AD-A113 916 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 9/2
OPTIMIXING SYNCHRONOUS SYSTEMS. (U)
MAR 82 C E LEISERSONs J B SAXE NOO0O14=80=C=0622
UNCLASSIFIED MIT/LCS/TM-215

.. MASSACHUSETTS
INSTITUTE OF

LABORATORY FOR %
TECHNOLOGY

COMPUTER SCIENCE

MIT/LCS/TM-215

"OPTIMIZING SYNCHRONOUS SYSTEMS"

ALA113916

Charles E. Leiserson

James B. Saxe

March 1982

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

e

’ Thia dA;u:z;éTst-I;(;n heen appro

DTIC FiLE COPY

for public relecse and sale; fig
diswribusion is unlimited,

|] g2 04 28 007

SECURITY CLASSIFICATION OF TNIS PAGE (Whan Date Enlered)

- READ INSTRUCTIONS
T. REPORT NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT’'S CATALOG NUMBER
MIT/LCS/TM-215 YD A7 3 Gk
4. TITLE (end Subtitie) $. TYPE OF REPORT & PERIOD COVERED
"OPTIMIXING SYNCHRONOUS SYSTEMS" Memorandum, March 1982

6. PERFORMING ORG. REPORT NUMBER
MIT/LCS/TM-215

7. AUTHOR(e) 6. CONTRACT OR GRANT NUMBER(e)
Charles E. Leiserson and John B. Saxe N00014-80-C-0622
9. PERFORMING ORGANIIA;?&N NAME AND ADDRESS 10. PROGRAM (LENENJ;. PROJECT, TASK
B . AREA & WORK UNIT NUMBERS

Laboratory for Computer Science
Massachusetts Institute of Technology
545 Technology Square, Cambridge, Ma. 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
DARPA March 1982
1400 Wilson Blvd. - . ’ 13. NUMBER OF PAGES
Arlington, Va. 22217 28

4. MONITORING AGENCY NAME & AODRESS(If different Irom Controlling Otfice) 15. SECURITY CLASS. (of thie report)
Office of Naval Research.

Department of the Navy Unclassified
Information Systems Program TSs. DECL ASSIFICATION/ DOWNGRADING
Arlington, Va. 22217 , SCHEDULE

16. DISTRIBUTION STATEMENT (of thle Report)

.This document is approved for public sale and release, distribution
is unlimited.

P

17. DISTRIBUTION STATEMENT (of the sbetract entered In Block 20, if diflerent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree elde If neceesary and Identlfy by block number)

circuit optimization, design methodology, graph theory, parallel computation,
path algorithms, pipelining, synchronous systems, systolic systems, VLSI.

20. ABSTRACT (Continue on reveres side If neceseary and Idontify by block number)

The complexity of integrated-circuit chips produced today makes it feasible to
build inexpensive, special-purpose subsystems that rapidly solve sophisticated
problems on behalf of a general-purpose host computer. This paper contributes
to the design methodology of efficient VLSI algorithms. We present a trans-
formation that converts synchronous systems into more time-efficient, systolic
implementations by removing combinatorial rippling.

(over)

DD jon'ss 1473 €oiTion oF 1 NOV 68 13 omsOLETE

SECURITY CLASSIFICATION OF TNIS PAGE (When Date Entered)

SWCUMTY c{mncaﬂu OF THIS PASR(Whean Data Bntered)

The problem of determining the optimized system can be reduced to
the graph-theoretic single-destination-shortest—paths problem. More
importantly from an engineering standpoint, however, the kinds of rip-
pling that can be removed from a circuit at essentially no cost can be
easily characterized. For example, if the only global communication
in a system is broadcasting from the host computer, the broadcast can
always be replaced by local communication.

e~

SECURITY CLABBIFICATION OF THIS Phqm Dete Bntored)
- - . ’ —_ P A5 A A st

IAE TX Sl s e)

PREEN OV

bl"l'c;-

Oony,
Optimizing Synchronous Systems s

Accession For
. {TIS GRA
Charles E. Leiserson ;E’ bta e g
Laboratory for Computer Science Unannounced]
Massachusetts Institutc of Technology Justification _ _ _ . |
Cambridge, Massachusetts 02139 ' pEm—
Bv_ e)
o e A
James B. Saxe | Distribution/)
ailability €
Department of Computer Science L—-A-v'\ : e R
Camegie-Mcllon University " paad
; 4 Dist Special
Pittsburgh, Pennsylvania 15213

Abstract—The complexity of integrated-circuit chips produced today makes it feasible to build
inexpensive, special-purpose subsystems that rapidly solve sophisticated problems on behalf of a
gencral-purpose host computer. This paper contributes to the design methodology of efficient VLSI
algorithms. We present a transformation that converts synchronous systems into more time-efficient,
systolic implementations by removing combinational rippling.

The problem of determining the optimized system can be reduced to the graph-theoretic single-
destination-shortest-paths problem. More importantly from an engincering standpoint, however, the
kinds of rippling that can be removed from a circuit at essentially no cost can be casily characterized.
For example, if the only global communication in a system is broadcasting from the host computer,
the broadcast can always be replaced by local communication,

i |

Key words and phrases:
Circuit optimization, design mcthodology, graph theory, paralldd computation, path
alporithms, pinclining. synchronous systems, systolic systems, VLSI,

This research was supported in part by the Defense Advanced Research Projects Agency under Contract
No. N00014-80-C-0622 and by the Office of Naval Rescarch under Contract N00014-76~C-0370.

Contents

1. Introduction

2. A Modcl for Synchronous Systems

3. The Systolic Conversion Theorem

4. A Real-Time Palindrome Recognizer

5. A Design Methodology for Systolic Systems
6. Further Topics

7. Conclusion

Acknowledgment

A. Proof of the Retiming Lemma

References

rm

e ——
bt ok e

T

SRR

Figure 1.

Figure 2:

Figure 3:

Figure 4:

Figure S:

Figure 6:
Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figures and Tables

The communication graph G, of a synchronous system S;. Onc vertex of the
graph is distinguished as representing not an ordinary functional clement but a
host processor. which is the system’s only interface to the external world.
The communication graph of a system S, which is cquivalent to the sysiem S1
from Figure 1 as viewed from the host. Internally, the two systems differ in that
vertex v, lags by onc clock tick in S2 with respect to S].
The constraint graph Gl—-l for the system S, in Figure 1. This graph is
identical to Gl except that the weight of cach cdge in G]—l is onc less than the
weight of the corresponding edge in G). EFach vertex has been labeled with the
weight of the shortest (Le.. lightest) path from that vertex to the host.
The systolic system 83 produccd by applying the Systolic Conversion Theorem
to the system S, from Figure 1. Each cdge (u. v, w) from G, has been replaced
by the edge (u. v. w+lag(v)— lag(u)). where the lag of a vertex is taken as the
weight of the shortest path from that vertex to the host in G]-l as indicated in
Figure 3.
A cycle ¢ and a path p from a vertex v of ¢ to the host in the communication
graph of a synchronous system,
Contents of the 4 and B registers.
A synchronous system P which recognizes palindromes in rcal time. (a) A
diagram of P showing rcgisters and functional clements. The part enclosed in
the dashed box corresponds roughly to a “processor™ in the description of P in
the text. (b) P's communication graph. G. (c) Details of a functional clement,
The configuration of the system P from Figurc 7 as it recognizes the palindrome
*redivider™.
The constraint graph G —1 for the real-time palindrome recognizer P from
Figurc 7. Since this graph contains cycles of negative weight, the Systolic
Conversion theoreny is not applicable o P.]
‘The communication graph 2G for a 2-slow siimulator 2P of the system P from
Figure 7. This graph is abtainced by doubling the weight of cvery cdge in the
communication graph G of P,
The constraint graph 2G - 1. Each vertex v is lubeled with the weight of the
shortest path from v to the host.
The communication graph of a systolic 2-slow simulator SP of the real-time
palindrome recognizer P of Figure 7. Each vertex is labeled with its lag in SP
with respect to the system 2P shown in Figure 10.
A scquence of configurations of the system SP showing its recognition of the
palindrome “redivider™.

