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ABSTRACT

Theyége of syntactic pattern recognition has been shown to be an
effective ;echnique for picture processing. < Syntactic pattern
recognitidg;is, however, computationally time-consuming. The way in
which a parallel SIMD/MIMD machine, PASM, can be used to decrease the
processing time of these tasks is examined.

Parallel machines have been used predominantly for decreasing the
processing time of numerical problems in which the data is frequently
well-ordered. In contrast, a syntactic pattern recognition task would
use a parallel machine to perform multiple search, comparison, and
string manipulator operations on some relatively complex data
structures.

A solution to the problem of implementing a specific parallel
syntactic pattern recognition task, a parallel tree automaton, through
the use of a relational database and relational Llanguage 1is proposed.
The”‘gse of a CODASYL database and database (anguage 1is also
investigated.

Two algorithms for implementing the parallel tree automaton are
described. The problem of obtaining a reasonable processor and data
allocation scheme for the two algorithms and for the two relational

programs derived from the two algorithms is discussed. A comparison of

the different problems posed by each algorithm is made. -




CHAPTER 1

INTRODUCTION

Syntactic pattern recognition tasks as performed on serial
processors are time-consuming. The execution time of the syntactic
pattern recognition task may be reduced through the use of a parallel
picture processing machine.

The implementation of two algorithms for a tree automaton, a
syntactic pattern recognition task, will be considered in this paper.
The two algorithms are closely related versions of a minimum-distance
Structure preserved error correcting tree automaton (minimum-distance
SPECTA). The machine being considered for the implementation is PASM, a
partitionable SIMD/MIMD machine.

An introduction to machine configurations and PASM is given in
Chapter 2. A brief introduction to tree grammars and the use of tree
grammars in picture processing 1is given in Chapter 3. The two
algorithms for parallel tree automaton are presented in Chapter 5.

The algorithms will be implemented wusing databases and database
Languages. An introduction to the three database approaches, the
relational approach, the hierarchical approach, and the network
approach, is given in Chapter 4.

Chapter S presents and describes the algorithms. A discussion of

some factors that should be considered for a simulation of the




algorithms on PASM is also included in Chapter 5 as is a discussion of

some processor and data allocation schemes for both algorithms.

The partial translation of the algorithms into PASM pseudo programs
using a network database system is described in Chapter 6. Chapter 6
also contains the ‘complete translation of the algorithms into
jllustrative pseudo programs using a relational (anguage and some of
PASM's proposed parallel Language commands.

A simple suggestion for a processor and data allocation scheme for
the relational programs, a block distribution of data according to the
primary sort key, is given in Chapter 7. A brief discussion of some of
the compilation problems posed by this illustrative allocation scheme is

also included in Chapter 7.
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CHAPTER 2

INTRODUCTION TO PASM

2.1 Introduction
As a result of the microprocessor revolution, it is now feasible to
build a dynamically reconfigurable large-scate multimicroprocessor
system capable of performing 1image processing and syntactic pattern
recognition tasks more rapidly than previously possible. There are
several types of parallel processing systems: SIMD, MSIMD, MIMD, and

PSM.

An SIMD (single instruction stream - multiple data stream) machine

CFlyl typically consists of a set of N processors, N memories, an
interconnection network, and a control unit (e.g. Illiac IV [Boul). The
control wunit broadcasts instructions to the processors and all active
("turned on") processors execute the same instruction at the same time.
Each processor executes instructions using data taken from a memory to
which only it 1is connected. The interconnection network allows

interprocessor communication. An MSIMD (multiple-SIMD) system is a

parallel processing system which can be structured as two or more

independent SIMD machines <(e.g. MAP [Nutl). An  MIMD (multiple

instruction stream - multiple data stream) machine (Flyl typically

consists of N processors and N memories, where each processor may follow

an independent instruction stream (e.g. C.mmp ({WuBl). As with SIMD




architectures, there is a multiple data stream and an interconnection

network. A PSM (partitionable SIMD/MIMD) system 1is a parallel

processing system which can be structured as one or more independent

SIMD and/or MIMD machines (e.g. PASM [SMS,SSK1).

g,g_ Overview of PASM
A block diagram of PASM (a partitionable SIMD/MIMD system) is shown

in Figure 2.1. The heart of the system is the Parallel Computation Unit

(PCY), which contains N processors, N memory modules, and the
interconnection network. The PCU processors are microprocessors that

perform the actual SIMD and MIMD computations. The PCU memory modules

are used by the PCU processors for data storage in SIMD mode and both

data and instruction storage in MIMD mode. The interconnection network

provides & means of communication among the PCU processors and memory

modules.

The Micro Controllers (MCs) are a set of microprocessors which act

as the control units for the PCU processors in SIMD mode and orchestrate

the activities of the PCU processors in MIMD mode. Control Storage ((S)

contains the programs for the Micro Controllers. The Memory Management

System (MMS) controls the loading and unloading of the PCU memory

modules. The Memory Storage System (MSS) stores these files. The

System Control Unit (SCU) is a conventional machine, such as a PDP-11,

and is responsible for the overall coordination of the activities of the
other components of PASM.

The processors, memory modules, and interconnection network of the
PCU are organized as shown in Figure 2.2. A pair of memory units is

used for each PCU m:mory module so that data can be moved between one
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memory unit and the MSS while the PCU processor operates on data in the

other memory wunit. The processors, which are physically numbered

(addressed) from 0 to N-1, where N=2n, communicate through the
interconnection network.

Many computations can be more efficiently executed if the N PCU
processors are partitioned into many smaller groups of processors, each
group behaving Like an SIMD or an MIMD machine. The two interconnection
networks being considered for PASM  are the generalized cube
£SiS,5mS,SM2] and the augmented data manipulator [SiS,SmS,SM1]1. Both of
these networks consist of n stages of switches and are controlied by
routing tags. Both networks can be partitioned into independent
subnetworks if all of the processing elements in a partition of the size
P = 2° have the same value in the low-order n-p bit positions of their
addresses.

The method to provide multiple controllers for forming virtual
independent machines 1is shown in Figure 2.3. There are @=2% MCs,
physically addressed (numbered) from O to Q-1. Each MC controls N/Q@ PCU
processors, There is an MC memory module for each MC. Each MC memory
module contains a pair of memories so that memory loading and
computations can be overlapped. A virtual SIMD machine of size RN/Q,
where R=2" and 1 < r <q, is obtained by toading R MC memory modules
with the same instructions simultaneously. Similarly, a virtual MIMD
machine of size RN/Q is obtained by combining the efforts of the PC{U
processors of R MCs. For either SIMD or MIMD mode, the physical

addresses of these R MCs must have the same low-order g-r bits since the

physical addresses of all PCU processors in a partition must agree in

asinchutiition
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their low-order bits in order for the interconnection network to
function properly. Possible wvalues for N and Q@ are 1024 and 16,
respectively.

This brief overview was provided as background for the following
chapters. More details about PASM and parallel machine interconnection

networks can be found in {Si1-3,515,5mS,SM1,5M2,SMS,S5K].
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CHAPTER 3

A BRIEF INTRODUCTION TO TREE GRAMMARS

3.1 Introduction
For the purposes of this paper, only a basic definition of a tree
grammar 1is needed. This chapter 1is based on material in [CF1,CF2].

More detailed definitions of trees, tree grammars, and tree automata can

be found in [LF1,LF2,Ful, Fu2, FuB,CF1,CF2].

Definition 3.1. A grammar Gi = (,r,P,S) over <I,r>, a ranked

alphabet, is a tree grammar in expansive form where

V is a set of terminal and nonterminal symbols,

I is a set of terminal symbols,

r:z + N, where N is the set of non-negative integers, is the rank
associated with symbols in I,

S is the starting symbol, and

P is a set of production rules of the form

X or X0 * X

0 //\

X X2 coe Xr(x)

where x ¢ L and X X1,...,Xr(x) e V=L (the set of nonterminal symbols).

OI
The term rank, as defined above, refers to the number of

nonterminal symbols associated with the terminal symbols. At later




11

points in this paper there are references to the rank of a grammar rule
(production rule) and the rank of a node in a tree. In these instances,
the term rank refers to the number of nonterminal symbols associated
with the terminal symbol of a particular grammar and the number of
children of the specified node, respectively. The terminal symbol of a

node is also often referred to as the node Label.

}13 A Tree Grammar for Picture Processing

When designing a tree grammar to describe patterns in a two-
dimensional digitized picture, several factors need to be considered.
Among these are the extraction of the tree structure from the picture
and the choice of pattern primitives.

Once the digitized picture is windowed, a tree structure can be
easily obtained from a window. If the pattern primitives chosen
represent the gray levels, then each pixel in a window corresponds to a
pattern primitive in the tree. Every pixel in a window is, therefore, a
node in the tree, with the gray level of the pixel represented by the
node label. Binary pattern primitives were chosen for simplicity such
that a dark pixel corresponds to a 1, otherwise the pixel corresponds to
a 0.

An example of the chosen tree structure for a 5x5 window 1is given
in  Figure 3.1. Using this tree structure and the previously defined
binary pattern primitives, the 5x5 pattern in Figure 3.2 is represented
by the tree in Figure 3.3. The tree structure chosen has the benefits
of simplicity and symmetry. Less processing time is needed to extract a

simple tree structure, and the symmetry helps to maximize the amount of

A .
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parallel processing performed, thereby decreasing the overall processing

time.

Having chosen the above tree structure and binary primitives, Chang

and Fu CCF1,CF2) developed the following sample tree grammar GO'

Example 3.1 Tree grammar G0 generates many different patterns. For a

wxw window it generates the following four patterns:

1. Only the pixels in the third row are 1's (Figure 3.2),
2. Only the pixels in the second row are 1°'s,
3. ALL the pixels are 1's,

4. ALl the pixels are 0's.

6, = ,r,P,S) over <I,r> where

0
vV = {U1IUDIA1IADIX1ISI$IOI1}
: = (@,0,$)
10
r = 40,1,2,3}
P:rs+$ (1); $ (: § 3 $ W
| | | |
u, Uy A Ay
v, - 1 (5); 1 ()
A U|A A/ }\
oY1%0 0 o
U, - 0 ; 0 @
/\ \
AgUgXs Ag X1
Ay 1 (9 1 Ao; 1 an; 1 A
A/:l‘\ /\ |
1A1Rq A A Ay
Ay - ? Aaz; 0 A4); 0 U%); 0 16
AQAcAY, 8 }0 Aq




- 1 an; 1 18)

The above grammar is a first level tree grammar. It should be
noted that a multilevel tree system may be used to process a picture.
In a multilevel system, the tree grammars on the higher levels use the
identified patterns on the lower levels as pattern primitives. These
pattern primitives are then connected in a tree structure, as was done
on the first level. 1In the multilevel system, the same tree automaton
may be used to parse the tree structures on all levels. The multilevel

system is an extension of a single Llevel system.

A T




CHAPTER 4

INTRODUCTION TO DATABASE

A simple definition of database is given in Martin [Marl.

"A database is a collection of interrelated data
stored together with controlled redundancy to serve one or
more applications in an optimal fashion; the data are
stored so that they are independent of programs which use
the data; a common and controlled approach is wused in
adding new data and modifying and retrieving existing data

within the database."”

The concept of database to be applied in this paper 1is more
specific. For the purposes of this paper, a database provides an
organizational framework for the representation of data and
relationships between data, The database technology also provides a
series of data sublanguages: languages to manipulate data in a database
environment.

Currently there are three accepted database models: the relational
model, the hierarchical model, and the network or CODASYL (Conference on
Data System Language) [HaW] model. Each model supports different data
structures and each has a variety of associated data sublanguages. The

data structures supported by the hierarchical model are a subset of
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those supported by the network model. The hierarchical model uses tree
structures whereas the network model is capable of using a variety of
more compltex graph structures.

