while for the characteristic
value they are a function of both the sample size and the Weibull slope. As can be
seen from the graphs, the error or uncertainty in estimates from small sample sizes
is very large. Important judgements and significant analysis should not be based on
small samples. Sample sizes of at least 30 should be used for all but the most pre-
liminary investigations. An uncertainty of ±10% in Weibull slope requires more than
120 samples. This uncertainty is not peculiar to just ceramics, but is intrinsic to
the statistical analysis of data, whether that data be material strength or the life

28. McLEAN, A. F., and BAKER, R. R. Brittle Materials Design, High Temperature Gas Turbine. Ford Motor Company,
Contract DAAG46-71-C-0162, Interim Report, AMMRC CTR 76-31, October 1976.

29. THOMAN, D. R., BAIN, L. J., and ANTLE, C. E. Inferences on the Parameters of Weibull Distribution. Technometrics,
v. II, August 1969, p. 445460.
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of some electronic component. The choice of sample size depends on many factors in-
cluding the cost and timing of testing and the degree of conservation which is accept-
able, but erroneous judgements may be made and unacceptable designs pursued if the
sample sizes are too small."

LOADING SPEED

It is well known that brittle materials are strain-rate sensitive, and thus
speed of loading will influence the stress at which failure of the beam will occur.
To choose a "static" speed which would insure no strain-rate effect for all brittle
materials would not only be impossible but time consuming when testing those materials
that exhibit a lesser strain-rate effect. However, most materials testing facilities
utilize an Instron testing machine. Normally the slowest test speed in such a ma-
chine is 0.02 in./min (0.51 mm/min). It would seem appropriate, therefore, to utilize
this speed of testing in conjunction with the two reference standard beams given in
Table 15 to establish a reference standard strain-rate. This is accomplished in the
following for both the 1/3-four-point and three-point loaded beams.

The strain rate is defined as:

= (ob/E)/t , (26)

where t is the time of the applied load; but since the speed of loading is s=y/t, then

= (ob/E)/ys (27)

where y is the deflection of the beam and s is the constant speed of the testing
machine.

The deflection at the center of a four-point loaded beam is:

y = (Pa/24EI)(3L2-4a2) (28)

Recalling that Pa = 2abI/d, and substitution of this and (28) into (27) gives:

12ds (29)

312 4a2

for the four-point loaded beam.

For the 1/3-four-point loaded beam, where a=L/3, we obtain:

(108/23)(d/L2 )s . (30)

Using the same approach as above, we obtain the strain rate for the three-point
loaded beam as:

= (6d/L2)s . (31)

With a loading speed of 0.02 in./min (0.51 mm/min) or 333 x 10-6 in./sec
(8458 x 10-6 mm/sec), we obtain strain rates of 28 x 10- 6 /sec for the 1/3-four-point
reference standard beam (29) and 36 x 10- 6 /sec for the three-point reference standard
beam (31). These strain rates shall be considered as reference standards for both
beam systems as indicated in Table 15.
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DISCUSSION OF ERRORS

The errors associated with flexure testing of beams can be classified according
to their source, i.e., related to the use of simple beam theory (beam dimensions) or
sources arising from external load applications. Table 16 lists the sources and sum-
marizes the error span for the first category and Table 17 for the second.

Table 16 shows resulting error spans of -0.4% to +0.3% for both the 1/3-four-
point reference standard beam and the three-point reference standard beam geometries
described in Table 15. These errors, as expected, are rather small.

The errors summed in Table 17 are not of small magnitude and require some ex-

planation. These are discussed in the order in which they appear.

Error Due to Load Mislocation

In the calculation of the error associated with load mislocation, it was assumed
that loading heads and supports are rigid, can not rotate (see Figures lb and 2b),
and are located manually. Thus it is also assumed that the best possible location
tolerance that can be obtained is ±1/64 in. (0.40 mm). The errors due to load mis-
location were determined by interpolation from Tables 6 and 8 with e/L = ±0.006.

Error Due to Beam Twisting

Again it is assumed that the loading heads and supports are designed as indica-
ted in Figures lb and 2b. Thus, twisting of the specimen can occur due to nonparallel
pairs of load or support points and specimen skewness, as schematically indicated in
Figure 3. Table 10 allows the error determination caused by such undesirable action.
We shall determine the error for both reference standard specimens given in Table 16
with an assumed but realistic set of test parameters and test results for illustrative
purposes.

It will be assumed that the material is hot-pressed silicon nitride with E =
45 x 106 psi, and v = 0.25. The bend strength determined during the test for the
1/3-four-point loaded beam was 60 x I03 psi, and for the three-point loaded beam was
67 x 103 psi. The measured angle of twist of the specimen configurations is assumed
to be small with respect to that of the loading fixtures. It is assumed that the
best alignment of the loading fixtures with each other will be no less than 1.00;
thus s 0 and *F 1.

In order to utilize Table 10, we must first determine n; recalling equation 14b:

n = [3k,(E/ab)/(l+v)][(d/LT)Os+(d/2)F] (b/9')

Since b/d = 2.0, then kj from Table 9 is 0.229; for the 1/3-four-point loaded beam,
d/LT = 0.043, d/P.' = 0.143, and b/' = 0.286. Thus, n according to the above rela-
tionship is approximately 0.4. Utilizing Table lob, with b/d = 2.0 and 9'/b = 3.50,
by linear interpolation we determine the error to be -1.0%. For the three-point
loaded beam, d/LT = 0.043, d/2' = 0.095, and b/V' = 0.190; and n, calculated from
the above relationship, is approximately equal to 0.2. Entering Table lOa and inter-
polating with b/d = 2.0 and 22/b = 5.25, we determine the error to be approximately
-0.1%.

Note that in the above example, n < 1.0, indicating that failure occurs after
bottoming. If n had been greater than 1.0, i.e., no bottoming prior to failure, then
Table l0e would have been used to calculate the error.
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Error Due to Friction

If moveable roller contact points are not used in the load and support fixtures,
an error in determining the flexure stress at failure will result. An estimate of
the coefficient of friction obtained16 by comparing fracture strengths when using
rigid as compared to roller-type contacts was determined to be 0.4 for silicon ni-
tride material. This value was also obtained in Reference 15 for hard steel on gar-
net and Reference 17 for steel on graphite. Using equations 15 and 16, the errors as
indicated in Table 17 are +6.1% for the four-point beam and +4.0% for the three-point
beam.

Error Due to Wedging Stress

Since a/d for the four-point reference standard beam is 7 and L/d is 21 for the
three-point reference standard beam, then, from Tables lla and llb, assuming the max-
imum error can occur, i.e., x' = 0, the respective errors are +0.7% and +0.9%.

Error Due to Contact Point Tangency Shift

There are two conflicting requirements regarding contact radius at the loading
and support points: the first is that radii must be great enough so that contact or
bearing pressure does not cause local failure of the beam, and the second is that the
contact radii be small enough so that the error due to contact point tangency shift
is not great.

Equations 17a and 17b allow the determination of the radii such that the contact
pressure is not excessive. Since we have allowed the contact radius to beam thickness
ratio to be 1.5 (pl/d = P2/d = p/d = 1.5) for both reference standard beam systems,
equations 17a and 17b are both satisfied, and the resulting radius of 3/16 inch
(4.76 mm) is of practical size. The errors due to contact point tangency shift, +0.5%
and +0.2% were then obtained from Tables 12a and 12c for the four-point and three-
point beam systems.

Corner Radii

The error when ignoring corner radii in determining the flexure stress at fail-
ure and neglecting the change in the moment of inertia with b/d = 2.0 and r/d = 0.06
is +0.4% for both systems as obtained from Table 13.

It is noted that three error sources associated with the determination of flex-
ure stress at failure, not included in Table 17 because they are intrinsic to the
material, are unequal Young's moduli (Table 2), anisotropy, and nonhomogeneity. Each
investigator will have to establish if these factors are present, and if so, their
magnitudes.

Error Span Summary

The error spans indicated in Table 17 for the four-point and three-point beam
reference standard systems are -5.0% to +7.7% and -0.1% to + 5.6%. Adding those given
in Table 16 results in a total of -5.4% to +8.0% and -0.5% to +5.9%. The three-point
loaded beam has a lower error span associated with it than the four-point loaded beam
because of lesser inherent errors in load mislocation, beam twisting, friction at the
load and support contact points, and contact point tangency shift. For the four-point
loaded beam, the two major sources of error are caused by load mislocation and fric-
tion, which can be reduced to a great degree by proper design. If these two sources
of error could be minimized (assumed to be zero), the total error spans would be
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reduced to -1.0% to +1.6%. The major source of error for the three-point beam in
bending is due to friction and if eliminated would result in a total error span of
-0.1% to +1.6%.

These minimized total error spans are attainable by designing load and support
fixtures that incorporate rolling contacts and pivot in the two required directions,
i.e., about the beam axis and transverse to it. Such loading systems have been de-
signed14 and extensively used in practice.*

RECOMMENDATIONS AND CONCLUSIONS

1. The recommended beam configurations, called reference standards, are
1/3-four-point and three-point loaded beams having the following dimensions (see
Figures la and 2a):

b = 0.250 inch (6.35 mm)

d = 0.125 inch (3.18 mm)

a = 0.875 inch (22.23 mm)

L = 2.625 inch (66.68 mm)

LT > 2.875 inch (73.03 mm)

r > 0.008 inch (0.20 mm)

2. The recommended contact radius used in both the loading and support fixtures
is 0.1875 inch (4.76 mm).

3. The errors due to simple beam theory assumptions for the reference standard
beams are relatively small.

4. The total estimated error spans for the above beam dimensions are -5.4% to
+8.0% for the 1/3-four-point beam and -0.5% to +5.9% for the three-point beam. Not
included in these error spans are the intrinsic effects of unequal Young's modulus,
anisotropy, and nonhomogeneity of the beam material.

