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ABSTRACT

The Use of syntactic pattern recognition has been shown to be an

effective technique for picture processing. .Syntactic pattern

recognitioniis, however, computationally time-consuming. The way in

which a parallel SIMD/MIMD machine, PASM, can be used to decrease the

processing time of these tasks is examined.

Parallel machines have been used predominantly for decreasing the

processing time of numerical problems in which the data is frequently

well-ordered. In contrast, a syntactic pattern recognition task would

use a parallel machine to perform multiple search, comparison, and

string manipulator operations on some relatively complex data

structures.

A solution to the problem of implementing a specific parallel

syntactic pattern recognition task, a parallel tree automaton, through

the use of a relational database and relational language is proposed.

The use of a CODASYL database and database language is also

investigated.

Two algorithms for implementing the parallel tree automaton are

described. The problem of obtaining a reasonable processor and data

aLlocation scheme for the two algorithms and for the two relational

programs derived from the two algorithms is discussed. A comparison of

the different problems posed by each algorithm is made.



CHAPTER 1

INTRODUCTION

Syntactic pattern recognition tasks as performed on serial

processors are time-consuming. The execution time of the syntactic

pattern recognition task may be reduced through the use of a parallel

picture processing machine.

The implementation of two algorithms for a tree automaton, a

syntactic pattern recognition task, will be considered in this paper.

The two algorithms are closely related versions of a minimum-distance

structure preserved error correcting tree automaton (minimum-distance

SPECTA). The machine being considered for the implementation is PASM, a

partitionable SIMD/MIMD machine.

An introduction to machine configurations and PASM is given in

Chapter 2. A brief introduction to tree grammars and the use of tree

grammars in picture processing is given in Chapter 3. The two

algorithms for parallel tree automaton are presented in Chapter 5.

The algorithms will be implemented using databases and database

languages. An introduction to the three database approaches, the

relational approach, the hierarchical approach, and the network

approach, is given in Chapter 4.

Chapter 5 presents and describes the algorithms. A discussion of

some factors that should be considered for a simulation of the

41,,
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algorithms on PASM is also included in Chapter 5 as is a discussion of

some processor and data allocation schemes for both algorithms.

The partial translation of the algorithms into PASM pseudo programs

using a network database system is described in Chapter 6. Chapter 6

also contains the complete translation of the algorithms into

illustrative pseudo programs using a relational language and some of

PASM's proposed parallel language commands.

A simple suggestion for a processor and data allocation scheme for

the relational programs, a block distribution of data according to the

primary sort key, is given in Chapter 7. A brief discussion of some of

the compilation problems posed by this illustrative allocation scheme is

also included in Chapter 7.

jI
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CHAPTER 2

INTRODUCTION TO PASM

2.1 Introduction

As a result of the microprocessor revolution, it is now feasible to

build a dynamically reconfigurable large-scale multimicroprocessor

system capable of performing image processing and syntactic pattern

recognition tasks more rapidly than previously possible. There are

several types of parallel processing systems: SIMD, MSIMD, MIMD, and

PSM.

An SIMD (single instruction stream - multiple data stream) machine

CFIy) typically consists of a set of N processors, N memories, an

interconnection network, and a control unit (e.g. Illiac IV [Bou]). The

control unit broadcasts instructions to the processors and all active

("turned on") processors execute the same instruction at the same time.

Each processor executes instructions using data taken from a memory to

which only it is connected. The interconnection network allows

interprocessor communication. An MSIMD (multiple-SIMD) system is a

parallel processing system which can be structured as two or more

independent SIMD machines (e.g. MAP [Nut)). An MIMD (multiple

instruction stream - multiple data stream) machine [FLyJ typically

consists of N processors and N memories, where each processor may follow

an independent instruction stream (e.g. C.mmp [WuB)). As with SIMD

I.
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architectures, there is a multiple data stream and an interconnection

network. A PSM (partitionable SIMD/MIMD) system is a parallel

processing system which can be structured as one or more independent

SIND and/or MIND machines (e.g. PASM [SMS,SSKJ).

2.2 Overview of PASM

A block diagram of PASM (a partitionable SIMD/MIMD system) is shown

in Figure 2.1. The heart of the system is the Parallel Computation Unit

(PCU), which contains N processors, N memory modules, and the

interconnection network. The PCU processors are microprocessors that

perform the actual SIND and MIND computations. The PCU memory modules

are used by the PCU processors for data storage in SIND mode and both

data and instruction storage in MIAD mode. The interconnection network

provides a means of communication among the PCU processors and memory

modules.

The Micro Controllers (MCs) are a set of microprocessors which act

as the control units for the PCU processors in SIMD mode and orchestrate

the activities of the PCU processors in MIND mode. Control Storage (CS)

contains the programs for the Micro Controllers. The Memory Management

System (MMS) controls the loading and unloading of the PCU memory

modules. The Memory Storage System (MSS) stores these files. The

System Control Unit (SCU) is a conventional machine, such as a PDP-11,

and is responsible for the overall coordination of the activities of the

other components of PASM.

The processors, memory modules, and interconnection network of the

PCU are organized as shown in Figure 2.2. A pair of memory units is

used for each PCU m-mor) module so that data can be moved between one
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memory unit and the MSS white the PCU processor operates on data in the

other memory unit. The processors, which are physicaLLy numbered

(addressed) from 0 to N-i, where N=2n, communicate through the

interconnection network.

Many computations can be more efficiently executed if the N PCU

processors are partitioned into many smatter groups of processors, each

group behaving like an SIMD or an MIMD machine. The two interconnection

networks being considered for PASM are the generalized cube

CSiS,SmS,SM2] and the augmented data manipulator [SiS,SmS,SM1. Both of

these networks consist of n stages of switches and are controlled by

routing tags. Both networks can be partitioned into independent

subnetworks if all of the processing elements in a partition of the size

P = 2p have the same value in the low-order n-p bit positions of their

addresses.

The method to provide multiple controllers for forming virtual

independent machines is shown in Figure 2.3. There are Q=2q MCs,

physically addressed (numbered) from 0 to Q-1. Each MC controls N/Q PCU

processors. There is an MC memory module for each MC. Each MC memory

module contains a pair of memories so that memory loading and

computations can be overlapped. A virtual SIMD machine of size RN/Q,

where R2 r and 1 < r < q, is obtained by loading R MC memory modules

with the same instructions simultaneously. Similarly, a virtual MIMD

machine of size RN/Q is obtained by combining the efforts of the PCU

processors of R MCs. For either SIMD or MIMD mode, the physical

addresses of these R MCs must have the same low-order q-r bits since the

physical addresses of all PCU processors in a partition must agree in
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their Low-order bits in order for the interconnection network to

function properly. PossibLe values for N and Q are 1024 and 16,

respectively.

This brief overview was provided as background for the following

chapters. More details about PASM and paralleL machine interconnection

networks can be found in [Sil-3,SiS,SmS,SM1,SM2,SMS,SSK].

All
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CHAPTER 3

A BRIEF INTRODUCTION TO TREE GRAMMARS

3.1 Introduction

For the purposes of this paper, only a basic definition of a tree

grammar is needed. This chapter is based on material in [CF1,CF2].

More detailed definitions of trees, tree grammars, and tree automata can

be found in [LF1,LF2,Ful,Fu2,FuB,CF1,CF2).

Definition 3.1. A grammar G. = (V,r,P,S) over <Z,r>, a ranked

alphabet, is a tree grammar in expansive form where

V is a set of terminal and nonterminat symbols,

I is a set of terminal symbols,

r:Z - N, where N is the set of non-negative integers, is the rank

associated with symbols in Z,

S is the starting symbol, and

P is a set of production rules of the form

X0  + x or X0 * x

1 2 ..- r(x)

where x c E and XO,XI1 *,Xr(x) c V-Z (the set of nonterminal symbols).

The term rank, as defined above, refers to the number of

nonterminal symbols associated with the terminal symbols. At later

4
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points in this paper there are references to the rank of a grammar rule

(production rule) and the rank of a node in a tree. In these instances,

the term rank refers to the number of nonterminal symbols associated

with the terminal symbol of a particular grammar and the number of

children of the specified node, respectively. The terminal symbol of a

node is also often referred to as the node label.

3.2 A Tree Grammar for Picture Processing

When designing a tree grammar to describe patterns in a two-

dimensional digitized picture, several factors need to be considered.

Among these are the extraction of the tree structure from the picture

and the choice of pattern primitives.

Once the digitized picture is windowed, a tree structure can be

easily obtained from a window. If the pattern primitives chosen

represent the gray levels, then each pixel in a window corresponds to a

pattern primitive in the tree. Every pixel in a window is, therefore, a

node in the tree, with the gray level of the pixel represented by the

node label. Binary pattern primitives were chosen for simplicity such

that a dark pixel corresponds to a 1, otherwise the pixel corresponds to

a0.

An example of the chosen tree structure for a 5x5 window is given

in Figure 3.1. Using this tree structure and the previously defined

binary pattern primitives, the 5x5 pattern in Figure 3.2 is represented

by the tree in Figure 3.3. The tree structure chosen has the benefits

of simplicity and symmetry. Less processing time is needed to extract a

simpLe tree structure, and the symmetry helps to maximize the amount of
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Figure 3.1: Tree structure [CF1,CF2J.
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Figure 3.2: A Pattern (CF1,CF23.
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Figure 3.3: Tree representation CCF1,CF2].
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parallel processing performed, thereby decreasing the overall processing

time.

Having chosen the above tree structure and binary primitives, Chang

and Fu [CF1,CF2) developed the following sample tree grammar G0.

Example 3.1 Tree grammar G0 generates many different patterns. For a

wxw window it generates the following four patterns:

1. Only the pixels in the third row are l's (Figure 3.2),

2. Only the pixels in the second row are l's,

3. All the pixels are l's,

4. ALL the pixels are O's.

G = (V,r,P,S) over <Z,r> where

V = {U1,UoA 1,Ao,XI,S,$,0,1)

=(0,,3,$)

1 0

r = {0,1,2,3)

P : s * $ (1); $ (2); $ (3); $ (4)I I I I
U1  U A A

0 1 0
U1  1 (5); 1 (6)

A U A A A
0100 0

U0  0 (7); 0 (8)

A 0 U0 x A0 X 1

A1  1 (9) 1 (10); 1 (11); 1 (12)

AIA 1A1  A1 A1  Al

A 0 0 (13); 0 (14); 0 (15); 0 (16)
0 AO AO

YlAfA A 0 0 A 0
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X 1  1 (17); 1 (18)
1

A0

The above grammar is a first level tree grammar. It should be

noted that a multilevel tree system may be used to process a picture.

In a multilevel system, the tree grammars on the higher levels use the

identified patterns on the lower levels as pattern primitives. These

pattern primitives are then connected in a tree structure, as was done

on the first level. In the multilevel system, the same tree automaton

may be used to parse the tree structures on all levels. The multilevel

system is an extension of a single level system.

IA
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CHAPTER 4

INTRODUCTION TO DATABASE

A simple definition of database is given in Martin [Marl.

"A database is a collection of interrelated data

stored together with controlled redundancy to serve one or

more applications in an optimal fashion; the data are

stored so that they are independent of programs which use

the data; a common and controlled approach is used in

adding new data and modifying and retrieving existing data

within the database."

The concept of database to be applied in this paper is more

specific. For the purposes of this paper, a database provides an

organizational framework for the representation of data and

relationships between data. The database technology also provides a

series of data sublanguages: languages to manipulate data in a database

environment.

Currently there are three accepted database models: the relational

modeL, the hierarchical model, and the network or CODASYL (Conference on

Data Sstem Language) [HaW) model. Each model supports different data

structures and each has a variety of associated data subtanguages. The

data structures supported by the hierarchical model are a subset of
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those supported by the network model. The hierarchical model uses tree

structures whereas the network model is capable of using a variety of

more complex graph structures.

The relational model uses relations or tables as its organizational

structure. A relation (table) contains tuples (rows) and attributes

(columns). Henceforth the terms used will be relation, tuple, and

attribute. Associations between data items are indicated by grouping

attributes, columns of data items, together to form a relation.

In Figure 4.1, the data in four records are logically related in a

simple tree structure. The conceptual models of this simple tree

structure for each database model are illustrated in Figures 4.2a,b,c.

For this simple example the network and hierarchical models yield

similar conceptual structures. The one difference between the models is

the added access paths from the node containing record A to the nodes

containing records C and D in the network model, Figure 4.2c. This

allows for significantly greater flexibility in the physical access of

information from the network model. These access paths are not

contained in the hierarchical model in Figure 4.2b because a node can

only have one parent in a strict hierarchical database. In addition, a

hierarchical database can be entered only through the root node and a

child cannot access its parent unless the parent has already been

accessed through the root node. The process of accessing a parent in a

hierarchical model is a complex task.