10
10

11

11

12

12

12

13

i o2 2 e Sk

b

FIGURES AND TABLIS

Figure 14: Broadcast from the host 0 all functional clements of a system can be
implemented by a breadth-first spanning tree (dashed edges) of the connection
graph. Each vertex is labeled with its distance from the host.

Figure 15: Communication graph of an optimized simulator for the real-time palindrome
recognizer P of Figure 7. In the optimized simulator, no signal propagates
through more than two functional clements in one clock period. Each vertex is
labeled with its lag in this system with respect to P,

Figure 16: A fast implementation of the palindrome recognizer using three-phase clock-
ing. Each vertex is labeled with its lag in this system with respect to P.

Figure 17: Division of an cdge e = (u, v, w) into wires,

iii

15

18

18

21

b M

1. Introduction

Gone are the days when the chips in an clectronic system were mostly NANID gates and flip-
flops. The computer-on-a-chip is the fashion today, and microprocessors are being produced with
cver-increasing functionality in an attempt to exploit the improving technological capability. In the
future, we can cxpect designers to put entirc multiprocessor systems on a single chip. By exploiting
the massive potential that VLSI holds for parallel computation. such special-purposc systems will
greatly augment the power of general-purposc computing cnvironments,

Designers of these large systems will face the problem of communication, which arises in any
parallel system. In order 1o cope with communication costs, the design methodology of systolic
systems|6, 7} has been proposed. This design mcthodology allows a high-level, algorithmic
description of a circuit which dcals directly with communication costs. As a result, the performance
of circuits implemented with this design methodology matches well the performance predicted by a
simple algorithniic analysis {3]. Signal processing. numcrical lincar algebra, and raster graphics
provide many applications for systolic systems, but their utility is hardly restricted to these areas
alone.

The systolic design mcthodology manages communication costs cffectively because the only
communication permitted during a clock cycle is between a processing element and one of its neighbors
in thc communication graph of the systcm. This constraint is in dircct contrast with, for cxample, the
propagation of a carry signal which ripples down thce length of an adder. Such combinational rippling
and global control such as broadcasting arc forbidden in systolic designs. Whercas the clock period in
most synchronous systems is long in order to allow sigﬁals to ripple through cascades of
combinational logic. in systolic systems the clock period depends only on the time required for a
signal to propagate through a single processing clement. Thus the clock period af a systolic system is
short because it is independent of the size of the system.

The principal dcficiency of the systolic design mcthodology is that the burden on the designer
may be excessive. In particular, global communication such as broadcasting is more casily described
in terms of rippling logic. In a systolic system the cffect of broadcasting must be achicved by
multiplc local communications. ‘The propagation of a datum from onc end of a systolic system to the
othcr may take many ticks of the system clock, and therefore different processing clements will sec
the same data at different times. Orchestrating the individual behaviors of processors can be a large
bookkeeping chore.

In this paper. we address the design issuc head on. We demonstrate how a synchronous system
can be designed with rippling logic. and then converted to a systolic implementation that is
functionally cquivalent to the original system—the principal difference being the shorter clock period
of the systolic implementation. We characterize the systems that can be so transformed. and show
that an algorithm bascd on the graph theorctic single-destination-shortest-paths problem can compute

the transformation quickly.

P RSN

B

T

2 OPTIMIZING SYNCHRONOUS SYSTEMS

‘The remainder of this paper is organized as follows. Scction 2 presents a graph-thcoretic model
for synchronous systems. The principal result of the paper is given as the Systolic Conversion
Theorem in Section 3. To illustrate the power of the thcorem in a design situation, Section 4 details
the construction of a simple systolic system. The design process from Section 4 is abstracted in
Section 5 and applied to the problem of replacing global communication in a system with local
communication. Section 6 is devoted to brief discussions of further topics relating to applications and
extensions of the results. In Section 7 we discuss carlier related work and present some concluding

remarks.

2. A Modet for Synchronous Systems

We view a large circuit as a system which is partitioned into functional elements (combinational
logic) and registers (clocked memory). Such a system S can be modeled as a finite edge-weighted
directed multigraph (henceforth, we shall simply say “graph™) G = (V. E). The vertices V of this
communication graph correspond to functional clements, and the edges I correspond to intercon-
nections between the functional clements.” Each edge e in £ is a triple of the form (u, v, w), where u
and v are (possibly identical) vertices of G, called the rail and head of e, and w is the nonncgative
integer weight of the edge. The weight is the number of registers along the interconnection between
the two functional elements. A configuration of a systcm is some assignment of values to all its
registers. With each clock tick, the system maps the current configuration into a new configuration.

Figure 1: The communication graph G| of a synchronous system S,. Onc vertex of the graph s distinguished as
representing not an ordinary functional clement but a kost processor, which is the system’s only interface to the exiernal
world.

I the weight of an edge happens to be zera, no register impedes the propagation of a signal
alang the corresponding interconnection. Such is the case. for instance, in the system S, shown in

AMODELTFOR SYNUIRONOUS SYSHEMS 3

Figure 1. A signal emanating from Y will proceed unhindered though vy and subsequently through
by before it is stopped by a register. [f the rippling can feed back on itself. problems of latching,
oscillation, and racc conditions can arisc. In our model this corresponds o a zero-weight cycle in the
communication graph, where the weight of a path is taken to be the sum of the weights of its edges.
In order to preclude anomalous behavior associated with asynchronous design, we restrict our
attention to synchronous systems.

Definition: A system is a synchronous system if every cycle in its communication graph

has positive weight.

Systolic systems cxhibit no combinational rippling, and in our modecl correspond to thosc
synchronous systems whosc cdge weights are all positive.

Definition: A synchronous system S is a systolic system if for cach cdge (#, v, w) in the
communication graph of S, the weight w is strictly greater than zero.

So far we have dealt with the internal organization of systems, but of course, no system operates
in a vacuum. Rather, it communicates with the external world via an interface. In our model, one
vertex called the Aost represents this external interface. If the system were an integrated circuit, for
cxample, the conncections to the host might be the pins of the chip.

The host is important because when two systems are compared. it is the behavior of the systems
from the point of view of the host that is at issuc,

Definition: Let ¢ be a configuration of a synchronous system S, and let ¢’ be a
configuration of another synchronous system S’. The system S started in configuration ¢

has the samc behavior as the system S' started in configuration ¢’ if for any scquence of

inputs to the system from the host, the two systems producce the same sequence of outputs

to the host.

Before going on, we bricfly call attention to a technical fine point relating to this definition.
While the combinational logic in a system is scttling, the system outputs to the host may change. We
insist, however, that the internal state of the host depend only on the final scttled values of the system
outputs and not on any transient values. Furthermore, if signals ripple through the host to the system
inputs during a single clock cycle, we similarly require that the eventual values of the system inputs
not depend on any transient values. Of course in a synchronous system it is impossible for transient
vitlues on the system inputs to ripple back out to the host.

