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CHARGED DISLOCATION IN ICE

II. Contribution of dielectric relaxation

Kazuhiko Itagaki

INTRODUCTION

Many theoretical and experimental studies concern the dielectric relaxation of ice (Hobbs 1974).
The coincidence of dielectric relaxation time with activation energies and the relaxation time of
internal friction has been attributed to the rearrangement of protons through the Bjerrum defect
(3jerrum 1951).

A study by von Hippel et al. (1972) indicates that the relaxation spectrum may contain up to
seven dielectric relaxation times. Three of them, with peaks at about 20 kHz and 2 kHz in the
-21 'C range, and 20 to 50 Hz at -1 00C, generally agree with our measurements. Also, two spectra
of internal friction relaxation time have been found by Kuroiwa (1965) and also by VanDevender
and Itagaki (1973). Both internal friction spectra seem to agree with two dielectric relaxation
spectra of higher frequency within a factor of 1.5 to 2, depending on dislocation structure.

The effects of mechanical treatment on dielectric relaxation of ice observed by us (to be pub-
lished in subsequent reports in this series) show behavior similar to the results of internal friction
relaxation in the range of our measurements. All previously published results were made with
heavily strained ice so that reasonable comparison with our strain-free samples may not be possible.

The complicated dielectric relaxation of ice, especially the effect of mechanical treatment, can-
not be explained by simple Bjerrum defect theory. Charged dislocations, as discussed in Part I of
this series, can be displaced by an electric field which, in turn, contributes to electric polarization
and then to the dielectric constant and relaxation. Many of the properties of the dielectric relaxa-
tion and internal friction results currently attributed to the Bjerrum defect may possibly be ex-
plained by charge dislocation theory. This report will present a theoretical study of dielectric re-
laxation caused by charged dislocations. Although the basic concept was discussed by the present
author (Itagaki 1969) and by Brantley and Bauer (1969), further developments have enabled us to
make a more detailed examination.

THEORETICAL DEVELOPMENT OF DIELECTRIC RELAXATION DUE TO CHARGED
DISLOCATIONS

The model for charged dislocation motion is an electrically charged string of linear mass A
stretched by tension C in a viscous medium having a resistance factor B. The lateral displacement
77 at point x can be described by the equation of a vibrating string:

2j t x2 = E °  i r+8 C 1
a2 al ax2

where w is the angular velocity, p is the linear charge density of the dislocation, and the amplitude
of the total field E is the sum of the applied field E0 and the local field caused by dielectric po-
larization acting on the dislocation. This equation and the following treatment is parallel to the



dislocation damping theory by Koehler (1952) and Granato and Lucke (1956) except that the stress
field is replaced by an electric field and strain is replaced by polarization. The solution of this equa-
tion for the boundary conditions 7 = 0 at x = 0 and x = Q is

4j 0  1 sin (2n + 1)fx exp [i(ot-6n)] (2)

where
d = B/A

A = ffpb
2

b = the Burgers vector
p = crystal density

2 = the dislocation segment length

Wn = (2n + 1) Q-

bn = fan-1 wd
(.)2 - W,

2

n

The line tension C is given as

C = 2Ksb 2/ir

where K s is the energy factor (Hirth and Lothe 1968).
Polarization P due to a displaced charged dislocation of segment length R is

P = 2U

where mean displacement

= f i?(x) dx

____ x [ co 6n) si (2n +1) 7xdA4:E;) + 1 [(WJ2 - W°2) + (U°)] x i ,,~ fe

A 2_+1 2 Y,

8-E' exp [i(wt-n) (3)
AR (2n +1)2 [(W2n- W) 2 + (d )21 Y

By definition, the dielectric permittivity K due to the polarization caused by the charged disloca-
tions for the uniform segment length 2 distributed in a volume V is

=I + -. =1I+ M i7W dv.

where ev is the dielectric constant of a vacuum.