The flexibiLity of the network model is increased since the added

access paths allow bottom-up traversals, whereas the hierarchical model

is restricted to top-down traversals through the root node. It should
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A

B

Figure 4.1: A Simple Tree Structure.
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NODE CHILD PARENT

A B x

B C A

8 D A

C t B

Figure 4.2a: Relational model.

A
Figure 4.2b: Hierarchical model.

Figure 4.2c: Network model.
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be noted that the hierarchical model need not be restricted to top-down

traversal if extensions are made to the strict model. For example,

IBM's hierarchical database system, IMS (Information Management System)

[Dat,IC1J, has secondary indexing to enable it to perform bottom-up

traversals. It should aLso be noted that this facility is not always

easily used and it can become quite space and time consuming.

In the above discussion, the access of the tree information in the

hierarchical and network models is constrained by the physical database.

The databases were structured to reflect the structure of the data items

to be stored in the databases. The relational database, however,

physically resembles a sequential file. Any access patterns must be

constructed using the tuples and attributes in a relation. In Figure

4.2a, with the given tuples, the tree data represented in the relation

may be logically accessed in a top-down fashion. However, additional

tuples relating records C and D to record A and vice versa may be added

thereby allowing a logical top-down or bottom-up traversal of the tree

data.

Associated with each database model are data sublanguages: the

subsets of languages concerned with operations on a database [Dat]. The

commands of the data sublanguages usually take the form of calls to

subroutines from a standard higher level programming language such as

PL/1 or FORTRAN.

Some examples of these data sublanguages are DL/1 (Data Language/1)

[Dat], used with the hierarchical IMS database system and the DML (Data

Manipulation Language) used with GPLAN (Generalized Planning System)

[HaW], a network database system. Most database systems also have stand
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alone database Languages such as IQF (Interactive Query Facility)

[Dat,IC2J, used with IMS, DBLOOK, used with the network database system

SEED (Self Explaining Extended Database Management System) [Ger), and

Query by Example, a relational language.

Some of the proposed languages for relational databases are either

conventional data sublanguages or stand alone database languages, but

not both. SEQUEL (Structured English Query Language) [Dat] is a

relational language that can be used as a stand alone language, but it

also is a data sublanguage because it can be embedded in a host language

program.

In the instance where a host language is used, the host language

provides the commands for performing arithmetic operations on the data

obtained from the database using the database language. Database

languages are generally restricted to providing the commands for

nonarithmetic manipulation of the data in the database: searching and

retrieval, updating, insertion, and deletion. One of the disadvantages

of stand alone database languages is their inability to allow the user

to perform calculations.

The database languages referred to in this paper will be DML and

SEQUEL. They will be used as data sublanguages; the database commands

will be imbedded in a program written using parallel language commands

proposed for use on PASM ESSK). A synopsis of the functions of the

database commands used may be found in [HaW,Dat].

IL ll I
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CHAPTER 5

TWO PARALLEL TREE PARSING ALGORITHMS

5.1 Introduction

A paraLLeL tree automaton is designed to recognize those structures

in a digital picture that are described by and, therefore, can be

generated by a tree grammar. The first algorithm presented in this

chapter is an implementation of a minimum-distance SPECTA. A minimum-

distance SPECTA will find the tree among all trees that can be generated

by a particular tree grammar, G, that has the same structure as a given

input tree, B, which is a minimum distance from B. The distance between

two trees, B and C, with the same structure is the number of

substitution transformations required to derive tree C from tree B. A

substitution transformation is the replacement of one node label

(terminal symbol) in a tree by another. In terms of this algorithm, a

minimum-distance SPECTA finds the tree among all trees that can be

generated by the tree grammar, G, with the same structure as the input

tree, B, with the minimum number of substitution errors. Note that a

substitution error results from a substitution transformation. This

will be explained in greater detail in the first subsection.

This algorithm will be referred to here as the leaf traversal

algorithm. Following the first subsection is a subsection discussing

7. . . . .. II III I I I I ll - " ' - I
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some processor and data allocation schemes for the leaf traversal

algorithm.

The leaf traversal algorithm is the original tree parsing algorithm

ECF1,CF2). A slightly modified version of this algorithm, here referred

to as the level traversal algorithm, is described in the third

subsection. A discussion of some processor and data allocation schemes

for this algorithm follows in the fourth subsection. A brief comparison

of the two algorithms and the processor and data allocation schemes

suggested for the algorithms is given in the last subsection.

5.2 The Leaf Traversal

5.2.1 The Algorithm

In Chang and Fuls algorithm [CF1,CF2), a leaf traversal of the tree

is used. In the leaf traversal, all the leaves are processed in

parallel. The processed leaves are then eliminated from the logical

tree structure, and the leaves of the resulting tree are processed in

parallel. The processing continues until the entire tree has been

parsed. This approach has a major limitation: once the tree has been

pruned to the "trunk," the process becomes serial with only one leaf

being processed at a time.

The original specifications for the algorithm presented in this

subsection can be found in [CF1,CF2]. The original algorithm has been

rewritten here using a parallel language notation. The parallel

language notatiti has been made as general as possible to assure the

machine independence of the algorithm. The rewritten algorithm is

presented in this subsection in Figure 5.1a and Figure 5.1b. Some of
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ALgorithm 1. A parallel parsing algorithm for the implementation of a
minimum-distance SPECTA on a parallel machine.

Input: G=(V,r,P,S), the tree grammar, and an input tree B.
Output: Tree transition table for tree B.

for all node. where node. £ ei.f. nodes (leaves)) of tree B do
i i1

for all grammar rules with rank = 0 do

if the terminal symbol of rule k = label of i.f. node
then add triplet (X,O,k) to triplet table of i.f. nodei
else add triplet (X,1,k) to triplet table of i.f. node.

/* X is the left-hand side nonterminal of the kth */

/* grammar rule */

end

if the triplet tabLe of i.f. node. is nonempty
then if more than one triplet has the same state
7TThe state is the first element of the triplet */

/* the left-hand side nonterminal. */
then delete the triplet(s) with the larger number of errors

frontier node. = parent node of i.f. node.1 1

end
( .l.f. nodes) = (frontier nodes with all children processed)

Figure 5.1a: The Leaf traversal algorithm Part 1.
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while the root node has not been processed
begin

for all node1 where node L c (l.l.f. nodes) of tree B dobegin
n = rank of L.l.f. nodeL
for all different combinations of nonterminals of L.l.f.

nodeL's children's triptets do

/* Combinations are formed by taking the nonterminal of */
/* one triplet from each child's triplet table. */

for all grammar rules with rank = n1 do
begin

if the nonterminal(s) of rule k = the nonterminal(s) of the
triplet combination of L.l.f. node L
then if the terminal symbol of rule k = the label of the

L.l.f. node1
then add (X,el +... +e nlk) to triplet table of that node

else add (X,e1 +...+en +1,k) to triplet table of that
node

end
end

if the triplet table of l.l.f. node is nonempty
then if more than one triplet has the same state

then delete the triplet(s) with the Larger number of errors

frontier node L = parent node of l.l.f. node L

end

Cl.l.f. nodes) = (frontier nodes with all children processed)

end

if triplet (S,e,k) is in the triplet table of the root node
then tree B is accepted with e errors
else tree B is rejected

Figure 5.1b: The Leaf traversal algorithm Part 2.
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the terminology used in the algorithm is described in the foLLowing

paragraphs.

FrequentLy the algorithm refers to specific types of "frontiers." A

frontier is a specific type of node on the tree. It is either a Leaf

node on the original tree or a node with at Least one processed child on

the pruned tree. Frontier nodes that are Leaves on the original tree

are referred to as initial frontier nodes. Frontier nodes that are

leaves on the pruned tree are referred to as lowest level frontier

nodes. A leaf on the pruned tree is a node with all of its children

processed. The initial frontier nodes and the lowest level frontier

nodes are referred to as i.f. nodes and l.l.f. nodes, respectively.

The for all statements in the algorithm are used to indicate which

data items may be processed in parallel. For example, for all i.f.

nodes do, indicates that the operations within the do loop must be

performed on all the i.f. nodes, that each i.f. node performs the

operations independently, and, therefore, that the i.f. nodes may be

processed in parallel.

It should be noted that the tree structure forces the processing of

some nodes before others in the algorithm. As a result, it is

impossible to parse the whole tree in parallel in one step. A number of

serially executed parallel steps will be required. The number of serial

steps, T, for a WxW window is W.

T = W + W

For a 5x5 window, T is eight. The order of the processing of the nodes
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for a 5x5 window for the leaf traversal algorithm is diagrammed in

Figure 5.2.

The result of the processing of the nodes is a set of triplets for

each node. Consider an arbitrary initial frontier node or lowest level

frontier node, b. Each triplet is of the form (Xe,k), where X is the

left-hand side nonterminal of the kth grammar rule applied at node b,

and e is the total number of substitution errors in subtree b. The

error correcting capabilities of this algorithm are restricted to the

identification of substitution transformations in order to preserve the

original structure of the tree. A substitution error at node b results

from a substitution transformation. This occurs when the node label

(terminal symbol) of node b differs from that of the grammar rule

(production) applied at node b. For this example, terminal symbols will

have only binary values, i.e., they can only have a value of 0 or 1.

The total number of substitution errors in subtree b is the sum of the

substitution errors in each of node b's children plus the error involved

in applying rule k at node b. In the algorithm, subscripts are used to

distinguish the substitution errors of each individual chitd. The range

of the subscripts is from one to n, where n is the number of children

(rank) of node b. Note that the number of substitution errors

accumulates as the tree i -a ,d from the leaves to the root.

If space is a major consideration, the first element of the

triplet, the left-hi'1 side nonterminal, can be eliminated to yield a

doublet containing t;; tile nuber, k, and the number of substitution

errors, e. The extra value used in the triplet, the left-hand side

nonterminal, is easily oitained from production ruLe k, however; this

AJ
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Figure 5.2: Order of processing of Leaf node sets for a 5x5 window.
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will increase processing time since a search will be necessary to find

production rule k and access the left-hand side nonterminal. Triplets

are used in this chapter and the following chapters to clarify the

processing performed by the algorithm.

The output of the parse will be the triplet tables for every node

in the tree. The complete set of triplet tables for the tree is

referred to as a tree transition table. The triplets for the final

corrected pattern will be chosen from the tree transition table. There

will be only one triplet per node in the final result. These triplets

are determined by traversing the tree from the root to the leaves

starting with the chosen root node triplet and applying its production

rule to find the correct triplet for each of its children. This process

is continued until the entire tree has been traversed.

An example of the tree transition table for a 3x3 noisy pattern is

illustrated in Figure 5.3. The grammar rules used in parsing the tree

representation of this noisy pattern are given in Example 3.1. The

noisy pattern, its tree representation, and the corrected pattern are

diagrammed in Figure 5.4, Figure 5.5, and Figure 5.6, respectively. The

pertinent triplets for the corrected pattern are marked by asterisks in

the tree transition table.

_-.r Processor and Data Allocation

Determining a reasonable processor and data allocation scheme is

beyonJ the scopt of 'his paper. A simulation would be necessary to

determine an alLtae+i cIem. because of the large number of variables

involved. One of the variables involved is the number of independent

subtasks within the algorithm. These subtasks depend on the window
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Figure 5.4: A noisy pattern ECF1).
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Figure 5.5: Tree representation CCF1).
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Figure 5.6: Corrected pattern [CF13.
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dimensions, the number of grammar rules of each rank, and the number of

nonterminal symbols associated with the grammar rules of a particular

rank. The number of windows to be processed is another variable to

consider. Some reasonable balance needs to be found between the number

of windows processed in parallel and the number of processors allocated

per window. This assumes that it will not be possible to process all

independent subtasks for all windows in parallel.

Considering the problems involved in determining an allocation

scheme in greater detail, one might first determine how many independent

tasks may be performed in parallel in the different parts of the

algorithm. Since for all loops are used to indicate portions of code

that can be processed in parallel, Figure 5.1a indicates that all i.f.

nodes can be processed in parallel and that for each i.f. node all

grammar rules of rank 0 can be processed in parallel. If i is the

number of i.f. nodes in a particular WxW window and r0 is the number of

grammar rules of rank 0 for a particular grammar to be used in the

parsing process then there are i x r0  independent subtasks to be

performed in the first part of the algorithm in Figure 5.1a.