Suppose the system Sl from Figurc 1 is modificd so that the weight of every edge Ieading into
vy is incrcased by onc and the weight of every edge Ieading out of v4 is decreased by one (see
Figure 2). As viewed from the host, the resulting system S, is cquivalent (in a sensc that we will
presently make precisc) to S, Th- two systems differ internally in that cach computation performed
by the functional clement at vy in S, is performed one clock tick later than the corresponding

computation in the original system S]. Vertex vy is said to Jag by onc tick in S, with respect to Sl' or

alternatively, to lead by onc tick in Sl with respect to Sz'

Mt aa

——

it W

4 OPTIMIZING SYNCHRONOUS SYSTENS

Figure 2: The communication graph of a system 82 which is aquivalent 10 the system S1 from Figure 1 as viewed from
the host. Internally, the two systems differ in that vertex) lags by one clock tick in S2 with respect to Sl‘

This simple operation of retiming a functional element in a system forms the basis of the
optimization techniques in this paper. Indecd, the system S2 exhibits a performance improvement
over S, because the longest path of combinational rippling has been shortencd by the retiming of the
functional element at V. But aithough it may appear intuitive that the two systems arc effectively the
same from the point of view of the host, a closer examination reveals some technical difficulties. In
particular, it is not true that whatever configuration the system S, is started in, there exists a
configuration in which the new systcm S2 can be started such that the two systems cxhibit the sarie
behavior. If the first register on the edge from vyto v, is inijalized in S1 with a value that is not in
the range of values produced by the functional element at vy then the transformed system 82 cannot
necessarily mimie the subsequent behavior of S,

Although the system S2 cannot mimic the behavior of Sl for all possible configurations of Sl.
however, it can for any sufficiently old configuration of S, that is, any that arise after S, has been
run sufficiently long. In the cxample, a configuration of S, that has at least one predecessor is
sufficiently old to allow S, to mimie the subscquent behavior.

Definition: Let S and S’ be synchronous systems. Suppose that for every sufficiently old
configuration ¢ of S, there exists a configuration ¢’ of 8 such that when S s started in
configuration ¢ and S’ is started in configuration ¢'. the two systems exhibit the same
behavior. Then system S’ can sildate S. If two synchronous systems can simulate ¢ach
other, they are equivalent.

The following lemma shows that retiming a vertex in a synchronous system, as in the example
above, produces an equivalent system as long as no edges in the communication graph are given
negative weight by the transformation. In fact, the Retiming Lenuna shows that many functional

elements in a system can be given arbitrary leads and lags under the same condition,

AMODET FOR SYNCHRONOUS SYSTEMS S

Lemma 1 (Retining Lemma) Vet S be a synchronons system with communication
graph G, and let lug be a function that maps cach vertex v of (7 10 an integer and the host
to zero. Suppose that for every edge (v, v. w) in G the value w i lag(v)— lag(u) is
nonncgative. let S' be the system obtained by replacing cvery cdge ¢ = (u, v, w)in S
with e’ = (u, v, w4 lag(v)— lag(u)). ‘Then the systems S and S’ are cquivalent.
Sketch of proof. The proafis an induction argument. 1.ct 1, be the maximum lag of any vertex in G.
If S is started at time zcro and run until time Iy there cxists a configuration of S’ such that for all ¢
greater than or cqual to ¢, cach functional clement v in S' performs the same computation at time ¢
as the corresponding functianal clement in S at time ¢ —/J2g{v). Appendix A gives a detailed proof of
this lemma. O
Two synchronous systcms may bc cquivalent even though their internal organizations are
tadically different. For cxample, onc system might be a trec and the other a mesh. A system S/
obtained by retiming a system S, howcver, is not only cquivalent. but also has the same structure as S.
Definition: Two systems have the same structure if they are composed of the same
functional clements with the same inputs and outputs connected by the same intercon-
nections. The numbers of registers on the interconnections, however, may differ.
Preservation of structure is a valuable property of any system transformation because it allows the
new system to inherit the benefits of independent design decisions. 1-or example:

¢ Anything done to make the functional elements in the original system small or fast will
carry through to the new system.

e Any topological propertics of the communication graph that lead te an arca-efficient
layout of the original system will retained by the new systeni. If the onginal system is
struciured as a mesh, for instance, the new syvstem will not be converied to. say, a
shuffle-exchange graph. which is much more expensive to lay out [15).

e A system that has been partitioned across multiple chips will not require additonal pins
for the transformed system.

3. The Systolic Conversion Theorem

The previous section demonstrated that a synchronous system could be modificd by refiming
functional elements to reduce the period of the system clock. A natural question to ask is, “'Is therc a
way 1o assign a lag 10 cach vertex of the communication graph G of a synchronous system so that the
retimed system is systolic?” The answer depends upon the constraint graph G — 1, which is the graph
obtained from G by replacing every edge (u, v, w) with (1. v, w=1).

Theorem 2 (Systolic Conversion Theorem) let S be a synchronous system with
communication graph G, and supposc the constraint graph ' — 1 has no cycles of negative

weight. ‘Then there exists an equivalent system S’ which has the same structure as S and
which is systolic.

Proof: The desired system S’ may be constructed by a procedure whose key step is the salution of a

6 OPIIMIZING SYNCHRONOUS SYSTEMS

single-destination-shortest-paths problem in G —1. Without loss of generality. suppose that there
cxists a path from every vertex v in G to the host—whenever there is not such a path, it is impossible
for the functional clement at v to have any influence on the behavior of S. A corresponding path
must exist in G—1, and since G —1 is finite and has no ncgative cycles, there must exist in G—1 a
path of minimal weight from cach vertex to the host. For each vertex v define lag(v) as the weight of
any such shortest path from v to the host in G —1. The systolic system S' is obtained by modifying S
using the Retiming Lemma (I.emma 1) to give cach vertex the designated lag.

To show that this construction indeed produces a systolic system, we must demonstrate that all
edge weights in the communication graph G’ of S' are strictly positive. This demonstration will also
show that the conditions of the Retiniing Lemma are met because all edge weights in G’ will perforce
be nonnegative. For any edge (u, v, w) in G, the weight of the corresponding edge in G—1is w—1,
and the weight of a shortest path in G —1 from v to the host is lag(v). The weight lag(u) of a shortest
path in G—1 from vertex u to the host can be no greater than (w—1)+/ag(v). (Consider the path
obtained by prepending the edge (i, v, w—1) to a shortest path from vertex v to the host.) The
weight of the edge (4, v, w+lag(v)—lag(u)) in G' is therefore positive. O

The Systolic Conversion ‘Theorem can be applied to the system S, from Figure 1. Figure 3
shows the constraint graph Gl—l for that system with the weights of the shortest paths to the host
labeled in the vertices. Using the Retiming Lemma to give each vertex in Sl the lag designated by
the weight of its shortest path to the host yields the systolic system S3 which is shown in Figure 4.

Figure 3: The consrraint graph G, —1 for the system S, in Figure 1. This graph is identical 10 G, exeept that the
weight of each edge in G, —1 is one less than the weight o!J the corresponding edge in Gl' Fach vertex has been labeled
with the weighi of the shortest (ie., lightest) path from that vertex 10 the host.