Then for applied field E = E0 exp iwt

K = 1+ E t 1 (x-.)(cod)2] dv

ML re,, E0 exp (,t ,(2n + 1)2 t(W2 
-w

2 ) 2 + (,d 1Y

2



81j 2 E01 exp (-i6n) dv1+ fv " (4)S irAeEo (2n + 1)2  (W2 -. 2)2 + ( ,)2 ( Y

For a uniform segment length of L and dislocation density A we obtain as a first approximation

8t 2AE exp (-i0)
irAe E0  I(0:I,2 W2 )2 + (0,d)2]

8o = tan- I  (5)
0 :2 W

Because K = K' - iK" and exp (i0) = cos 80 - i sin 80 where

Cos 6 (= -W
cos- _____ _ w-O 2

+ tan 2 6 -,/(j2 - .W2)2 + Cw2d2

and

sin 5 tan 6 _d

we obtain

8g2 A E;) w2 - W:2

K' 
=1 + 0 (6a)rAevEo (W2 _ W2 )2 + W2d2

and

K 2AE (6b)AevEo (,,2 _ ( 2 )2 + (0d)2

Since wo = (iIL)(CA)2 is on the order of 108 but the measurements were made in the range of
w < 6 x 105, further approximation

K' I + 8- 2 AL2E6 1 (7a)
Ir3CevE 0  1 + W2 72

K - (7b)
ff 3C.V E0  1 + '02 r 2

can be justified where

8L 2

7r2C

Equations 7a and b indicate that the relaxation is of a Debye type if the segment length is uni-
form throughout the crystal. Note that the slope of the K' Vs K"/w. relationship, which is the die-
lectric relaxation time of this string model, coincides with r, the relaxation time of the vibrating
string. The contribution of charged dislocation polarization to the static dielectric permittivity
K0 is found from eq 7a by setting w = 0; thus

P 3



/8p2 AL2E (8)K0 = 1 +(8
7r3CevEO

As discussed in Part I, we have obtained the following information required to make a numerical
calculation from X-ray topographs:

Pmax = 1.5 x 10-10 C/m

/1prob 
= 5 X 10-11 C/m

TAmin = 3.2 x 10-12 C/m

A = S x 108/m2

L =7.6x 10-4 m.

C can be theoretically calculated from

C= 2 b2Ks/I = 4.16 x 10-10 N.

Various assumptions were made to estimate the total field E; for the derivation of charge density
A. It is difficult to calculate the field in the geometry of the specimen, which is a thin slab having
its electric field parallel to the largest surface used in the charge density measurements. The maxi-
mum charge density Am ax of 1.5 x 10-10 C/m was derived by assuming that E; = (K; + 1) E0/2

(Itagaki 1979). The usually observed dielectric permittivity of unstrained ice is roughly 90, which
will give us E; = 45.5 x E0 , yielding /min of 3.2 x 10-12 C/r. Under the conditions of the charge
density measurements discussed in Part I, dislocations under observation were located in the low
dislocation density area in the thin slab of ice. We could disregard the effects of nearby dislocations
for the first approximation in such a case. By using the dielectric permittivity K; = 5 of dislocation-
free ice (Itagaki 1978), E = 3E 0 , and we obtain a value of Pprob of 5 x 10-11C/m.

If we assume that the same total field for the geometry of the thin slab used in the charge den-
sity measurements is applicable to the dielectric measurements, we obtain K; as shown in column
2 of Table 1. In the bulk of the crystal having K0 of 90 we have obtained E'/E 0 = 45.5. Column
4 of the Table 1 indicates the calculated dielectric permittivities using this total field relationship.

Table 1. Charge density vs calculated static
dielectric permittivity K;.