After processing the grammar rules there will be i tasks to be

performed independently. For each i.f. node, redundant states, left-

hand side nonterminals, will be deleted. After deleting any redundant

states, the last steps of the algorithm in 5.1a involve generating a new

set of frontier nodes from the i.f. nodes and obtaining the appropriate

subset of the frontier nodes, the lowest level frontier nodes, to be

used in the next step of processing. Up to i tasks can be performed

independently in these steps.
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In the continuation of the algorithm in Figure 5.1b, it should be

noted that all l.l.f. nodes can be processed independently. Also, for

each L.l.f. node the combinations of nonterminals of its children's

triplets can be processed independently and for each combination of

nonterminals all grammar rules can be processed independently. If l is

the number of l.l.f. nodes in the single WxW window being considered,

ci, c2, and c3 are used to indicate the maximum number of triplets that

can exist in a child's triplet table and rl, r2, and r3 are the number

of grammar rules of rank 1, rank 2, and rank 3, respectively, for the

hypothetical grammar used in the first part of the algorithm, then the

maximum possible number of independent subtasks:

for n. (rank of the node) = 1 is L x c1 x rl,

for ni = 2 is L x c1 x c2 x r 2, and

for n. = 3 is I x c1 x c2 x c3 x r3.

Referring to Figure 5.2, it should be noted that in the first part

of the algorithm, Figure 5.1a, only one serial step is performed, i.e.,

only one set of 2W nodes in a WxW window is processed. The remaining

serial processing steps are performed in the second part of the

algorithm, Figure 5.1b. For the nodes of rank 1 (with the exception of

the root node) the number of nodes in the set of nodes being processed

is 2W. However, for the n" ie ,, rank 2 and rank 3, the trunk nodes,

only one node is processed at a time. There is only one element in the

set of nodes to b u, ,cessed. Since the value of L is I for nodes of

rank 2 and rank 3, ime maximuI possible number of independent subtasks

for n. = 2 could be written as cI x c2 x r2, and for ni = 3 the maximum

possible number of indep,-dent subtasks is c 1 x x c3 x r3.
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Upon the completion of the processing of the triplet combinations,

redundant states will be deleted from the L new triplet tables. At this

point there will be L independent subtasks. Following the deletion of

the redundant states, the new set of nodes for the next step of

processing is determined. This process can involve up to L independent

subtasks.

The final step in the algorithm determines if the parse has been

successful. This involves a single independent subtask.

The following is a simple example which will illustrate how the

number of independent subtasks may vary during the processing of a

single window. Using an example from Chang and Fu [CF1,CF2] a 98x98

picture is divided into 196 7x7 windows. These windows are parsed using

the grammar rules from grammar G1. Grammar G1 has 7 rules of rank 0, 7

rules of rank 1, 10 rules of rank 2, 60 ruLes of rank 3, and 10 starting

rules. It also has 7 nonterminal symbols of rank 1 and 10 nonterminal

symbols of rank 2. However, there are only 10 nonterminal symbols of

rank 3 while there are 60 rules. But for the nodes of rank 3, triplets

with redundant nonterminaL symbols are removed during processing leaving

the triplet with the least number of errors. Therefore, a maximum of 10

triplets is possible in a triplet table.

The above values will be used in calculating the maximum possible

number of children in a triplet table. For the nodes of rank 0, rank 1,

and rank 2; the maximum values for the number of triplets are 7, 7, and

10, respectively. The resulting values are as follows:

for ni = 0, i = 14, r0 = 7 and i x r0 = 98, (1)

for n = 1, l = 14, c = 7, r =7, and l x c x r1 =686 (2)
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or for the root node ni = 1, I = 1, c1 =10, r1 = 10, and

L x c1 x r1 = 100 ()

for n = 2, c = 7, c2 = 7, r2  10 and c1 x c2 x r2 = 490 (1)

for ni = 3, cI = 7, c2 = 10, c3 = 7, r3 = 60 and

c x c2 x c3 x r3 = 29,400 (6).

The encircled numbers indicate repetition factors within the algorithm.

The values obviously vary greatly with the processing of the nodes of

rank 3 which by far involve the greater number of independent subtasks.

It should also be remembered that these values are for a single window.

For the whole picture 196 windows must be processed.

The above discussion is not machine dependent. It involved a

consistent method of analyzing the number of independent subtasks in the

leaf traversal algorithm. In terms of processor allocation, each

independent subtask could be considered to be allocated to a single

processor. At this point it is necessary to examine the constraints

placed on processor and data allocation by PASM.

The most obvious limiting factor will be the size of PASM, i.e.,

the number of processors in the machine. For example, if PASM's size is

1024 processors, obviously it is impossible to process even the

independent subtasks within a single window in parallel.

For the sake of 2 p. *OLy, only fixed size allocations of

processors would be considered initially in a simulation. The number of

processors allocJtd trr a window would be fixed during processing.

For example, a r'-sonable restriction might be to alLow processing

of all i.f. nodes and l.l.f. nodes of rank 1 in a node per processor

allocation scheme, i.e., '1 processors per window. If Less than 2W
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processors are allocated then it would seem that additional system

overhead would be needed to monitor processor allocation and the

incidence of wasted processor resources would be increased. A 7x7

window would have 14 i.f. nodes in the set of i.f. nodes and 14 L.L.f.

nodes in each set of l.l.f. nodes to be processed.

The next factor which must be considered is the distribution of

data in PASM's processors. Since data transfers are restricted to

straight transfers, +2i mod N and -2i mod N, the data for related nodes

should be readily transferable, i.e., the should be in processors

readily accessible through one of these transfers. As a result, some

processors will not be used. The number of idle processors for a large

machine should, however, not be very great. If the machine size is 64,

four 7x7 windows could be processed in parallel. The seven nodes on the

left side of each tree for the four windows would be in processors 0-27

while the seven nodes on the right side of the tree would be in

processors 32-59. In this way related nodes would be in processors

whose numbers differ by 32 or 25.

As a result of an allocation scheme like the 2W processors per

window scheme, some adjustments will have to be made in the processing.

For instance in the processing of the grammar rules for the i.f. nodes

and the rank 1 l.l.f. nodes a standard serial searching technique will

have to be used for searching the grammar rules depending on the

organization of the grammar rule database.

Another problem that wilt be encountered on almost any machine is

allocation of the subtasks for the trunk node processing. As was

mentioned previously, only one node of the trunk can be processed at a

44
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time. It wouLd seem to be impractical to restrict the processing of the

greatest number of subtasks to only one processor in a strict processor

per node allocation. Hence the simplifying assumption was made

previously that 2W processors would be allocated for the whole

aLgorithm. In this way at least some of the trunk node subtasks will be

performed in parallel. It is further assumed that the subtasks

performed in parallel would be those in the triplet combination loop,

the second for all Loop. The innermost loop which involves the

processing of the grammar rules would not be performed in parallel at

all. This is consistent with the first part of the algorithm.

One question that may arise is how, if at all, could this processor

allocation be determined by a compiler. In the above instance the 2W

processors per window seemed reasonable considering the proposed size of

the machine and the number of windows to be processed. Upon examining

the algorithm, one noticeable problem is that the trunk nodes are

processed in the same loop as the rank 1 l.l.f. nodes. The allocation

scheme requires a data dependent switch from serial processing of the

triplet combination loop for rank 1 l.L.f. nodes to a limited parallel

processing of the triplet combinations for the trunk nodes. An

additional test statement could be added to the algorithm if the

compiler is to generate rod. w-,.ii will change the processing of the

triplet combinations from serial to parallel when the trunk nodes are

being processed. This, however, depends on the role the compiler will

play in the processor allocation strategy.

The following discussion uses the term "index set." An "index set"

is a collection of values that are to be used as indices for arrays.

#A1
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Furthermore, the operation on array elements specified by an index set

can be done on all elements of the array in parallel (simultaneously).

For example, if J is an index set, the loop:

DO 10 1 = 1,100

10 AI) = 0

could be written as:

J = (1:100)

A(J) = 0.

Two dimensional arrays could be handled similarly. For example,

DO 10 I = 1,100

DO 10 II = 1,50

10 B(III) 0

could be rewritten:

J = (1:100)

JJ = (1:50)

B(J,JJ) = 0.

Further details are in [MSS].

The fixed allocation strategy as presented here may be interpreted

in terms of an index set allocation strategy. For example, there are 2W

nodes in the set of i.f. nodes, the first index set. The number of

processors allocated would depend on the size of the index set. For

this case 2W processors could be allocated. It may, therefore, be

possible to eliminate the need for an explicit statement in the program

by having the microcontroller that oversees the processing monitor the

size of the index sets. When there is only one element in an index set,

the microcontroller would determine if there are any additional tasks



42

that may be performed in parallel by determining if there are additional

index sets in inner loops. The microcontroller could then distribute

the elements to be processed evenly among the allocated processors if

there are more elements in the new index set than processors as is the

case for the triplet combinations.

If an index set in an inner loop is much smaller than the number of

allocated processors, another possibility might be to search for yet

another index set. If another index set is found, i.e., there is

another nested for all loop then the cross product of the elements in

the set may be formed and the elements of the cross product could be

distributed evenly among the processors. However, generating a cross

product could be a very inefficient and time consuming process.

One final note concerning the processing of the whole picture will

be mentioned here. The proposed temporary solution of using 2W

processors in a fixed allocation scheme for the whole algorithm will

yield the following results for the processing of the whole picture.

If there are R=r2W processors available (for convenience R is

chosen to be a multiple of 2W), then the leaf algorithm should be able

to process r windows in parallel. If 1024 processors are available and

W=7, then r=73 windows can be processed in parallel. In a 98x98 picture

there will be 196 windows, the i~re each processor will contain the

data for either two or three windows.

. .. .li I I I I I | II III I I '"-4I
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5.2.3 Mode of Processing

Once a processor and data allocation scheme have been tentatively

identified, the next task is to consider the mode of the parallel

processing. The allocation scheme proposed in the previous subsection

will be used in this subsection. In the previous subsection, the

calculation of the number of windows that can be processed in parallel

assumed that PASM had not been partitioned into multiple smaller

machines. Whether or not partitioning should occur is another factor

which will be considered in this subsection in addition to the SIMD

versus MIMD problem.

SIMD processing provides synchronized processing of independent

subtasks. The ideal distribution of data among processors operating in

SIMD mode would be one where each processor will perform the processing

for the same number of independent subtasks, preferably one. SIMD

processing also provides synchronized communication between processors

through the interconnection network.

MIMD mode allows the processing of different independent subtasks

with different instruction streams at the same time. The major problem

of MIMD mode processing is the lack of synchronization of the processors

and interconnection network. This lack of synchronization, however,

also provides greater flexibility and time savings by allowing the

overlapping of processing and data transfers through the interconnection

network. The flexibility of MIMD mode processing is its greatest asset.

MIMD mode processing may be reasonable not only for subtasks with

different instruction streams, but also for subtasks with the same

instruction stream. If the instruction stream includes conditional
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statements that may exclude a fair number of subtasks from the majority

of the, processing, as occurs with the processing of the triplet

combinations for the trunk nodes, then it would seem to be a waste to

leave the processors deactivated in SIMD mode for the majority of the

processing especially if there is a large number of subtasks to be

processed.

The question of partitioning will be considered next before

considering the algorithms in any detail. The problem will be to

determine how many windows should be processed in a separate machine

partition.

For example, PASM could be one machine processing as many windows

as possible at the same time. This was assumed at the end of the

previous subsection, for simplicity, when determining the number of

windows that could be processed in parallel. PASM could also be

partitioned so that one window or more would be processed by multiple

independent groups of processors.

A possible advantage of partitioning would be closer control of the

processing of a window. It seems that a mode switch or changes made in

processor allocation during processing might be more efficiently made on

a smaller scale. One disadvantage would be the increase in the number

of inactive processors. As i .-It fewer windows could be processed in

parallel. For example, if 196 7x? windows need to be processed, each

microcontroller contr,Ls 16 processors, the 2W processor allocation

scheme discussed in !he previous section is used and a one window per

microcontroller partition is used then 14 processors would be required

to process the i.f. nodes and L.L.f. nodes in a window and there would
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be two extra processors in each machine partition. As a result only 64

windows could be processed in parallel if the total number of processors

is 1024. This would require each microcontroller to process three and

in some cases four windows. Since the machine partition must be a power

of two, 16 processors are allocated although only 14 processors are

needed. All 16 processors may be used when processing the triplet

combinations for the trunk nodes to gain some time savings. This would

require additional flexibility in the processor allocation scheme since

all 16 processors could not be allocated if a strictly fixed allocation

scheme is used.

Now consider the processing of the leaf traversal algorithm in more

detail. For this example, the 2W processor allocation scheme will be

used and PASM will be considered to be partitioned so that each

microcontroller controls an independent machine consisting of 16

processors.

In the above discussion and in the next subsection some assumptions

about the organization of the data have been made. It is assumed that

an appropriate data structure has been chosen for the grammar rules. It

would seem that organization on the basis of rank is of primary

importance in decreasing the searching time, while appropriate coding

and ordering of the rules within a rank group is of secondary

importance. The grammar rules can be organized and stored according to

both of these criteria in the lexical analysis phase of processing

[CF1,CF2). In other words, the lexical analysis phase formats the

grammar rule database for the picture processing. Note that the lexical

analysis phase is performed only once provided that no productions are

A
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added, deleted, or changed in any way after the processing of the

picture begins.