5. If a properly designed fixture is utilized during testing of the four-point
loaded reference standard beam, such that errors due to an assumed ±1/64-inch load
mislocation and an assumed 10 twisting angle of the loading fixtures are eliminated,
as well as eliminating a coefficient of friction of 0.4, then the error span is re-
duced accordingly from -1.0% to +1.6%.

6. The major source of error associated with the reference standard three-
point loaded beam is due to friction at the support and load points; elimination of
this results in an error span of -0.1% to +1.6%.

7. It is recommended that the load and supporting fixtures for both reference

standard systems be designed so that:

a. the load and support points be accurately fixed and known; and

b. friction be minimized at the load and support points through the
use of freely pivoting rollers or by other means.

*Private communications with L. Gibson of Carborundum Co., W. Duckworth of Battelle Columbus Laboratories, and J. Caverly of
Ford Motor Company.
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8. in addition to item 7 above, the reference standard four-point-beam system
employs load fixtures that are free to pivot in two mutually perpendicular directions.
Although two beam systems are recommended and referred to as reference standards,
other systems are acceptable as long as strength relationships through proven statis-
tical analyses are insured, and the errors associated with the beam and loading geom-
etry (obtainable from the tables in the text) are estimated and reported along with
the strength data.

9. A minimum reference standard sample size of 30 is recommended. This will
result in an error of approximately ±25% in the determination of the Weibull slope
parameter M within a 90% confidence band (see Figure 6). Such a sample size will
result in error, dependent on M, obtained from Figure 7 in the determination of the
characteristic value ao; this error should be reported also. If the minimum sample
size can not be realized, the errors in determining M and oo should be reported
along with the test results.

10. No specific surface finishing procedure is recommended but this will be con-
sidered the responsibility of the individual investigator. Nevertheless, each set
of test results should include surface finish or material process history, which-
ever is applicable. Surface preparation parallel to the beam's long axis is recom-
mended, and should include rounding or beveling of the beam edges. Rounding of the
edges is preferred, but both are acceptable.

11. If the fracture origins in four-point loaded beams can be determined, they
must be located within the inner span and be no closer than the beam thickness to the
load points in order that test data results be considered valid.

12. The distance from the closest support point to the fracture origin of a
three-point loaded beam must be measured and used in computing the moment and result-
ing bending stress. Also, if the failure origin is closer to either of the outer
support points than the central loading point, the results can be considered invalid.

13. The reference standard test speed of loading should be 0.02 inch/minute
(0.52 mm/min). This results in a strain rate of 28 x 10- 6/sec for the reference
standard 1/3-four-point beam system and 36 x 10 /sec for the three-point beam sys-tems. If any other speed of loading is used, it should be reported.

14. It is further recommended that accurate analyses of the following problems
as related to brittle materials be accomplished:

a. Exact stress distribution for four-point and three-point loaded beams
so that a more accurate error analysis than that given in Table 1
be realized.

b. The stress distribution for parabolic nonhomogeneous material for four-
point and three-point loaded beams such that realistic errors may be
obtained for a varying modulus of elasticity as a function of beam depth.

c. Anisotropy be accounted for when determining bend strength.

15. Finally, it is suggested that a simple and easy-to-use loading fixture, as
suggested in recommendations 7 and 8 above, be developed, if feasible.
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TABULATIONS OF ERRORS IN CALCULATING FLEXURE STRESS

Unless otherwise stated, the percent error is determined throughout the text as
[(ab-ox)/xl100; where ab=6M/bd 2 and ax is more nearly the true bending stress.

Table 1. ERROR DUE TO NON-LINEAR Table 4. ERROR CAUSED BY EFFECT

STRESS DISTRIBUTION OF ANTICLASTIC CURVATURE

a/d or L/d % Error E/Ob = lxl03

0 100 b/d % Error
0.5 51.6 1.0 0
0.75 32.2 15.0 0
1.0 21.1 20.0 0.1
1.5 10.6 30.0 0.6
2.0 6.2 40.0 1.5
2.5 4.1 50.0 2.6
3.0 2.9 100.0 4.7
3.5 2.1 500.0 5.9
4.0 1.6 1000.0 6.1
4.5 1.3 - (-V2)l0O = -6.25%
5.0 1.1
6.0 0.7 Note: All errors are negative.
8.0 0.4
10.0 0.3

0

Note: All errors are negative.

Table 5. ERROR FOR BEAMS WITH LARGE DEFLECTION

Table 2. ERROR WHEN ET # Ec  E/ob= 0.5 x 103

ET/Ec % Error ET/Ec % Error % ErrorBeam Loading
0.20 +38.2 1.025 -0.6

0.40 +22.5 1.050 -1.2 L/d 1/3-Four-Point 1/4-Four-Point Thrze-Point
0.60 +12.7 1.075 -1.8
0.80 +5.6 1.10 -2.4 0 0 0 0
0.90 +2.6 1.15 -3.5 25 0.4 0.5 0.3
0.925 +1.9 1.20 -4.6 so 0.9 1.1 0.7
0.950 +1.3 1.30 -6.5 100 2.0 2.3 1.5
0.975 +0.6 1.40 -8.4 150 2.8 3.2 2.1
1.00 0 1.60 -11.7 250 6.3 7.1 4.7

1.80 -14.6
2.0 -17.2 Note: All errors are positive.

Table 6. ERROR DUE TO ECCENTRIC LOAD APPLICATION
Table 3. ERROR CAUSED BY FOR A 1/3-FOUR-POINT LOADED BEAM
INITIAL BEAM CURVATURE When z/L = 1/3 and al/L ja/L

PC/d % Error e/L = ±(a1/L - 1/3) % Error

1 35.1 0 0

2 16.7 0.0019 1.0

3 10.9 0.0038 2.6
4 8.4 0.0057 3.8

10 3.2 0.0076 4.9

i5 2.2 0.0095 6.0
20 1.7 0.0114 7.0

40 0.8 0.0133 8.1
100 0.3 0.0333 16.1

0.0433 18.7
= 100 [(ab-ac)/xcl 0.0443 18.9

Note: All errors are negative. Note: All errors are negative.

25



Table 8. ERROR DUE TO ECCENTRIC LOAD
Table 7. ERROR DUE TO ECCENTRIC APPLICATION FOR A THREE-POINT

LOAD APPLICATION FOR A LOADED BEAM
1/4-FOUR-POINT LOADED BEAM

When al/L # a2/L # 1/2
When /L = 1/2 and a/L 0 a2/L e/L = 1/2 - a1/L Table 9. k, AND k2

e/L -(a,/L - 1/4) % Error ±e/L % Error b/d k, k,

0 0 0 0 1.0 0.1406 0.208
0.0040 3.8 0.025 0.25 1.2 0.166 0.219
0.0080 7.1 0.050 1.0 1.5 0.196 0.231
0.0120 10.0 0.075 2.3 2.0 0.229 0.246
0.0160 12.6 0.100 4.2 2.5 0.249 0.258
0.0200 14.7 0.150 9.9 5.0 0.291 0.291
0.0240 16.6 0.200 19.0 10.0 0.312 0.312
0.0280 18.3 0.250 33.3 0.333 0.333
0.0320 19.8 0.300 56.3

0.0340 20.8 0.400 177.8
0.0400 21.8 0.450 426.3
0.0465 22.9 0.500

Note: All errors are negative. Note: All errors are positive.

Table 10. % ERROR DUE TO BEAM TWISTING
v = 0.25

b/d

V. /b 1.00 1.2 1.5 2.0 2.5 5.0 10.0

a. n = 0.20 1.0 3.18 2.88 2.61 2.32 2.12 1.68 1.47 1.30
2.0 0.84 0.76 0.68 0.60 0.55 0.43 0.38 0.33
2.5 0.54 0.49 0.44 0.39 0.35 0.38 0.24 0.21
5.0 0.14 0.12 0.11 0.10 0.09 0.07 0.06 0.05

10.0 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.10
0 0 0 0 0 0 0 0

b. n = 0.40 1.0 10.58 9.77 8.94 8.06 7.44 6.05 5.36 4.77
2.0 3.18 2.89 2.61 2.32 2.12 1.68 1.47 1.30
2.5 2.09 1.89 1.71 1.51 1.38 1.09 0.95 0.84
5.0 0.54 0.49 0.44 0.39 0.35 0.28 0.24 0.21

10.0 0.14 0.12 0.11 0.10 0.09 0.07 0.06 0.05
- 0 0 0 0 0 0 0 0

c. n = 0.60 1.0 19.01 17.75 16.51 15.11 14.11 11.79 10.58 9.54
2.0 6.58 6.02 5.48 4.10 4.50 3.61 3.18 2.81
2.5 4.44 4.04 3.67 3.26 2.99 2.38 2.09 1.84
5.0 1.20 1.08 0.98 0.86 0.77 0.62 0.54 0.48

10.0 0.31 0.28 0.25 0.22 0.20 0.16 0.14 0.12
® 0 0 0 0 0 0 0 0

d. n = 0.80 1.0 26.88 25.38 23.86 22.12 20.86 17.92 16.22 14.79
2.0 10.58 9.75 8.94 8.06 7.44 6.09 5.36 4.77
2.5 7.35 6.73 6.14 5.50 5.05 4.09 3.58 3.17
5.0 2.09 1.89 1.71 1.51 1.38 1.10 0.95 0.84