The relational model uses relations or tables as its organizational
structure. A relation (table) contains tuples (rows) and attributes
(columns). Henceforth the terms used will be relation, tuple, and
attribute. Associations between data items are indicated by grouping
attributes, columns of data items, together to form a relation.

In Figure 4.1, the data in four records are logically related in a
simple tree structure. The conceptual models of this simple tree
structure for each database model are illustrated in Figures 4.2a,b,c.

For this simple example the network and hierarchical models vyield
similar conceptual structures. The one difference between the models 1is
the added access paths from the node containing record A to the nodes
containing records € and D in the network model, Figure &4.2c. This
allows for significantly greater flexibility in the physical access of
information from the network model. These access paths are not
contained in the hierarchical model in Figure 4.2b because a node can
only have one parent in a strict hierarchical database. In addition, a
hierarchical database can be entered only through the root node and a
child cannot access its parent unless the parent has already been
accessed through the root node. The process of accessing a parent in a
hierarchical model is a complex task.

The flexibitity of the network model is increased since the added

access paths allow bottom-up traversals, whereas the hierarchical model

is restricted to top-down traversals through the root node. It should




Figure 4.1: A Simple Tree Structure.
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be noted that the hierarchical model need not be restricted to top-down
traversal if extensions are made to the strict model. For example,
IBM's hierarchical database system, IMS (Information Management System)
fbat,IC1), has secondary indexing to enable it to perform bottom-up
traversals. It should also be noted that this facility is not always
easily used and it can become quite space and time consuming.

In the above discussion, the access of the tree information in the
hierarchical and network models is constrained by the physical database.
The databases were structured to reflect the structure of the data items
to be stored in the databases. The relational database, however,
physically resembles a sequential file. Any access patterns must be
constructed using the tuples and attributes in a relation. In Figure
4.2a, with the given tuples, the tree data represented in the relation
may be Llogically accessed in a top-down fashion. However, additional
tuples relating records C and D to record A and vice versa may be added
thereby allowing a logical top-down or bottom-up traversal of the tree
data.

Associated with each database model are data sublanguages: the
subsets of languages concerned with operations on a database [Datl. The
commands of the data sublanguages usually take the form of calls to
subroutines from a standard higher level programming language such as
PL/1 or FORTRAN.

Some examples of theSe data sublanguages are DL/1 (Data Language/1)
{pat], used with the hierarchical IMS database system and the DML (Data
Manipulation Language) used with GPLAN (Generalized Planning System)

[HaWl, a network datatase system. Most database systems also have stand
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alone database languages such as IQF (Interactive Query Facility)
Cbat,IC21, used with IMS, DBLOOK, used with the network database system
SEED (Self Explaining Extended Database Management System) [Gerl, and
Query by Example, a relational Llanguage. '

Some of the proposed languages for relational databases are either
conventional data sublanguages or stand alone database languages, but
not both.  SEQUEL (Structured English Query Language) [Datl is a
relational language that can be used as a stand alone language, but it
also is a data sublanguage because it can be embedded in a host language
program.

In the instance where a host language is used, the host Language
provides the commands for performing arithmetic operations on the data
obtained from the database using the database Language. Database
languages are generally restricted to providing the commands for
nonarithmetic maniputation of the data in the database: searching and
retrieval, updating, insertion, and deletion. One of the disadvantages
of stand alone database languages is their inability to allow the wuser
to perform calculations.

The database languages referred to in this paper will be DML and
SEQUEL. They will be used as data sublanguages; the database commands
will be imbedded in a program written using parallel language commands
proposed for wuse on PASM [SSK]l. A synopsis of the functions of the

database commands used may be found in [HaW,Datl.
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CHAPTER 5

TWO PARALLEL TREE PARSING ALGORITHMS

5.1 Introduction

A parallel tree automaton is designed to recognize those structures
in a digital picture that are described by and, therefore, can be
generated by a tree grammar. The first algorithm presented in this
chapter is an implementation of a minimum-distance SPECTA. A minimum=-
distance SPECTA will find the tree among all trees that can be generated
by a particular tree grammar, G, that has the same structure as a given
input tree, B, which is a minimum distance from B. The distance between
two trees, B and C, with the same structure 1is the number of
substitution transformations required to derive tree C from tree B. A
substitution transformation 1is the replacement of one node Llabel
(terminal symbol) in a tree by another. In terms of this algorithm, a
minimum~distance SPECTA finds the tree among all trees that can be
generated by the tree grammar, G, with the same structure as the input
tree, B, with the minimum number of substitution errors. Note that a
substitution error results from a substitution transformation. This
will be explained in greater detail in the first subsection.

This algorithm will be referred to here as the Lleaf traversal

algorithm. Following the first subsection is a subsection discussing
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some processor and data allocation schemes for the Lleaf traversal

algorithm.

The leaf traversal algorithm is the original tree parsing algorithm
fCF1,CF2]. A slightly modified version of this algorithm, here referred
to as the level traversal algorithm, is described in the third
subsection. A discussion of some processor and data allocation schemes
for this algorithm follows in the fourth subsection. A brief comparison
of the two algorithms and the processor and data allocation schemes

suggested for the algorithms is given in the last subsection.

5.2 The Leaf Traversal

——

5.2.1 The Algorithm

In Chang and fu's algorithm [CF1,CF2], a Leaf traversal of the tree
is used. In the leaf traversal, atl the Lleaves are processed in
parallel. The processed leaves are then eliminated from the Llogical
tree structure, and the leaves of the resulting tree are processed in
parallel. The processing continues until the entire tree has been
parsed. This approach has a major limitation: once the tree has been
pruned to the "trunk," the process becomes serial with only one Leaf
being processed at a time.

The original specifications for the algorithm presented in this
subsection can be found in [CF1,CF2]. The original algorithm has been
rewritten here using a parallel Llanguage notation. The parallel
language notaticn  has been made as general as possible to assure the
machine independence of the algorithm. The rewritten algorithm is

presented in this subsection in Figure 5.%a and Figure 5.1b. Some of




25

Algorithm 1. A parallel parsing algorithm for the implLementation of a
minimum-distance SPECTA on a parallel machine.

Input: 6=(v,r,P,5), the tree grammar, and an input tree B,
Qutput: Tree transition table for tree B.

e {i.f. nodes (leaves)) of tree B do

for all node_i where nodei
beg1n
for all grammar rules with rank = 0 do

begin

if the terminal symbol of rule k = Llabel of i.f. nodei
then add triplet (X,0,k) to triplet table of i.f. node,i
else add triplet (X,1,k) to triplet table of i.f. nodei

/* X is the Left-hand side nonterminal of the kth */
/* grammar rule */

end

1f the triplet table of i.f. node is nonempty
then if more than one triplet Ras the same state
J* The state is the first element of the triplet */

/* the left-hand side nonterminal. *x/
then delete the triplet(s) with the larger number of errors

frontier nodei = parent node of i.f. node.i

end
{L.L.f. nodes) = {frontier nodes with all children processed)}

Figure S.1a: The Leaf traversal algorithm Part 1.
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while the root node has not been processed

begin
for all nodel where nodel e {L.L.f. nodes) of tree B do
begin
n = rank of L.l.f. node
for all different combinations of nonterminals of L.l.f.

nodel's children's triplets do

/* Combinations are formed by taking the nonterminal of */
/* one triplet from each child's triplet table. */

begin

for all grammar rules with rank = n do
begin

if the nonterminal(s) of rule k = the nonterminal(s) of the
triplet combination of L.lL.f. node
then if the terminal symbol of rule k = the Llabel of the
L.L.f. nodeL
then add (X,e1+...+enl,k) to triplet table of that node
else add (X,e1+...+en +1,k) to triplet table of that
node L

end
end

if the triplet table of L.lL.f. node is nonempty
then if more than one triplet has the same state
then delete the triplet(s) with the Larger number of errors

frontier nodel parent node of L.Ll.f. nodeL

end

{l.l.f. nodes} = {frontier nodes with all children processed}

end

if triplet (S,e, k) is in the triplet table of the root node
then tree B is accepted with e errors
else tree B is rejected

Figure 5.1b: The leaf traversal algorithm Part 2.
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the terminology used in the algorithm 1is described in the following
paragraphs.

Frequently the algorithm refers to specific types of "frontiers." A
frontier is a specific type of node on the tree. It is either a leaf
node on the original tree or a node with at least one processed child on
the pruned tree. Frontier nodes that are leaves on the original tree
are referred to as initial frontier nodes. Frontier nodes that are
leaves on the pruned tree are referred to as lowest tevel frontier
nodes. A leaf on the pruned tree is a node with all of its children
processed. The initial frontier nodes and the lowest Level frontier
nodes are referred to as i.f. nodes and L.l.f. nodes, respectively.

The for all statements in the algorithm are used to indicate which
data items may be processed in parallel. For example, for all i.f.
nodes do, indicates that the operations within the do Lloop must be
performed on all the i.f. nodes, that each i.f. node performs the
operations independently, and, therefore, that the i.f. nodes may be
processed in parallel.

1t should be noted that the tree structure forces the processing of
some nodes before others in the algorithm. As a result, it is
impossible to parse the whole tree in parallel in one step. A number of
serially executed parallel steps will be required. The number of serial

steps, T, for a WxW window is W.
T=W+ g-.

For a 5x5 window, T is eight. The order of the processing of the nodes
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for a 5x5 window for the Leaf traversal algorithm is diagrammed in
Figure 5.2.

The result of the processing of the nodes is a set of triplets for
each node. Consider an arbitrary initial frontier node or Lowest Llevel
frontier node, b. Each triplet is of the form (X,e,k), where X is the
left-hand side nonterminal of the kth grammar rule applied at node b,
an& e is the total number of substitution errors in subtree b. The
error correcting capabilities of this algorithm are restricted to the

identification of substitution transformations in order to preserve the

i ' original structure of the tree. A substitution error at node b results
from a substitution transformation. This occurs when the node Label
(terminal symbol) of node b differs from that of the grammar rule
(production) applied at node b. For this example, terminal symbols will
have only binary values, i.e., they can only have a value of 0 or 1.
The total number of substitution errors in subtree b is the sum of the
substitution errors in each of node b's children plus the error involved
in applying rule k at node b. In the algorithm, subscripts are used to

distinguish the substitution errors of each individual child. The range

of the subscripts is from one to n, where n is the number of children
(rank) of node b. Note that the number of substitution errors
accumulates as the tree iz *r& ..ud from the leaves to the root.

1f space is a major consideration, the first element of the
triplet, the left-hand side nonterminal, can be eliminated to yield a
doublet containing tiie rule number, k, and the number of substitution
errors, e. The extra value used in the triplet, the left-hand side

nonterminal, is easily outained from production rule k, however; this
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will increase processing time since a search will be necessary to find
production rule k and access the left-hand side nonterminal. Triplets
are used in this chapter and the following chapters to clarify the
processing performed by the algorithm.

The output of the parse will be the triplet tables for every node
in the tree. The complete set of triplet tables for the tree is
referred to as a tree transition table. The triplets for the final
corrected pattern will be chosen from the tree transition table. There
will be only one triplet per node in the final result. These triplets
are determined by traversing the tree from the root to the leaves
starting with the chosen root node triplet and applying its production
rule to find the correct triplet for each of its children. This process
is continued until the entire tree has been traversed.

An example of the tree transition table for a 3x3 noisy pattern is
itlustrated in Figure 5.3. The grammar rules used in parsing the tree
representation of this noisy pattern are given in Example 3.1. The
noisy pattern, its tree representation, and the corrected pattern are
diagrammed in Figure 5.4, Figure 5.5, and Figure 5.6, respectively. The
pertinent triplets for the corrected pattern are marked by asterisks in

the tree transition table.