Kb Kb
Charge density Thin slab E /E 0  Bulk ice E /E0

;max 1.5 x 10.10C/rn 456.4 1 20,721 45.5
11prob 5 X 10-11  152.8 3 2,303 45.5
;'min 3.2 x 10-12 10.4 45.4 10.4 45.5

The dislocation density of carefully prepared Mendenhall glacier ice is on the order of 5 x 108 /m2,
which agrees with Fukuda and Higashi (1969). The usual practice of sample preparation for die-
lectric measurement involves mechanical cutting and sanding which would increase the dislocation
density by several orders of magnitude. X-ray diffraction topography is useless for ice with such
a high dislocation density. The low value of the calculated K0 does not mean that the charged
dislocation mechanism cannot be responsible for the observed dielectric permittivity. The disloca-
tion density of a sample that has undergone normal mechanical treatment may suffice to produce
the observed value of K;, the static dielectric permittivity. Some of the strain-free prepared samples
in dielectric measurements indicated anomalously low values of K; values, supporting this notion.

4



A higher charge density may create an anomalously high K,) value. However, the dislocation
density observed by the X-ray topography method used for this calculation was not only the den-
sity of the mobile dislocations responsible for dielectric relaxation, but included immobile disloca-
tions as well. Interestingly the dislocation density required to create the observed internal friction
peak using the theory of Granato and Lucke (1956) is usually several orders of magnitude lower
than that obtained from direct measurements.

Calculation of the total field E0 requires knowledge of the depolarization, which is difficult to
calculate in the linear configuration as dislocation. However E; would never be lower than the
applied field E0 , and therefore the present estimation is the minimum value for the local field.
Since K;) is sensitive to p and L, for which accurate values are difficult to obtain from X-ray topo-
graphy, it is unfortunately subject to a rather large error. The value of K0 calculated here indicated,
however, that charged dislocations can contribute a large enough dielectric relaxation to be con-
sidered as one of the major mechanisms.

It may be interesting to note that if the total field E) is the combination of the applied field
and modified Mosotti field as discussed in Appendix A of Part I, a Mosotti type of catastrophe
may result from the dislocation process. Further discussion is given in Appendix A of the present
report. The problem of which spectra are caused by charged dislocation processes still remains.
Some of the six peaks of a relaxation spectrum that von Hippel et at. (1973) identified should be
due to charged dislocation processes, but which ones? Are all the peaks real? May part of a spectrum
be due to the segment length distribution? The following study sheds light on some of these
questions.

NUMERICAL CALCULATIONS FOR DISTRIBUTED SEGMENT LENGTH

Equations 7a and b were modified to account for the effect of distributed segment length by
substituting r = B22/ir 2C as

8/p2E') " £2 N

K
' =  + 2 NQ d (9a)

eyr 3 CEO 0 1 + 2p4 J.. 2

8p2 BEo _o ___4N(_) _

K - d. (9b)YvTTC2Eo 0 1 , ,2 R4 B 2 2 "

Three types of hypothetical segment length distribution were studied numerically,

N(2) = A exp (- L-2-I (normal distribution)
o/2-i 22 I

A -in (q/L)2NR) = - exp (log-normal distribution)
a.,/222

and

N(Q) = (X-'exp ({-) (distribution derived by Koehler for randomly arranged
-2) L pinning points)

where L is the mean of segment length and a is the standard deviation of the distribution.
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Figure 1. Probability density curves.

A series of numerical calculations with various parameters were made to determine the effect
of segment length distribution on the shapes of Cole-Cole plots and the shift of the peak frequency
in plots of x" vs frequency. The results are shown in Figures 1-4. When compared to equivalent
mean segment lengths in a 6 distributJon (which has a uniform segment length in these calculations),

all other distributions indicate larger and flatter semicircles and peak frequencies that are shifted
lower. Also the shape Of K" VS frequency plot depends on the shape of the distribution.

Since the contributions of longer segments are more pronounced, the size of the Cole-Cole semi-
circle becomes larger as the distribution becomes wider. This effect occurs even if the distribution
is made to have the same mean segment length as the 6 distribution.
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Figure 2 Dielectric relaxation produced by charged dislocations having a
normal distribution of segment length (a = 0.001, 0.354, and 1.0).
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normal distribution of segment length. The curves have been
moved to make the peak positions coincide.