10.0 0.54 0.49 0.44 0.39 0.35 0.?8 0.24 0.21
= 0 0 0 0 0 0 0 0

e. n = 1.00 1.0 33.75 32.13 30.47 28.54 27.11 23.64 21.73 20.03
2.0 14.80 13.74 12.69 11.53 10.71 8.83 7.87 7.05
2.5 10.58 9.75 8.94 8.06 7.44 6.05 5.36 4.77
5.0 3.18 2.89 2.61 2.32 2.12 1.68 1.47 1.30

10.0 0.84 0.76 0.68 0.60 0.55 0.43 0.38 0.33
- 0 0 0 0 0 0 0 0

Note: All errors are negative.
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Table 11. ERROR DUE TO WEDGING
x'/d*

Loading 0 0.125 0.25 0.375 0.50 0.75 1.0 1.50

a. Four-point
aid
1.0 4.7 -0.5 -2.8 -2.1 -1.4 -0.7 -0.3 0
1.5 +3.1 -0.3 -1.9 -1.4 -0.9 -0.5 -0.2 0
2.0 +2.3 -0.2 -1.4 -1.1 -0.7 -0.4 -0.2 0
3.0 +1.5 -0.2 -1.0 -0.7 -0.5 -0.2 -0.1 0
4.0 +1.1 -0.1 -0.7 -0.5 -0.3 -0.2 -0.1 0
5.0 +0.9 -0.1 -0.6 -0.4 -0.3 -0.1 0 0
6.0 +0.8 -0.1 -0.5 -0.4 -0.2 -0.1 0 0
8.0 +0.6 0 -0.4 -0.3 -0.2 -0.1 0 0

10.0 +0.4 0 -0.3 -0.2 -0.1 -0.1 0 0
15.0 +0.3 0 -0.2 -0.1 -0.1 0 0 0
20.0 +0.2 0 -0.1 -0.1 -0.1 0 0 0
40.0 +0.1 0 -0.1 -0.1 0 0 0 0
60.0 +0.1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Three-point

L/d
1.0 +21.6 -2.4 -18.8 -25.4 -100.0 +6.2 +1.3 0
1.5 +13.4 -1.4 -10.4 -10.2 -10.1 -100.0 +2.6 0
2.0 +9.7 -1.0 -7.2 -6.4 -5.3 -5.5 -100.0 +0.1
3.0 +6.3 -0.7 -4.4 -3.7 -2.7 -1.9 -1.3 -100.0
4.0 +4.7 -0.5 -3.2 -2.6 -1.8 -1.2 -0.6 -0.1
5.0 +3.7 -0.4 -2.5 -2.0 -1.4 -0.8 -0.4 0
6.0 +3.1 -0.3 -2.1 -1.6 -1.1 -0.6 -0.3 0
8.0 +2.3 -0.2 -1.5 -1.2 -0.8 -0.4 -0.2 0

10.0 +1.8 -0.2 -1.2 -0.9 -0.6 -0.3 -0.2 0
15.0 +1.2 -0.1 -0.8 -0.6 -0.4 -0.2 -0.1 0
20.0 +0.9 -0.1 -0.6 -0.4 -0.3 -0.2 -0.1 0
40.0 +0.4 0 -0.3 -0.2 -0.1 -0.1 0 0
60.0 +0.3 0 -0.2 -0.1 -0.1 -0.1 0 0

0 0 0 0 0 0 0 0

is the distance on either side of the load contact point where failure occurs.

Table 12. % ERROR DUE TO TANGENCY POINT SHIFT

E/ob 1 x 10

P2/d

Loading P1/d 1.0 2.0 5.0 10.0

a. Four-point, 1.0 0.3 0.4 0.7 1.2
a/L - 1/3 2.0 0.5 0.6 0.9 1.4

4.1 0.9 1.0 1.3 1.8
6.1 1.3 1.4 1.7 2.3
8.2 1.7 1.8 2.1 2.7
10.3 2.1 2.2 2.6 3.1

b. Four-point, 0.67 0.4 0.6 1.2 2.2
a/L u 1/4 1.35 0.6 0.8 1.4 2.5

2.7 1.0 1.2 1.8 2.9
4.1 1.4 1.6 2.2 3.3
5.5 1.8 2.0 2.6 3.76.9 2.2 2.4 3.1 4.1

c. Three-point, 1.0 0.1 1
a/L m 1/2 2.0 0.2

4.0 0.4
6.0 0.6 Regardless of 02/d value
8.0 0.8

10.0 1.0

Note: All errors are positive.
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Table 13. % ERROR IN DETERMINING FLEXURE STRESS

a. When neglecting b/d
corner radii r/d 1.0 2.0 4.0

0 0 0 0
0.02 0.1 0.1 0
0.04 0.4 0.2 0.1
0.06 .9 104 0.2
0.08 1.5 0.8 4
0.10 2.4 1.2 0.6
0.15 5.4 2.6 1.3
0.20 9.7 4.6 2.2

b. When neglecting c/d 1.0 2.0 4.0450 chamfer 0 0 0 0

0.01 0.1 0.1 0.1
0.02 0.2 0.1 0.1
0.03 0.3 0.1
0.04 0.9 0.5 0.2
0.05 1.4 0.7 0.4
0.06 2.0 1.0 0.5
0.08 3.4 1.7 0.9
0.10 5.2 2.6 1.3

Note: All errors are positive.

Table 14. SOURCES AND ERRORS

Four-Point Three-Point

Error Source a/d jId T L/d F Pi/d

Nonlinear Stress >3.5 _-2.1 - - >7.0 <-0.6
Distribution, (Table 1)

Et # Ec, (Table 2)
Nonhomogeneity and Error Dependent Upon Material and/or Fabrication Process
Anisotropy

Initial Beam
Curvature, (Table 3) %/d . 100, -0.3

Anticlastic
Curvature,* (Table 4) b/d 15, = 0

Large Deflection, .12.5 +0.3 - - <25 <+0.3
(Table 5)

Wedging Stress,** 5 5-0.9 - - .20 -0.9
(Table 11) (Table 11a) (Table lib)
Tangency Point +.5t +0.5 - <.5 +.2

Shift (Table 12a, a/L = 1/3) (Table 12c)

Neglecting Corner r/d < 0.06
Radii or Chamfer (Table 13) c/d < 0.04 +0.5

Contact Stress - - 7.25/(a/d) - -_29.O/(L/d)

(Eq. 17a) (Eq. 17b)

*Assumed E/ab - lx03
**Assumed the most conservative case (x'= 0).

tAssumed o1/d ,l2/d for both beam systems.
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Table 15. REFERENCE STANDARD BEAM SYSTEMS

1/3-Four-Point Beam Three-Point Beam

b/d 2.0 2.0
a/d 7.0 10.5
L/d 21.0 21.0

/d 1.5 1.5
d/LT 0.043 in. (1.104 mm) 0.043 in.
b 0.250 in. (6.350 mm) 0.250 in.
d 0.125 in. (3.175 mm) 0.125 in.
a 0.875 in. (22.225 m) 1.313 in. (32.944 mm)
r 0.008 in. (0.203 m) 0.008 in.
or c 0.005 in. (0.127 m) 0.005 in.

0.875 in. (22.225mo) -
L 2.625 in. (66.675 mm) 2.625 in.
LT 2.875 in. (73.025 mm) 2.875 in.
P1  0.1875 in. (4.763 mm) 0.1875 in.
s 0.02 in./mln (0.508 mm/min) 0.02 in./min

2810-6/sec 36xI0-6/sec

Table 16. % ERRORS DUE TO SIMPLE BEAM THLORY
ASSUMPTIONS APPLIED TO

REFERENCE STANDARD BEAM TYPE LOADING

1/3-Four-Point andSource Three-Point Loading

Nonlinear Stress -0.1
Distribution, L/d=21,
Table 1

Beam Curvature, -0.3
Pc _ 100, Table 3
Anticlastic Curvature, 0
b/d = 2, Table 4

Large Deflection,* +0.3
L/d = 21, Table 5

Error Span due to -0.4 to +0.3
Beam Geometry

*Assumed E/Ob = 0.5-10'
Table 17. % ERRORS CAUSED BY EXTERNAL FACTORS

FOR REFERENCE STANDARD BEAMS

Type of Loading

Source 1/3-Four-Point Three-Point

Load Mislocation -4.0 +0.1
e/L = tO.006 (Table 6) (Table 8)

Beam Twisting, -1.0' -0.1
Table 10
(0 = 0, *F. V)
Friction +6.1 +4.0
(v = 0.4) (Eq. 15) (Eq. 16)

Wedging* +0.7 +0.9
(Table Ila) (Table 11b)

Contact Point = +0.5 +0.2
Tangency Shift, 01/d = 0 2 /d = 1.5 o0= 1.5

(Table 12a) (Table 12b)

Corner Radii, +0.4 +0.4
Table 13

Error Span -5.0% to +7.7'. -0.1, to +5.6

Assumed the most conservative case, x' = 0.
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APPENDIX A. ANTICLASTIC CURVATURE

When a beam is bent by a moment, it produces a curvature p along its longitu-
dinal axis; there is also curvature present in the transverse or lateral direc-
tion. This moment is defined by orthodox theory as

Mg = (EI/p)B (A-1)

where 0 is a parameter representing anticlastic curvature after Ashwall.
7

Since

ax = Mgc/I = (EI/pI)yB

then

ax = (Ey/p)O (A-2)

where y is the distance from the neutral axis.