It is also assumed that an appropriate data structure is used to

store the tree structures for the windows. The data structure should be

designed so that it will be easy to point to and access all leaf nodes

of an unprocessed tree or a pruned tree whose leaves are lowest Level

frontier nodes.

During the processing, an entry will be made in the triplet table

of every i.f. node for each grammar rule of rank 0. For each grammar

rule, every node will determine if a substitution error exists.

A rough outline of how this processing might be performed on PASM

is as follows. Each processor will contain sets of node labels for

three and in some cases four windows. Each set for each window will

consist of one node from each of the groups of nodes as diagrammed in

Figure 5.2. The list of grammar rules of rank 0 will be loaded into all

of the processor memories. The microcontroller will then broadcast the

commands and the processors will be activated and deactivated data

conditionally.

In the second part of the algorithm, Figure 5.1b, the processing is

similar. Analyzing the processing performed in this loop in further

detail, the mode may switr- , .ing on the node to be processed.

First consider the l.l.f. node; for which there is only one child, the

non-trunk l.l.f. nodp-. For these nodes, there are no combinations of

triplets to be formeo. In adlition, the nonterminal symbols in each of

the triplet tables for these nodes will be identical. The same amount

'-I
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of processing wilt be performed using the same grammar rules for each

node.

SIMD mode processing would seem to be the ideal choice for the

processing of these i.f. nodes and rank 1 L.l.f. nodes. However, the

processing of the triplet combinations of the trunk nodes may not be

best performed using SIMD mode.

MIMD mode processing would seem to be a better choice for the

processing of the trunk node triplet combinations. MIMD mode should be

able to allow the most efficient use of the limited number of processors

available. The microcontroller could control the distribution and

processing of the triplet combinations so that no processor will be idle

until all the triplet combinations have been processed. In processing

the trunk nodes, only those grammar rules whose nonterminals match the

nonterminals in a triplet combination will produce a new triplet. It is

assumed that every processor will contain a copy of all of the grammar

rules so that each processor will be able to process its triplet

combinations independently. Therefore, in any one group of triplets

being processed in parallel, some triplet combinations may be producing

new triplets while others are not. The processors of those combinations

that are not producing new triplets would have to be inactive for the

period of time during which the triplets in the other processors are

being formed if SIMD mode processing is used. The processors would be

operating on different numbers of different combinations of triplets,

hence they would probably operate more efficiently if each processor has

the freedom to process its combinations using its own instruction stream
i

in MIND mode. Thus, for the processing of nodes of rank 0 to 1, SIMD
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mode can be used, avoiding the MIMD problems of having synchronization

primitives and data contention. In a wxw window, this is w -w of the

nodes. For the w+l trunk nodes, PASM can switch to MIMD mode. The 2w

processors which could operate in SIMD parallelism for the rank 0 and 1

nodes on a node per processor basis can now be assigned to process the

trunk nodes, one node at a time, in MIMD mode.

If MIMD mode is to be used in processing the trunk nodes, and SIMD

mode is used in processing the non-trunk l.l.f. nodes, a data dependent

mode switch is required. It is assumed that the compiler is capable of

generating code that will cause the parallel processing of the triplet

combinations for the trunk nodes.

In order for the machine to be able to switch modes, the algorithm

may have to explicitly state whether or not a node is a trunk node. The

algorithm might need to include a conditional statement distinguishing

trunk nodes from those nodes not in the trunk. From this conditional

statement, the compiler could probably generate code indicating a mode

switch.

A mode switch in the different parts of the algorithm is possible

due to PASM's reconfigurability. It is assumed that all of PASM's

processors are capable of functioning in both SIMD and MIMD mode.

5.3 The Level Traversal

5.3.1 The Algorithm

This approach was investim-ted due in part to the resuLts obtained

by Chang and Fa [C13 in a simulation. The simulation performed for

their leaf traversal algorithm indicated that a relatively small group
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of processors, between four and sixteen depending on the grammar, was

the most efficient for processing a window. However, the simulation was

not machine specific. If such a small number of processors was to be

used it seemed reasonable to try to distribute processing more evenly so

other nodes were processed at the same time as the trunk nodes.

Therefore, the level traversal algorithm, a modification of Chang and

Fu's leaf traversal algorithm was developed.

Another factor to consider is that the results of a simulation for

PASM could be very different because of PASM's proposed size and

flexibility. If different allocation schemes with greater numbers of

processors were efficient on PASM it is possible that a more even

distribution of the node processing might alloy; more windows to be

processed in parallel. This might yield significant time savings by

reducing the time taken to process the entire picture.

The groups of nodes capable of being processed in parallel and the

number of serial steps necessary for processing a 5x5 window using the

level traversal are diagrammed in Figure 5.7. The level traversal

algorithm is given in Figure 5.8. The tree transition table resulting

from the level algorithm for the 3x3 noisy pattern used as an example in

section 5.2.1 is given in Figure 5.9. All of the nodes at each level of

the tree are processed by the level traversal algorithm in parallel.

The operations performed on each node are identical to those of the leaf

traversal algorithm. In other words, the processing of individual nodes

is identical in both algorithms.

The major difference between the two algorithms is the order of the

processing of the nodes. This is evident in Figures 5.3 and 5.9. In

i I I I II I I I lU
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Algorithm 2. A level traversal algorithm for the implementation of a

minimum-distance SPECTA on a parallel machine.

Input: G=(V,r,P,S), the tree grammar, and an input tree B.

Output: Tree transition table for tree B.

while the root node has not been processed

for all node. where node. c (lowest level nodes) of tree 8 do
beg i

if node. is an i.f. node
theA do

for all grammar rules with rank = 0 do

if the terminal symbol of rule k = label of i.f. node.

then add triplet (X,O,k) to triplet table of
i.f. node.

I

else add triplet (X,1,k) to triplet table of
i.f. node.

1

/* Xtis the left-hand side nonterminal of the */
/* k grammar rule */

end
end

Figure 5.8: The level traversal algorithm.

I4
,I
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else do /* the node is a Lowest Level frontier */
begin

n. = rank of l.l.f. node.
for all different combinations of nonterminals of

l.l.f. node.'s children's triplets do

/* Combinations are formed by taking the nonterminal */

/* of one triplet from each child's triplet table. */

begin
for all grammar rules with rank = n. do
begin 1-

if the nonterminal(s) of rule k = the nonterminals(s)

of the triplet combination of l.l.f. node.
then if the terminal symbol of rule k = ihe label

of l.l.f node.
then add (X,e1+.!+e ,k) to triplet

table of L.l.f. node.
I

else add (X,el+...+en +1,k) to
1

triplet table of l.l.f. node
end I

end
end

if the triplet table of any current lowest level node is nonempty

then if more than one triplet has the same state
then delete the triplet(s) with the larger number of errors

lowest level = level of parent nodes of the set of current lowest
level nodes

end
{current lowest Level nodes = (nodes with level = lowest level)

end

if triplet (S,e,k) is in the triplet table of the root node
then tree B is accepted with - errors

etse tree B is rejp(..,

Figure 5.8: (continued)
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these figures the triplet tables of nodes that may be processed in

parallel are aligned horizontally. In the Level traversal algorithm,

both initial frontier nodes and Lowest level frontier nodes are

processed in parallel. In contrast, the leaf traversal algorithm

processes all initial frontier nodes first, then it processes lowest

level frontier nodes.

The notation used in describing the level traversal algorithm is

identical to that used in the description of the leaf traversal

algorithm, with the exception of the use of the terms lowest level and

lowest level nodes. Referring to Figure 5.7, initially the lowest level

is level one, the first processing step. Once all the nodes on the

current lowest level have been processed the lowest level is updated to

the next lowest level (i.e., from level i to level i+l in Figure 5.7).

Any node at the current lowest level is referred to as a lowest level

node.

5.3.2 Processor and Data Allocation

Two possible processor allocation schemes for the level algorithm

will be considered here. The first is a slight variation of the 2W

processor per window allocation scheme suggested in section 5.2.2. The

second is a strict processor per rnde allocation scheme.

The 2W processor per window allocation scheme cannot be used as

described in section 5.2.2 because trunk nodes in the level algorithm

are processed at tile saril- time as i.f. nodes and rank 1 L.l.f. nodes.

The basic principK-, wever, can be used. In the allocation scheme in

section 5.2.2 each node is assigned to one processor. The processing of

the i.f. nodes and r3flk 1 l.l.f. nodes occur with a processor per node
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allocation. When a trunk node is processed the triplet combinations are

distributed and processed across all of the allocated processors.

For the level algorithm, the i.f. nodes and rank 1 l.l.f. nodes may

be processed using a processor per node allocation scheme. If a trunk

node is being processed, any extra processors will be allocated to

process the trunk node. This is assuming a fixed group of processors

has been allocated to the window. The number of processors available

for trunk node processing will depend on the size of the group of

processors allocated to the window. If 2W processors are allocated then

there will be fewer processors available for trunk node processing using

the level algorithm than for the leaf algorithm trunk node processing.

In the level algorithm W-1 of the 2W processors may be busy processing

i.f. nodes and rank 1 L.l.f. nodes, whereas all 2W processors would be

available for trunk node processing in the leaf algorithm.

It should be noted, however, that the level algorithm does not need

to have 2W processors allocated per window. If the only criterion used

in determining the size of the group of processors allocated is to

allocate only enough processors so that each node in a set that can be

processed in parallel is allocated a single processor then only W

processors would be needed for the level algorithm. Although this

restricts the amount of parallel processing that can be performed for

the trunk nodes, it increases the number of windows that can be

processed in parallel. For example, if R=r2W processors are available,

then 2r windows may be processed in parallel. If 1024 processors are

available and W=7, then at least 2r=146 windows can be processed in

parallel.
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Consider the trade-off between processing the trunk node triplet

combinations in parallel and processing more windows in parallel. If it

is best to process as many windows ir parallel as possible then a

processor per node allocation scheme for all nodes might be used. If

the nodes are allocated such that the number of processors available is

used to the fullest extent, it may be possible to process all windows in

parallel while processing the sets of nodes at certain levels. This

will depend on the window size and the number of processors available.

For example, if there are 1024 processors and W=7 then only 146 windows

of the 196 windows of a 98x98 picture may be processed in parallel for

the levels with the largest sets of nodes. The 50 windows left would be

processed in a second parallel step. During this time two-thirds of the

processors wouLd be idle in a strict processor per node scheme. Thus it

would be better to employ a hybrid approach -- processing only half the

windows at a time, using the node per processor allocation for the rank

1 and rank 0 nodes and multiple processors allocated for processing the

triplet combinations of the trunk nodes.

5.3.3 Mode of Processing t
For both of the allocation schemes described in the previous

subsection, the processing sho.ild be performed in MIMD mode. Nodes

being processed in parallel will require different instruction streams

and different data streams. For instance, i.f. nodes will be processed

at the same time as (.l.f. nodes, and, among the l.l.f. nodes, trunk

nodes will be proces;J at the same time as nodes not in the trunk. The

code for processing the different types of nodes is different, and the

different types of nodes require the accessing of different parts of the
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grammar rule database. Assuming all the processors in PASM are to be

used for the processing of a picture, they will all be capable of

operating in MIMD mode.

The grammar rule database should be organized as was suggested for

the leaf algorithm. The tree data structure for the window, however,

will need to be different to allow easy access to lowest level nodes on

a complete tree or on a pruned version of a complete tree.

5.4 A Comparison

For the sake of simplicity, a processor per node allocation scheme

for both algorithms will be considered first. Unless processing in one

mode is found to be significantly more efficient than processing in the

other mode, there should be only a slight difference in the time taken

by the algorithms in the processing of an individual window. If the

processing in both modes is equally efficient, then the time for

processing a single window using a processor per node allocation scheme

should be the same for both algorithms.

Using as an example, the 5x5 window as illustrated in Figure 5.7,

for the level traversal tree, at the lowest level all the nodes are i.f.

nodes, as are all the leaves in the leaf traversal tree. The time to

process any one i.f. node is the same for all i.f. nodes, therefore the

first step will take the same amount of time. Processing of l.l.f.

nodes will take longer than the processing of i.f. nodes because it is

necessary to compare the nonterminal symbols of its children's triplets

with the nonterminal symbols of the grammar rule. Therefore, the second

step of the level algorithm will take as long as is needed to process a

l.L.f. node. ALL the non-trunk l.l.f. nodes take the same amount of
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time to process as was noted in the analysis of the leaf algorithm. The

second step in the leaf algorithm will, therefore, take the same amount

of time as the second step in the Level algorithm. This same principle

applies for the remainder of the processing steps. Although it is

demonstrated in Figure 5.2 and 5.7 for 5x5 window, this principle is

generally applicable across all window sizes. The mode of processing

should be the only factor that would make a difference in the processing

time of the two algorithms for a single window.