The Systolic Conversion Theorem shows that the absence of negative weight cycles in the
constraint graph G — 1 allows a synchronous system to be transformed by application of the Retiming

l.emma into an equivalent systolic system. We call the graph G —1 a “constraint graph™ because for

B AT

THESYSTOLIC CONVIRSION THEOREM 7

Figure 4: The systolic system S, produced by applying the Systolic Conversion Theorem to the system S, from
Figure 1. Each edge (u, v, w) from G] has been replaced by the edge (u, v, w + lag{v)— lag(u)). where the lag of a vertex
is taken as the weight of the shortest path from that vertex to the host in Gl -1 as indicated in Figure 3.

each edge (u, v, w) of G, the edge (u, v, w—1) in G—1 constrains the weights lag(x) and lag(v) of
the shortest paths from u and v to the host to satisfy the inequality lag(u) < lag(v)+ w—1, thereby
guaranteeing that the edge (u, v, w+ lag(v)— lag(u)) in G' will have positive weight.

The applicability of the Systolic Conversion Theorem to a system S does not depend on the
specific functions computed by the functional clements of S. The next thcorem shows that the
Systolic Conversion Theorem is the strongest possible result of such generality. (Figure 5 shows the

situation described in the statement of the thecorem.)

e o

\ —
;(__

\ s

Figure 5: A cycle ¢ and a path p from a vertex v of ¢ to the host in the communication graph of a synchronous system.

Theorem 3: Let G be the communication graph of a synchronous system S, and suppose
the constraint graph G — 1 has a cycle ¢ of negative weight and a path p from some vertex v
on ¢ to the host. Then it is impossible to construct a systolic system that both simulates S
and has the same structure as S without using knowledge of the particular functional
clements of S.

v pe aime i
S S —

T p——— g = : P——— T ——

3 OPLIMIZING SYNCHIRONOLS SYS1IMS

Proof: Suppose there docs exist a structure-prescrving transformation it produces a systolic
system S’ which is equivalent to S. An adversary argument shows that this transformation must use
specific properties of the functional clements of S. ‘The adversary chooses functional elements for a
system T which has the same structure as S, and then the transformation that produced S’ from S is
applied to T. The resulting systolic system T fails to simulate T.

Let G’ be the communication graph of S', and let x and x’ be the weights of cycle ¢ in G and
G'. Since system S’ is systolic, the weight x’ must equal or exceed the number of edges along c.
Cycle ¢ has negative weight in G —1, however, and thus x must be strictly less than the number of
cdges along ¢. Therefore, x is strictly less than o,

The adversary now chooses the functional clements of the system T, which has the same
communication graph G as S. Functional clements that lic neither on the cycle ¢ nor on the path p
from v to the host are chosen arbitrarily. Those on ¢ and p pass their input values along ¢ or p
unchanged, except for the single functional element at v which takes an integer input a along ¢ and
propagates (a+1) MOD xx' along ¢ and p. After a sufficiently long time, the outputs from T to the
host along p at times ¢ and 1+ xx’ will always differ by x' (modulo xx'). Now consider the system
T’ which is produced by applying to T the same transformation that produced S’ from S. Since T’
has x' registers along the eycle ¢', the outputs from T’ to the host along p’ at times 1 and 1+ xx' will
differ by x (modulo xx'). Since x and x' are distinct, the system T’ cannot possibly simulate T. [

When a synchronous system with regular structure—such as a rectangular mesh or a complete
binary tree—is converted to a systolic system. the conversion will typically be very uniform. The lead
or lag of a functional clement may, for cxample, be equal to the sum of its indices in the mesh or to
its depth in the trec. Section 4 provides an example in which the functional clements are arranged in
a lincar array, and the lead of cach functional eclement in the transformed system turns out to be its
index in the array. For systems with less regular structure, however, an algorithm may be necded to
determince the transformed system, if indeed the original system can be transformed.

The central computational problem involved is the single-destination-shortest-paths problem:
Given an edge-weighted directed graph G = (V, E) and a distinguished vertex d in V, find for each
vertex v in ¥ the weight of the shortest path from v to 4, or else detect that G contains a cycle of
negative weight. This problem can be solved for arbitrary graphs in O(]¥]-|Z2}) time in the worst
case by an algorithm due to Bellman and Ford |8, pp. 74-75). Lipton, Rose, and Tarjan [11) have
shown that this bound can be improved for families of graphs that have small separators using a
method they call generalized nested dissection. The use of separators is particularly interesting
because graphs with small separators have arca-efficient layouts as well [9]. 1-or any family of graphs
that is closed under subgraphs and that has an n%-separator thecorem, where n is the number of
vertices and a > 1/3, the method of generalized nested dissection can be used to solve the single-
destination-shortest-paths problem in O(n3®) time, provided that separators can be computcd

quickly enough. Thus a system with a planar communication graph can be transformed in O(nJ’ 3

M

e

LHIESYSTOLIC CONVERSION THIEFOREM 9

time because planar graphs have a Vi -separator thcorem. Also, there is a 0(4 Y 2) time algorithm
for any graph that has a VLS] layout with arca 4. (Use a homeomorphism between such graphs and
subgraphs of cubic meshes of fixed depth, which have a VA -separator thcorem.) Further
improvemcnts over the Beflman-Ford algorithm can be obtained for famitics of graphs with smaller

scparators,

4. A Real-Time Palindrome Recognizer

This section illustrates thc power of the Systolic Conversion Theorem through an cxample.
Although many morc applications of this theorcm may bc found in such arcas as signal proccssing or
numerical lincar algcbra, we have chosen a simple symbol manipulation problem. A multitude of
other applications of thc thcorem can be found in [10).

A string of n characters is a palindrome if the ith character for i = 1,..., n is the same as the
n—i+1st character. Colc[2] constructs a lincarly connceted systolic array which is supplied
characters from a string, and for each character tells immediately whether the string input up to that
character is a palindrome. Whercas Cole constructs this real-time palindrome rccognizer explicitly,
his construction is claboratc and unintuitive. Here we demonstrate the same result, but the Systolic
Conversion Theorem greatly simplifics the construction.

The construction of the patindrome recognizer is based on a lincarly connected systolic array of
“processors” which is augmented with rippling combinational logic. The Systolic Conversion
Thcorem is applied to this intermediate synchronous system to remove the rippling logic and yield
once again a systolic array.

A proccessor p; in the systolic array has two registers, A, and B‘., cach of which can hold cithcr an
ordinary character or a special null character, NIL. The contents of register A, are provided as input
top; ;- The host appears as p,, in the system, and provides the input character in its rcgister Ay

The control of the processors is quite simple, but Ict us first understand what the systolic array is
trying to do. Supposc the character string input to the systolic array is Xy X, Figurc 6 shows the
contents of thc 4 and B registers after ten characters have been input, and again after cleven. For
1< i <|n/2) register B in processor p, contains the character x,, and for 1 <7 < [n/2], register A4 in
processor p, contains the character X el All other registers in the system contain NIL. Thus the
input string is a palindrome if and only if whenever 4; and b’l. arc nonnull, they contain the samc
character.