The a for such a beam of the simple case will equal 1.0 and if the beam
width to depth is great, i.e., h/d*-, the beam can be considered as a plate so
that 8+1/(l-v 2). It is worthwhile to know the intermediate values of B such that
the effect of anticlastic curvature on the error can be ascertained when assuming
simple beam theory (B = 1.0) is valid.

Ashwall 7 has determined a as a function of Poisson's ratio, beam width,
depth, and neutral axis curvature by accounting for anticlastic curvature and
treating the structure as a beam on an elastic foundation. The function a and
related terms are repeated here in the following:

1 3 2Jv
8 = -+ f(yb) - F(yb) (A-3)

1-v 2  2 yO _v2

where

Y = 3(-V 2)

d2 p2

f(yb) = 2(B2+C2 )[sinh(yb) + sin(yb)]

+ (B2-C2+2BC) cosh(yb) sin(yb)

+ (B2-C2-2BC) sinh(yb) cos(yb)

+ 2(B2 -C2)(yb),

F(yb) = (B+C) sinh(yb/2) cos(yb/2)

(B-C) cosh(yb/2) sin(yb/2),

*To be more exact, b 2/pd - .
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v (sinh(yb/2) cos(yb/2) - cosh(yb/2) sin(yb/2)j and

/3(l-v 2 ) sinh(yb) + sin(yb)

C V sinh(yb/2) cos(lb/2) + cosh(yb/2)sinyb/2)
/3(l-v 2 ) ( sinh(yb) + sin(yb) "

The calculations performed for Table 4 in the text were accomplished in the
following manner:

Since

4 3
yb b ( ,and p (E/o)va, then substituting into the above,

d2 p2

allowing y = d/2, E/a = E/b = 1 X 103 , and v = 0.25 for ceramic materials, we have;

yb = 57.915 x 10- 3 (b/d) (A-4)

By programming (A-3) and prescribing b/d, but first allowing a=1.0, then
iterating in the computer through (A-4), the relationship between b/d and was
obtained. Once this relationship is known, the percent error, defined as

[(1-6)/]100, as a function of b/d is realized. These errors are given in

Table 4 as a function of b/d with E/Gb = I x 103 and v = 0.25.

APPENDIX B. LOAD MISLOCATION

Four-Point Loading

Consider the usual flexure testing setup where the loading head is rigidly
attached to a testing machine, schematically shown in Figure lb and idealized in
Figure Ic. The upper loading head, where the inner span t is fixed, can only
translate in the vertical direction, and the lower support fixture, where the
outer span L is fixed, can be located with reference to the loading head. The
slope and deflection equations between points AB, BC, and CD are as follows:

EL (dYAB/dx) = (Plx 2/2) + cl)
(B-la)

EL YAB = (Plx 3/6) + clx + c2

El (dyBC/dx) = (Pl-P 2 )(x 2 /2) + P2alx + c 3

El yBC = (PI-P 2 )(x 3 /6) + (P2alx
2/2) + c 3x + c4b

and

E1 (dyCD/dx) = (P 1-P 2 -P 3)(x 2 /2) + P2alx + P 3 (al+e) x + c5

E1 YCD = (Pl-P 2 -P3 )(x
3/6) + (P2alx

2 /2) + P3 (al+t)(x2 /2) + c5x + c6  B
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where P1 , P2 , P3, and P4 are the loads, x and y are defined as shown in Figure 1,
E is the Young's modulus of the material, and I is the moment of inertia of the
cross section of the beam.

Through the use of the various boundary conditions the constants are deter-
mined to be:

C1 = -1/6 {P1 (L
2-a2 ) + (P2/L) [(al-L)

3 + (t+a2)a221

C2 = 0

C3 = -1/6 {P1 (L
2-a2

2 ) + (P2/L) [3a 1
2L - (a 2 +t) 3 + (t+a2)a22]1

C4 = P2 a,
3/6

C5 = -1/6 {PlL 2 + (P2/L) [a1
3+3alL 2-L3] + (P3/L) [(al+t)

3 + 3(al+t) L2-L3]}

C6 = P3[(al+t)
3 /6] + (P2a,3/6).

In order to determine the distribution of loading between the vertical loads
P1, P2, P3, and P4, the final condition of equal deflection must be enforced at
locations B and C (see Figure lb), which is

(YBC)x=al = (YBC)x=ai+£"

Enforcing the above condition in the second part of Equation B-lb results in

= -(t/L) 2  (a/L)3 -/L - (l-al/L) (2-t/L-2aj/L) (Pl/P (a/L) - (al/L+t/L) 3 + {I - [I_(k/L)_a1/L] } iL]'82

Utilizing force and moment equilibrium, a further relationship between all four
forces is obtained and given in the following:

(P1/P2)(al/L) + (P1/P2 -l)t/L P1 /P2 + al/L - 1
P/3= and P 3 /P 2 = (B-3)

(Pl/P 2 ) - 1 + al/L 1 - al/L - /L

The ratio of the stress at x (ox) to the bending stress (ab) from Reference 14
or Equation 9 in the text, where it is assumed that al $ a2, is:

/I x= (B-4)

X b P2+P3 a

2

where a is the value at a, with perfect load location and x, is defined
as shown in Figure Ic.

By manipulation of (B-2) and (B-3), the factor Pl/(P 2+ P) in (B-4) can be put
into terms of al/L and k/L. This was accomplished and the results are shown in the
following equation:
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[(ai/L)/(a/L)]1( - al/L - k/L)[(2,/)(2 - a 1 /L)-2(l a 1/L)2j
x/ b 3(al/L) (1 - /L - a 1 /L) - (I - /L) 2  (B-S)

By defining the eccentricity of loading as e/L = al/L - a/L, Equation B-S becomes:

[(e/L + a/L)/(a/L)I[1-(e/L + a/L)- Z/L]{(1/L)[2-(e/L + a/L)]-2[l-(e/L + a/L)] 2 }

ox/cGb =3(e/L + a/L)[l - /L - (e/L + a/L)]-(1- IL) 2

(B-6)

Calculations of Ox/Gb were obtained for the reference standard beams, where Z/L = 1/3
as well as k/L = 1/2, by allowing e/L to take on negative values only in Equation B-6.
Only negative values were considered because beam failure will occur due to a realisti-
cally larger moment than idealized when ignoring eccentricity. These error calculations
although determined by allowing e/L < 0 in Equation B-6, are indicated as ±e/L in Table 6
for i/L = 1/3 and Table 7 for k/L = 1/2. This simply indicates that the location of the
maximum moment or stress is at xj= a, when e/L <0 and at xj= a, + Z when e/L > 0.

The reader is cautioned that for each value of k/L there exists a set of limits on
(B-2), (B-3), and (B-S). That is, a, can be such that either P2 or 03 can equal zero,
because (YBc)x=al ' (YBC)x=a1 +i, and the system changes from four-point to an eccentric
three-point loading. The limiting values can be determined by allowing P2 = 0 in Equa-
tion B-2. This was accomplished in terms of the load eccentricity ratio e/L for the ref-
erence standard beams, when L/L = 1/3, and found to be -0.0443, and when L/L = 1/2, the
result was -0.0465. Thus Tables 6 and 7 do not extend beyond e/L of -0.0443 and -0.0465.

APPENDIX C. BEAM TWISTING

If line loads are nonuniform or nonparallel between pairs of load contacts,
or if the cross section of the specimen is skewed along its length, as shown in
Figure 3, a net torque will result. The addition of torque gives rise to a max-
imum principal stress due to bending and torsional stresses. 1 1

,14 Failure assumed
to be caused only by bending stress will yield an error. Two cases are consi-
dered: Case I - Failure occurs prior to specimen realignment in the bend fixture
(bottoming), and Case II - Failure occurs at or after bottoming.

Case I

Recalling that the bending stress for a loaded beam is

ax = Ob = 6Mb/bd2  (C-1)

where Mb is the measured bending moment at failure; for a four-point loaded beam
Mb = Pa, and for a three-point loaded beam Mb = PL/4.

The shear stress due to torsion is
2

T = Tb/k2 bd
2  (C-2)

where Tb is the torque and equal to Pbb for four-point bending and Pbb/2 for
three-point bending, and k2 is a numerical factor obtained from Reference 2 and
is given in Table 9.
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Prior to bottoming, the normal stress is

an = (az/2)(l-cos2e) + (ax/2)(l+cos20) + Tsin2e, (C-3)

where e is the angle of a plane inclined to the x axis. Since we shall assume a
plane strain condition, i.e., ez = 0, then

Ez = 0 = (I/E)(az-vax) or az = vax = vob

an = (ab/ 2)[(l+v) + (l-v)cos2e] + tsin26. (C-4)

Now an is maximum when

tan28* = 2T/(ax-az);

but since

CTZ = VOx

then

tan28* = 2T/(l-v)cb. (C-5)

where e* is the angle of a plane inclined to the axis at which principal stress is
a maximum. Substitution of (C-I) and (C-2) into (C-5) for the condition prior to
bottoming gives:

tan2e* = (Tb/Mb)/[3(1-v)k2], (C-6)

sin2O* = (Tb/Mb)/[(Tb/Mb)2 + (3k2 )2(lv) 2I , (C-7)

and

cos26* = [3k2(l-v)]/[(Tb/Mb) 2 + (3k2)2(lv)2] . (C-8)

Noting that

T = (Gb/2)[(Tb/Mb )/3k21, (C-9)

and by substitution of the above relationships into (C-4) with some algebraic ma-

nipulation, we obtain:

, 0 nmax = (ab/ 2 ) {(l+v) + (1/3k 2)[(Tb/Mb) 2 * 9(l-v)2k 2 21 (C-10)

prior to bottoming. The shear stress due to torsion can be related to the twist
angle2 of the beam through the following relationship:

T = (kj/k 2 )Gd[4s/LT) + (4F/1'1 (C-11)

where *s is the twist angle along the length of the specimen, *F is the twist
angle between a pair of load and contact points relative to *s, it is equal to
either "a" for four-point beam systems or L/2 for three-point beam systems, k1
is another numerical factor2 given in Table 9 and G = E/2(l+v), the shear mod-
ulus of the material.
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Equation (C-2) can be equated to (C-11) and thus we obtain:

Tbe = [klE/2(1+v)]bd2 [(d/LT) s + (d/')OF]  (C-12)

where Tb is the torque when bottoming occurs. Thus, in order for (C-10) to be ap-
plicable! Th must be equal to or greater than the torque provided by the bending
moment, i.e.? Th = (Z'/b)Mb or The/Tb 2 1, and from (C-2) and (C-12):

Tbe/Tb = [3klE/ob(l+v)(b/i'l)bd2 [(d/LT) s + (d/I')WF] k 1.0, or

n = (b/i')[3k,(E/ob)/(l+v)][(d/LT)Os + (d/i')OF] > 1.0 (C-13)

where ab is the bending stress at failure according to (C-1).

Note that Tb/Mb = b/i' and for four-point loading k' = a; for three-point
loading V' = L/2, thus (C-10) becomes:

Gnmax = (Ob/2) (i+ v) + (I/3k2)[(I/(i'/b))
2 + 9(I-)2k22] (C-14)

with n = 1.0.

Case II

If, however, n < 1.0 then bottoming occurs prior to or at failure and the
following analysis is applicable:

Equations (C-4) and (C-5) are still appropriate but the shear stress is

' = Tbe /k2bd
2 . (C-1S)

Substitution of T from the above and Ob from (C-1) into (C-5) gives

tan20* = (Tbe/Mb)/3(1-%)k2,

but from (C-13) Tbe = nTb and thus:

tan2e* = (nTbe/Mb)/3(l-v)k2. (C-16)

As in Case I, using a like procedure we determine anmax to be:

0nmax (ab/ 2) (l+v) + (1/3k 2)[n
2 (Tb/Mb)2 + 9(1-v)2k 22] } (C-17)

with

n = [3k,(E/ob)/(l+v)][(d/LT) s + (d/i')WFI < 1.0. (C-18)

Equation (C-17) is applicable to both systems since (Tb/Mb) = b/i' = b/a for the

three-point beam bending system, and (Tb/Mb) = L'/b = 2b/L for the four-point
system. Thus (C-17) becomes

anmax = COb/ 2) (+v) + (1/3k 2)[ (nb/')
2 + 9(l-v)2k 22] . (C-19)
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Notice when n 1, (C-19) reduces to (C-14).

Finally, the percent error is defined as:

- = [(ab- anmax)/anmax1OO. (C-20)

Errors were calculated in accordance with (C-20), with v = 0.25 for Case I (n =

0.20, 0.40, 0.60, and 0.80) and Case II (n = 1.0). These results are given in
tabular form as a function of b/d and 1'/b in Tables 10a to 10e in the text.

APPENDIX D. WEDGING STRESSES

We allow the stress in the x direction in Figures 1 and 2 to be

ax = ab + (2P/bd)OT, (D-l)

where ab is the bending stress, i.e., ab = (6Mx/bd2), and 2P/bd is the local
stress, i.e., the so-called wedging stress, and OT is a numerical factor dependent
on the normalized distance x'/(d/2) on either side of the applied load point.

2

For convenience the value of OT at the tensile side of the beam as a function

of x'/(d/2) is given in Table D-1.

The percent error is defined as:

_E [ (ob-ax)/alo00, (D-2)

and substitution of (D-l) into the above equation gives

T -=T/[(obI2P/bd)+T]) 100. (D-3)

Since ab = 6Mx/bd2, then (D-3) becomes:

{-$T/(3Mx/Pd+OT)} 100. (D-4)

For a four-point loaded beam the bending moment is constant, i.e., Mx = Pa,
and thus equation (D-4) becomes:

=E 6-T/[ (3a/d)+0T} 100. (D-5S)

From Table D-1 and Equation D-5 above, it is seen that the error is dependent
on OT or the fracture location, which is the normalized distance x'/(d/2). These
errors have been computed for the four-point loaded beam and presented in Table fla.

For the three-point loaded beam, (D-4) is still applicable, but recalling that

Mx = P/2[(L/2)-x'] and substituting Mx into (D-4) gives:

-E= (-OT/( (Ld)-(x/d)+OT))100. (D-6)

4 2
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Again, as can be seen by (D-6), the percent error is dependent upon aT and

the normalized fracture location. These percent errors are given in Table 11b.

Table D-1. WEDGING PARAMETER T

0 -0.1332
0.125 +0.0137
0.250 +0.0868
0.375 +0.0640
0.500 +0.0421
0.750 +0.0220
1.000 +0.0095
1.500 +0.00075

APPENDIX E. CONTACT POINT TANGENCY SHIFT

Consider the four-point loaded beam shown in Figure 4. The original span "a"l
is seen to decrease by the amount (hl+h 2) due to rolling or slipping of the beam
on its support and load points. The beam fulfills the condition:*

d 2/dX2 = M/EI. (E-1)

The moments are defined as:

M= P(x-hl), 0 5 x 5 (a-h2)

Mx P[a-(hli-h2)], (a-h 2 ) x < L-(a-h 2 ).

The slope equations are

EI(dy/dx) = P[(x2 /2)-hlxl + C1, 0 :5 x :5 (a-h1), and (E-2)

EI(dy/dx) = P[a-(hl+h2 )]X + C2, (a-h2) x s L-(a-h 2). (E-3)

Now when x = a-h2,

C1 + P {[ (a-h2 )2/2] - (a-h2)hi} P~a-(hlih2)](a-h2) + C2, or

C-l= -(P/2)(a-h 2 )
2. (E-4)

Note also that when x =L/2 and dy/dx =0 in (E-3),

C2 = -P[a-(hl+h 2)]L/2.(E)

After substitution Of C2 into (E-4) we obtain:

C1 = (P/2) ({(a-h2 )2 - Lla-(hl+h2 )]} (E-6)

9t is rallized that a change in span dimensions must live rise to horizontal reactions; but it is assumed that this effect is small,
and is thus ignored.
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Substitution of these constants into the appropriate slope equations gives:

EI(dy/dx) = P[(x 2/2)-hix] + (P/2) ((a-h 2 )2 - L[a-(h1+h 2)] (E-7)

with 0 < x < (a-h2), and

EI(dy/dx) = P[a-(hl+h2 )] [x-(L/2)], (E-8)

with (a-h2) < x < L-(a-h2).

Now when x = h, from the geometry dy/dx = -hl/f i -hi/Ri and when
x = a-h2 , dy/dx = -h2/' 2-h - -h2/R2 . The above relationships are used with (E-7)
and (E-8) and we obtain:

(R1 /d) = (hl/a) CE/ob)
(hl/a) 2 

- (l-h 2 /a) 2 + (L/a)[l-(hl/a + h2/a)] (E-9)

and

l-(h 2/a) = (1/2) [(L/2a) + (hl/a) + A2]

- /[(L/2a) + (hl/a) + A2 ] 2 - 4[(hl/a)(L/2a) + A21} (E-10)

where A2 = (E/2ab)/(R2/d).

Note that for the three-point loading case h2 = 0, L/a 2, and P P/2 and
(E-9) reduces to:

R1/d = [2(hl/L)(E/Ob)]/[(2hl/L)-l]2 , (E-11)

and the region of validity of (E-10) vanishes.

The percent error is defined as:

= [(ab-x)/Ox~lOO = [(Mb-Mx)/Mx]l00, or

= ([(hl/a) + (h2/a)]/[l - (hl/a) - (h2/a)]}lO0 (E-12)

for four-point loading and

e ={(2hl/L)/[l - (2hl/L)])100 (E-13)

for three-point loading.

Calculations were performed by the following procedure. It was assumed that
E/Ob = 1 x 103, and thus A2 = (1 x 108)/(p2 /d); then for the 1/3- and 1/4-four-
point loading case a/L = 1/3 and 1/4, numerical values were assigned to P2/d and
hl/a and then h2/a was determined from (E-10). Those numerical values of hl/a
and corresponding h2/a were substituted into (E-9) to determine pl/d. This same
procedure was used for the three-point loading case with h2 = 0 and L/a = 2. Once
the parameters hl/a, h2/a, P2/d and 01/d are known, percent errors according to (E-12)
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for the four-point loading case and (E-13) for the three-point loading case can be
determined. Such errors are given in Tables 12a-c.