T.2.c Processor and Data Allocation
Determining a reasonable processor and data allocation scheme is
beyond the scope of *his paper. A simulation would be necessary to
determine an allcrati chem> because of the large number of variables
involved. One of the variables involved is the number of independent

subtasks within the algorithm. These subtasks depend on the window
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Figure 5.3: Tree transition table for a 3x3 window using the leaf
traversal.
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Figure 5.4: A noisy pattern [CF1].




Figure 5.5: Tree representation [CF1].
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figure 5.6: Corrected pattern [CF1].
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dimensions, the number of grammar rules of each rank, and the number of
nontermihal symbols associated with the grammar rules of a particular
rank. The number of windows to be processed 1is another variable to
consider. Some reasonable balance needs to be found between the number
of windows processed in parallel and the number of processors allocated
per window. This assumes that it will not be possible to process all
independent subtasks for all windows in parallel.

Considering the problems involved 1in determining an allocation
scheme in greater detail, one might first détermine how many independent
tasks may be performed 1in parallel 1in the different parts of the
algorithm. Since for all loops are used to indicate portions of code
that can be processed in parallel, Figure 5.1a indicates that all i.f.
nodes can be processed in parallel and that for each i.f. node all
grammar rules of rank 0 can be processed in parallel. If i is the
number of i.f. nodes in a particular WxW window and ) is the number of
grammar rules of rank 0 for a particular grammar to be used in the
parsing process then there are i x o independent subtasks to be
performed in the first part of the algorithm in Figure 5.1a.

After processing the grammar rules there will be i tasks to be
performed independently. For each i.f. node, redundant states, left-
hand side nonterminals, will be deleted. After deleting any redundant
states, the last steps of the algorithm in 5.1a involve generating a new
set of frontier nodes from the i.f. nodes and obtaining the appropriate
subset of the frontier nodes, the lowest level frontier nodes, to be

used in the next step of processing. Up to i tasks can be performed

-

independently in these steps.

T
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In the continuation of the algorithm in Figure S.1b, it should be
noted that all L.l.f. nodes can be processed independently. Also, for
each L.L.f. node the combinations of nonterminals of its children's
triplets can be processed independently and for each combination of
nonterminals all grammar rules can be processed independently. If L is
the number of L.L.f. nodes in the single WxW window being considered,
Cqs S and cg are used to indicate the maximum number of triplets that
can exist 1in a child's triplet table and Tyr Tor and ry are the number
of grammar rules of rank 1, rank 2, and rank 3, respectively, for the
hypothetical grammar used in the first part of the algorithm, then the
maximum possible number of independent subtasks:

for n, (rank of the node) = 1 is L x Cq X Tqv

for n, = 2 is L x Cqp X Cy X Fpy and

for n, = 3 9s L x Cqy X €y X Cg X F3e

Referring to Figure 5.2, it should be noted that in the first part
of the algorithm, Figure 5.%1a, only one serial step is performed, i.e.,
only one set of 2W nodes in a WxW window is processed. The remaining
serial processing steps are performed 1in the second part of the
algorithm, Figure 5.1b. For the nodes of rank 1 (with the exception of
the root node) the number of nodes in the set of nodes being processed
is 2W. However, for the n~ie. i rank 2 and rank 3, the trunk nodes,
only one node is processed at a time. There is only one element in the
set of nodes to b ;» ocessed. Since the value of L is 1 for nodes of
rank 2 and rank 3, the moximum possible number of independent subtasks
for n, = 2 could be written as Cqy X €5 x Ty, and for n; = 3 the maximum

possible number of indep-ndent subtasks is €y X €5 X C3 X r3.

iise
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Upon the completion of the processing of the triplet combinations,
redundant states will be deleted from the L new triplet tables. At this
point there will be L independent subtasks. Following the deletion of
the redundant states, the new set of nodes for the next step of
processing is determined. This process can involve up to L independent
subtasks,

The final step in the algorithm determines if the parse has been
successful. This involves a single independent subtask.

The following is a simple example which will JlLlustrate how the
number of independent subtasks may vary during the processing of a
single window. Using an example from Chang and Fu CCF1,CF2] a 98x98
picture is divided into 196 7x7 windows. These windows are parsed using
the grammar rules from grammar G1. Grammar G1 has 7 rules of rank 0, 7
rules of rank 1, 10 rules of rank 2, 60 rules of rank 3, and 10 starting
rules. It also has 7 nonterminal symbols of rank 1 and 10 nonterminal
symbols of rank 2. However, there are only 10 nonterminal symbols of
rank 3 while there are 60 rules. But for the nodes of rank 3, triplets
with redundant nonterminal symbols are removed during processing leaving
the triplet with the least number of errors. Therefore, a maximum of 10
triplets is possible in a triplet table.

The above values will be used in calculating the maximum possible
number of children in a triplet table. For the nodes of rank 0, rank 1,
and rank 2; the maximum values for the number of triplets are 7, 7, and

10, respectively. The resulting values are as follows:

for n, 0, i =14, ro © 7 and 1 x ro = 98, (1

for n,

1, L=1,¢c 7, ry = 7, and L x Cq X g = 686 (2)

1
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or for the root node n; =10, r. =10, and

L x Cqg X g = 100 (1)

1 > T [ rs = 10 and Cq X €y X 1y = 490 (1)

for n. =3, ¢y = 7, c, = 10, c, =17, r3 = 60 and

for n, = 2, c. =7, ¢
Cy X €y X €y X Py = 29,400 (6).

The encircled numbers indicate repetition factors within the algorithm.
The values obviously vary greatly with the processing of the nodes of
rank 3 which by far involve the greater number of independent subtasks.
It should also be remembered that these values are for a single window.
For the whole picture 196 windows must be processed.

The above discussion is not machine dependent. It dinvolved a
consistent method of analyzing the number of independent subtasks in the
leaf traversal algorithm. In terms of processor allocation, each
independent subtask could be considered to be allocated to a single
processor. At this point it is necessary to examine the constraints
placed on processor and data allocation by PASM.

The most obvious limiting factor will be the size of PASM, i.e.,
the number of processors in the machine. For example, if PASM's size is
1024 processors, obviously it 1is impossible to process even the
independent subtasks within a single window in parallel.

For the sake of -~ p..ciiy, only fixed size allocations of
processors would be considered initially in a simulation. The number of
processors allociited t-r a window would be fixed during processing.

For example, a rrasunable restriction might be to allow processing
of all i.f. nodes and L.l.f. nodes of rank 1 in a node per processor

allocation scheme, i.e., °W processors per window. If less than 2W




processors are allocated then it would seem that additional system

overhead would be needed to monitor processor allocation and the

incidence of wasted processor resources would be increased. A 7x7
window would have 14 i.f. nodes in the set of i.f. nodes and 14 (.l.f.
nodes in each set of L.L.f. nodes to be processed.

The next factor which must be considered is the distribution of
data in PASM's processors. Since data transfers are restricted to
straight transfers, +2i mod N and -Zi mod N, the data for related nodes
should be readily transferable, i.e., the should be in processors
readily accessible through one of these transfers. As a result, some
processors wWill not be used. The number of idle processors for a large
machine should, however, not be very great. If the machine size is 64,
four 7x7 windows could be processed in parallel. The seven nodes on the i
left side of each tree for the four windows would be in processors 0-27
while the seven nodes on the right side of the tree would be in
processors 32-59. In this way related nodes would be 1in processors
whose numbers differ by 32 or 25.

As a result of an allocation scheme Like the 2W processors per
window scheme, some adjustments will have to be made in the processing.
For instance in the processing of the grammar rules for the i.f. nodes N
and the rank 1 L.L.f. nodes a standard serial searching technique witl i
have to be used for searching the grammar rules depending on the d
organization of the grammar rule database. ‘%

Another problem that will be encountered on almost any machine is

allocation of the subtasks for the trunk node processing. As was

mentioned previously, only one node of the trunk can be processed at a
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time. It would seem to be impractical to restrict the processing of the
greatest number of subtasks to only one processor in a strict processor
per node allocation. Hence the simplifying assumption was made
previously that 2W processors would be allocated for the whole
algorithm. In this way at Least some of the trunk node subtasks will be
performed in parallel. It is further assumed that the subtasks
performed in parallel would be those in the triplet combination Lloop,
the second for all loop. The innermost Lloop which involves the
processing of the grammar rules would not be performed in parallel at
all. This is consistent with the first part of the algorithm.

One question that may arise is how, if at all, could this processor
allocation be determined by a compiler. In the above instance the 2W
processors per window seemed reasonable considering the proposed size of
the machine and the number of windows to be processed. Upon examining
the algorithm, one noticeable problem is that the trunk nodes are
processed in the same loop as the rank 1 L.l.f. nodes. The allocation
scheme requires a data dependent switch from serial processing of the
triplet combination loop for rank 1 L.lL.f. nodes to a Limited paraltlel
processing of the triplet combinations for the trunk nodes. An
additional test statement could be added to the algorithm if the
compiler is to generate cod - wi..ch will change the processing of the
triplet combinations from serial to parallel when the trunk nodes are
being processed. This, however, depends on the role the compiler will
play in the processor allocation strategy.

The following discussion uses the term "index set."” An "index set"

is a collection of wvalues that are to be used as indices for arrays.

-
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Furthermore, the operation on array elements specified by an index set
can be done on all elements of the array in parallel (simultaneously).
fFor example, if J is an index set, the loop:
00 10 I = 1,100
10 A1) =0
could be written as:
J = {1:100)
AW = 0.
Two dimensional arrays could be handled similarly. For example,
D0 10 I = 1,100
p0 10 II = 1,50
10 B8(1,I1) =0

could be rewritten:

J = {1:100)
JJ = {1:50)
BW,JJ) = 0.

Further details are in [MSS].

The fixed allocation strategy as presented here may be interpreted
in terms of an index set allocation strategy. For example, there are 2W
nodes in the set of i.f. nodes, the first index set. The number of
processors allocated would depend on the size of the index set. For
this case 2W processors could be allocated. It may, therefore, be
possible to eliminate the need for an explicit statement in the program
by having the microcontroller that oversees the processing monitor the
size of the index sets. When there is only one element in an index set,

the microcontroller would determine if there are any additional tasks
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that may be performed in parallel by determining if there are additional
index sets in inner (oops. The microcontroller could then distribute
the elements to be processed evenly among the allocated processors if
there are more elements in the new index set than processors as is the
case for the triplet combinations.

If an index set in an inner loop is much smaller than the number of
allocated processors, another possibility might be to search for yet
another index set. If another index set 1is found, 1i.e., there is
another nested for all loop then the cross product of the elements in
the set may be formed and the elements of the cross product could be
distributed evenly among the processors. However, generating a cross
product could be a very inefficient and time consuming process.

One final note concerning the processing of the whole picture will
be mentioned here. The proposed temporary solution of wusing 2W
processors in a fixed allocation scheme for the whole algorithm will
yield the following results for the processing of the whole picture.

I1f there are R=r2W processors available (for convenience R is
chosen to be a multiple of 2W), then the leaf algorithm should be able
to process r windows in parallel. If 1024 processors are available and
W=7, then r=73 windows can be processed in parallel. In a 98x98 picture
there will be 196 windows, the i.re each processor will contain the

data for either two or three windows.
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5.2.3 Mode of Processing

Once a processor and data allocation scheme have been tentatively
identified, the next task is to consider the mode of the parallel
processing. The allocation scheme proposed in the previous subsection
will be used in this subsection. In the previous subsection, the
calculation of the number of windows that can be processed in parallel
assumed that PASM had not been partitioned into multiple smaller
machines. Whether or not partitioning should occur is another factor
which will be considered in this subsection in addition to the SIMD
versus MIMD problem.