There is a large difference, however, in the number of windows that

can be parsed in parallel given a processor per node allocation scheme.

Given R=2rW processors, the level algorithm can process 2r windows in

parallel, while the leaf algorithm can process only r windows in

parallel. It is possible, therefore, for the level algorithm to process

a whole picture as much as twice as fast as the leaf algorithm. The

exact time savings will depend on the relationship of the number of

nodes in all windows to be processed in parallel to the number of

processors available, assuming a procesior per node allocation scheme.

If the trunk nodes can be processed using more than one processor,

there may be a difference in the processing time for these nodes. In

the leaf algorithm, one trunk node is processed at a time while in the

level algorithm other nodes irt processed with the trunk nodes.

Therefore, for the Level algorithm, fewer processors will be available

for the processirq of the trunk nodes. However, the level algorithm has

the potential to process more windows in parallel than the leaf

algorithm. An analysis would have to be performed to determine whether

i i i i m i.. . , - fl " . . . .
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or not these factors would create a significant difference in the

processing times for the two algorithms.

I;
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CHAPTER 6

DATABASES AND TREE PARSING

6.1 Introduction

Databases and database languages have been designed for the

organization of the reasonably complex relationships among data and for

the nonarithmetic processing of the data. The two algorithms discussed

in the last chapter, the leaf algorithm and the level algorithm, are

characteristic of many syntactic pattern recognition tasks in that they

use logical data structures more complex than the arrays usually used in

image processing tasks and they use many nonarithmetic operations while

processing the data in these Logical data structures. Therefore, it

seems reasonable to use database techniques for the processing of these

algorithms. The problem to be considered in this chapter will be the

choice of a database model and the feasibility of programming using

database techniques on PASM.

Of the three database models, only the network and the relational

model were considered in detail. The hierarchical model was not used

since it is essentially a subset of the network model. Of the two

models presented in detail, only the relational model was investigated

fully at the programming level. It was thought that whereas the network

model alLowed the structuring of the data in the logical tree structure

t I
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of the algorithms, it was not as amenable to parallel processing on PASM

as the relational model.

An attempt was made to write programs for the algorithms to

determine the types of commands that would be needed and how PASM might

execute these commands. Although a parallel language for PASM has not

been developed, some instruction and declaration statements for STAD

mode processing have been suggested [SiM,MSS]. These are listea in

Figure 6.1.

Commands from a database language, GPLAN's DML for the network

model and SEQUEL for the relational model, were mixed with the commands

in Figure 6.1. The result is a pseudo language with certain

inconsistencies, but these will be noted. It is assumed that the pseudo

language may be used for both SIMD and MIMD processing. The programs

written in this ed L.anguagc serve the purpose of indicat^g where

speciaL language structures may be needed and how these may be

processed.

6.2 The Network Approach

The network approach was not fully investigated. The tentative

network model developed is illustrated in Figure 6.2. It should be

noted that at this stage in the development of the model the grammar

rules had not been included in the model of the tree structure. They

were established as a second database. In a final network model it

would probably bV nessary to have the grammar rules included in the

- tree database. Subse,, t references to the model will be concerned

only with the model oT the tree structure as presented in Figure 6.2.
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A. Declaration Statements

CONSTANT vl=conl, v2=con2, ... , vN=conN;
INTEGFR varlist;
BYTE varlist;
UNSIGNED BYTE varlist;

INDEX varlist;
DATA INPUT varlistl OUTPUT varlist2;
ivar= {rangelist);

B. Control Statements

Micro Controller

WHILE condition DO statement
FOR initialize statement WHILE condition

STEP increment statement DO statement
IF condition THEN statement
IF condition THEN statement1 ELSE statement2

PCU Processor

WHERE condition DO statement
WHERE condition DO statementl ELSEWHERE statement2

Micro Controller and PCU Processor

WHILE condition1 WHERE condition2 DO statement
FOR initialize statement WHILE conditionl WHERE condition2

STEP increment statement DO statement
WHILE[ANY,ALL] condition DO statement
FOR initialize statement WHILE[ANY,ALL) condition

STEP increment statement DO statement

IF[PNY,ALL] condition THEN statement
IF[ANY,ALL] condition THEn statementl ELSE statement2

Figure 6.1: List of control instructions [SiM].

-- "I I I III I... . . A
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GRAM

NODO RULE

smLNSN RHS3
LHSN TER M
ERRS RHS1

RULN RHS2

BO

NOD 1

SYS3E

LNSN LNSN
ERRS ERRS
RUIN RUIN

Figur 6.2 l New2~ rn8o redaaaefra3 window
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The model illustrated in Figure 6.2 includes a unique predefined

SfST record as required by GPLAN. Containing no data, the SYST record

provides the entry point to the user defined database.

A small amount of redundancy was built into the node records for

the purpose of increasing accessing efficiency and keeping the data

model as simple as possible. For each occurrence of a node record there

will be a node label, SYMB, and a triplet, LHSN, ERRS and RULN. The

node Lable will be repeated as many times as there are triplets. The

node label is such a small data item the redundancy does not greatly

increase the storage space required. In addition, since the node label

is always used when forming a new triplet, it seemed reasonable to place

these logically related data items in the same record.

There are multiple entry points to the database as indicated by the

branches SYSn. The entry points are at the bottom of the tree because

the algorithms describe a bottom-up process. The multiple entry points

are essential for parallel processing. The entry points may all be

processed at one time or subsets of entry points may be chosen. The

multiple entry points while allowing parallel entry points also allow

the user some flexibility in choosing the order in which the nodes are

processed. As a consequence, this data model provides all the

relationships necessary for both algorithms.

The schema and subschemas for the algorithms are derived from this

model. Haseman and Whinston [HaW) give the following definitions of

schema and subschema as used with respect to a CODASYL database.

schema - "The description of the logical structure of a database
in terms of a data description language."
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subschema - "A particuLar programmer's view of the logical
structure of a database. One schema may have numerous
subschemas associated with it."

Although the CODASYL standard includes subschemas, the GPLAN DDL

(Data Definition Language) does not include subschemas. The logical

restructuring of the tree database that occurs when switching from the

leaf algorithm to the Level algorithm makes the inclusion of the

commands for writing subschemas necessary. Therefore, the CODASYL

standard commands for subschemas taken from the SEED [Ger) database

management system were included as an extension of GPLAN's DDL.

The terms used in the schema are RECORD, ITEM, SET, OWNER, and

MEMBER. ITEM is used to indicate a data item name. RECORD is used to

indicate a record name. A SET is named relationship of record types

where one or more record types are defined as OWNERs and one or more

record types are defined as MEMBERs [HaW]. In the logical structure,

the SETS are depicted by the branches connecting the record types.

Figure 6.3 is an example of a very simple schema and its

corresponding network model without the GPLAN SYST record. This example

should help clarify the relationship between a schema and a diagram of

the logical structure of a database.

The schema for the tree database whose logical structure is

diagrammed in Figure 6.2 4s ven in Figure 6.4. The schema does not,

by itself, clearly indicate which nodes may be processed in parallel.

Some assumptions miht be made based on the multipte entry points, but

these would be true onl, for specific algorithms. Multiple entry points

by themselves do not imply that al! the associated records may be

processed in paralleL.
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SCHEMAmEX

RECORD SENT
ITEM WRDS

RECORD WORD
ITEM ALPH

SET Si
OWNER SENT
MEMBER WORD

SENT

Si

WORD

ALPH

Figure 6.3: A simpLe schema and corresponding diagram.

I.i
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SCHEMA=TREE RECORD NOD8 SET 85
ITEM SYMB OWNER NO0Z

RECORD NOD1 ITEM LHSN MEMBER NOD3
ITEM SYMB ITEM ERRS
ITEM LHSN ITEM RULN SET 86
ITEM ERRS OWNER NOD6
ITEM RULN RECORD NOD9 MEMBER NOD8

ITEM SYMB
RECORD NOD2 ITEM LHSN SET 87
ITEM SYMB ITEM ERRS OWNER NOD3
ITEM LHSN ITEM RULN MEMBER NOD6
ITEM ERRS
ITEM RULN RECORD NOD@ SET 88

ITEM SYMB OWNER NOD3
RECORD N003 ITEM LHSN MEMBER N009
ITEM SYMB ITEM ERRS
ITEM LHSN ITEM RULN SET GRAM
ITEM ERRS OWNER SYST
ITEM RULN RECORD RULE MEMBER RULE

ITEM LHSN
RECORD NOD4 ITEM TERM SET SYSI
ITEM SYMB ITEM RHSI OWNER SYST
ITEM LHSN ITEM RHS2 MEMBER NOD4
ITEM ERRS ITEM RHS3
ITEM RULN SET SYS2

SET Bi OWNER SYST
RECORD NOD5 OWNER NODE MEMBER NOD5
ITEM SYMB MEMBER NO01
ITEM LJ4SN SET SYS3
ITEM ERRS SET BI OWNER SYST
ITEM RULN OWNER NOD1 MEMBER NOD6

MEMBER N004
RECORD NOD6 SET SYS4
ITEM SYMB SET B2 OWNER SYST
ITEM LHSN OWNER NODI MEMBER NOD7

ITEM ERRS MEMBER NOD2
ITEM RULN SET SYS5

SET 83 OWNER SYST
RECORD NOD7 OWNER NOD1 MEMBER NODS
ITEM SYMB MEMBER NOD7
ITEM LHSN SET SYS6
ITEM ERRS SET B7 OWNER SYST
ITEM RULN OWNER NOD2 MEMBER N009

MEMBER NODS

Figure .4: Schema for the tree database.
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The easiest method of letting the compiler know which sets and,

therefore, which set record MEMBERS may be proessed in parallel is to

have the programmer tell the compiler in the program. This does not

entail any knowledge of the hardware on the part of the programmer and

it does not require any specific knowledge about the compiler and

processor allocation. What is proposed is a method whereby the

programmer simply states, based on the algorithm, which sets can be

processed in parallel using a new database command for denoting parallel

set grouping.

The keyword for defining a parallel group name is PARALLEL. The

sets in a parallel group are listed following the group name definition.

Theoretically, for database security, the schema is a fixed entity

that the programmer is not allowed to change. Therefore, if the

programmer is to be able to define the parallel groups that are needed,

this must be accomplished in the subschema. Placing the parallel set

definitions in the subschema also allows more flexibility in the use of

a database. Since the schema is fixed, the only opportunity for

flexibility, for different interpretations of different problems on the

part of the user, is in the subschema.

The subschemas for the two algorithms are given in Figure 6.5. The

first line of the subschemas give the subschema name and the name of the

schema. The next two lines of each subschema indicate which records and

which sets of the schema will be used. In this case all of the records

and all of the sets of schema TREE will be used in both of the programs.

The parallel groups are Listed following the record and set listings.

All possible parallel paths are listed in the parallel groups. It

,..
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SUBSCHEMA=LEAF, SCI4ETA=TREE
COPY ALL RECORDS
COPY ALL SETS
PARALLEL GPL1

S YS1
SY S2
SY 53
SY 54
SYS5
SYS6

PARALLEL GPL2
81
83
B4
B6
B7
B8

SUBSCHEMA=LEVEL, SCHEM'.MTREE
COPY ALL RECORDS
COPY ALL SETS

PARALLEL GRP1
Sysi
65
SYS4

PARALLEL GRP2
SY S2
87
8
SY S5

PARALLEL GRP3
SY 53
SY 56

PARALLEL GRP4
81
B2
83

PARALLEL GRP5
84
85
86

PARALLEL GRP6
87
B3

Figure 6.5: Su. .chemas for the leaf and tevel algorithms.

AI !j
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should be noted that a set is a part of a parallel group if either an

owner record is a record that may be processed in parallel with other

records or a member record may be processed in parallel with other

records. This is done so that parent nodes can be made frontier nodes

in parallel.

The GPLAN DML commands to be used in the programs are not oriented

to parallel processing. The incLusion of the parallel groups in a

subschema raises some questions as to whether modifications to the GPLAN

commands may be needed. Whether or not some modifications are made

depends on determining whether the compiler or the user is responsible

for finding the parallelism in the program.

If the programmer is responsible for finding the parallelism,

parallel commands will be needed. Commands involving a parallel group

would be prefaced by a P and the group name would be used instead of a

set name. For example, the command FFM (Find First Member) is used to

find the first member of a set. Eliminating the hollerith formatting

from the standard GPLAN command, the command might be found in a program

as follows:

CALL FFM Si

If Si is a member of a parallel group, GRPl, the programmer would modify

the command and use a Parallel Find First Member (PFFM) command that

uses the group name as the argument. The PFFM command would find the

first member of every set in the group. For set Si in GRP1 the

resulting command is

CALL PFFM GRPl

ALw
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If the compile is responsible for detecting the parallelism in a

program, it will have to use the parallel group information in the

subschema. The compiler will check for the parallel group sets. Once a

set in a parallel group is found the compiler will check to see if it is

within a loop performing the same operations on a different record in

other sets in the parallel group. Assuming the programmer letting the

compiler detect parallelism is not concerned with parallelism, it is

necessary to check for all the sets in a parallel group because the

programmer may use a parallel group in one section of a program and an

individual set that is a member of a parallel group in another section.