APPENDIX F. ERROR DUE TO NEGLECTING CHANGE IN MOMENT OF INERTIA

CAUSED BY CORNER RADII OR CHAMFERS

Corner Radius

Consider Figure 5a, which shows the cross section of a rectangular beam with
corner radii r. The true moment of inertia (Ixx)r about the centroidal or neutral
axis x-x is:

(Ixx)r = b(d-2r)3/12 + (b-2r)r3/6 + (1/2)(b-2r)(d-r)2r

+ 2r 4 (7r/9 - 8/97r) + Tr2 [d/2 - r(1 - 4/3i)]2 (F-1)

Most investigators, however, will neglect the loss of inertia when calculating the
bending stress due to corner radii and assume that Ib = bd

3/12, and if we define

the percent error as f[Ib~(Ixx)r]/(Ixx)r}l00, we then obtain:

1 - ({1-2r/d) 3 + 2[1-2(r/d)(d/b)](r/d)3

+ 6[1-2(r/d) (d/b)](1-r/d)2(r/d) + 24(d/b) (r/d) 4(n/9-8/9w)

+ 127T(d/b)(r/d)2[1/2-(r/d)(1-4/31T)]2

(1-2r/d)3 + 2[l-2(r/d)(d/b)](r/d) 3 + 6[1-2(r/d)(d/b)](l-r/d) 2 (r/d)

+ 24(d/b)(r/d)4(r/9-8/9r) + 121T(d/b)(r/d)2 [l/2- r/d(l-4/3) ] 2.
(F-2)

45' Chamfer

Now consider Figure Sb, which shows a rectangular beam with 450 corner cham-
fers c. The true moment of Inertia (Ixx)c about the x-x axis is:

(Ixx)c = (bd3/12) - (c2 /9)[c 2 + (1/2)(3d-2c) 2] (F-3)

Defining the error in the same manner as above results in:

(4/3)(d/b)(c/d)2 [(c/d)" + (i/2)(3-2c/d) 2]
= 100
I - (4/3)(d/b)(c/d)2 [(c/d) 2 + (1/2)(3-2c/d) 2 ] j (F-4)

The errors were calculated for various values of d/b as a function of r/d
from (F-2) and c/d from (F-4). These results are shown in Tables 13 and 14.

I

40



DISTRIBUTION LIST

No. of No. of
Copies To Copies To

Office of the Under Secretary of Defense for Research and Commander, U.S. Army Tank-Automotive Research and Development
Engineering, The Pentagon, Washington, DC 20310 Command, Warren, MI 48090

1 ATTN: Mr. J. Persh I ATTN: Dr. W. Bryzik
I Or. G. Ganota 1 Mr. E. Hamperian

1 0. Rose
12 Commander, Defense Technical Information Center. I ORDTA-RKA, Dr. J. Chevalier

Cameron Station, Building 5. 5010 Duke Street, I DROTA-UL, Technical Library
Alexandria, VA 22314 1 DRDTA-R

1 National Technical Information Service, 5285 Port Royal Road, Commander, U.S. Army Armament Research and Development Command.
Springfield, VA 22161 Dover, NJ 07801

1 ATTN: Mr. J. Lannon
Director, Defense Advanced Research Projects Agency, 1 Dr. G. Vezzoli
1400 Wilson Boulevard, Arlington, VA 22209 1 Mr. A. Graf

1 ATTN: Dr. A. Bement 1 Mr. Harry E. Pebly, Jr., PLASTEC, Director
I Dr. Van Reuth I Technical Library
1 MAJ Harry Winsor

Commander, U.S. Army Armament Materiel Readiness Conand,
Batielle Columbus Laboratories, Metals and Ceramics Rock Island, IL 61299
Information Center, 505 King Avenue, Columbus, OH 43201 1 ATTN: Technical Library

1 ATTN: Mr. Winston Duckworth
1 Dr. D. Niesz Conmander, Aberdeen Proving Ground, MD 21005
1 Dr. R. Wills 1 ATTN: DRDAR-CLB-PS, Mr. J. Vervier

Deputy Chief of Staff, Research, Development, and Acquisition, Commander, U.S. Army Mobility Equipment Research and Development
Headquarters, Department of the Army, Washington, DC 20310 Command, Fort Belvoir, VA 22060

1 ATTN: DANA-ARZ I ATTN: DRDE-EM, Mr. W. McGovern
I OMAK-CSS, Dr. J. Bryant i DRDME-V, Mr. E. York
I DANA-PPP, Mr. R. Vawter 1 DRDME-X, Mr. H. J. Peters

Commander, U.S. Army Medical Research and Development Command, Director, U.S. Army Ballistic Research Laboratory, Aberdeen
Fort Detrick, Frederick, MD 21701 Proving Ground, HO 21005

1 ATTN: SC6R-SI. Mr. Lawrence L. Ware, Jr. t ATTN: DRDAR-TSB-S (STINFO)

Commander, Army Research Office, P.O. Box 12211, Research Commander, Rock Island Arsenal, Rock Island, IL 61299
Triangle Park, NC 27709 1 ATTN: SARRI-EN

1 ATTN: Information Processing Office
1 Dr. G. Mayer Commander, U.S. Army Test and Evaluation Command,
1 Dr. J. Hurt Aberdeen Proving Ground, MO 21005

I ATTN: ORSTE-ME
Commander., U.S. Army Materiet Development and Readiness
Command, 5001 Eisenhower Avenue, Alexandria. VA 22333 Commander, U.S. Army Foreign Science and Technology Center,

1 ATTN: DRCDMO-ST 220 7th Street, N.E., Charlottesville. VA 22901
1 DRCLDC 1 ATTN: Military Tech, Mr. W. Marley

Commander, U.S. Army Electronics Research and Development Chief. Benet Weapons Laboratory, LCWSL, USA ARRADCOM,
Command. Fort Monmouth, NJ 07703 Watervliet, NY 12189

1 ATTN: OfLSD-L I 1 ATTN: DRDAR-LCB-TL

Commander, U.S. Army Materiel Systems Analysis Activity, Commander. Watervliet Arsenal, Watervllet. NY 12189
Aberdeen Proving Ground, NO 21005 1 ATTN: Dr. T. Davidson

1 ATTN: DRISY-NP4 H. Cohen - Director, Eustis Directorate, U.S. Army Mobility Research

Commander, U.S. Army Night Vision Electro-Optics Laboratory, and Development Laboratory, Fort Eustis, VA 23604
Fort Belvoir, VA 22060 1 ATTN: Mr. J. Robinson, DAVDL-E-MOS (AVRADCOM)

I ATTN: -DELNV-S, Mr. P. Travesky 1 Mr. C. Walker
I OeLNV-L-D, Dr. R; Baser

Commander, U.S. Army Engineer Waterways Experiment Station,
Commander, Harry Diamond Laboratories, 2800 Powder Mill Vicksburg, MS 39180
Road, Adelphi, MO 20783" 1 ATTN: Research Center Library

1 ATTN: Mr. A. Benderly
1 -Technical Information Office U.S. Army Munitions Production Base Modernization Agency,
1 DELHO-RAE Dover, NJ 07801

I ATTN: SARPM-PBM-P
Commander, U.S. Army Missile Command, Redstone Arsenal.
AL 35809 Technical Director, Human Engineering Laboratories,

I ATTN: Mr. P. Ormsby Aberdeen Proving Ground, NO 21005
I Technical Library 1 ATTN: Technical Reports Office
I DRSMI-TB, Redstone Scientific Information Center

Chief of Naval Research, Arlington, VA ?f??
Commander, U.S. -Army Aviation'Research and Development 1 ATTN: Code 471
Command, 4300 Goodfellow Boulevard, St. Louis, NO 63120 1 Dr. A. Diness

I ATTN: DRDAV-EGX I Dr. R. Pohanka

1 DRDAV.QE
I Technical Library Naval Research Laboratory, Washington, DC MI37S

1 ATTN: Dr. J. M, Krafft - Code 5830

Commander, U.S. Army Natick Research and Development 1 Mr. R. Rice

Laboratories. Natick, MA 01760 I Dr, Jim C. I. Chang
I ATTN: Technical Library
1 Or. J. Hanson Headquartrs, Naval Air Systems Commad,

Washington, DC ?0360
Commander, U.S. Arm Satellite Cnmmunlcations Agency, I ATN: Code 5203
Fort Monmnuth, NJ 7703 I Code MAI-O41M

I ATTN: Technical Document Center



No. of No. of
Copies To Copies To

headquarters. Naval Sea Systems Command, 1941 Jefferson National Science Foundation. Washington, OC 20550
Davis Highway, Ar ington, VA 22376 1 ATTN: B. A. Wilcox

I ATTN: Code 035

Admiralty Materials Technology Establishment, Polle, Dorset BH16
Headquarters, Naval Electronics Systems Command, 6JU, UK
Washington, DC 20360 1 ATTN: Dr. D. Godfrey

I ATTN: Code 504 1 Dr. M. Lindley

Co ander, Naval Ordnance Station, Louisville, KY 40214 AiResearch Manufacturing Company, AiResearch Casting Company,
I ATTN: Code 25 2525 West 190th Street, Torrance, CA 90505

1 ATTN: Mr. K. Styhr
Cexuander, Naval Material Industrial Resources Office, Building 1 Dr. D. Kotchick
537-2. Philadelphia Naval Base, Philadelphia, PA 19112

1 ATTN: Technical Director AiResearch Manufacturing Company, Materials Engineering Dept..
111 South 34th Street, P.O. Box 5217, Phoenix, AZ 85010Coamander, Naval Weapons Center. China Lake, CA 93555 1 ATTN: Mr. 0. W. Richerson, MS 93-393/503-44

1 ATTN: Mr. F. Markarian I Dr. W. Carruthers
1 Mr. E. Teppo
I Mr. M. Ritchie AVCO Corporation, Applied Technology Division, Lowell Industrial

Park, Lowell, MA 01887
Commander, U.S. Air Force of Scientific Research, I ATTN: Dr. T. Vasilos
Building 410. Bolling Air Force Base, Washington, DC 20332