SIMD processing provides synchronized processing of independent
subtasks. The ideal distribution of data among processors operating in
SIMD mode would be one where each processor Wwill perform the processing
for the same number of independent subtasks, preferably one. SIMD
processing also provides synchronized communication between processors
through the interconnection network.

MIMD mode allows the processing of different independent subtasks
with different instruction streams at the same time. The major problem
of MIMD mode processing is the lack of synchronization of the processors
and interconnection network. This lack of synchronization, however,
also provides greater flexibility and time savings by allowing the
overlapping of processing and data transfers through the interconnection
network. The flexibility of MIMD mode processing is its greatest asset,
MIMD mode processing may be reasonable not only for subtasks with
different instruction streams, but also for subtasks with the same

instruction stream. If the instruction stream includes conditional
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statements that may exclude a fair number of subtasks from the majority
of thé' processing, as occurs with the processing of the triplet
combinations for the trunk nodes, then it would secem to be a waste to
leave the processors deactivated in SIMD mode for the majority of the
processing especially if there is a large number of subtasks to be
processed.

The question of partitioning will be considered next before
considering the algorithms in any detail. The problem will be to
determine how many windows should be processed in a separate machine
partition.

For example, PASM could be one machine processing as many windows
as possible at the same time. This was assumed at the end of the
previous subsection, for simplicity, when determining the number of
windows that could be oprocessed in parallel. PASM could also be
partitioned so that one window or more would be processed by multiple
independent groups of processors.

A possible advantage of partitioning would be closer control of the
processing of a window. It seems that a mode switch or changes made in
processor allocation during processing might be more efficiently made on
a smaller scale. One disadvantage would be the increase in the number
of inactive processors. As 1 :  ..lt fewer windows could be processed in
parallel. For example, 1if 196 7x7? windows need to be processed, each
microcontraoller contrils 16 processors, the 2W processor allocation
scheme discussed 1in the previous section is used and a one window per
microcontroller partition is uysed then 14 processors would be required

to process the i.f. nodes and Ll.l.f. nodes in a window and there uould'

-
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be two extra processors in each machine partition. As a result only 64
windows could be processed in parallel if the total number of processors
is 1024. This would require each microcontroller to process three and
in some cases four windows. Since the machine partition must be a power
of two, 16 processors are allocated although only 14 processors are
needed. ALL 16 processors may be wused when processing the triplet
combinations for the trunk nodes to gain some time savings. This would
require additional flexibility in the processor allocation scheme since
all 16 processors could not be allocated if a strictly fixed allocation
scheme is used.

Now consider the processing of the leaf traversal algorithm in more
detail. For this example, the 2W processor allocation scheme will be
used and PASM will be considered to be partitioned so that each
microcontroller controls an independent machine consisting of 16

processors.

o

In the above discussion and in the next subsection some assumptions
about the organization of the data have been made. It is assumed that i

an appropriate data structure has been chosen for the grammar rules. It

would seem that organization on the basis of rank 1is of primary
importance in decreasing the searching time, while appropriate coding
and ordering of the rules within a rank group 1is of secondary
importance. The grammar rules can be organized and stored according to
} both of these criteria in the Llexical analysis phase of processing

CCF1,CF2]. In other words, the Lexical analysis phase formats the g

grammar rule database for the picture processing. Note that the lexical

analysis phase is performed only once provided that no productions are '
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added, deleted, or changed in any way after the processing of the
picture begins.

It is also assumed that an appropriate data structure is used to
store the tree structures for the windows. The data structure should be
designed so that it will be easy to point to and access all Leaf nodes
of an unprocessed tree or a pruned tree whose leaves are lowest level
frontier nodes.

buring the processing, an entry will be made in the triplet table
of every i.f. node for each grammar rule of rank D. For each grammar
rule, every node will determine if a substitution error exists.

A rough outline of how this processing might be performed on PASM
is as follows. Each processor will contain sets of node labels for
three and in some cases four windows, Each set for each window will
consist of one node from each of the groups of nodes as diagrammed in
Figure 5.2. The list of grammar rules of rank 0 will be (oaded into all
of the processor memories. The microcontroller will then broadcast the
commands and the processors will be activated and deactivated data
conditionally.

In the second part of the algorithm, Figure 5.1b, the processing is
similar., Analyzing the processing performed in this loop in further
detail, the mode may switrb 3 iwing on the node to be processed.
First consider the L.l.f. nodes for which there is only one child, the
non-trunk Ll.l.f. nodes. For these nodes, there are no combinations of
triplets to be formea. 1In adlition, the nonterminal symbols in each of

the triplet tables for these nodes will be identical. The same amoun:
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of processing will be performed using the same grammar rules for each
node.

SIMD mode processing would seem to be the ideal choice for the
prdcessing' of these i.f. nodes and rank 1 L.l.f. nodes. However, the
processing of the triplet combinations of the trunk nodes may not be
best performed using SIMD mode.

MIMD mode processing would seem to be a better choice for the
érocessing of the trunk node triplet combinations. MIMD mode should be
able to allow the most efficient use of the Limited number of processors
available. The microcontroller could control the distribution and
processing of the triplet combinations so that no processor will be idle
until all the triplet combinations have been processed. In processing
the trunk nodes, only those grammar rules whose nonterminals match the
nonterminals in a triplet combination will produce a new triplet. It is
assumed that every processor will contain a copy of alt of the grammar
rules so that each processor will be able to process its triplet
combinations independently. Therefore, in any one group of triplets
being processed in parallel, some triplet combinations may be producing
new triplets while others are not. The processors of those combinations
that are not producing new triplets would have to be inactive for the
period of time during which the triplets in the other processors are
being formed if SIMD mode processing is used. The processors would be
operating on different numbers of different combinations of triplets,
hence they would probably operate more efficiently if each processor has
the freedom to process its combinations using its own instruction stream

in MIMD mode. Thus, for the processing of nodes of rank 0 to 1, SIMD
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mode can be used, avoiding the MIMD problems of having synchronization
primitives and data contention. In a wxw window, this is uz-u of the
nodes. For the w+1 trunk nodes, PASM can switch to MIMD mode. The 2w
processors which could operate in SIMD parallelism for the rank 0 and 1
nodes on a node per processor basis can now be assigned to process the
trunk nodes, one node at a time, in MIMD mode.

If MIMD mode is to be used in processing the trunk nodes, and SIMD
mode 1is used in processing the non-trunk L.l.f. nodes, a data dependent
mode switch is required. It is assumed that the compiler is capable of
generating code that will cause the parallel processing of the triplet
combinations for the trunk nodes.

In order for the machine to be able to switch modes, the algorithm
may have to explicitly state whether or not a node is a trunk node. The
algorithm might need to include a conditional statement distinguishing
trunk nodes from those nodes not in the trunk. Ffrom this conditional
statement, the compiler could probably generate code indicating a mode
switch.

A mode switch in the different parts of the algorithm 1is possible
due to PASM's reconfigurability. It is assumed that all of PASM's

processors are capable of functioning in both SIMD and MIMD mode.

5.3 The Level Traversal

5.3.1 The Algorithm

This approach was investiaated due in part to the results obtained

by Chang and Fu [CH1] in a simulation. The simulation performed for

their leaf traversal algorithm indicated that a relatively small group
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of processors, between four and sixteen depending on the grammar, was
the most efficient for processing a window. However, the simulation was
not machine specific. If such a small number of processors was to be
used it seemed reasonable to try to distribute processing more evenly so
other nodes were processed at the same time as the trunk nodes.
Therefore, the level traversal algorithm, a modification of Chang and
Fu's lLeaf traversal algorithm was developed.

Another factor to consider is that the results of a simutation for
PASM could be very different because of PASM's proposed size and
flexibility. 1If different allocation schemes with greater numbers of
processors were efficient on PASM it 1is possible that a more even
distribution of the node processing might allow more windows to be
processed in parallel. This might yield significant time savings by
reducing the time taken to process the entire picture.

The groups of nodes capable of being processed in parallel and the
number of serial steps necessary for processing a 5x5 window using the
level traversal are diagrammed 1in Ffigure 5.7. The level traversal
algorithm is given in Figure 5.8. The tree transition table resulting
from the Level algorithm for the 3x3 noisy pattern used as an example in
section 5.2.1 is given in Figure 5.9. ALL of the nodes at each level of
the tree are processed by the level traversal algorithm in parallel.
The operations performed on each node are identical to those of the leaf
traversal algorithm. In other words, the processing of individual nodes
is identical in both algorithms.

The major difference between the two algorithms is the order of the

processing of the nodes. This is evident in Figures 5.3 and 5.9. In




Figure 5.7:

Lev~l
Number

Order of processing of level node sets
for a 5x5 window.
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Algorithm 2. A level traversal algorithm for the implementation of a
minimum-distance SPECTA on a parallel machine.

Input: G=(V,r,P,S), the tree grammar, and an input tree B.
Output: Tree transition table for tree B.

while the root node has not been processed
begin
for all node. where node. e {lowest level nodes} of tree B do
begin
if node, is an i.f. node
™ thed do
begin

for all grammar rules with rank = 0 do

begin
it the terminal symbol of rule k = lLabel of i.f. node.
then add triplet (X,0,k) to triplet table of
i.f. nodei

else add triplet (X,1,k) to triplet table of
i.f. nodei

/* X is the Left-hand side nonterminal of the */
/* k grammar rule */

Figure 5.8: The level traversal algorithm.
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else do /* the node is a lowest level frontier */
begin

.

i = rank of tL.l.f. node,
for all different combinations of nonterminals of
L.l.f. nodei's children's triplets do

/* Combinations are formed by taking the nonterminal =*/
/* of one triplet from each child's triplet table. *x/

begin
for all grammar rules with rank = n. do
begin

if the nonterminal(s) of rule k = the nonterminals(s)
of the triplet combination of L.l.f. node,
then if the terminal symbol of rule k = the Label
of L.lL.f node,
then add (X,e1+..3+en Jk) to triplet K
i >
table of L.L.f. node, .

else add (X,e1+...+en +1,k) to
i
triplet table of (.L.f. nodei

if the triplet table of any current lowest level node is nonempty
then if more than one triplet has the same state
then delete the triplet(s) with the larger number of errors

lowest tevel = level of parent nodes of the set of current lLowest
level nodes

end
{current lowest level nodes) = {nodes with level = lowest levell}

end

if triplet (S,e,k) is in the triplet table of the root node
then tree B is accepted with ~ errors
else tree B is rejecte.

Figure 5.8: (continued)
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these figures the triplet tables of nodes that may be processed in
paraltel are aligned horizontaltly. 1In the level traversal algorithm,
both initial frontier nodes and Llowest Llevel frontier nodes are
processed in parallel. In contrast, the Lleaf traversal algorithm
processes all initial frontier nodes first, then it processes Lowest
level frontier nodes.

The notation used in describing the level traversal algorithm is
identical to that wused 1in the description of the Lleaf traversal
algorithm, with the exception of the use of the terms lowest Llevel and
lowest level nodes. Referring to Figure 5.7, initially the lowest Llevel
is level one, the first processing step. Once all the nodes on the
current lowest level have been processed the lowest level is updated to
the next lowest level (i1.e., from level i to level i1+1 in Figure 5.7).

Any node at the current lowest level is referred to as a lowest level

node.

S5.3.2 Processor and Data Allocation

Two possible processor allocation schemes for the Llevel algorithm
will be considered here. The first is a slight variation of the 2W
processor per window allocation scheme suggested in section 5.2.2. The
second is a strict processor per nnde allocation scheme.