On cach clock tick, the new valucs of all the A; and B, are computcd by the formulac

A, « if B,_, =NIL then NIL else A, _,
and

Bi « if(Ai £ NIL)V(Bi = NIL) then 4, clse Bi.

e T T——

10 OPIIMIZING SYNCHRONOUS SYSTEMS
i 1 2 3 4 5 6 7 8
Ar X140 Xg Xy x, Xg NIL NIL NIL
B, Xy X, X, X, Xg NIL NIL NIL
i 1 2 3 4 5 6 7 8
A ; Xy4 X0 X Xg X, Xg Nl:_ NIL
BI X, x, X, X, X NIL NiL NIL

HOST

(®)

™
g
1>

{ NIL
A’m

B & { A
out
Bln
&
P =

()

B. = NIL

n

B_ # NIL

4, =NLV B =NIL
A, # NILA Bin # NIL

(B, = NIL)V (P, A4, = B.))

Figure 7: A synchronous sysiem P which recognizes palindromes in real time. (a) A diag.am of P showing registers and
functional elements. ‘The part enclosed in the dashed box corresponds roughly o a “processor™ in the description of P in

the text. (b) P’'s communication graph. . (c) Details of a functional clement.

where all assignments are performed simultancously, so that all references to registers on the right

hand sides denote values from the previous time step. While the host docs not actually contaia a

register B, the system acts as if there were such a register which always had a nonnull value. Thus,
0

4 is always given the valuce that N held on the previous time step.

—~—T—w

] A REAL-TIME PALINDROMLE RFCOGNIZER 11

‘This system is now augmented by combinational logic which runs back to the host and reports
whether a palindrome is recognized. ‘This rippling “collection™ logic returns TRUE if, for cach

processor p, such that 4, and B, both contain valid characters, 4; = B,. The collection logic is
implemented by giving cach processor p; an output PA I.l. whose value is defined by the formula

PAL, & (B, =NIL) v (PAL,, A (4, = B)).

Since the PA Li arc propagated by rippling logic, the values on the right hand side of this definition
arc based on the current time step. The last processor in the array will have no PAL signal coming
into it, but will act as if it had such a signal which always had the value TRUE.

The preccding text describes the palindrome recognizer in terms of “processors”™. Figure 7
shows how the recognizer may be modcled as a synchronous system P of functional clements and
registers. Also shown in the figure is P's communication graph, which will be referred to as G for the
remainder of this section. Figure 8 shows the state of P as it recognizes the palindrome “redivider”.

Figure 8: The configuration of the system P from Figure 7 as il recognizes the palindrome “redivider”.

The chain of rippling logic that extends through ail the functional clements to the host allows
the recognition of a palindrome to bc signalled on PAL1 on the very next clock tick after the last
letter of the palindrome becomes available in Ay The disadvantage of this chain of rippling logic is
that it must be allowed to scttle after cach clock tick, so the clock period of P must be linear in the
length of the array. A systolic rcal-time palindrome recognizer with the same structurc would be a
great improvement since the clock period would be independent of the size of the system.

If we could verify that G—1 had no cycles of negative weight, we could use the Systolic
Conversion Theorem to construct a systolic palindrome recognizer with the same structure as P,
Unfortunately, G —1 has many cycles of negative weight (sec Figure 9).

‘ HOST |

Figure 9: The constraint graph G -1 for the rcal-time palindrume recognizer P from Figure 7. Since this graph
contains cycles of negative weighl, the Systolic Conversion thcorem is not applicable 1o P. l

—_—

Consider, however, the system formed by modifying P so that the number of registers on each ,‘

—— . — e eeengre

12 OFTIMIZING SYNCUHRONOUS SYSTEMS

interconnection is doubled. The communication graph 26 of this system 2P is shown in Figure 10,
All the data flow in P is slowed down by a factor of two in 2P, so that 2P provides a sort of half-speed
version of P which communicates with the host only on every other clock tick. In fact, 2P can be
thought of as a pair of 2-slow simulators of P—onc¢ communicating with the host on even-numbered
ticks and the other processing a completely independent data stream and communicating with the
host on odd-numbered ticks.

0 % 0 0 0

HOST

2 2 2 2 2
= 2 2 2 2

Figure 10: The communication graph 2G for a 2-slow simulator 2P of the system P from Figure 7. This graph is
obtained by doubling the weight of every edge in the communication graph G of P.

Unlike G —1. the constraint graph 2G —1 is frec of ncgative cycles (sce Figure 11). Thus the
Systolic Conversion Theorem can be applied to 2P to producc a systolic array SP (showr in
Figure 12) which recognizes palindromes in real time—two clock ticks per character. Each processor
p; has a lead of i in SP with respect to 2P. Figure 13 shows a sequence of internal states of SP as it

recognizes the palindrome "redivider”.

Figuse 12: The eommunica_lion graph of a systolic 2-slow simulator SP of the real-time palindrome recognizer P of
Figure 7. liach vertex is labeled with its lag in SP with respect 10 the system 2P shown in Figure 10.

Although SP is a “2-slow” simulator of P, its performance is actually better than that of P if
sufficiently large systems are compared. Since rippling in P runs the length of the system, the period
of its clock must be at cast proportional to the length of the array. System SP, which is sysiolic, can
be run with a clock period that is constant with respect to the length of the system. ‘Thus the duraiion
of two clock ticks of SP will be less than the duration of one clock tick of P if the two systems are

large cnough.
As a comparison of Iiigares 8 and 13 reveals, system SP is much more complex than P in its

U

ey

e

A REAL-TIME PALINDROME RECOGNIZER 13

HOST

Figure 13: A sequence of configurations of the system SP showing its recognition of the palindrome “redivider”.

internal workings. The recognition of any string as a palindrome by SP is spread out over several
{imc steps, rather than happening all in a single clock cycle as in P. Consequently, any direct
verification of SP’s correctness requires careful bookkeeping to verify that all the data arrive at the
right places at the right times. The cffort involved in constructing such an argument is not
superhuman—indced, the correctness proof for Cole’s palindrome recognizer [2] depends on just
such a carcful bookkeeping argument. 1tis the authors’ contention, however, that it was an casier and
less error-prone task to design and verify P than it would have been to design SP directly. The
comparison would be cven more favorable for a complicated system. In proving the Retiming
L.emma and the Systolic Conversion Theorem. we have gone through the painstaking bookkeeping
once and for all, and captured the result in a form that can be used again and again.

We can illustrate this point again by taking note of an interesting property of SP: supplying a

; e 4 (R -
o) . 3 &b he ans L& TP .a.q‘I! s

» o — m
t

14 OPTIMIZING SYNCTIRONOUS SYS11:MS

NIL from the host to cither of the two (odd ticks and even ticks) data streams being processed by SP
effectively reinitializes the computation on that data stream. ‘the reader may attempt to verify this
property by a direct examination of SP, but we think it is casier to check that a NIL input effectively
resets P,

5. A Design Methodology for Systolic Systems

The real-time palindrome recognizer from Secction 4 was obtained by a three-step design
process. First, an initial systolic system was designed which performed an important picce of the
desired computation. Second, this sysiolic system was augmented with zero-weight edges to produce
a synchronous system with combinational rippling. The edges were added in such a way that the
Systolic Conversion Theorem could be applied to a 2-slow simulator of the intermediate system to
yield the final systolic design as the third step of the design process. The subject of this section is the
design methodology of augmenting a systolic system with rippling that can be climinated by the
Systolic Conversion Theorem.

In order to prejudice the designer as’little as possible in his other design decisions, the method
of design presented here preserves the-physical organization of the original systolic system as
captured by its connection graph, which is its communication graph viewed as an unweighted,
undirected graph. There may be greater differences between two systems that share only the same
connection graph than between two systems that have the same structure as defined in Section 2,

Two systems with the same connection graph may have different functional clements as well as

different numbers of registers on interconnections. In addition, the direction of information flow is
ignored in the connection graph.