For the normal distribution of segment length, computations were made for the standard de-

viations of 0.01, 0.1, 0.354 and 1.0, where a standard deviation of 0.354 is the measured value

from an X-ray topograph. The peaks of the segment length distribution were shifted to unity from

zero as shown in Figure la. Since the density of a negative length segment, a meaningless quantity,

becomes significant at values of a greater than 0.5, the normal distribution is not suitable for a

realistic approach for wider segment length distributions. Cole-Cole plots and frequency vs K' and

K plots of corresponding dielectric relaxations shown in Figures 2a and b indicate that a semicircle

using the standard deviation of 0.354 generally agrees with the previous measurements of the center

depression of 30 to 50. The apparent relaxation time (usually calculated from the frequency at the

highest point of the Cole-Cole plot) is mostly controlled by the contribution of the longer segment

length part of the wider distribution. Frequencies normalized to the relaxation time calculated for

the 6 distribution are shown along the data points on the curve as shown in Figures 2a and 3a. When
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FigureS. Cole-Cole plot and logarithm of normalized frequency vs log (1-K')
and log K " for the Koehler distribution having a pinning point density of
4-x 10-70. Numbers along the Cole-Cole plot are the frequencies normalized
to the relaxation frequency w, =i70 which Is a close approximation of that
observed on ice at around -I O0 C.

the distribution is very narrow (0.001 in this case) the frequency at the highest point of the Cole-
Cole plot is virtually the same as the relaxation frequency. However, the apparent relaxation fre-
quency, defined as the frequency at the highest point of the Cole-Cole plot, becomes smaller as the
standard deviation becomes larger. For the relatively narrow distribution of a = 0.354 for the nor-
mat distribution, the frequency at the highest point becomes 0.581 of the real relaxat 'ion frequency
for the 6 distribution, making the apparent relaxation time longer than the relaxation time for the
6 distribution by 1,.71. One should be aware of such phenomena when relaxation time is determined
by the conventional peak Of K" method.

The log-normal distribution, especially for a large standard deviation, extends the longer side
of the segment length distribution as shown in Figure Ia. Since K' is proportional to the square
and K" is proportional to the fourth power of the segment length (eq 9a and 9b), the contribution
of the longer segment becomes dominant for the larger a, making the size of a Cole-Cole plot ex-
cessively large (Fig. 3a). From the X-ray topography study (Part 1) a = 0.337 was obtained by
assuming that the distribution is log-normal. No appreciable difference can be observed on the
Cole-Cole plot for this range of a when either the distribution is normal or log normal*.

As a becomes larger and the distribution becomes wider, the Cole-Cole semicircle becomes
flatter and deviates more from the arc of a circle (Fig. 3a). Shifts of many decades in frequency
and changes in height of the relaxation peaks are observed in the frequency vs loss plots of Figure
3b. Note that the slope of the lower frequency side changes little, but that the slope of the higher
frequency side of the slope becomes less steep and the peaks become wider as o becomes larger.
These features become more easily noticeable when all peaks are normalized to have the same
position as shown in Figure 4. Such features resemble those of other dielectric materials discussed
by Jonscher (1975). Charged dislocation processes may also be responsible for dielectric and mech-
anical relaxation of some other materials.

The distribution derived by Koehler may deserve special consideration because the segment
length distribution is given under the assumption that the dislocations are pinned by atoms of im-

*An analysis of the shape of the internal friction peak also yielded a reasonably agreeable width, as will be
discussed in Part IV of this series.
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purities randomly distributed along the dislocation line. Unlike the normal and log-normal dis-
tribution treated in this section, Koehler's distribution was derived by using the definite theoretical
mechanism of pinning rather than by statistical distribution. Therefore if the results of analysis
do not agree with the measurements, we can positively reject the pinning mechanism based on
Koehler's assumption. Figure 5 indicates that the Cole-Cole plot was an extensively flat shape
which has never been observed in ice, an indication that the distribution of the segment length is
not of Koehler's type. Koehler's distribution is a simple exponential for which the contribution

of the longer segments does not diminish as quickly as that of a normal or log-normal distribution.
An interesting observation to be noted here is that the shapes of the Cole-Cole plots generated by
Koehler's distribution remain unchanged regardless of the pinning point density although their
size varies widely.