The 2W processor per window allocation scheme cannot be wused as
described in section 5.2.2 because trunk nodes in the tevel algorithm
are processed at tne sam- time as i.f. nodes and rank 1 L.l.f. nodes.
The basic princip!., .wever, can be used. In the allocation schenme in
section 5,2.2 each node is assigned to one processor. The processing of

the i.f. nodes and rank 1 L.i.f. nodes occur with a processor per node
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allocation. When a trunk node is processed the triplet combinations are
distributed and processed across all of the allocated processors.

For the level algorithm, the i.f. nodes and rank 1 L.l.f. nodes may
be processed using a processor per node allocation scheme. If a trunk
node is being processed, any extra processors wWill be allocated to
process the trunk node. This is assuming a fixed group of processors
has been allocated to the window. The number of processors available
for trunk node processing will depend on the size of the group of

processors allocated to the window. If 2W processors are allocated then

‘there will be fewer processors available for trunk node processing using

the level algorithm than for the leaf algorithm trunk node processing.
In the Llevel algorithm W-1 of the 2W processors may be busy processing
i.f. nodes and rank 1 L.L.f. nodes, whereas all 2W processors would be
available for trunk node processing in the leaf algorithm.

It should be noted, however, that the level algorithm does not need
to have 2W processors allocated per window. If the only criterion used
in determining the size of the group of processors allocated is to
allocate only enough processors so that each node in a set that can be
processed in parallel is allocated a single processor then only W
processors would be needed for the level algorithm. Although this
restricts the amount of parallel processing that can be performed for
the trunk nodes, it 1increases the number of windows that can be
processed in paraltlel. For example, if R=r2W processors are available,
then 2r windows may be processed in parallel. If 1024 processors are

available and W=7, then at least 2r=146 windows can be processed in

parallel.
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Consider the trade-off between processing the trunk node triplet
combinations in parallel and processing more windows in parallel. If it
is best to process as many windows 1ir parallel as possible then a
processor per node allocation scheme for all nodes might be used. If
the nodes are allocated such that the number of processors available is
used to the fullest extent, it may be possible to process all windows in
parallel while processing the sets of nodes at certain Llevels. This
will depend on the window size and the number of processors available.
For example, if there are 1024 processors and W=7 then only 146 windows
of the 196 windows of a 98x98 picture may be processed in parallel for
the levels with the largest sets of nodes. The 50 windows Left would be
processed in a second parallel step. During this time two-thirds of the
processors would be idle in a strict processor per node scheme. Thus it
would be better to employ a hybrid approach -- processing only half the
windows at a time, using the node per processor allocation for the rank
1 and rank 0 nodes and multiple processors allocated for processing the

triplet combinations of the trunk nodes.

5.3.3 Mode of Processing

For both of the allocation schemes described in the previous
subsection, the processing should be performed in MIMD mode. Nodes
being processed in parallel will require different instruction streams
and different data streams. Ffor instance, i.f. nodes will be processed
at the same time as {.i.f. nodes, and, among the L.l.f. nodes, trunk
nodes will be process:d at the same time as nodes not in the trunk. The
code for processing the different types of nodes is different, and the

different types of nodes require the accessing of different parts of the

S e
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i grammar rule database. Assuming all the processors in PASM are to be

T

used for the processing of a picture, they will all be capable of

operating in MIMD mode.

The grammar rule database should be organized as was suggested for
the Lleaf algorithm. The tree data structure for the window, however,
will need to be different to allow easy access to Lowest level nodes on

a complete tree or on a pruned version of a complete tree.

5-4 A Comparison

For the sake of simplicity, a processor per node allocation scheme i

for both algorithms will be considered first. Unless processing in one

mode is found to be significantly more efficient than processing in the
other mode, there should be only a slight difference in the time taken
by the algorithms in the processing of an individual window. If the
processing in both modes 1is equally efficient, then the time for
processing a single window using a processor per node allocation scheme
should be the same for both algorithms.

Using as an example, the 5x5 window as illustrated in Figure 5.7,
for the ltevel traversal tree, at the lowest level all the nodes are i.f.
nodes, as are all the leaves in the leaf traversal tree. The time to
process any one i,f. node is the same for all i.f. nodes, therefore the
first step will take the same amount of time. Processing of Ll.l.f.
nodes will take longer than the processing of i.f. nodes because it is
necessary to compare the nonterminal symbols of its children's triplets
with the nonterminal symbols of the grammar rute. Therefore, the second
step of the level algorithm will take as long as is needed to process a

L.L.f. node. AlL the non-trunk L.lL.f. nodes take the same amount of
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time to process as was noted in the analysis of the leaf algorithm. The

second step in the leaf algorithm will, therefore, take the same amount

of time as the second step in the (evel algorithm. This same principle '

applies for the remainder of the processing steps. Although it is
demonstrated in Figure 5.2 and 5.7 for S5x5 window, this principle is
generally applicable across all window sizes. The mode of processing
should be the only factor that would make a difference in the processing
time of the two algorithms for a single window.

There is a large difference, however, in the number of windows that

can be parsed in parallel given a processor per node allocation scheme.

Given R=2rW processors, the level algorithm can process 2r windows in

parallel, while the leaf algorithm can process only r windows in
parallel. 1It is possible, therefore, for the Level algorithm to process
a whole picture as much as twice as fast as the leaf algorithm. The

exact time savings will depend on the relationship of the number of

nodes in all windows to be processed in parallel to the number of
processors available, assuming a processor per node allocation scheme.
I1f the trunk nodes can be processed using more than one processor,
there may be a difference in the processing time for these nodes. In
the leaf algorithm, one trunk node is processed at a time while in the
level algorithm other necdes 4ire processed with the trunk nodes.
Therefore, for the level algorithm, fewer processors will be available

for the processirg of the trunk nodes. However, the level algorithm has

the potantial to process mcre windows 1in parallel than the Lleaf

algorithm. An analysis would have to be performed to determine whether
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or not these factors would create a significant difference 1in the

processing times for the two algorithms.




60

CHAPTER 6

DATABASES AND TREE PARSING

6.1 Introduction
Databases and database Languages have been designed for the
organization of the reasonably complex relationships among data and for
the nonarithmetic processing of the data. The two algorithms discussed
in the Llast chapter, the leaf algorithm and the level algorithm, are
characteristic of many syntactic pattern recognition tasks in that they
use logical data structures more complex than the arrays usually used in
image processing tasks and they use many nonarithmetic operations while
processing the data in these logical data structures. Therefore, it
seems reasonable to use database techniques for the processing of these
algorithms. The problem to be considered in this chapter will be the
choice of a database model and the feasibility of programming using
database techniques on PASM.
0f the three database models, only the network and the relational
model were considered in detail. The hierarchical model was not used
since it is essentially a subset of the network modet. Of the two
models presented in detail, only the relational model was investigated
fully at the programming level. It was thought that whereas the network

model allowed the structuring of the data in the logical tree structure

>
4
i
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of the algorithms, it was not as amenable to parallel processing on PASM
as the relational model.

An attempt was made to write programs for the algorithms to
determine the types of commands that would be needed and how PASM might
execute these commands. Although a parallel language for PASM has neot
been developed, some instruction and declaration statements for STA4D
mode processing have been suggested [SiM,MSS]. These are Llisted in
Figure 6.1.

Commands from a database language, GPLAN's DML for the network
model and SEQUEL for the relational model, were mixed with the commands
in Figure 6.1. The result 1is a pseudo Llanguage with certain
inconsistencies, but these will be noted. It is assumed that the pseudo
language may be used for both SIMD and MIMD processing. The programs
written 1in this pseude language se irpose ¢f indicating where
special language structures may be needed and how these may be

processed.

6.2 The Network Approach

The network approach was not fully investigated. The tentative
network model developed is illustrated in Figure 6.2. It should be
noted that at this stage in the development of the model the grammar
rules had not been included in the model of the tree structure. They
were established as a second database. In a final network model it
would probably b neressary to have the grammar rules included in the
tree database. Subscc -t references to the model will be concerned

only with the mod2l ot the tree structure as presented in Figure 6.2.




A. Declaration Statements

CONSTANT v1=con1, v2=con2, ..., VN=conN;
INTEGER varlist;

BYTE varlist;

UNSIGNED BYTE varlist;

INDEX varlist;

DATA INPUT varlistt QUTPUT varlist2;
ivar= {rangelist};

B. Control Statements

Micro Controller

WHILE condition DO statement

FOR initialize statement WHILE condition
STEP increment statement DO statement

IF condition THEN statement

IF condition THEN statement] ELSE statement?2

PCU Processor

WHERE condition DO statement
WHERE condition DO statementl1 ELSEWHERE statement?2

Micro Controller and PCU Processor

WHILE condition1 WHERE condition2 DO statement

FOR initialize statement WHILE conditionl WHERE condition?2
STEP increment statement DO statement

WHILECANY ,ALL] condition DO statement

FOR initialize statement WHILELANY,ALL] condition
STEP increment statement DO statement

IFCANY ALL] condition THEN statement

IFCANY,ALL] condition THEn statement] ELSE statement?2

Figure 6.1: List of control instructions [SiM].
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The model illustrated in Figure 6.2 includes a unique predefined
SYST record as required by GPLAN. Containing no data, the SYST record
provides the entry point to the user defined database.

A small amount of redundancy was built into the node records for
the purpose of increasing accessing efficiency and keeping the data
model as simple as possible. For each occurrence of a node record there
will be a node Llabel, SYMB, and a triplet, LHSN, ERRS and RULN. The
node lable will be repeated as many times as there are triplets. The
node Llabel 1is such a small data item the redundancy does not greatly
increase the storage space required. In addition, since the node Llabel
is always used when forming a new triplet, it seemed reasonable to place
these logically related data items in the same record.

There are multiple entry points to the database as indicated by the
branches SYSn. The entry points are at the bottom of the tree because
the algorithms describe a bottom—up process. The multiple entry points
are essential for parallel processing. The entry points may all be
processed at one time or subsets of entry points may be chosen. The
multiple entry points while allowing parallel entry points also allow
the user some flexibility in choosing the order in which the nodes are
processed. As a consequence, this data model provides all the
relationships necessary for both algorithms.

The schema and subschemas for the algorithms are derived from this
model. Haseman and Whinston (HaWl give the following definitions of
schema and subschema as used with respect to a CODASYL database.

schema - "The description of the logical structure of a database
in terms of a data description language."
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subschema ~ "A particular programmer's view of the Llogical
structure of a database. One schema may have numerous
subschemas associated with it."

Although the CODASYL standard includes subschemas, the GPLAN DDL
(bata Definition Language) does not include subschemas. The Llogical
restructuring of the tree database that occurs when switching from the
Leaf algorithm to the level algorithm makes the inclusion of the
commands for writing subschemas necessary. Therefore, the CODASYL
standard commands for subschemas taken from the SEED [Ger] database
management system were included as an extension of GPLAN's DDL.

The terms used in the schema are RECORD, ITEM, SET, OWNER, and
MEMBER. ITEM is used to indicate a data item name. RECORD is used to
indicate a record name. A SET is named relationship of record types
where one or more record types are defined as OWNERs and one or more
record types are defined as MEMBERs [HaWwl. In the Llogical ‘structure,
the SETS are depicted by the branches connecting the record types.

Figure 6.3 1is an example of a very simple schema and its
corresponding network model without the GPLAN SYST record. This example
should help clarify the relationship between a schema and a diagram of
the logical structure of a database.

The schema for the tree database whose Llogical structure is
diagrammed in Figure 6.2 ‘s ,.ven in Figure 6.4. The schema does not,
by itself, clearly indicate which nodes may be processed in parallel.
Some assumptions miqght be made based on the multiple entry points, but
these would be true only for specific algorithms. Multiple entry points
by themselves do not imply that al' the associated records may be

processed in parallel.