Broadcasting is a means by which information known by the host is made known to all the
functional elements of a system in a single clock cycle. Broadcasting is the most common kind of
global communication found in paralicl systems because designers find it easy to think of controlling ,
all processors in unison. A designer who wishes to add broadcasting to his otherwise systolic system
will typically find considerablc flexibility in exactly how it might be implemented. A common i
approach is to use a bus, which is a single interconnection that visits all processors and conveys the
global information throughout the system. 1n fact, the connection graph of the system necd not be
disturbed if the bus is routed along any spanning tree of the connection graph. In our model the

interconnections composing the broadcast tree can be represented as zero-weight cdges in the

communication graph of the synchronous system. ‘I

Even with such tricks as precharging the bus {12, pp. 156-157], the simple fact that information N
must be communicated across the system limits the performance of a broadcast because the clock '
period of the system must be sufficiently long to allow the global information to reach all processcrs.

It should be apparent, howcever, that the first two steps of the three-step design process have been ld
followed thus far—a systolic system has been augmented with zero-weight edges to produce an '%

[L]
T e DU S, R 3 £ s a3 b B I PR I ARy .

A DESIGN METHODOLOGY T'OR SYSTOLIC SYSU1:MS 15

intermcdiate synchronous system. But can the third step succced? If so, applying the Systolic
Conversion Theorem to a 2-slow simulator of the intermediate system will produce a final systolic
design whose clock period will be independent of the size of the system.

The third step need not succeed, but if broadcasting is implemented using a breadth-first
spanning trce of the connection graph instead of an arbitrary spanning tree, it always will succeed.
Let H be the connection graph of the original systolic system, and definc the depth d(v) of a vertex v
in H to be the minimal number of edges in any path from v to the host. Let S be the intermediate
synchronous system obtained by implementing broadcasting along a breadth-first spanning tree in M,
and let G be the communication graph of S. (Thus cach zero-weight rree edge (u, v, 0) in G satisfies
d(v) = d(u)+1, asin Figure 14.)

HOST

Figure 14: Broadcast from the host to all functional elements of a system can be implemented by a breadth-first
spanning tree (dashed edges) of the connection graph. Each vertex is labeled with its distance from the host.

To show that the third step of the design process will work, we must demonstrate that the
constraint graph 2G —1 has no negative-weight cycles. Consider the changes in the depth d of
vertices during a traversal of a directed cycle in G. By the definition of depth, traversing any edge
changes d by at most one. Since traversing a zero-wcight tree edge increases d by one and the net
change in d around any cycle is zero, it follows that at most half the edges in any cycle of G can be
tree edges. Now consider the constraint graph 2G —1. For any tree edge in G, the corresponding
edge in 2G -1 has weight negative one. For any positive-wceight edge in G, the corresponding edge
in 2G —1 has weight at least one. Because at most half the edges in any cycle of G are tree edges, no
cycle in 2G —1 has negative weight. Consequently, the Systolic Conversion Theorem can be applied
to 2S to produce a systolic system which is equivalent to 2S and which has the same structure as S.
Thus if broadcasting is the only form of global communication in an otherwise systolic system, it can
be replaced by local communication.

Another common instance of global communication is collection where rippling logic runs from
functional elements toward the host as in the palindrome example from Section 4. If the logic

T

e i

— e —— T

16 OPTIMIZING SYNCHRONOUS SYSTEMS

computes an associative and commutative function (such as addition, multiplication, maximum. or
boolean conjunction) over values generated by the functional clements, then any spanning tree of the
connection graph can be used to implement the collection. In order to obtain a systolic 2-slow
simulator, a breadth-first spanning trce can once again be cmployed. 1n contrast to the broadcasting
situation, however, all tree cdges are directed toward the host instead of away,

The three-step design procedure proposed in this section can be applied to any augmented
systolic system as long as the rippling follows a breadth-first spanning tree in the connection graph,
and all zero-weight edges go toward the host, or all go away from the host. The following theorem
gencralizes these conditions and can be proved by adapting the argument for broadcasting.

Theorem 4: Let S be a synchronous system with communication graph G and
connection graph H, and let R be some subsct of the vertices of (5. For each vertex v of G,
define the distance 4 (v) of v from R as the minimal number of edges in any path in H that
joins v to an clement of R. Supposc that every zero-weight edge (. v, 0) of G is directed
away from R (ie. h(v) > li(u)), or alternatively that every zero-weight edge of G is

directed towards R. Then there exists a systolic system which is equivalent to 2S and
which has the same structure as S.

6. Further Topics

This section is a pot pourri of topics which include extensions both to the model and ‘o the problems
considered in this paper. The rcsults of the first part of this section are struaghtforward and
justification is given in sufficient detail to allow the reader to fill in the gaps. 1%ie latter part of this
section contains results from a forthcoming paper based on rescarch by the authors and Flavio Rose
of MIT.

Several hosts. A natural extension to the model of synchronous systems is the inclusion of
multiple, independent hosts. The multiple host model applies to problems where input strcams ire
independent and may be skewed in time relative to one another, or where outputs are not fed bick
into the system as for example in many signal processing applications. The Retiming L.emina and the
Systolic Conversion Theorem can be applied as long as two hosts cannot communicate in less time
than the difference in their lags.

Clock skew. Moving from the discrete time domain to a continuous time domain permits the
techniques used in this paper to be applied to the problem of clock skew. Since clock signals do not
move across an integrated circuit chip in zero lime, two processors on a chip may sce the same ecge
of the clock signal at different times. The difference hetween the times that two processors see the
change is called the skew. Across a large integrated circuit. the skew can be quite significant. Becanse
the period of a clock is proportional to the maximum skew (sce [14]), designers take great pains to
buffer clock signals so that all destinations of the signal are equidistant from the clock generator.
Unfortunately, the buffering circuitry may not match the system organization and can introduce

complications during the layout of the circuit.

-"! 2 II I - ; ——

B e T ———

FURTHER TOPICS 17

Using a continuous modcl for time, however, another approach can be adopted which is bascd
on the broadcasting results of Section 5. l.et the clock gencrator wake the role of the host, and
mecasure the distance of a processor from the clock generator in continuous time. By running clock
signals away from the clock in a breadth-first spanning trec along existing intcrconnections. the
contribution of skew to the period of the clock can be reduced to the round-trip communication time
between two adjacent processors. The maximum skew across the system is of no consequcnce—the
local skew is all that matters.

Two-phase clocking. Clocking considcrations arise cven in the discrcte time model. The clocks
of many intcgrated circuit systems have two or more phases which act like the flood gates of canal
locks. For example, a simple dynamic register consists of two halves—one haif clocks data in on P,
and the other clocks it out on P, Many design methodologies for two-phase clocking obey the rule
that all signals must be clocked alternately by @, and @,, that is, any signal clocked twice by one
phase must be clocked by the other in between. It is straightforward to verify that the Retiming
Lemma and the Systolic Conversion Theorem preserve this rule. Two-phase clocking of dynamic
logic has another interesting property with regard to the results here. In order to preclude
interference between adjacent dynamic registers, a system implementcd with dynamic logic typically
has two equivalence classes of computation of which only one can be used. Thus a systolic system
designed in this way is a “2-slow™ system to begin with, and the broadcasting results from Scction §
can be applied with no further siowdown neceded.