However, it will be assumed that the programmer will be able to use the

parallel commands, therefore making it unnecessary to include the

capacity for detecting whether or not a set is a member of a parallel

group in the compiler for PASM.

At this point in the analysis it seemed that the relational

approach may be better suited to the task in question. Some of the

factors affecting the decision to investigate the relational approach

were the clarity of the program and the degree to which parallelism may

be exploited.

When speaking of the clarity of a program, the reference is to the

clarity of a program writter j host language with database language

commands embedded in the program. It is assumed that the relational

database language used will be an English-like language similar to

SEQUEL. A CODASYL DML, such a, GPLAN's DML, that is designed to be

embedded in a host larnguaqe usually consists of subroutine calls using

. . . . . . . ... 7 ' I ii i l L . L z . - . . . i i i iI
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acronyms for a command function as the command subroutine name and a

parameter list. In addition, for each step in the tree processing more

CODASYL DML commands are required than relational Language commands.

The result of using an English-like relaticnal Language whose commands

can be directly embedded in a host language program should be greater

clarity and ease of programming.

The primary reason for switching to the relational approach was the

ability of the relational database to exploit parallelism. In a CODASYL

database, access strategy is forced to be sequential because of the

method of accessing data one occurrence at a time through a chain of

pointers. Even with the parallelism allowing the user to traverse

multiple chains at the same time, a relational database has the

potential ability to access whole sets of record or data occurrences at

the same time. The investigation of the relational approach follows in

the next section.

6.3 The Relational Approach

6.3.1 Justification of the Relational Approach

The relational approach has several advantages over the network

approach. Two of these mentioned previously were the clarity of the

relational data languages, in contrast to the CODASYL DML, and the

ability to exploit parallelism. Both of these are either direct or

indirect results of the uniformity of the data representation which is

the outstanding characteristic of the relational data model. The

ability to exploit parallelism is a direct result whereas the clarity of

the data languages is an indirect result.

hAL
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The clarity of the relational data Languages is due in part to

their nonprocedural characteristics and the few simple but powerful set

operators which are used to manipulate the data in the relational

database. It is not necessary to specify how to obtain data when using

a relational database language as it is when using a CODASYL or

hierarchical DML. When using a CODASYL or hierarchical DML not only the

path but the currency of the path, the current record occurrences on the

access path, to a particular data item or record must be specified by

the user. A relational data language does not need commands to specify

a path because there is no path to follow due to the uniform

representation of the data. The user only has to specify the

characteristics of the data desired, and if necessary, use the few set

operators to obtain the required data.

The relational approach, in general, is far simpler than the

network approach. This is particularly true when working in a parallel

machine environment. Not only does the relational approach offer

greater opportunities for exploiting the parallel processing

capabilities of such a machine, but the added simplicity for the user

seems to be a powerful factor in support of the use of the relational

approach.

6.3.2 The Tree Database Relations

The relations used for The impLementation of both algorithms are

diagrammed in Fijre ".6. Some of the factors used in determining the

relations were th? L, tiation of redundancy within the relations, the

nature of the data in tle relation, and the logical relationships of the

attributes. These factors influenced the organization of the relations
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TREE

NODE# SYMB PARENTNODE# LEVEL# CURRENT

F CHILDREN
O E CHILNODE#

GRAM

RANK RI4SN TERM LHSN RUL#

TR IPLETS

NODE# ILHSN ERR RLJL#

RHN ERR

TEMP

jPN# jCN# LI4SN_ ERRJ

Figure 6.6: The tree database relations.
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more than the strict normalization process usually advocated. A

relation is said to be normalized if each attribute in each tupLe is

atomic (nondecomposable) [Dat]. There are, however, multiple Levels of

normalization. A relation satisfying the above condition for

normalization is said to be in first normal form. Currently the most

desired form of a relation, the form in which undesirable properties

affecting insertion, deletion, and updating have been eliminated, is

fourth normal form [Dat]. Some of the relations are in fourth normal

form, but only as a consequence of aligning nonredundant, logically

related data in a single relation.

The TREE relation contains the node numbers, NODE#, the terminal

symbol associated with the node number, SYMB, the parent node number,

PARENTNODE#, the level of the node, LEVEL#, and a currency flag,

CURRENT. CURRENT has a value of 1 if a tuple is being processed,

otherwise the value is 0. The CHILDREN relation lists the nodes, NODE#,

and their children, CHILDNODE#. The GRAM relation contains the grammar

rules, the rank of the grammar rules, RANK, and the rule numbers, RUL#.

The grammar rules consist of a right-hand side nonterminal, RHSN, a

terminal symbol, TERM, and a left-hand side nonterminal, LHSN. The

TRIPLETS relation contains the node numbers, NODE#, and the triplets

associated with the nodes. T LripLets consist of left-hand side

nonterminals, LHSN, an error count, ERR, and the grammar rule number

applied to form the triplet, RUL#. The COMB relation is formed from the

TEMP relation. The TEP r-Latinn contains the parent node numbers, PN#,

the child node numbers, CN#, the left-hand side nonterminaLs obtained

from the TRIPLETF -elation, LHSN, and the error counts, ERR, associated
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with a node's children's triplets. The COMB relation contains the new

right-hand side nonterminals formed by cc-bining the LHSNs in TEMP,

RHSN, and error counts, ERR, formed by adding the appropriate ERRS

values in TEMP. It should be noted that RHSN is a variable size

attribute which can contain from zero to three nonterminal symbols.

The relations can be divided into two groups: static and dynamic.

A static relation is one in which attribute values are not updated,

inserted, or deleted. A dynamic relation is one whose attribute values

are at some time either inserted, deleted, or updated. Usually in a

database the relations are dynamic, but for the tree algorithms the tree

structure and grammar rules are considered to be set, static, once the

database is loaded. New tree structures or grammar rules can be used

without reloading the entire database, but it wouLd be necessary to

reload the relations affected.

The static relations are TREE, CHILDREN, and GRAM; the dynamic

relations are TRIPLETS, COMB, and TEMP. Of the static relations, TREE

and CHILDREN are in fourth normal form. For GRAM to be in fourth normal

form it would have to be divided into two relations; one relation would

contain the attributes RUL#, LHSN, TERM, and RHSN, while the other would

contain the attributes RUL# and RANK. GRAM was not put in fourth normal

form because it was much easier to have the logically related attributes

joined in a single relation. Whether or not GRAM is in fourth normal

form is not crucial because it is a static relation; therefore, the

undesirable properties eliminated by placing a relation in fourth normal

form do not occur.
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Of the dynamic relations, COMB and TEMP are in fourth normal form.

TRIPLETS will be in fourth normal form if the attribute LHSN is removed,

but because the SEQUEL commands used do not perform joins easily the

LHSN attribute was left in the TRIPLETS relation. The dynamic relations

as constructed are not necessarily the most efficient, but they are

sufficient to demonstrate the usage of a relational database for image

processing. Obviously using relations will require extra knowledge on

the part of the user. The user should know something about the

normalization process and have some concept of the limitations of the

relational Language used.

6.3.3 Relation Declarations

Once the Logical structure of the relations is specified the user

will need to write the relational schema. Instead of having a strict

schema with its own DDL, a much simpler approach would be to add a new

data type that can be declared along with the regular PASM declarations.

The data type would be called RELATION. The declaration of the CHILDREN

relation would appear as follows:

RELATION CHILDREN EW2] (INTEGER NODE#, CHILDNODE#}

2
The length of the relation, CHILDREN, is W , where W is the window

dimension. This vdlue is included because some value must be given for

the maximum length of the relation even if the relation is dynamic.

This decLaraLion es the proposed PASM INTEGER declaration. Any

of the other P/SM types may conceivably be used within a RELATION

declaration. Th, proposed PASM data declarations do not include a

character data declaration. However, syntactic pattern recognition
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tasks frequently use character data. Encoding of the character data is

often performed, but theoretically, to allow the user the greatest

freedom, there should be a CHAR, character, data declaration.

The most important restriction on a RELATION declaration is that

the user cannot nest RELATION declarations. A relation must contain all

atomic values. Multiple levels of declarations result in composite

attributes and, therefore, are not allowed.

By not having a formal schema, a certain amount of flexibility is

lost because the user can no longer specify which attributes are to be

keys. In the RELATION declaration, all attributes are candidate keys;

there is no specific primary key. This does, however, make it slightly

easier for the user.

6.3.4 A Brief Comparison with the CODASYL Approach

At this point, a brief comparison with the CODASYL approach will

illustrate many advantages of the relational approach and a few

disadvantages. One primary advantage of the relational approach, the

ability of the relational languages to extract whole sets of data, was

mentioned previously. Another advantage of the relational approach is

the simplicity of the relational "schema." Use of the CODASYL schemas

and subschemas would require much more knowledge on the part of the user

and also would require more processing. The CODASYL schemas and

subschemas are far more complex than the relation declarations. This is

primarily due to the greater complexity of the logical structure for the

CODASYL approach. The logical relational structure is much simpler even

with the extra relations, COMB and TEMP, added to help form the triplet

combinations.

""
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The one major disadvantage of the relational approach lies in the

initial accessing strategy. Whereas the CODASYL entry points alLow a

fLexibLe approach, i.e., the user can choose the set of entry points,

the relational approach required on additional attribute to process the

nodes in a different order. The PARENTNODE# can be used to process the

nodes in the leaf algorithm, but to process the nodes by level the

LEVEL# attribute had to be added. This inflexibility is minor when

compared with the previously mentioned disadvantages of the CODASYL

approach.

6.3.5 The Leaf and Level Programs

To simplify the transition from algorithms to tentative programs,

flowcharts are used. The flowchart for the leaf algorithm is given in

Figure 6.7. The corresponding program is given in Figure 6.8. The

flowchart and program for the level algorithm are given in Figures 6.9

and 6.10, respectively. The relational language used in. the programs is

based upon SEQUEL with a few minor modifications added to help make the

programs more readable. Among these changes were the use of full

relation references at all times. For example, SELECT NODE# FROM TREE,

a perfectly acceptable reference in SEQUEL, will be written SELECT

TREE.NODE# FROM TREE. The hoqt Language used in the program is the

proposed parallel language for PASM. The commands for this proposed

Language were listed previously in Figure 6.1. The function of some

SEQUEL commands usvJ it, the leaf and level programs will be described

next.

Retrieval operations are usually performed in SEQUEL with a

SELECT-FROM-WHERE* block. This command SELECTs attributes FROM i
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Y
enter tripLet N TERM of grammar SYMB of _ enter triplet

L4SN,I,RULN rules with rank=@ current nodes-- LHSN,O,RULN
I

delete all triplets y does any one node have
except the one with -- triplets where the LHSNs
the least number of are equal?

errors I N

current nodes=parent nodes of current nodes

-0 get triplet tables of chilaren of current nodes
form combination using the LHSNs*

Y COMBINATION = RHSNs of grammar rules
with rank=rank of current nodes

TERM of grammar rules = SYMB of N
with rank=rank of current nodes current nodes

enter triplet enter triplet
LHSN,SUM OF ERRS+1,RULN LHSN,SUM OF ERRS<RULN

N
LHSNs of node's triplets equal? 1bI Y
delete all triplets except one with least ERRS---- root node?

I N + Y

f is LHSN=S in triplet table?
(D Y N

accept tree with e errors reject tree

Figure 6.7: FLowchart for the Leaf aLgorithm.