———— RIS !J‘-
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Figure 6.3: A simple schema and corresponding diagram.
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The easiest method of letting the compiler know which sets and,
therefore, which set record MEMBERS may be processed in parallel is to
have the programmer tell the compiler in the program. This does not
entail any knowledge of the hardware on the part of the programmer and
it does not require any specific knowledge about the compiler and
processor allocation. What is proposed is a method whereby the
programmer simply states, based on the algorithm, which sets can be
processed in parallel using a new database command for denoting paralletl
set grouping.

The keyword for defining a parallel group name 1is PARALLEL. The
sets in a parallel group are listed following the group name definition.

Theoretically, for database security, the schema is a fixed entity
that the programmer is not allowed to change. Therefore, if the
programmer is to be able to define the paratlel groups that are needed,
this must be accomplished in the subschema. Placing the parallel set
definitions in the subschema also allows more flexibility in the use of
a database. Since the schema is fixed, the only opportunity for
flexibility, for different interpretations of different problems on the
part of the user, is in the subschema.

The subschemas for the two algorithms are given in Figure 6.5. The
first Line of the subschemas give the subschema name and the name of the
schema. The next two lines of each subschema indicate which records and
which sets of the schema will be used. 1In this case all of the records
and all of the sets of schema TREE will be used in both of the programs.
The parallel groups are listed following the record and set listings.

ALl possible parallel paths are Llisted 1in the parallel groups. It

e
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SUBSCHEMA=LEAF, SCHEMA=TREE
COPY ALL RECORDS
COPY ALL SETS §
PARALLEL GPL1 §

SYs1

Sys2

SYS3

SYS4

SYsS

SYS6
PARALLEL GPL2
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B4

B6

B7
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SUBSCHEMA=LEVEL, SCHENA=TREE
COPY ALL RECORDS
COPY ALL SETS

PARALLEL GRP1
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85
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SYSs2
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PARALLEL GRP3
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PARALLEL GRP4
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Figure 6.5: Su. .chemas for the lLeaf and Level algorithms.
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should be noted that a set is a part of a parallel group if either an
owner record 1is a record that may be processed in parallel with other
records or a member record may be processed in parallel with other
records. This is done so that parent nodes can be made frontier nodes
in parallel.

The GPLAN DML commands to be used in the programs are not oriented
to parallel processing. The inclusion of the parallel groups in a
subschema raises some questions as to whether modifications to the GPLAN
commands may be needed. Whether or not some modifications are made
depends on determining whether the compiler or the user 1is responsible
for finding the parallelism in the program.

If the programmer is responsible for finding the parallelism,
parallel commands will be needed. Commands involving a parallel group
would be prefaced by a P and the group name would be used instead of a
set name. For example, the command FFM (Find First Member) is used to
find the first member of a set. Eliminating the hollerith formatting
from the standard GPLAN command, the command might be found in a program

as follows:
CALL FFM S1

1f $1 is a member of a parallel group, GRP1, the programmer would modify
the command and use a Parallel Find First Member (PFFM) command that
uses the group name as the argument. The PFFM command would find the
first member of every set in the group. For set S1 in GRP1 the

resulting command is

CALL PFFM GRP1
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I1f the compile- is responsible for detecting the parallelism in a
program, it will have to wuse the parallel group information in the
subschema. The compiler will check for the parallel group sets. Once a
set in a parallel group is found the compiler will check to see if it is
within a loop performing the same operations on a different record in
other sets in the parallel group. Assuming the programmer letting the
compiler detect parallelism is not concerned with paraltelism, it is
necessary to check for all the sets in a parallel group because the
programmer may use a parallel group in one section of a program and an
individual set that is a member of a parallel group in another section.
However, it will be assumed that the programmer will be able to use the
parallel commands, therefore making it unnecessary to include the
capacity for detecting whether or not a set is a member of a parallel
group in the compiler for PASM.

At this point in the analysis it seemed that the relational
approach may be better suited to the task in question. Some of the
factors affecting the decision to investigate the relational approach
were the clarity of the program and the degree to which paratlelism may
be exploited.

when speaking of the clarity of a program, the reference is to the
clarity of a program writter. . 4 host language with database language
commands embedded in the program. It is assumed that the relational
database language used will be an English-like language similar to
SEQUEL. A CODASYL DML, such as GPLAN's DML, that is designed to be

embedded 1in a host language usually consists of subroutine calls using
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E acronyms for a command function as the command subroutine name and a
par2meter list. In addition, for each step in the tree processing more
CODASYL DML commands are required than relational Language commands.
The result of using an English-like relaticnal tanguage whose commands
can be directly embedded in a host fanguage program should be greater
clarity and ease of programming.

The primary reason for switching to the relational approach was the

ability of the relational database to exploit parallelism. In a CODASYL
database, access strategy is forced to be sequential because of the
method of accessing data one occurrence at a time through a chain of
pointers. Even with the parallelism allowing the wuser to traverse
multiple chains at the same time, a relational database has the

potential ability to access whole sets of record or data occurrences at

the same time. The investigation of the relational approach follows in

the next section.

6.3 The Relational Approach

6.3.1 Justification of the Relational Approach

The relational approach has several advantages over the network
approach. Two of these mentioned previously were the clarity of the
relational data languages, in contrast to the CODASYL OML, and the
ability to exploit parallelism. Both of these are either direct or
jndirect results of the uniformity of the data representation which is
u the outstanding characteristic of the relational data model. The
ability to exploit parallelism is a direct result whereas the clarity of

the data languages is an indirect result.
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The clarity of the relational data languages 1is due in part to
their nonprocedural characteristics and the few simple but powerful set
operators which are used to manipulate the data in the relational
database. It is not necessary to specify how to obtain data when using
a relational database language as it is when using a CODASYL or
hierarchical DML. When using a CODASYL or hierarchical DML not only the
path but the currency of the path, the current record occurrences on the
access path, to a particular data item or record must be specified by
the user. A relational data language does not need commands to specify
a path because there 1is no path to follow due to the uniform
representation of the data. The wuser only has to specify the
characteristics of the data desired, and if necessary, use the few set
operators to obtain the required data.

The reltational approach, in general, 1is far simpler than the
network approach., This is particularly true when working in a parallel
machine environment. Not only does the relational approach offer
greater opportunities for exploiting the parallel processing
capabilities of such a machine, but the added simplicity for the user
seems to be a powerful factor in support of the use of the relational

approach.

6.3.2 The Tree Database Relations
The relations used for che implementation of both algorythms are
diagrammed in Fijure [.6. Some of the factors used in determining the
relations were th: L' nation of redundancy within the relations, the
nature of the data in t'e relation, and the logical relationships of the

attributes. These factors influenced the organization of the relations
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TREE
NODE# SYMB PARENTNODE# LEVELH CURRENT
CHILDREN
NODE# CHILDNODE#
GRAM
RANK RHSN TERM LHSN RUL#
TRIPLETS
NODE# LHSN ERR RUL#
coMB
RHSN ERR
TEMP
PN# CN# LHSN ERR
Figure 6.6: The tree database relations.
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more than the strict normalization process usually advocated. A
relation is said to be normalized if each attribute in each tuple is
atomic (nondecomposable) [Datl. There are, however, multiple levels of
normalization. A relation satisfying the above condition for
normalization is said to be in first normal form. Currently the most
desired form of a relation, the form in which undesirable properties
affecting insertion, deletion, and updating have been eliminated, is
fourth normal form (Datl. Some of the relations are in fourth normal
form, but only as a consequence of aligning nonredundant, L(ogically
related data in a single relation.

The TREE relation contains the node numbers, NODE#, the terminal
symbol associated with the node number, SYMB, the parent node number,
PARENTNODE#, the level of the node, LEVEL#¥, and a currency flag,
CURRENT. CURRENT has a wvalue of 1 if a tuple is being processed,
otherwise the value is 0. The CHILDREN relation lists the nodes, NODE#,
and their children, CHILDNODE#. The GRAM relation contains the grammar
rules, the rank of the grammar rules, RANK, and the rule numbers, RUL#.
The grammar rules consist of a right-hand side nonterminal, RHSN, a
terminal symbol, TERM, and a left-hand side nonterminal, LHSN. The
TRIPLETS relation contains the node numbers, NODE#, and the triplets
associated with the nodes. T triplets consist of Lleft-hand side
nonterminals, LMSN, an error count, ERR, and the grammar rule number
applied to form the triplet, RUL#. The COMB relation is formed from the
TEMP relation. The TEMP relation contains the parent node numbers, PN#,
the child node numbers, (N¥, the left-hand side rounterminals obtained

from the TRIPLETS -elation, LHSN, and the error counts, ERR, associated

amat
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with a node's children's triplets. The COMB relation contains the new
right-hand side nonterminals formed by <cc-bining the LHSNs in TEMP,
RHSN, and error counts, ERR, formed by adding <*he appropriate ERRS
values in TEMP. It should be noted that RHSN is a variable size
attribute which can contain from zero to three nonterminal symbols.

The relations can be divided into two groups: static and dynamic.
A static relation 1is one in which attribute values are not updated,
inserted, or deleted. A dynamic relation is one whose attribute values
are at some time either inserted, deleted, or updated. Usually in a
database the relations are dynamic, but for the tree algorithms the tree
structure and grammar rules are considered to be set, static, once the
database is loaded. New tree structures or grammar rules can be used
without reloading the entire database, but it would be necessary to
reload the relations affected.

The static relations are TREE, CHILDREN, and GRAM; the dynamic
relations are TRIPLETS, COMB, and TEMP. O0f the static relations, TREE
and CHILOREN are in fourth normal form. For GRAM to be in fourth normal
form it would have to be divided into two relations; one relation would
contain the attributes RUL#, LHSN, TERM, and RHSN, while the other would
contain the attributes RUL# and RANK. GRAM was not put in fourth normal
form because it was much easier to have the logically related attributes
joined in a single relation. Whether or not GRAM is in fourth normal
form is not crucial because it is a static relation; therefore, the

undesirable properties eliminated by placing a relation in fourth normatl

form do not occur,
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0f the dynamic relations, COMB and TEMP are in fourth normal form.

TRIPLETS will be in fourth normal form if the attribute LHSN is removed,

but because the SEQUEL commands used do not perform joins easily the !

LHSN attribute was left in the TRIPLETS relation. The dynamic relations

as constructed are not necessarily the most efficient, but they are

sufficient to demonstrate the usage of a relational database for image

processing. Obviously using relations will require extra knowledge on

the part of the wuser. The wuser should know something about the
normalization process and have some concept of the Limitations of the

relational language used.

6.3.3 Retation Declarations

Once the logical structure of the relations is specified the wuser
will need to write the relational schema. Instead of having a strict
schema with its own DDL, a much simpler approach would be to add a new
data type that can be declared along with the regular PASM declarations.
The data type would be called RELATION. The declaration of the CHILDREN

relation would appear as follows:
RELATION CHILDREN [HZJ {INTEGER NODE#, CHILDNODEA}

The length of the relation, (HILDREN, 1is HZ, where W is the window
dimension. This value is included because some value must be given for
the maximum length of the relation even if the relation is dynamic.

This declaration . es the proposed PASM INTEGER declaration, Any
of the other PiSM ¢« types may conceivably be used within a RELATION
declaration. Th~ proposed PASM data declarations do not include a

character data declaration. However, syntactic pattern recognition
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tasks frequently use character data. Encoding of the character data is
often performed, but theoretically, to allow the user the greatest
freedom, there should be a CHAR, character, data declaration.

The most important restriction on a RELATION declaration 1is that
the user cannot nest RELATION declarations. A relation must contain all
atomic values. Multiple levels of declarations result in composite
attributes and, therefore, are not allowed.

By not having a formal schema, a certain amount of flexibility is
lost because the user can no longer specify which attributes are to be
keys. In the RELATION declaration, all attributes are candidate keys;
there 1is no specific primary key. This does, however, make it slightly

easier for the user.