1 ATTN: MAJ W. Simmons Carborundum Company, Research and Development Division,

P.O. Box 1054. Niagara Falls, NY 14302
Commander, U.S. Air Force Wright Aeronautics Laboratory, 1 ATTN: Dr. J. A. Coppola
Wright-Patterson Air Dr. M. LindleyForce Base, OH 45433

1 ATTN: AFWAL/MLLM, Dr. N. Tallan Case Western Reserve University, Department of Metallurgy,
I AFWAL/MLLM, Dr. H. Graham Cleveland, OH 44106
1 AFWAL/MLLM, Dr. R. Ruh 1 ATTN: Prof. A. H. Heuer
1 AFWAL/MLLM, Dr. A. Katz
I AFWAL/MLLM, Mr. K. S. Mazdiyasni Ceradyne, Inc.. P.O. Box 11030, 3030 South Red Hill Avenue,
1 Aero Propulsion Labs, Mr. R. Marsh Santa Ana, CA 92705

I ATTN: Dr. Richard Palicka
Conmander, Air Force Weapons Laboratory, Kirtland Air Force
B-.e, Albuquerque, NM 871,15 Combustion Engineering, Inc., 911 West Main Street,

1 ATTN: Dr. R. Rudder . ". - Chattanooga, TN 37402
I ATTN: C. H. Sump

Commander, Air Force Armament Centcr, Eglin Air Force Base,
FL 32542 Cum ins Engine Company, Columbus, IN 47201

1 ATTN: Technical Library I ATTN: Mr. R. Kama

National Aeronautics and Space Administration, Defence Research Establishment Pacific, FMO, Victoria. B.C.. VOS
Washingt'On. DC 20546 . IBO, Canada

I ATTN: Mr.:G. C. Deutsch - Code RW 1 ATTN: R. 0. Barer
1 Mr. J.. Gangler
1 AFSS-AD; Office of Scientific and Tech'niLcaI Information Deposits and Composites, Inc., 1821 Michael Faraday Drive,

Reston, VA 22090
National Aeronautics and Space Administration, 1 ATTN: Mr. R. E. Engdahl
Lewis Research Center, 21000B.rookpark Road.
Cleveland, OH 44135 Electric Power Research Institute. P.O. Box 10412.

1 ATTN: J. Accurlo, USAMRDL 3412 Hlllview Avenue, Palo Alto, CA 94304
I Dr. H. B. Probst, MS 49-1 1 ATTN: Dr. A. Cohn
I Dr. R. Ashbrook
I D.S. Dutta .. European Research Office, 223 Old Maryleborne Road, London,
I Mr. S. Grisaffe NWI - Sthe, England

1 ATTN: Dr. R. Quattrone
National eronautlcs and Space Administration, Langley I LT COL James Kennedy
Research Center, Center, Hampton, VA '23665

1 ATTN: Mr.J. Buckley, Mail Stop J87' FMC Corporation, 1105 Coleman Avenue, Box 1201, San Jose.
CA 95108

Commander. White Sands Missile Range, Electronic Warfare 1 ATTN: Dr. A. E. Gorum, Manager of Advanced Technology
Laboratory, OMEW, ERADCOM, White. Sands, NM 88002 Ordnance Engineering Division

1 ATTN: Mr. Thomas Re~der, DRSEL-WIM-ME
Ford Motor Company, Turbine Research Department,

Department of Energy, Division of Transportation, 20000 Rotunda Drive, Dearborn, MI 41171
20 Massachusetts Avenue, N.W., Washington, DC 20545 1 ATTN: Mr. A. F. McLean

I ATTN: Mr.-George Thur (TEC 1 Mr. E. A. Fisher
I Mr. Robert Schulz (TTC) - I Mr. J, A. Mangels
I Mr. John Neal (CLNRr) I Mr. A. GovilaS Mr." Steve Wander-(Fossil Fueis)

General Atomic Company, P,O. Box 81608, San Dieo, CA W|13
Department of Transportation, 400 Seventh Street, S.W., I ATTN: Jim Halagraf
Washington, OC 20590

1 ATTN: Mr. M. tauriente General Electric Coipany, Mall Drop H-99, Cincliati, ON 4$:j%
1 AITNz Mr, Warren Nelson

I Mechanical Properties Data Center, Relfour Stulen Inc.,
1191/ W. Bay Shore Drive, Traverse City, MI 49684 General Electric Company, Research and Cievolopet Ceeir,

Box 8, Schenectady, NY 1?345
National Bureau of Stindards, Washington, DC ?0234 I ATTN: Dr, R, J, Charles

I ATTN: Dr. 5, Wiederhorn I Dr. C. D, Greskovich
I fr. J. B, Wachtman Dr, S. Prochalk4

Natlonal Research Council, National Materials Advisory BoArd, General Motors Corporation, AC Spark Plug vdi
'101 Constitution Avenue, Washington, DC ?041 fllint, MI 4i1SS

I ATTN: II. Groves I AITM Dr, M, lerq
,R: M, Spriqgl



No. of No. of
Copies To Copies To

Georgia Institute of Technology, EES, Atlanta, GA 30332 Royal Aircraft Establishment, Materials Department,
1 ATTN: Mr. J. 0. Walton R 178 Building, Farnborough, Hants, ingland

I ATTN: Or. N. Corney
GTE Laboratories, Waltham Research Center, 40 Sylvan Road,
Waltham, MA 02154 Shane Associates, Inc., 7821 Carrlelgh Parkway, Springfield.

1 ATTN: Dr. C. Quackenbush VA 22152
Or. W. H. Rhodes 1 ATTN: Dr. Robert S. Shane, Consultant

lIT Research Institute. 10 West 35th Street, Chicago, IL 60616 Silag Inc.. P.O. Drawer H,'Old Buncombe at Poplar Greer,
1 ATTN: Mr. S. Bortz, Director, Ceramics Research SC 29651
1 Dr. 0. Larsen 1 ATTN: Or. Bryant C. Bechtold

Institut fur Werkstoff-Forschung, DFVLR, 505 Porz-Wahn, Linder Solar Turbine International, 2200 Pacific Coast Highway,
Hohe, Germany San Diego, CA 92138

1 ATTN: Dr. W. Bunk 1 ATTN: Mr. Andrew Russel, Mail Zone R-1

Institut fur Werkstoff-Forschung, OFVLR, 5000 Koln 90(Porz), Stanford Research International, 333 Ravenswood Avenue,
Linder Hohe, Germany Menlo Park, CA 94025

1 ATTN: Dr. Ing Jurgen Heinrich I ATTN: Dr. P. Jorgensen
1 Dr. D. Rowcliffe

International Harvester, Solar Division, 2200 Pacific Highway,
P.O. Box 00966, San Diego, CA 92138 State University of New York at Stony Brook, Department of

I ATTN: Or. A. Metcalfe Materials Science, Long Island, NY 11790
1 Ms. M. E. Gulden 1 ATTN: Prof. Franklin F. Y. Wang

Jet Propulsion Laboratory, C.I.T., 4800 Oak Grove Drive, TRW Defense and Space Systems Group, Redondo Beach, CA 90278
Pasadena, CA 91103 1 ATTN: Francis E. Fende 1

1 ATTN: Or. Richard Smoak United Technologies Research Center. East Hartford, CT 06108
Kawecki Berylco Industries, Inc., P.O. Box 1462, Reading, 1 ATTN: Dr. J. Brennan
PA 19603 1 Dr. F. Galasso

1 ATTN: Mr. R. J. Longenecker University of California, Department of Materials Science and

1 Mr. Edward Kraft. Product Development Manager, Industrial Sales Engineering, Hearst Building, Berkeley, CA 94720
Division, Kyocera InterNational, Inc.,, 8611 Balboa Avenue, 1 ATTN: Dr. D. Clarke
San Diego, CA 92123 University of California, Lawrence Livermore Laboratory,

Martin Marietta Laboratories, 1450 South Rolling Road, P.O. Box 808, Livermore, CA 94550
Baltimore, MD 21227 1 ATTN: Mr. R. Landingham

1 ATTN: Dr. J. Venables 1 Dr. C. F. Cline

Mas'sachusetts Institute of TechoIlogy, Department of Metallurgy University of Florida, Department of Materials Science and
and Materials Science, Cambridge, MA 02139 Engineering, Gainesville, Fl. 12601

1 ATTN: Prof. R. L. Cob)e 1 ATTN: Dr. L. Hench
1 Prof. H. K. Bowen
1 Prof. W. D. Kingery University of Massachusetts, Department of Mechanital
1 Prof. R. Cannon Engineering, Amherst, MA 01003

1 ATTN: Prof. K. Jakus
Materlals. Research Laboratories, P.O. Box 50, Ascot Vale, 1 Prof. J. Ritter
VIC 3032, Australia

1 ATTN: Dr. C. W. Weaver University )f Newcastle Upon Tyne, Department of Metallugy 0
Engineering Materials, Newcastle Upon Tyne, NEI 7 RU. E-amd

Midwest Research Instftute, 425 Volker Boulevard, Kansas City, 1 ATTN: Prof. K. H. Jack
MO 64110

1 ATTN: Mr. Gordon W. Gross, Head, Physics Station University of Washington, Ceramic Engineering Division, F-lO.
Seattle, WA 98195

1 Dr.-Noward.M.izuhara, GTE-Wesgo, 477 Harbor Boulevard, Belmont, 1 ATTN: Prof, James I. Mueller

CA 94002
Virginia Polytechnic Institute, Department of Itaterials

Norton Company, Worcester, MA 01606 Engineering, Blacksburg, VA 24061
1 ATTN: *Dr. N. Ault 1 Prof. 0. P. H. Hasselman

I -Dr. M. L. Tor-t Westinghouse Electric Corporation, Reiarch tLaoratoei*.,
Pennsylvania State University, Materials Research Laboratory, Pittsburgh, PA 1523S
Materials Science Department, University Park, PA 16802 1 ATTN: Dr, R. J. Bratton

I ATTN: Prof.'R. Roy t t U 1 Or, B. Rossing
I Prof, R. E. NewnhamI Prof; P. E. eTresler I Mr, Joseph T, Bailey, 3M Crepany, lechatal C#*lit holm%
I Prof. R. Bradt Division, 3M Center, Building ZO?-14, $t, P&Al, M SUN1
1 Prof. P, .Bratbin
I Prof. V. S. Stubican I Dr. Jacob Stiglich, Dart Ilrustrietl Feete tk"t - *t*im,

Pratt and Whitney Aircraft, PO. Box 2691, West Palm Deach, 10258 Norris Avenue, Pcolua CA 1131

FL 33402
1 ATTN: Mr. Ml1 Msndelson I Or, J, Petro ic - CO-S, iul 4)S% 1)30 , &oltms A twM04

Laboratoriet, Los Alm%, W 81$

PSC, Box 1044,,APO San Francisco 96328
I ATTNt MAJ A, Anthony Borges I Mr, R, 3, lentoer, CAl Car ratic*n ,If 1 0Wi44*e "k~t.