I



WHERE SELECT GRAM.TERM SELECT TREE.SYMB
FROM GRAM FROM TREE
WHERE* GRAM.RANK=e WHERE* TREE.CURRFNT=1

DO INSERT INTO TRIPLET:
(TREE.NODE#,GRAM.LHSN,1 ,GRAM.RUL#)

ELSEWHERE
A INSERT INTO TRIPLETz

(TREE.NODE#,GRAM.LHSN,0,GRAM.RUL#)

DELETE TRIPLETS
GROUP BY TRIPLETS..NODE#
GROUP BY TRIPLETS.LHSN
HAVING TRIPLETS.ERR

SELECT MIN(TRIPLETS.ERR)
FROM TRIPLETS

WHERE TREE.CURRENT=l AND TREE.NODEU =0
DO UPDATE TREE

SET TREE.CURRENT=1
WHERE* TREE.NODE# IN

SELECT TREE.PARENTNODE#
FROM TREE
WHERE* TREE.CURRENT=1
UPDATE TREE
SET TREE.CURRENT=@
WHERE* (SELECT TREE.NODE#

FROM TREE
WHERE* TREE. CURRENT =1)
INTERSECT
(SELECT TREE..PARENTNODEU
FROM TREE
WVIFPE* TREE.CURRENT=l)

Figure 6.8: The Leaf algorithm program.
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WHERE SELECT COUNT (CHILDREN.CHILDNODE#)=l
FROM CHILDREN
GROUP BY CHILDREN.NODE#
HAVING SET (CHILDREN.NODE#)
CONTAINS (SELECT TREE.NODE#

FROM TREE
WHERE TREE.CURRENT=1)

DO INSERT INTO COMB:
SELECT TRIPLETS.NODE#,TRIPLETS.LHSN,TRIPLETS.ERR
FROM TRIPLETS
WHERE* TRIPLETS.NODEU=CHILDREN.CHILDNODE#

ELSEWHERE DO
TEMP (PN#,CN#,LHSN,ERR) 4- SELECT UNIQUE

CHILDREN. NODE#, CHILDREN, CHILDNODE#,
TRIPLETS.LHSN,TRIPLETS. ERR
FROM CHILDREN,TRIPLETS
GROUP BY CHILDREN.NODE#

B GROUP BY CHILDREN.CHILDNODE#
HAVING COUNT (CHILDREN.CHILDNODE#)

> 1 AND
SET (CHILDREN,CHILDNODE#) CONTAINS

SELECT CHILDREN.CHILDNODE#
FROM CHILDREN
WHERE* CHILDREN.CHILDNODE#=

TRIPLETS.NODE# AND
CHILDREN.NODE# IN

SELECT TREE.NODE#
FROM TREE
WHERE* TREE.CURRENT1l

RANK +SELECT COUNT (UNIQUE TEMP.CNU)
FROM TEMP

T(N) + SELECT COUNT (TEMP.LHSN)
FROM TEMP
GROUP BY CN#

Figure 6.8: (continued)
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FOR I=1 WHILE I <= TM1 STEP I=I+1 DO
FOR J=T(1) WHILE J <= T(1)+T(2) STEP J=J+1 DO
IF RANK=3 THEN

FOR K=T(1)+T(2) WHILE K <= T(1)+TC2)+T(3)
STEP K=K+1 DO

RHSN = LHSNCI)IILHSN(J)IILHSN(K)
ERR = ERRCI)+ERRCJ)+ERR(K)
INSERT INTO COMB:

(RHSN, ERR)
ELSE

RHSN =LHSN(I)IILHSN(J)
ERR =ERR(I)+ERR(J)
INSERT INTO COMB

(RHSN,ERR)
DELETE TEMP

WHERE SELECT GRAM.RHSN
FROM GRAM
WHERE* GRAM.RANK IN~

SELECT COUNT (CHILDREN.CHILDNODE#)
FROM CHILDREN

B GROUP BY CHILDREN.NODE#
cont. WHERE* CHILDREN.CHILDNODE# IN

SELECT TREE.NODE#
FROM TREE
WHERE* TREE.CURRENT=1

DO WHERE GRAM.TERM = SELECT TREE.SYMB
FROM TREE
WHERE* TREE.NODE# =COM'B.NODE#

DO INSERT INTO TRIPLET
(TREE.NODE#,GRAM.LHSN,CO4B. ERR+1 ,GRAM.RUL#)

ELSEWHERE INSERT INTO TRIPLET
(TREE.NODE#,GRAM.LHSN,COMB.ERR.GRAM.RUL#)

DELETE TRIPLETS
GROUP BY TRIPLETS.NODEU
GROUP BY TRIPLETS.LHSN
HAVING TRIPLETS.ERR

SELECT "'"(TRIPLETS.ERR)
FHOM TRIPLETS

DELETE COMB

Figure 6.8: (continued)
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ELSEWHERE DO
fEIF ANY TRIPLETS.NODE#=@ AND TRIPLETS.LHSSN='S'

C THEN INSERT INTO RESULT:
('ACCEPT' ,TRIPLETS.ERR)

ELSE INSERT INTO RESULT:

L ('REJECT')

Figure 6.8: (continued)

AIL
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is rank of current node :0

current rode=node with 1--- root node?
Level equal
to tevetl

Figure 6.9: FLowchart for the Level aLgorithm.
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WHERE TREE.CURRENT=I AND TREE.NODE# =0 DO
WHERE (SELECT TREE.NODE# = (SELECT CHILDREN.NODE#

FROM TREE) FROM CHILDREN) DO

A

ELSEWHERE

UPDATE TREE
SET TREE.CURRENT=1
WHERE* TREE.LEVEL#+1 =

SELECT UNIQUE TREE.LEVEL#
FROM TREE
WHERE* TREE.CURRENT=O

UPDATE TREE
SET TREE.CURRENT=0
WHERE*

(SELECT TREE.NODE#
FROM TREE
WHERE* TREE.CURRENT=l)

INTERSECT
(SELECT MIN(TREE.LEVEL#)
FROM TREE)

ELSEWHERE

C

Figure 6.10: The Level aLgorithm program.
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relation WHERE* either an attribute satisfies a specific condition or

the attribute is contained within a specified set of values. The

special operation GROUP BY, the HAVING clause, and the library function

SET can be used in the retrieval operations. GROUP BY partitions the

pertinent relation into groups such that within any group all tuples

have the same value for the attribute specified following the GROUP BY

operator. The HAVING clause is a special form of the WHERE* clause

applying the groups. Entire groups are chosen or discarded )ased on the

condition specified in the HAVING clause [Dat]. The SET function

returns the set of values occurring for the specified attribute within a

given group.

The storage operations used in the two programs are UPDATE, INSERT,

and DELETE. The UPDATE command will UPDATE a relation and SET the

values for the attributes WHERE* certain conditions are satisfied. The

INSERT and DELETE commands are self-explanatory.

Some of the library functions used excluding the SET function are

COUNT and MIN.COUNT returns the number of occurrences of the specified

attribute. When COUNT is used in conjunction with a GROUP BY operator,

a COUNT is returned for each group. MIN returns the MIN (minimum) value

of the specified attribute.

Some additional deti aLuXL the proposed host language need to be

given to clarify the reasons for the changes to be suggested. The focus

of the suggested chanqes are index variables and their use in

conditional statement ,  A-, currently defined, index variables must be

scalars whose ranges are spec4 fied in a range list. In addition, Micro
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Controller variables are supposed to be scalars, while PCU variables are

supposed to be arrays.

It should be noted that there are two different types of WHERE

commands used in the programs. One WHERE command is part of a WHERE-DO

structure in the host language while the other WHERE command is a part

of the relational language and denoted WHERE*. The command names will

probably need to be changed to reduce confusion and simplify command

processing.

Since relations are essentially two dimensional arrays they would

be considered to be PCU variables. The SEQUEL commands choose subsets

of the relations much as the index variables are used to specify index

sets. The SEQUEL commands were therefore used to specify index sets in

the conditional PCU processor control statements. The major difference

between the use of the index variables in specifying an index set and

the use of SEQUEL commands to choose an index set is the inability to

specify a range list using the SEQUEL commands. The SEQUEL specified

set is always dynamic and the values of the indices are always implicit.

The organization of the SEQUEL commands in the program in Figure

6.9 is impractical in terms of compilation. A more practical approach

would be to use index variables to store the values of the index set

specified by the SEQUEL commands. For example, consider the first

condition in the first WHERE statement:

SELECT GRAM.TERM = SELECT TREE.SYMB
FROM GRAM FROM TREE
WHERE GRAM.RANK=O WHERE TREE.CURRENT=I

Let G and T be defined as index variables in the declaration statements
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at the beginning of the program. The following initialization

statements would be needed before the control statement.

G + SELECT *
FROM GRAM
WHERE* GRAM.RANK=O

T 4- SELECT *

FROM TREE
WHERE* TREE.CURRENT=I

An * refers to tuples in a relation. This allows specification of the

desired attribute in the WHERE statement which adds to the clarity of

the program. The WHERE statement would then read:

WHERE GRAM.TERM [G] = TREE.SVMB [T].

At points in the program there are references to relations without

indices, only the relation and attribute names are given. This is the

standard form of reference to a relation. In a relational language such

as SEQUEL, there is no provision for the specification of indices. The

choice of the index subset is supposed to be transparent to the user.

Since using the proposed PASM parallel language commands requires a

knowledge of index variables and their use on the part of the user, it

did not seem unreasonable to remove at least a part of this

transparency. As a result, the programmer will have a little more

flexibility in manipulating the relations.

While allowing the rroy .er to specify indices, it is not

necessary to require that indices be used at all times. However, as was

mentioned previously, for practicality the programmer will be required

to use irdices in certain conditional statements.

A suggestion for a means of allowing both ways of specifying

subsets of a reLation <oul.d be to nave automatic index variables, one
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index variable per relation. Programmer defined index variables could

easily be grouped together during compilation to be synonymous with the

appropriate automatic index variable. The automatic index variable

could be handled in a manner analogous to the handling of nested WHERE

statements. The user also would have the ability to access individual

tuples; an index value can be used in place of an index variable.

Although allowing the user to specify index variables and values is

a departure from the conventions of relational database processing, it

provides an interface between a strict relational Language and the

proposed PASM parallel language commands. Theoretically the user should

be able to take full advantage of the relational database techniques, or

to mix relational commands with PASM parallel language commands as was

done in the programs in Figures 6.9 and 6.11, or to manipulate the

relations utilizing only the proposed PASM parallel language commands.

Some of the SEQUEL commands can be preprocessed to yield PASM

parallel language commands. For example, simple SELECTs can be

translated into WHERE statements simply by extracting the WHERE*

statement of the SELECT-FROM-WHERE* group.

In contrast, some of the more complex SEQUEL commands are not so

easily translated. Efficient means of implementing some of the set

operators and commands such as the GROUP BY will need to be found. It

is through the use of commands such as these that the programs can be

greatly simplified, but without relatively efficient code the ultimate

goal of significantly reducing the processing time cannot be

accomplished. Some ideas for the implementation of these commands will

be discussed in the next chapter.
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Another suggested change to the proposed PASM parallel Language

commands is to allow simple one-dimensional arrays containing counts or

indices to be allowed as Micro Controller variables. This was useful in

the programs when forming the triplet combinations. An array was needed

because of the multiple values returned when a SELECT-FROM-GROUP BY

group of commands was used with a COUNT in the SELECT. This type of

command is quite useful for returning multiple counts of items which in

turn may conceivably be needed in a Micro Controller control statement.

This chapter has presented the relational database as a feasible

tool for the implementation of the relatively complex structures

required by a syntactic pattern recognition task. Some suggestions for

embedding relational database language commands and schemas in a program

written in the parallel language proposed for PASM were made. Some

proposals for the implementation of these relational commands and for

the relational database itself will be made in the next chapter.
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CHAPTER 7

PROCESSOR AND DATA ALLOCATION FOR THE RELATIONAL APPROACH

7.1 Introduction

Consider the level traversal algorithm for purposes of discussion.

The processor and data allocation problems posed by a relational task

differ from those posed by image processing tasks even though relations

are somewhat similar to the arrays encountered in image processing.

Often the index sets of an image processing task are predefined and well

ordered making it possible to determine processor and data allocation

schemes at the time of compilation. In contrast, in a relational

database task the index set will be determined during execution rather

than at compile time. Also, an image processing task usually uses a

parallel machine to reduce the number of calculations to be performed

while a relational task uses a parallel machine to decrease the time

taken to perform searches and comparisons. Thus it is evident that a

relational task poses several new processor and data allocation problems

that need to be considered.

The dynamic index sets pose the problem of how to allocate the

processors and distribute the data such that as many members of the

index sets as possible will be processed in parallel. One case will be

discussed to further clarify this problem. In this case, blocks of

tuples in the relations will be distributed to a limited number of
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processors. In this instance, all of the 7x7 windows of a 98x98 picture

are being processed in parallel.

The suggestions for processor and data allocation are made assuming

the whole picture is represented by multiple databases, one database per

window. An alternative to the multiple database approach might be as

follows. The relations as diagrammed in Figure 6.6 will be altered so

that the whole picture is represented in the relations. To accomplish

this, an additional attribute, the window attribute, will need to be

added to all of the relations except the GRAM relation. This implies

that the windows would need to be numbered and that these numbers will

be the values of the window attribute. The processor and data

allocation schemes possible for this approach are relatively simple

extensions of those described in the following sections.