6.3.4 A Brief Comparison with the CODASYL Approach

At this point, a brief comparison with the CODASYL approach will
illustrate many advantages of the relational approach and a few
disadvantages. One primary advantage of the relational approach, the
ability of the relational languages to extract whole sets of data, was
mentioned previously. Another advantage of the relational approach is
the simplicity of the relational "schema.” Use of the CODASYL schemas
and subschemas would require much more knowledge on the part of the user
and also would require more processing. The CODASYL schemas and
subschemas are far more complex than the relation declarations. This is
primarily due to the greater complexity of the logical structure for the
CODASYL approach. The logical relational structure is much simpler even
with the extra relations, COMB and TEMP, added to help form the triplet

combinations.
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The one major disadvantage of the relational approach lies in the
initial accessing strategy. Whereas the CODASYL entry points allow a
flexible approach, i.e., the user can choose the set of entry points,
the relational approach required on additional attribute to process the
nodes in a different order. The PARENTNODE# can be used to process the
nodes in the leaf algorithm, but to process the nodes by Level the
LEVEL# attribute had to be added. This inflexibility 1is minor when
compared with the previously mentioned disadvantages of the CODASYL

approach.

6.3.5 The Leaf and Level Programs

To simplify the transition from algorithms to tentative programs,
flowcharts are used. The flowchart for the Leaf algorithm is given in
Figure 6.7. The corresponding program is given 1in Figure 6.8. The
flowchart and program for the level algorithm are given in Figures 6.9
and 6.10, respectively. The relational language used in the programs is
based upon SEQUEL with a few minor modifications added tc help make the
programs more readable. Among these changes were the wuse of full
relation references at all times. For example, SELECT NODE# FROM TREE,
a perfectly acceptable reference in SEQUEL, will be written SELECT
TREE.NODE# FROM TREE. The host language used in the program is the
proposed parallel Llanguage for PASM. The commands for this proposed
language were Llisted previously in Figure 6.1. The function of some
SEQUEL commands uscvd it the leaf and level programs will be described
next.

Retrieval operations are wusually performed in SEQUEL with a

SELECT-FROM-WHERE* block. This command SELECTs attributes FROM
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WHERE SELECT GRAM.TERM =  SELECT TREE.SYMB
FROM GRAM FROM TREE

DO INSERT INTO TRIPLET:
(TREE.NODE#,GRAM.LHSN,1,GRAM.RUL#)

ELSEWHERE
INSERT INTO TRIPLET:
(TREE.NODE#,GRAM.LHSN,@,GRAM . RUL#)

DELETE TRIPLETS
GROUP BY TRIPLETS.NODE#
GROUP BY TRIPLETS.LHSN
HAVING TRIPLETS.ERR =
SELECT MIN(TRIPLETS.ERR)
\. FROM TRIPLETS

WHERE TREE.CURRENT=1 AND TREE.NODE# =0
DO UPDATE TREE
SET TREE.CURRENT=1
WHERE* TREE.NODE# IN
SELECT TREE.PARENTNODE#
FROM TREE
WHERE* TREE.CURRENT=1
UPDATE TREE
SET TREE.CURRENT=Q
WHERE* (SELECT TREE.NODE#
FROM TREE
WHERE* TREE.CURRENT=1)
INTERSECT
(SELECT TREE.PARENTNODE#
FROM TREE
WHERE* TREE.CURRENT=1)

Figure 6.8: The leaf algorithm program.

WHERE* GRAM.RANK=0 WHERE* TREE.CURRENT=1
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WHERE SELECT COUNT (CHILDREN.CHILDNODE#)=1
FROM CHILOREN
GROUP BY CHILDREN.NODE#
HAVING SET (CHILDREN.NODE#)
CONTAINS (SELECT TREE.NODEW
FROM TREE
WHERE TREE,CURRENT=1)
DO INSERT INTO COMB:
SELECT TRIPLETS.NODE#, TRIPLETS.LHSN, TRIPLETS.ERR
FROM TRIPLETS
WHERE* TRIPLETS.NODE#=CHILDREN.CHILDNODE#

ELSEWHERE DO
TEMP (PN#,CN#,LHSN,ERR) + SELECT UNIQUE
CHILDREN.NODE#,CHILDREN, CHILDNODE#,
TRIPLETS.LHSN,TRIPLETS.ERR
FROM CHILOREN,TRIPLETS
GROUP BY CHILDREN.NODE¥
GROUP BY CHILDREN.CHILODNODE#
HAVING COUNT (CHILOREN.CHILDNODE#)
> 1 AND
SET (CHILDREN,CHILDNODE#) CONTAINS

SELECT CHILDREN.CHILDNODE#

FROM CHILDREN

WHERE* CHILDREN.CHILDNODE# =

TRIPLETS.NODE# AND
CHILDREN.NODE# IN
SELECT TREE.NODEH
FROM TREE
WHERE* TREE.CURRENT=1
RANK + SELECT COUNT (UNIQUE TEMP.CN#)
FROM TEMP

T(N) + SELECT COUNT (TEMP.LHSN)

FROM TEMP
GROUP BY CN#

Figure 6.8: (continued)
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FOR I=1 WHILE I <= T(1) STEP I=I+1 DO
FOR J=T(1) WHILE J <= T(1)+T(2) STEP J=J+1 DO
IF RANK=3 THEN
FOR K=T(1)+T(2) WHILE K <= T(1)+T(2)+T(3)
STEP K=K+1 DO
RHSN = LHSNCI) | [LHSNCJ) | |[LHSN(K)
ERR = ERR(ID+ERR(JI+ERR(K)
INSERT INTO COMB:
(RHSN, ERR)
ELSE
RHSN = LHSN(I)|JLHSN(J)
ERR = ERR(I)+ERR(J)
INSERT INTO COMB
(RHSN, ERR)
DELETE TEMP

WHERE SELECT GRAM.RHSN
FROM GRAM
WHERE* GRAM.RANK In
SELECT COUNT (CHILDREN.CHILDNODE#)
FROM CHILDREN
GROUP BY CHILDREN.NODE#
WHERE* CHILDREN.CHILDNODE# IN
SELECT TREE.NODE#
FROM TREE
WHERE* TREE.CURRENT=1
DO WHERE GRAM.TERM = SELECT TREE.SYMB
FROM TREE
WHERE* TREE.NODE# = COMB.NODE#
00 INSERT INTO TRIPLET
(TREE.NODE#,GRAM LHSN,COMB.ERR+1,GRAM . RUL#)

ELSEWHERE INSERT INTO TRIPLET
(TREE.NODE#,GRAM.LHSN,COMB,ERR.GRAM RUL#)

DELETE TRIPLETS

GROUP BY TRIPLETS.NODE#H

GROUP BY TRIPLETS.LHSN

HAVING TRIPLETS.ERR =
SELECT ™" (TRIPLETS.ERR)
FROM TRIPLETS

\_ DELETE COMB

Figure 6.8: (continued)




ELSEWHERE DO
IF ANY TRIPLETS.NODEH#=@ AND TRIPLETS.LHSSN='S'
c THEN INSERT INTO RESULT:
(*ACCEPT',TRIPLETS.ERR)
ELSE INSERT INTO RESULT:
('REJECT")

Figure 6.8: (continued)
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- 15 rank of current node =

s_&

current node=node with 4———— root node"
Level equal Y
to level+t

Figure 6.9: Flowchart for the level algorithm.




WHERE TREE,CURRENT=1 AND TREE.NODE# =0 DO
WHERE (SELECT TREE.NODE# = (SELECT CHILDREN.NODE#
FROM TREE) fROM CHILDREN) DO

A
ELSEWHERE
B

UPDATE TREE
SET TREE.CURRENT=1
WHERE* TREE.LEVEL#+1 =
SELECT UNIQUE TREE.LEVEL¥
FROM TREE
WHERE* TREE.CURRENT=0
UPDATE TREE
SET TREE.CURRENT=0
WHERE*
(SELECT TREE.NODE#
FROM TREE
WHERE* TREE.CURRENT=1)
INTERSECT
(SELECT MIN(TREE.LEVEL#)
FROM TREE)
ELSEWHERE

Figure 6.10: The level algorithm program.
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celation WHERE* either an attribute satisfies a specific condition or
the attribute 1is contained within a specified set of values. The
special operation GROUP BY, the HAVING clause, and the library function
SET can be wused in the retrieval operations. GROUP BY partitions the
pertinent relation into groups such that within any group all tuples
have the same value for the attribute specified following the GROUP BY
operator. The HAVING clause is a special form of the WHERE* clause
applying the groups. Entire groups are chosen or discarded Yased on the
condition specified in the HAVING clause ([batl. The SET function
returns the set of values occurring for the specified attribute within a
given group.

The storage operations used in the two programs are UPDATE, INSERT,
and DELETE. The UPDATE command will UPDATE a relation and SET the
values for the attributes WHERE* certain conditions are satisfied. The
INSERT and DELETE commands are self-explanatory.

Some of the library functions used excluding the SET function are
COUNT and MIN.COUNT returns the number of occurrences of the specified
attribute. When COUNT is used in conjunction with a GROUP BY operator,
a COUNT is returned for each group. MIN returns the MIN (minimum) value
of the specified attribute.

Some additional detiils acuut the proposed host language need to be
given to clarify the reasons for the changes to be suggested. The focus
of the suggested chanqes are index variables and their use in

conditional statement-. A5 currently defined, index variables must be

scalars whose ranges are specified in a range list. In addition, Micro
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Controller variables are supposed to be scalars, while PCU variables are
supposed to be arrays.

It should be noted that there are two different types of WHERE
commands used in the programs. One WHERE command is part of a WHERE-DO
structure in the host language while the other WHERE command is a part
of the relational language and denoted WHERE*, The command names will
probably need to be changed to reduce confusion and simplify command
processing.

Since relations are essentially two dimensional arrays they would
be considered to be PCU variables. The SEQUEL commands choose subsets
of the relations much as the index variables are used to specify index
sets. The SEQUEL commands were therefore used to specify index sets in
the conditional PCU processor control statements. The major difference
between the wuse of the index variables in specifying an index set and
the use of SEQUEL commands to choose an index set is the 1inability to
specify a range Llist using the SEQUEL commands. The SEQUEL specified
set is always dynamic and the values of the indices are always implicit.

The organization of the SEQUEL commands in the program in Figure
6.9 1is impractical in terms of compilation. A more practical approach
would be to use index variables to store the values of the index set
specified by the SEQUEL commands. For example, consider the first

condition in the first WHERE statement:

SELECT GRAM.TERM =  SELECT TREE.SYMB
FROM GRAM FROM TREE
WHERE GRAM.RANK=0 WHERE TREE.CURRENT=1

tet G and T be defined as index variables in the declaration statements
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at the beginning of the program. The following initialization

statements would be needed before the control statement.

G <« SELECT x
FROM GRAM
WHERE* GRAM.RANK=0
T + SELECT *
FROM TREE
WHERE* TREE.CURRENT=1

An * refers to tuples in a relation. This allows specification of the
desired attribute 1in the WHERE statement which adds to the clarity of
the program. The WHERE statement would then read:

WHERE GRAM.TERM [G] = TREE.SYMB [T].

At points in the program there are references to relations without
indices, only the relation and attribute names are given. This is the
standard form of reference to a relation. In a relational lLanguage such
as SEQUEL, there is no provision for the specification of indices. The
choice of the index subset is supposed to be transparent to the user.
Since wusing the proposed PASM parallel language commands requires a
knowledge of index variables and their use on the part of the user, it
did not seem unreasonable to remove at least a part of this
transparency. As a result, the programmer will have a Little more
flexibility in manipulating the retations.