Sldto 16, Frederick, 0 Ir 0)
RIAS, Division of the Martin-Company, Baltimore, MI 1r?03

I ATTN: Or, A. A, C, Westwood Drerctor, ArAy, terilh APA "Kh)t2? Chlo,Watertown , MAOW?

Rockwell International Science Center, 149 Camino Do% Pio%, 2ATTMz DPAXI40-
Thousand Dali, CA 91360 Autr

I AITNi Or, F, Lange



to-- 0 1 g co
v >EL c 4 0 t>CL 0 0 .

I I L CU a>,
to w-OL 40 41 OL- C~-

LA..- C ~ 0 .A E Ia T o I

.. JO ~ ~ ~ ~ ~ ~ ' >L aC LL U C i-W ac>.C, L L
(~~tLW 4, 0L 1'o W..Ej L.a 1.51J 1 ELAL WA La

WI ZO I C OWCa-L 0

W wL .'JL 0 0 'C At

0A-wt0*A1 MCI I wa~ ~ aL a
) - -o lu a .a'0- a I MSLALTmA

A UC LA Lw .L LA c u LA . I I

a *.W--tca-L W- .-. 0-0

.0 c..' Oo 0 C -tOA a , C

* j - - -oa'eG .0 ~ o~'4 ~atE , ~ o.-

c C0 -OtO'0'~ - tto 0'. 'w C *-O
0 41 a, 4.4 c v.. 0 - 0 e c w.. 15

-~~~c =-: ULA LV- O 'tC t L ~
C)OL >1CC WW UI.' LI- . .tO' ,- >.C.4.

I-a .0 w 0 1 4 1 1W . V- tAoJ ; 4 . U . C .; 2

Wg t 0' LU WLA 10 2 H) 3 g C C LA- WL

co39.. C-o .c .- oe W M
0

L 4A AcW .- O a, 1= 4w
toto ~ W. ja~ C. L .'1 oat

* c.- oa o-. - 6,4W~ a, 2 c-~ Ct r1.'. a 444
.AO, a = 4 toIC0C ~U-~A' *LLJ~ae ~ ->CO0CNt~OLAL- S ttAAa' LOA -=w-e$ Lc 0-W~a,- 40 * -e

0.0 wc 4L v cto.- if... Mttt tC te e W cM- ma t
CK) A 4,1o- ta *-. 4U cC~tW L >to- ,ta~ -- 4 4)c~~ - 0-4 1o *.6 e ~o.-c,-. -a o L e. a.c4

U- O O 4, Co 0. 4,LL -. . 0' ,- C --

*~~~~~~~~~~~~~~~~ LACaC:-0 4'Ao O 0W ~ ~ ~ a A eC 40 > ,,Oa
* 3 t ae L c ,0,. 40'tA- M41=g 0. I.A.L5OI. t

CC~~t.4-a to 0,e~ 4 4 L -o~.a cc t to 6 j - 4.-

Az 02 0z S~~
4

ta -0 t! 0 1&
*0 O L.- 0 0' tot'~o~C ', to L 0

-~~~ - - - - .IhIIII - - 4

.a 5c 4 AcA gC -- c- WIN. L ' 6 A'a -0 va I 4- .U- LAC- 0 wt -0~ 4--;wz wW. te- aL CLALAL 1.S c I O -* wA WW .L.LA ua'
4,)L LA 05 0CLa L C -~

2 '0A wC 3*-0.aL~. E. v I -'-,' %ALa WL t v
LA. 6 "C . 7 f

4)' >1.c t' LU 4- cU-W IL 1  CLA a ActoL4 L . *S a~ La.J 15 L U C S-21-4~CO-'C 4. ~t- AW ~tLLS L . C S~aAV
cxc 6 CL-U.a ECuE~ A-AA- a, "I t~

S 0 -c ~~4 0t4,- CUCEL~t .a
1)1 " A W Wa C IC I ~ .a 0.

.e~~~aWV mr- 0%.a
-. ~~~~~fw MEMLOtL -- 4 IC"



C>0 C C* U C C>oy,0

m>CC C- CC a W > C 4.

CO C::;' 01 r CC"' ow a, a
w- C . Cf C 4C I f. E -C c c

cmC C CC w a-u.aac 1 L

CKL ia-a- -I CC" C j 5 C

LI3 CCL Lu I C C. CC .2 'L I~ C ' o

* C CLa w.m C -CU- v

CL 15 C0C. W La6, L C C CL

1: 1;=1*- CC MC UC I. Ut- = Ca2 .. c a 0

Ca C a- CL ca t ,cs' CC o a

.k~a GInC x - C.L-a

aC L C 0. OWC aC - C. OR I

T*4 '-oa c. 0C-
t 

a wC&C 0CO.J a C.- w a

Cd C a- C.C C cu-.-CCC'C a

C C in L C CC - C C L C C
a -'~~~~3 C-CC C aI-C aC C Ca

CC4.C .C' *CLC-CUCC .C*-
a~ ~~ ~~ I-L- al 'a C3w-

a- 3CCC.CL C 0 C

v... 0 cC~ C8 wCC 0 caC Ca Cu I4. CCC
C~~l aj '.O YC 04 CX J 04 Z-CCf C C'C C. c

i-a CLIC'C 14 -. CCL.CCCC aiaUL C4
-,- 04 C C a- 4 C C L C C C

.0 (CC LC ' La .'- CCCC (C . C LC - LaaW CC
Ue.Z~ ~~~~~~~~~~~ L441LC C a CEO C "'Z L'L C C a >00 C

L4' ~ ~ ~ ~ ~ ~ I a-3C.C C - .i L L ' - a > C C C - a L

j- c., o C0 C C-W wO wC a ' - -20 C,

ww I Ca.. W=.R a -i o W.00 vC IC C. c- 024 aL 4C
ino eC 0' - ~ CCwC CC C -I CCCs LV . w CU

Uaz I 001 -C' C L>0LUf 0 .
4

% C C >'
-- )< L3 CELCCCCL La CI a'C mI CE LL'CC a C

CCLJV4~~~ ~~~~~~ 0 wLC aC La> Ci L CUt4 C LCCCja a C

- aLt. LC aad i0. VC cC a U -a 444 L au )aC L
CI- a CC C'CC 4C L I I IaCC C L

E,.~ Uv V.~N~~C

CC CCC CU' a2-a -U CC CCU a UCC

v V- a I- -- C '- a . t C Q-- at L C C - '. - 3 >

*. I- Is~ C-w d C XI L- I a C C C - C

* CC~flC C -C- w 'CaU LC 41 U CJ. a - C .C I -CLC. U
LL'.OU~0 Cc a40 O~C UCL 3 L"'U U Ca C

0204 g- v L'CNCU 0t 1 CW CCI, XIOr w . L.0tC 'CC CCC .- CC

H! - c -- - - - I
i~0iC-iC C- CC a C.C -0 C

5 ~ ~~~~~ IC Ca-L a>0C n C L

2 o UCC0. LC CCC C a L

@A CC C CCCL CmI O C; L. C . w0a a3C 'CC .0 C CC L -CJC- )
Din am4 51- CC a a-0. a

ia- C C CV Ca V*0 &V ow a4

-& C. CCL C CL C-7,C ~
ti.( C LC CL La C C CC -

-US~~~ ~~ L ac CLaCC EC1"..9.>C~CCL ~ .
0

Cao *2 ...I CLoi C LwC

A -5CC 1 CIL1 20

w~~ CC3C-1"M'
1<- ~ ~ ~ 1 w :-Bi 0iij'~ a':; cc~ C1 CCa CVWt 0

CC 1L0C .~
C3C1S- C C - aU C

K1 U C C I "C- C C

a~~~a C 2 baC a . ~ ~
: ~ K -

CaC ~ ~ ~ ~ ~ ~ -C0-C-- u. ' aa.

02 1. m >' CY Cm 1 U5C

0 - CC a a CL
4' C ZC .,OC ' R Tna

cc I . .. i n l.cj

a 1~V' ' ~ C C

LUC>U CIT.0
CU~~a0- 0C'

04 " U -u1~

C 7- - -U.

tc~ "a -C CoOC3 C "t 3