7.2 Processor and Data Allocation

The distribution of the tuples of the CHILDREN, TREE, and GRAM

relations, among the processors for an individual window and for a

picture will now be considered. For the sake of simplicity, it is

initially assumed that the user is specifying the processor and data

allocation. This section will describe the distribution of blocks of

tuples of a relation to the available processors. For example, the TREE

relation is assumed to be sorted by node number. The TREE relation

tuples woulo then be distributed to the processors in rank groups. It

should be noted that this assumes the rank of the node is readily

available. The rel -ions given in Figure 6.6 do not include the RANK

attribute. An additional relation would have to be added with the

attributes NODE# and RANK to provide this information. The other

L

.*,.,,4
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alterntive would be to determine the rank during the Loading of the

database of determining the number of children of a node. This,

however, might become a fairLy time consuming process. One processor

will receive the nodes of the same rank. Of course, this depends on the

number of different ranks there are and how many processors are

available for a window. A single processor may actually contain a

subset of the set of nodes of a given rank if there are a Large number

of processors per window or it may contain multiple sets of nodes with

different ranks if there are only a few processors per window. The

CHILDREN relation would be distributed in the same fashion as would the

GRAM relation. The grammar rules are also assumed to be sorted by rank.

The grammar rules would be distributed to the processors such that the

rank of the nodes stored in a single processor is equal to the rank of

the grammar rules in that processor.

In this instance, the data in the GRAM relation is distributed

according to the value of the primary sort key attribute, the value of

the rank. Determining the number of processors to allocate to each

window database is simple once the total number of window databases is

known. The programmer will have to tell the compiler how many window

databases will be processed. This statement is probably best placed at

the beginning of the program and could be as simple as WINDOWS=n, where

the program is considered to describe the processing for one window.

As an example, consider the 1024 processor machine, 98x98 picture,

and 7x7 window used in Chapter 5. Since there are 196 ?x7 windows with

onLy one window per group of processors, there would be approximately

five processors per window. In order to enable PASM to process all the
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windows at the same time and to allow for interconnection network

transfers, there would have to be four processors per window, where four

is the nearest power of two less than five. Conveniently for this

example, there are four processors and four different rank values so

that there is a one-to-one correspondence between the sets of nodes and

grammar rules sorted by rank and the number of processors. In this

example, there would be no data transfers between processors of rank 1.

ALL of the processing for nodes of a rank 1 would occur in a particular

processor. It is suggested that the processing of the nodes of rank 2

and the nodes of rank 3 be distributed across the processors responsible

for storing the pertinent tuples for these nodes. In this way there

should be some time savings in the processing of the triplet

combinations for those nodes.

A fair percentage of the processors should be active using this

allocation and processing scheme for the level algorithm program. The

level algorithm spreads the processing of the lower rank nodes over

several serial steps. Only two out of each of the 2W size sets of lower

rank nodes are processed at the same time with a maximum of W-3 nodes

being processed together in any one processor.

7.3 Mode of Processing

In the example discussed, all processing in one processor was

assumed to be performed independently. Each processor was performing a

separate task involvinq different amounts of data and different code.

It would seem that IMD mode would be the best mode of processing for

the level algorithm program. RIMD mode would also be recommended for

the case where nodes of multiple ranks a,-e in one processor. However,
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for the case when enough processors are available so that the nodes of

one rank are distributed across more than one processor, the mode would

need to be MSIMD to fully take advantage of the parallel processing

within a node group.

7.4 Compilation Problems

Some suggestions for resolving one of the compilation problems will

be made in this section. The problem is how to translate the GROUP BY

commands which require sorts as efficiently as possible. Data

definition languages usually allow the user to state which relations or

records are to be sorted, the sort key and the type of ordering desired.

The RELATION data definition statements as suggested in the previous

chapter do not include statements for specifying sorted data. It may be

possible to determine some of the sort specifications from the GROUP BY

commands in the programs because the GROUP BY commands implicitly

require sorting. This would shift some of the burden of sorting

requirements from the programmer to the preprocessor and compiler. This

may also aid in the reduction of the number of run time sorts needed

because it gives the machine the knowledge of what sorts will be

necessary before execution thereby allowing the machine to presort

certain relations. Static relations, for example, should be sorted

during the database loading process.

At the expense of a certain amount of data redundancy, it may be

reasonable to presort the static relations in all the different ways as

required for execution of the GROUP BY commands in the program. This

suggestion is made assuming that most of the relations used in syntactic

pattern recognition tasks will require only one sort. For the leaf and

° •
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Level algorithm the number of multipLe sorts in a static relation

depends on what initial sorting is done, but will be small.

The GROUP BY commands in the programs do not necessarily contain

all the needed sort key attributes. It will be necessary in some

instances to require the programmer to specify how the data is ordered.

This may be accomplished by including a series of GROUP BY statements in

the data definition statements. For example, to indicate that the TREE

relation is sorted by NODE# the following statement might be used:

RELATION TREE
GROUP BY NODE#

This would have to follow the TREE relation declaration.

The GROUP BY statements can also be used for the dynamic relations.

However, unlike the static relations, the dynamic relations will need to

be sorted during processing. The GROUP BY statements for the dynamic

relations might be used to generate code that would cause the tuples to

be distributed to the appropriate processor as they are formed during

processing.

From the above discussion, it would seem that the necessary

information for the implementation of the allocation scheme discussed in

section 7.2 can be obtained from the program. However, this allocation

scheme is not necessarily a ar-Licularly effective scheme in terms of

the speed of processing, but it was sufficient here to illustrate some

of the problems that can be encountered in an allocation scheme.

Further research needs to be performed in this area to determine how

relations might be best distributed and processed on PASM.
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CHAPTER 8

CONCLUSIONS

A tree parsing task was investigated to determine how PASM might

process such a task. It was hoped that a parallel machine such as PASM

would be able to significantly reduce the processing time for a

syntactic pattern recognition task such as the tree parsing task.

Although definitive results are not obtainable at this time, it appears

that PASM could greatly reduce the processing time.

Initially, two approaches to the order of processing of the tree

data, the leaf traversal and the level traversal, were investigated.

Using the two tree parsing algorithms resulting from these two

traversals, some tentative processor and data allocation schemes and

processing modes were discussed for illustrative purposes. These

schemes assumed a tree structure would be used for storing and

processing the data. The discussions indicated that PASM's

reconfigurability gives a wide variety of options for processor and data

allocation and the mode of processing. The leaf traversal approach

could make good use of both the SIMD and MIMD modes, while the level

traversal may be better suited for MIMD implementations. With suitable

analysis tools, this flexibility could be put to use to yield the best

time savings.

Ar
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The next factor considered was the implementation of the data

structures and the algorithms. It was felt that the data structures

were best represented by databases and that a mixture of database

Language commands and high level parallel processing commands for PASM

could be used to implement the algorithms.

The first database model investigated was a CODASYL model. It was

felt that this model would not be able to fully exploit PASM's parallel

processing capabilities. The CODASYL model and DML were discarded in

favor of the relational model and a relational language.

The use of a relational database and a relational language provide

PASM with the ability to process the relatively complex data structures

used in syntactic pattern recognition tasks. The simplicity of the

relational approach in contrast to the detail required in the use of the

network and hierarchical approaches makes the implementation of

syntactic pattern recognition tasks more practical. The simplicity of

the relations to basic image arrays is one of the major reasons for the

apparent success of the relational approach. Relations and relational

languages provide an interface between complex structures and arrays.

The allocation scheme for the level program was proposed primarily

for illustrative purposes. Further research is needed to determine

optimal allocation schemes foi processing relations on PASM. This

research would be able to take into account the findings of other

researchers interested in processing relations on parallel machines.

The results of this paper would seem to indicate that significant time

savings may be possible through the use of relational techniques to

process syntactic pattern recognition tasks on PASM.

b.AL



LIST OF REFERENCES

AIL.



100

LIST OF REFERENCES

[Bou] Bouknight, W. J., et al., "The Illtiac IV system," Proc. IEEE,
Vol. 60, Apr. 1972, pp. 369-388.

[CF1] Chang, N. S. and Fu, K. S., A Study on Parallel Parsing of Tree
Languages and Its Application to Syntactic Pattern Recognition,
School of El-ectrical Engineering, Purdue Unversity, Technical
Report TR-EE 78-15, Mar. 1978.

[CF2) Chang, N. S. and Fu, K. S., "Parallel parsing of tree languages,"
1978 IEEE Computer Society Conf. Pattern Recognition and Image
Processing, May 1978, pp. 262-268.

[Dat] Date, C. J., An Introduction to Database Systems, Second Edition,
Addison-Wesley, 1977.

[Fly] Flynn, M. J., "Very high-speed computing systems," Proc. IEEE,
Vol. 54, Dec. 1966, pp. 1901-1909.

[Full Fu, K. S., Syntactic Methods in Pattern Recognition, Academic
Press, 1974.

[Fu2) Fu, K. S., "Tree languages and syntactic pattern recognition," in
Pattern Recognition and Artificial Intelligence, ed. by C. H.
Chen, Academic Press, 1977, pp. 257-291.

[FuB) Fu, K. S. and Bhargava, B. K., "Tree systems for syntactic
pattern recognition," IEEE Trans. Comp., Vol. C-22, Dec. 1973,
pp. 1087-1099.

[Ger) Gerritsen, R., SEED Reference Manual, International Data Base
Systems, 1977.

[HaW) Haseman, W. D. and Whinston, A. B., Introduction to Data
Management, Richard D. Irwin, 1977.

CIC13 IBM Corporation, Information Management System/Virtual Storage
General Information Manual, IBM Form No. GH20-1260.

CIC2] IBM Corporation, Interactive Qury Facility (IQF) for IMS Version
2, IBM Form No. GH20-1074.



101

ELF1] Lu, S. Y. and Fu, K. S., "Error-correcting tree automata for
syntactic pattern recognition," IEEE Trans. Comp., Vol. C-27,

Nov. 1978, pp. 121-126.

[LF23 Lu, S. Y. and Fu, K. S., "Structure-preserved error-Correcting
tree automata for syntactic pattern recognition," 1976 IEEE Conf.
Decision and Control, Dec. 1976.

[Mar) Martin, J., Principles of Data-Base Management, Prentice-Hall,
1976.

[MSSJ Mueller, P. T., Jr., Siegel, L. J., Siegel, H. J., "A parallel
language for image and speech processing," Proceedings of the
IEEE Computer Society's Fourth International Computer Software
and Applications Conference, COMPSAC 80, Oct. 1980, pp. 476-483.

[Nut) Nutt, G. J., "Microprocessor implementation of a parallel
processor," 4th Symp. Comp. Arch., Mar. 1977, pp. 147-152.

[Sill Siegel, H. J., "Analysis techniques for SIMD machine

interconnection networks and the effect of processor address
masks," IEEE Trans. Comp., Vol. C-26, Feb. 1977, pp. 153-161.

[Si2) Siegel, H. J., "A model of SIMD machines and a comparison of

various interconnection networks," IEEE Trans. Comp., Vol. C-28,
Dec. 1979, pp. 907-917.

[Si3) Siegel, H. J., "The theory underlying the partitioning of
permutation netwoi. " IEEE Trans. Com2p., Vol. C-29, Sept. 1980,
pp. 791-801.

ESiM] Siegel, H. J., McMillen, R. J., Mueller, P. T., Jr., and Smith,
S. D., A Versatile Parallel Image Processor: Some Hardware and
Software Problems, School of Electrical Engineering, Purdue
University, Technical Report TR-EE 78-43, Oct. 1978.

[SiS] Siegel, H. J. and Smith, S. D., "Study of multistage SIMD
interconnection networks," 5th Symp. Comp. Arch., Apr. 1978, pp.
9-17.

[SmS] Smith, S. D. and . J., "Recirculating, pipelined, and
multistage jiMb irLtLrco.nvction networks," 1978 Int'l. Conf.
Parallel Processing, AVr. 1978, pp. 206-214.

ESMi) Siegel, H. :.,I McM len, R. J., "Using the augmented data
manipulatoi .e rt in PASM," Computer, Vol. 14, Feb. 1981, p.
25-33.

ESM2] Siegel, H. J., arj McMillen, R. J., "The multistage cube: a
versatile *n-rconnection network," Computer, Vol. 14, Dec. 1981,
pp. 65-76.

At



102

[5145) SiegeL, H. J., NuelLer, P. T., Jr., and SmaLLey, H. E., Jr.,
"Control of a partitionable muttimicroprocessor system," 1978
Int'l. Conf. Parallel Processing, Aug. 1978, pp. 9-17.

(SSKJ Siegel, H. J., Siegel, L. J., Kemmerer, F. C., Mueler, P. T.,
Jr., Smalley, H. E., Jr., Smith, S. D., "PASM: A partitionabLe
SIMD/MIMD system for image processing and pattern recognition,"*
IEEE Trans. Comp., Vol. C-30, Dec. 1981, pp. 934-947.

EWua) Wu~f, W. A. and Bell, C. G., "C.mmp - a muLtiminipracessor,"
Proc. FJCC, Dec. 1972, pp. 765-777.