Since the shape of Cole-Cole semicircles is insensitive to the change in a when o is small, it is
dangerous to conclude that the relaxation is of the Debye type because the measured results lie
almost on the semicircle. An a.c. conductance vs permittivity plot is more sensitive as von Hippel
et al. (1971) have shown. However, this plot only indicates that the relaxation deviated from that

of a Debye type.

DISCUSSION

Frequently dielectric relaxation spectra of ice are said to be an example of Debye relaxation.
However, close examination of the Cole-Cole plots indicates that the center of the semicircle is
depressed about 30 to 50 from the abscissa in most cases. Depression of the centers in theoretical
curves, using the measured standard deviation (0.354 for a normal distribution or 0.337 for a log-
normal distribution) as shown in Figures 2a and 3a, is about 5° , agreeing with the direct measure-
ments of the Cole-Cole plot.

The cumulative frequency of measurement segment length was plotted on normal and log-
normal probability papers to determine which type of distribution gave the better fit to the meas-
ured distribution. Although the number of the data points was limited to 17 and the plot deviated
considerably from linear, a log-normal distribution seems to give a better fit than the normal dis-
tribution. The plot of log-normal distribution of the experimental data is shown in Figure 6 by
filled circles.

Measurements made by Bilde-Sorensen (1973) on deformed MgO indicated that the distribution
is heavily skewed towards the shorter segment length. When cumulative distribution density was
plotted on log-normal probability paper, all points lay close to a straight line (as shown in Figure
6 by open circles), indicating that the distribution is log-normal. Their distribution (a = 0.85) was

considerably wider than that of our measurements (a = 0.337) made on ice. Previous straining and
differences in crystallographic systems probably caused the difference.

Hanson and Morris (1975) made theoretical studies of segment length distribution by assuming
that dislocations under stress were pinned by pinning points randomly distributed on a glide plane
(shown in Fig. 6 by closed boxes). Their studies were further refined by Labusch (1977) (open
boxes in Fig. 6). Both results indicated that the distributions were considerably skewed toward the
shorter side of the segment length. Plotting on log-normal probability paper, however, did not
yield straight lines, which indicates that assumptions used for their studies did not agree with the
measurements made on ice and MgO.

The following relationship may be one of the tests for identifying a charged dislocation mech-
anism from a point defect mechanism. The static dielectric constant K'0 can be described as

# 8/12AL2E;
K= + 8 E, (10)1r3 CevE 0
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from eq 7a assuming w = 0. Letting r =BL
2/ir2 C, then

1 + 8 T -

(1AE;

BeEoir

Therefore, rand K6~ have a linear relationship through L as a parameter which can be modified by
deformation. Straining would lengthen the mean segment length L by unpinning until the disloca-
tion source is put into work. The examples shown in Figure 7 show that most of the spectra have
linear relationships, indicating that these spectra are produced by a charged dislocation process
(a detailed description of this will be given in Part 1ll). However, deviation from linearity does not
necessarily indicate a noncharged dislocation process. Dislocation density A may start to increase
with straining to make the K0 vs T relationship nonlinear or irreversible.

All point defect processes could not yield eq 11 since straining may increase point defect den-
sity, which will be reflected in higher K60 . However, -r would not become larger since the jump fre-
quency of a point defect displaced by stress should be higher and the relaxation time should be
shorter.

A more direct confirmation of the existence of a charged dislocation mechanism comes from
studies on dielectric properties of dislocation-free ice (Itagaki 1978). Anomalously small relaxa-
tion spectra with an extrapolated static dielectric constant of about 5 and very short relaxation
times (about 1 X 10-6 s at -1 50C) indicated that the generally accepted audio frequency dielectric
relaxation spectra are caused by the electrically charged dislocation process.