This paper has investigated how to transform synchronous systems into systolic systems. We
have shown that any synchronous system can be made systolic if we are willing to usc a sufficiently
large number of time steps to simulate one time step of the original systcm. In many cascs the
slowdown of the system in terms of time steps per operation is outweighed by the greater clock speed
made possiblic by the elimination of long chains of rippling logic. Suppose, though, that we do not
increase the number of time steps taken by a system at all, but just usc the Retiming 1.emma to
improve its clock period as much as possibic. With Flavio Rose, we have obtained the following
results.

Minimizing rippling. 1.ct S be a synchronous system with communication graph G. We know
that if the constraint graph kG —1 has no negative-weight cycles. then there is a k-slow systolic
simulator of S. Surprisingly, the absence of negative-weight cycles in kG~ 1 is also a necessary and
sufficient condition for the existence of a synchronous system S’ such that S’ is equivalent to S and
every path of length k in S’s communication graph G' has positive weight. ‘Thus the maximum
amount of combinational rippling in S' is through & functional clements. For example. consider the
real-time palindrome recognizer from Section 4. ‘l'he original synchronous system P shown in
Figure 7, had a 2-slow systolic simulator. Figure 15 shows the communication graph of another
system which is equivalent to P, but whose clock period is less than that of P. No signal ripples

through more than two functional clements.

P

18 OPTIMIZING SYNCIHRONOUS SYSTI:MS

HOST

Figure 15: Communication graph of an optimized simulalor for the real-time palindrome recognizer P of Figure 7. In
the optimized simulalor, no signal propagaies through more than 1wo funclional elements in one clock period. Each vertex
is labeled with its lag in this sysiem with respect to P.

Functional elements of unequal spceds. By minimizing, as described above, the number of
functional elements through which any signal can ripple during one clock tick, we are guaranteed to
minimize the clock period if the combinational-logic delays through all the functional elements are
equal. A more general issue addressed in the forthcoming paper is to optimize the clock period in a
communication graph where vertices are cach given a weight representing the delay through the
functional element. The problem of determining a system with the optimal period can be reduced to
a sequence of mixed integer programming problems. Although mixed integer programming is in
gencral NP-complete, the special character of th<se problems permits a solution to each in
o(| VI +|E |) time. A further generalization allows a polynomial-time solution to opt#zation
problems in which the delays between various inputs and outputs of the same functional element
may be unequal.

Multiphase clocking. Clocking schemes that use more than two phases offer greater flexibility in
adjusting the relative timings of the functional elements. Consider, for example, the functional
clement 8§ used in the palindrome recognizer P (see Figure 7). In any implementation of this
clement it is quite plausible that the delay from I’in to P__ will be considerably less that the delays

out

from A, and Bin to any of the outputs. Suppose the delay from P to 1"0u were only half as great as

t
the other delays. How could we take advantage of this? Figure 16 shows a retiming of P using a
three-phase clocking discipline. Signals can propagate from any Pin to the Poul of the same
functional element within one phasc transition time, but take two phases to travel through a
functional clement in any other way, and no two consecutive registers along any path are clocked on

the same phase. The system shown runs 4/3 as fast as would be possible with two-phase clocking.

HOST

Figure 16: A fast implementalion of the palindrome recognizer using three-phase clocking. Fach vertex is labeled with
ils lag in this sysiem with respect to P.

1t is natural to ask whether the results described in the preceding paragraphs can be extended to
allow the computation of optimal clock speeds for gencral circuits under a multiphase elocking

FURTHER TOPICS 19

system. "The answer turns out to depend critically on the details of the clocking model in question. In
one model, we can show that it is possible to test in polynomial time whcther a circuit can be retimed
to allow clocking at a given speed, while in another model this test is NP-complete. Unfortunately,

there is not space here to describe the details of the two clocking disciplines in question.

7. Conclusion

System transformations which optimize clock period have becn examined by others. Most of
the transformations considered are of the basic pipelining kind which improve only the throughput of
a system. The system is usually a one-dimensional array with an input port at one end and an output
port at the other. All rippling goes from the input toward the output. By slowing down the system
and applying the Retiming Lemma, registers are introduced along the length of the “pipeline” so that
the clock period can be reduced (improving throughput) at the expense of skewing the timing of the
two ports (worsening response time). Cohen [1] presents an imaginative methodology based on this
approach.

The study of systolic systems has roots in the theory of cellular automata. A cellular automaton
may be viewed as a synchronous .system consisting of an infinite array of functional elements which
are all constrained to compute identical functions and to have identical connections to their
respective neighbors. The idea of designating one cell of a cellular automaton as a host through
which the automaton can communicate with the external world is apparently due to Cole [2),
although Hennie [5] allows external I/0 connections to all processors in his iterative arrays. The
observation (in Section 5) that broadcasting to a systolic system can be simulated by a 2-slow systolic
system was made carlier by Seiferas [13] for the special case of cellular automata. In order to preserve
the regularity required of cellular automata, however, his construction introduces additional
combinational logic and uses more state information than ours.

Galil [4] has characterized a “predictability condition” which allows linear-time on-line
algorithms for random-access machines and Turing machines to be converted to real-time algorithms,
The idea he uses is somewhat akin to the observation that a functional element in a synchronous
system may be allowed to lag in its computations provided that it will be a long time before the
results are needed to determine the output to the host.

A system transformation that does not involve retiming is found in the Resct Theorem of [10].
This theorem states that a host can cffectively reset all registers in a synchronous system to predefined
values in one clock tick. Although the combinational logic in functional elements is augmented
slightly, the connection graph of the system is left intact. no rippling is introduced where it didn't
cxist before, and the applicability of the Systolic Conversion Theorem is not affected.

The cfficacy of the Systolic Conversion Theorem is due to the host computer’s limited view of
the synchronous system. The smaller the host’s view, the more flexibility there is in changing the
underlying system while maintaining the view. For instance, if the host can “sce” the entire system,

20 OPTIMIZING SYNCHRONOUS SYSTEMS

there is no flexibility in choosing an implementation. In the context of VL.SI systems, however, there
scems to be ample room for optimization because the number of pins on a chip (inuch less than 10%)
is substantially smaller than the number of components (potentially more than 107).

Acknowledgment

Thanks to Jon Bentley, Dan Hoey, and Flavio Rose for comments and suggestions. Thanks also
to S. Rao Kosaraju for acquainting us with the related work of Seiferas.

A. Proof of the Retiming Lemma

This appendix contains a detailed proof of the Retiming I.emma. The reader is cautioned that if
he has not understood the intuitive explanaticn given in Section 2, the proof here will not enlighten
him. The proof of the lemma is tortuous, and the simple ideas underlying it arc obscured by many
technical details and an elaborate notation. The authors apologize for being unable to provide a
cleancr, shorter proof.

Lemma 1: (Reniming Lemma) Let S be a synchronous system with communication
graph G, and let lag be a function that maps cach vertex v to an integer and the host to
zero. Suppose that for every edge (u, v, w) in G the value w+lag(v)— lag(u) is

nonnegative. lct S’ be the system obtained by replacing every edge e = (u, v, w)in S
with ¢’ = (u, v, w+ lag(v)— lag(u})). Then the systems S and S’ arc equivalent.

Proof: We need only show that S’ simulates S, since if the roles of S and S’ are interchanged in the
statement of the lemma and — lag replaces lag, the same proof will show that S simulates S'. First,
observe that the weight of any cycle in the communication graph G' of S’ is the same as the weight of
the corresponding cycle in G since the additions and subtractions of lags cancel around the cycle.
Conscquently, S’ is a synchronous system because S is.