While allowing the pray. .aer to specify idindices, it 1is not
necessary to require that indices be used at all times. However, as was
mentioned previously, for practicality the programmer will be required
to use irdices in certain conditional statements.

A suggestion for a means of allowing both ways of specifying

subsets of a relation -ould be to have automatic index variables, one
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index variable per relation. Programmer defined index variables could
easily be grouped together during compilation to be synonymous with the
appropriate automatic index variable. The automatic 1index variable
could be handled in a manner analogous to the handling of nested WHERE
statements. The user also would have the ability to access individual
tuples; an index value can be used in place of an index variable.

Atthough allowing the user to specify index variables and values is
a departure from the conventions of relational database processing, it
provides an interface between a strict relational Llanguage and the
proposed PASM parallel language commands. Theoretically the user should
be able to take full advantage of the relational database techniques, or
to mix relational commands with PASM parallel language commands as was
done in the programs in Figures 6.9 and 6.11, or to manipulate the
relations utilizing only the proposed PASM parallel language commands.

Some of the SEQUEL commands can be preprocessed to yield PASM
parallel language commands. For example, simple SELECTs can be
translated into WHERE statements simply by extracting the WHERE*
statement of the SELECT-FROM-WHERE* group.

In contrast, some of the more complex SEQUEL commands are not so
easily translated. Efficient means of implementing some of the set
operators and commands such as the GROUP BY will need to be found. It
is through the wuse of commands such as these that the programs can be
greatly simplified, but without relatively efficient code the ultimate
goal of significantly reducing the processing time cannot be
accomplished. Some ideas for the implementation of these commands will

be discussed in the next chapter.
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Another suggested change to the proposed PASM parallel language
commands is to allow simple one-dimensional arrays containing counts or
indices to be allowed as Micro Controller variables. This was useful in
the programs when forming the triplet combinations. An array was needed
because of the multiple values returned when a SELECT-FROM-GROUP BY
group of commands was used with a COUNT in the SELECT. This type of
command is quite useful for returning multiple counts of items which in
turn may conceivably be needed in a Micro Controller control statement.

This chapter has presented the relational database as a feasible
tool for the implementation of the relatively complex structures
required by a syntactic pattern recognition task. Some suggestions for
embedding relational database language commands and schemas in a program
written in the parallel lLanguage proposed for PASM were made. Some
proposals for the implementation of these relational commands and for

the relational database itself will be made in the next chapter.
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CHAPTER 7

PROCESSOR AND DATA ALLOCATION FOR THE RELATIONAL APPROACH

7.1 Introduction

Consider the level traversal algorithm for purposes of discussion.
The processor and data allocation problems posed by a relational task
differ from those posed by image processing tasks even though relations
are somewhat similar to the arrays encountered in image processing.
Often the index sets of an image processing task are predefined and well
ordered making it possible to determine processor and data allocation
schemes at the time of compilation. In contrast, in a relational
database task the index set will be determined during execution rather
than at compile time. Also, an image processing task usually uses a
parallel machine to reduce the number of calculations to be performed
while a relational task uses a paralletl machine to decrease the time
taken to perform searches and comparisons. Thus it is evident that a
relational task poses several new processor and data allocation problems
that need to be considered.

The dynamic index sets pose the problem of how to allocate the
processors and distribute the data such that as many members of the
index sets as possible will be processed in parallel. One case will be
discussed to further clarify this problem. 1In this case, blocks of

tuples in the relations will be distributed to a Llimited number of
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processors. In this instance, all of the 7x7 windows of a 98x98 picture
are being processed in parallel.

The suggestions for processor and data allocation are made assuming
the whole picture is represented by multiple databases, one database per
window. An alternative to the multiple database approach might be as
follows. The relations as diagrammed in Figure 6.6 will be altered so
that the whole picture is represented in the relations. To accomplish
this, an additional attribute, the window attribute, will need to be
added to all of the relations except the GRAM relation. This implies
that the windows would need to be numbered and that these numbers will
be the values of the window attribute. The processor and data
allocation schemes possible for this approach are relatively simple

extensions of those described in the following sections.

7.2 Processor and Data Allocation

The distribution of the tuples of the CHILDREN, TREE, and GRAM
relations, among the processors for an individual window and for a
picture witl now be considered. For the sake of simplicity, it is
initially assumed that the wuser is specifying the processor and data
allocation. This section will describe the distribution of blocks of
tuples of a relation to the available processors. For example, the TREE
relation is assumed to be sorted by node number. The TREE relation
tuples woula then be distributed to the processors in rank groups. It
should be noted that this assumes the rank of the node is readily
available. The rel ‘ions given in Figure 6.6 do not include the RANK
attribute. An additional relation would have to be added with the

attributes NODE# and RANK to provide this information. The other
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alterntive would be to determine the rank during the Lloading of the
database of determining the number of children of a node. This,
however, might become a fairly time consuming process. One processor
will receive the nodes of the same rank. Of course, this depends on the
number of different ranks there are and how many processors are
avaitable for a window. A single processor may actually contain a
subset of the set of nodes of a given rank if there are a large number
of processors per window or it may contain multiple sets of nodes with
different ranks if there are only a few processors per window. The
CHILDREN relation would be distributed in the same fashion as would the
GRAM relation. The grammar rules are also assumed to be sorted by rank.
The grammar rules would be distributed to the processors such that the
rank of the nodes stored in a single processor is equal to the rank of
the grammar rules in that processor.

In this instance, the data in the GRAM relation 1is distributed
according to the value of the primary sort key attribute, the value of
the rank. Determining the number of processors to allocate to each
window database is simple once the total number of window databases is
known. The programmer will have to tell the compiler how many window
databases will be processed. This statement is probably best placed at
the beginning of the program and could be as simplte as WINDOWS=n, where
the program is considered to describe the processing for one window.

As an example, consider the 1024 processor machine, 98x98 picture,
and 7x7 window used in Chapter 5. Since there are 196 7x7 windows with
only one window per group of processors, there would be approximately

five processors per window. In order to enable PASM to process all the
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windows at the same time and to allow for interconnection network
transfers, there would have to be four processors per window, where four
is the nearest power of two less than five. Conveniently for this
example, there are four processors and four different rank values so
that there is a one-to-one correspondence between the sets of nodes and
grammar rules sorted by rank and the number of processors. In this
example, there would be no data transfers between processors of rank 1.
ALL of the processing for nodes of a rank 1 would occur in a particutar
processor. It is suggested that the processing of the nodes of rank 2
and the nodes of rank 3 be distributed across the processors responsible
for storing the pertinent tuples for these nodes. In this way there
should be some time savings 1in the processing of the triplet
combinations for those nodes.

A fair percentage of the processors should be active using this
allocation and processing scheme for the (evel algorithm program. The
level algorithm spreads the processing of the Llower rank nodes over
several serial steps. Only two out of each of the 2W size sets of lower
rank nodes are processed at the same time with a maximum of W-3 nodes

being processed together in any one processor.

7.3 Mode of Processing

In the example discussed, all processing 1in one processor was
assumed to be performed independently. E€Each processor was performing a
separate task involving different amounts of data and different code.
It would seem that IMD mode would be the best mode of processing for
the level algorithm program., MIMO mode would also be recommended for

the case where nodes of multiple ranks a-2 in one processor. However,




96

for the case when enough processors are available so that the nodes of
one rank are distributed across more than one processor, the mode would
need to be MSIMD to fully take advantage of the parallel processing

within a node group.

7.4 Compilation Problems

Some suggestions for resolving one of the compilation problems will
be made in this section. The problem is how to translate the GROUP BY
commands which require sorts as efficiently as possible. Data
definition Llanguages usually allow the user to state which relations or
records are to be sorted, the sort key and the type of ordering desired.
The RELATION data definition statements as suggested in the previous
chapter do not include statements for specifying sorted data. It may be
possible to determine some of the sort specifications from the GROUP BY
commands in the programs because the GROUP BY commands implicitly
require sorting. This would shift some of the burden of sorting
requirements from the programmer to the preprocessor and compiler. This
may also aid in the reduction of the number of run time sorts needed
because it gives the machine the knowledge of what sorts will be
necessary before execution thereby allowing the machine to presort
certain relations., Static relations, for example, should be sorted
during the database loading process.

At the expense of a certain amount of data redundancy, it may be
reasonable to presort the static relations in all the different ways as
required for execution of the GROUP BY commands in the program. This
suggestion is made assuming that most of the relations used in syntactic

pattern recognition tasks will require only one sort. For the leaf and

PR il
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level algorithm the number of multiple sorts in a static relation
depends on what initial sorting is done, but will be small.

The GROUP BY commands in the programs do not necessarily contain
all the needed sort key attributes. It will be necessary in some
instances to require the programmer to specify how the data is ordered.
This may be accomplished by including a series of GROUP BY statements in
the data definition statements. For example, to indicate that the TREE
relation is sorted by NODE# the following statement might be used:

RELATION TREE

GROUP BY NODE#

This would have to follow the TREE relation declaration.

The GROUP BY statements can also be used for the dynamic relations.
However, unlike the static relations, the dynamic relations will need to
be sorted during processing. The GROUP BY statements for the dynamic
relations might be used to generate code that would cause the tuples to
be distributed to the appropriate processor as they are formed during
processing.

From the above discussion, it would seem that the necessary
information for the implementation of the allocation scheme discussed in
section 7.2 can be obtained from the program. However, this allocation
scheme 1is not necessarily a ,articularly effective scheme in terms of
the speed of processing, but it was sufficient here to illustrate some
of the problems that can be encountered in an allocation scheme.
Further research needs to be performed in this area to determine how

relations might be best distributed and processed on PASM.
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CHAPTER 8

CONCLUSIONS

A tree parsing task was investigated to determine how PASM might
process such a task. It was hoped that a parallel machine such as PASM
would be able to significantly reduce the processing time for a
syntactic pattern recognition task such as the tree parsing task.
Although definitive results are not obtainable at this time, it appears
that PASM could greatly reduce the processing time.

Initially, two approaches to the order of processing of the tree
data, the leaf traversal and the level traversal, were investigated.
Using the two tree parsing algorithms resulting from these two
traversals, some tentative processor and data allocation schemes and
processing modes were discussed for illustrative purposes. These
schemes assumed a tree structure would be used for storing and
processing the data. The discussions indicated that PASM's
reconfigurability gives a wide variety of options for processor and data
allocation and the mode of processing. The Leaf traversal approach
could make good use of both the SIMD and MIMD modes, while the level
traversal may be better suited for MIMD implementations. With suitable
analysis tools, this flexibility could be put to use to yield the best

time savings.
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The next factor considered was the implementation of the data
structures and the algorithms. It was felt that the data structures
were best represented by databases and that a mixture of database
Llanguage commands and high level parallel processing commands for PASM
could be used to implement the algorithms.

The first database model investigated was a CODASYL model. It was
felt that this model would not be able to fully exploit PASM's parallel
processing capabilities. The CODASYL model and DML were discarded in
favor of the relational model and a relational tanguage.

The use of a relational database and 2 relational language provide
PASM with the ability to process the relatively complex data structures
used in syntactic pattern recognition tasks. The simplicity of the
relational approach in contrast to the detail required in the use of the
network and hierarchical approaches makes the imptementation of
syntactic pattern recognition tasks more practical. The simplicity of
the relations to basic image arrays is one of the major reasons for the
apparent success of the relational approach. Relations and relational
Languages provide an interface between complex structures and arrays.

The allocatior scheme for the level program was proposed primarily
for illustrative purposes. Further research 1is needed to determine
optimal allocation schemes for orocessing relations on PASM, This
research would be able to take into account the findings of other
researchers interested in processing relations on parallel machines.
The results of this paper would seem to indicate that significant time
savings may be possible through the use of relational techniques to

process syntactic pattern recognition tasks on PASM.
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