The mechanism discussed above is based on the motion of dislocation segments, both ends of
which are fixed by such means as impurities or intersecting dislocations. Corresponding mechan-
ical processes would contribute to internal friction in the low amplitude range. The frequency
will be in the audio range at the temperature near the melting point. Experimental results seem to
indicate more than one spectrum are aff,-cted by mechanical straining (VanDevender and Itagaki
1973). Details of this will be discussed in Part IV.

Though most of the theoretical treatment of charged dislocations has paralleled that for dislo-
cations from internal friction, some difference between internal friction and dielectric relaxation
should be realized. Since the Burgers vector of dislocations in a certain direction has either a posi-
tive or negative sign, dislocations having a Burgers vector of the opposite sign may interact strongly
and their motion may be strongly restricted under the mechanical stress. Generally a crystal con-
tains about equal numbers of positive and negative sign Burgers vector dislocations. Interaction
between opposite sign dislocations under the mechanical stress tends to prevent dislocation motion
because a change in the distance of the dislocations from the equilibrium position increases the
potential energy of interaction.

One dislocation can move in concert with another having the opposite sign Burgers vector with-
out raising interaction energy under the electric field as long as the sign of the charge is the same
and moves in the same direction. The dislocation density required to produce known internal fric-
tion peaks (tan a_ 0.1) is four orders of magnitude smaller ( , 104 /m2) than the real density ob-
served. The observed density is within one order of magnitude of that required to produce the
observed amount of dielectric relaxation if even the lowest charge density is assumed.

In lower frequency ranges and higher fields in which the pinning points would be subjected to

higher forces for more prolonged time periods, either the pinning points would eventually start
to drift as discussed by Simpson and Sasin (1972), or the dislocation segments would be released
from the pinning points. Polarization produced by this means may cause relaxation in a lower
frequency range. Neither case would have a direct relationship to creep in mechanical deformation
or to d.c. conductivity, both of which would be beyond the capability of the process discussed here.
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CONCLUSIONS

Polarization caused by displacement of electrically charged dislocations under an electric field
was found to be large enough to be the source of audio frequency dielectric relaxation of ice. The
distribution of segment lengths observed in X-ray topographs can explain the deviation from Debye
relaxation in dielectric measurements, indicating that the charged dislocation process can be the
major source of audio frequency dielectric relaxation. Supporting experimental evidence will be
discussed in Part III of this series.
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APPENDIX A. MOSOTTI TYPE CATASTROPHE BY CHARGED DISLOCATION PROCESSES

Because of the linear charge array on the dislocation line, the Mosotti field on the charged dis-
location has to be modified from the original Mosotti relationship, E' = (K 0 + 2).E 0 /3 to E'
= (K0 + 1) Ep/2, according to the eq A5 of Part I (Itagaki 1979). Therefore eq 8 becomes

K6 I + F(K6 + 1)12 (All)

where

F= 8p
2AL

2

If 3CEv

Solving for ic' we obtain

2+F
K0  2-F (A2)

Therefore 4 goes to infinity when K = 2, a catastrophe, as appeared here. Using the values ob-
tained from Part I, we obtain F values at 455, 50.5, and 0.2, with values ofIA = 1.5 x 10-10,
0.5 x 10-10 and 3.2 x 10-12 C/m respectively. Those are within the possible range for finding
catastrophes, depending on the various conditions. If we assume that the only variable is mobile
dislocation density, a catastrophe will appear at the dislocation density of 2.2 x 106, 2.0 x 107

and 4.8 x 109/m2 for the charge density of 1.5 x 10-10, 0.5 x 10-10 and 3.2 x 10-12 C/m, re-
spectively. These dislocation densities are within the observed range. Hence, the effective field
would be reduced at higher frequencies by the relaxation phenomena and some anomaly would
be expected to appear in a certain range of dielectric relaxation spectra.
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