Because the remainder of the proof examines the internal structure of the two systems in great
detail, we introduce some terminology. A wire is a connection between any two components
(registers or functional clements) of a system. As shown in Figure 17, any edge e of weight w is
divided by the registers along it into w+1 wires el el,.. .., elw, where ¢ is the wire that carries
inputs to the functional clement at the head of ¢, and e}, is the wirc that carrics outputs from the
functional element at the tail of e. For any time step f and any wire x, definc value(x, r) as the value
asserted on x at the end of time step ¢, that is, after all the combinational logic has settled and after
the inputs for time ¢ have been asserted by the host, but before ali the registers are clocked to begin
time step 1+ 1.

A wire x is a predecessor of another wire y if there is some functional clement v (not the host)
such that x carries a value into v and y carries a value ont of v (so that changes might ripple through
v from a to y with no registers intervening). Because S’ is synchronous, the transitive closure of the
predecessor relation partially orders the wires of S/,

oo

— . wﬁ

PROOY OF THE REHMING LEMMA 21

€., - el el

Figure 17: Division of an edge ¢ = (u, v, w) into wires.

e
N4

The wires of any system arc divided into three mutually disjoint classes: register outputs,
functional outputs, and host outputs. A wire of the form e| o Where k < weight(e), is a register

output. A wire of the form e is either a functional output or a host output depending on

j
whether the tail of e is an ordizle(fudnctional element or the host. A functional output may have
zero or more predecessors; register outputs and host outputs never have predecessors.

The proof is based on inductive reasoning about the values asserted on the wires in S and S'.
Let 1, be the maximum lag of any vertex in G, and suppose that S is initialized in any configuration at
time 0 and run with an arbitrary sequence of inputs from the host until time 4, to arrive in some
configuration ¢. The goal of the proof is to exhibit a configuration ¢’ for S’ such that if §' is started
at time Iy in this configuration, then the behaviors of the two systems will be indistinguishable fiom
then on.

Before embarking on the inductive proof, however, we introduce the predicate Ple'| g] which

is defined to hold for any wire e’| i of S' and any *imestep 1 > f if
value(e'lk. 1) = value(elo. 1 — lag(head(e)) + k).

We must show that that P is well-defined, that is, for any wire e], in S' and for any time ¢ > 1 the
value value(el,, 1 —lag(head(e))+ k) is uniquely determined by the history of S from time 0 to time
1. There are two cases. First, if 1— lag(head(e))+ k < 1, then value(ely, 1 — lag(head(e)) + k) is well-
defined provided that 1 — lag(head(e))+ k > 0. But since Iy 2 lag(head(e)) and k 2 0, this follows
immediately.

The second case in the demonstration of the well-definedness of P is for
t—lag(head(e))+ k > Iy Here we must show that no data originating from the host at a time later
than { can affect the value on eI0 until after time 1 — lag(head(e))+ k. Let the tail and head of e be

* called 4 and v, ar;d define r as the minimum number of registers on any path from the host to u in S,

and define r' as the corresponding minimum number in S'. The relationship r’' = r+lag(¢) holds
because. the lag of the the host is 0 and the additions and subtractions of lags of the intermediate
vertices cancel along any path from the host to u. Thus the minimal number 4 of registers delaying
any signal from the host to elo is given by

; " 1 . Apiridiiiamalon o, o el o

-

i
=

rv., : T T TR e T———

2 . OPTIMIZING SYNCHRONOUS SYSTEMS

d = r+weighi(e)
(r' - lag(u))+(weight(e")+ lag(u) - lag(v))

.= r'+weight(e')— lag(v)
> weight(e')— lag(v)
> k~lag(v).

Consequently, no signal originating at the host at time ¢+ 1 or later can be propagated to elo until at
least ime (+1+d > 1—lag(v)+k, which completes the demonstration that predicate P is well-
defi

Kecall that system S is in configuration ¢ at time ¢, and the goal of the proof is to prove the
existence of a configuration ¢’ of S' such that the behavior of S’ mimics the behavior of S from time
1o onward. Let ¢’ be that configuration of ' in which, for cach register output wire e'|,, the register
whose output is asserted on e'|, holds the value value(el,, {,—lag(head(e))+ k). By the argument
used to show the well-definedness of P, all the values specified are well-defined and independent of

the actions of the host at any time later than ly:
Suppose that S' is started at time £, in configuration ¢’ while S is allowed to continue from

configuration ¢, and suppose that all host outputs in S’ are identical to the corresponding host
outputs in S at all times from & onward. We complcte the proof by verifying in order the following
asscrtions, where { is any time greater than or equal to b in Assertions (ii) through (vii).

(i) Plx, 1) for every register output x in s'.
(ii) P[x, 1] for every host output x in S'.
(iii) If P[x, 1] for every predecessor x of a functional output y in S, then P[y, 1).
(iv) If P[x, {] for every register output x in S', then P[y, 1] for every wire y in S'.
(v) If Plx. 1] for every wire x in S', then P[y, 1+1] for every register output y in S’.
(vi) P[x, (] for every wire xin S'.

(vii) All wires carrying outputs from S' to the host at time ¢ carry the same values as the
corresponding wires in S attime ¢.

Assertion (i) follows directly from the definition of ¢'.
] To verify Assertion (i), let x be any host outputin S', and let v be the vertex at the head of the
edge e’ that contains x. Then, since host outputs arc always the same in S and S', it follows that

l Sl .
- .
B — S S ST = E — = — sy i e i lht = o 3

e

PROOI- O T1E RETIMING LEMMA 23

o X
value(x, t) = value(e |weighae’y)}

= value(elmw(e). D)}

value(e lweixhl(e')+0—lag(v)' 1)

value(ely, t— lag(v)+ weight(e")).

To verify assertion Assertion (i1i), consider any functional output y, let el' be the edge on which
wire y lies, thatis, y = el'l weighi(e,')’ and let ¥ and v be the tail and head of el' respectively. Suppose
the predicate P[x, 1] holds for any predecessor x = &), of y in §'. Then for each such x we have

value(x, 1) = value(ey,, 1 - lag(head(e,)))
= value(eyy, 1 - lag(u)).

Since the functional elements at « in S and S' are identical,

value(y,1) = value(e,|, eight(e,)” 1— lag(u))
value(éllo. t— lag(u)+ weighl(e1)

value(el,. 1= lag(v) + weight(e))),

and hence P[y, ¢} holds.

Assertion (iv) follows from Asscrtion (iii) by induction over the partial order imposed on the
wires by the predecessor relation, where the base step is supplied by the hypothesis of the assertion
together with Assertion (ii). '

To demonstrate Assertion (v), notice for any register output e’} o

value(e'|,, 1+1) = value(e'l, . 1)
vaIue(elo, t— lag(head(e))+ k+1)
value(elo. (t +1)— lag(head(e))+ k).

Assertion (vi) follows by induction from Assertion (iv) and Assertion (v) using Assertion (i) as
the base step.
Assertion (vii) is simply Assertion (vi) restricted to wires of the form e'lo where head(e') is the
host. 0] ’

24

OPIIMIZING SYNCITRONOUS SYSTI:MS

References

1.

10.
11.
12.
13.
14.

15.

Danny Cohen, “Mathematical approach to computationat networks,” Technical
report ISI/RR-78-73, Information Sciences Institutc, University of Southern California,
November 1978.

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>