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Figures and Tables 

Figure I:  The communication graph Gx of a synchronous system S,.  One vertex of the       2 
graph is distinguished as representing not an ordinary functional clement but a 
host processor, which is the system's only interface to the external world. 

Figure 2:  The communication graph of a system S2 which is equivalent to the system Sj       4 
from Figure 1 as viewed from the host. Internally, the two systems differ in that 
vertex v3 lags by one clock tick in S2 with respect to Sj. 

Figure 3:  The constraint graph C,—1 for the system S. in Figure  1.   This graph is      6 
identical to 6. except that the weight of each edge in £?,—1 is one less than the 
weight of the corresponding edge in G\. Fach vertex has been labeled with the 
weight of the shortest (i.e., lightest) path from that vertex to the host. 

Figure 4:  The systolic system S, produced by applying the Systolic Conversion Theorem       7 
to the system Sj from Figure 1. Fach edge (u. \\ w) from ffj has been replaced 
by the edge (u. v. w-f lag(v)- lag(u)). where die fag of a vertex is taken as the 
weight of the shortest path from that vertex to the host in (7, - 1 as indicated in 
Figure 3. 

Figure 5:   A cycle c and a path p from a vertex v of c to the host in die communication       7 
graph of a synchronous system. 

Figure 6:  Contents of the A and 6 registers. 10 
Figure 7:   A synchronous system P which recognizes palindromes in real time,   (a) A     10 

diagram of P showing registers and functional elements.  The part enclosed in 
the dashed box corresponds roughly to a "processor" in the description of P in 
the text, (b) P's communication graph. G. (c) Details of a functional clement 

Figure 8:  The configuration of the system P from Figure 7 as it recognizes the palindrome     11 
"rcdivider". 

Figure 9:   Ihc constraint graph (7-1 for the real-time palindrome recognizer P from     11 
Figure  7.   Since this graph contains cycles of negative weight, the Systolic 
Conversion theorem is not applicable to P. 

Figure 10:   Ihc communication graph 2(7 for a 2-slow simulator 2P of the system P from     12 
Figure 7. This graph is obtained by doubling the weight of every edge in the 
communication graph C of P. 

Figure 11:   Ihc constraint graph 26 -1.   Fach \crtcx v is labeled with the weight of the     12 
shortest path from t to the host. 

Figure 12:   Ihc communication graph of a systolic 2-slow simulator SP of the real-time     12 
palindrome recognizer P of Figure 7. Fach vertex is labeled with its lag in SP 
with respect to the system 2P shown in Figure 10. 

Figure 13:   A sequence of configurations of the system SP showing its recognition of the     13 
palindrome "rcdivider". 
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Figure 14:   Broadcast from the host to all  functional elements of a system can be     IS 
implemented by a breadth-first spanning tree (dashed edges) of the connection 
graph. Kach vertex is labeled with its distance from the host. 

Figure IS: Communication graph of an optimized simulator for the real-time palindrome     18 
recognizer P of Figure 7.   In the optimized simulator, no signal propagates 
through more than two functional elements in one clock period. Fach vertex is 
labeled with its lag in this system with respect to P. 

Figure 16:  A fast implementation of the palindrome recognizer using three-phase clock-     18 
ing. Bach vertex is labeled with its lag in this system with respect to P. 

Figure 17:  Division of an edge e = («, v, w) into wires. 21 
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1. introduction 

Gone arc the days when the chips in an electronic system were mostly NANI) gates and flip- 

flops. 'IT)c computcr-on-a-chip is the fashion today, and microprocessors are being produced with 

ever-increasing functionality in an attempt to exploit the improving technological capability. In the 

future, we can expect designers to put entire multiprocessor systems on a single chip. By exploiting 

the massive potential that VLSI holds for parallel computation, such special-purpose systems will 

greafh augment the power of general-purpose computing environments. 

Designers of these large systems will face the problem of communication, which arises in any 

parallel system. In order to cope with communication costs, the design methodology of systolic 

systems [6,7] has been proposed. 'Phis design methodology allows a high-level, algorithmic 

description of a circuit which deals directly with communication costs. As a result, the performance 

of circuits implemented with this design methodology matches well the performance predicted by a 

simple algorithmic analysis [3]. Signal processing, numerical linear algebra, and raster graphics 

provide many applications for systolic systems, but their utility is hardly restricted to these areas 

alone. 

The systolic design methodology manages communication costs effectively because the only 

communication permitted during a clock cycle is between a processing element and one of its neighbors 

in the communication graph of the system. This constraint is in direct contrast with, for example, the 

propagation of a carry signal which ripples down the length of an adder. Such combinational rippling 

and global control such as broadcasting are forbidden in systolic designs. Whereas the clock period in 

most synchronous systems is long in order to allow signals to ripple through cascades of 

combinational logic, in systolic systems the clock period depends only on the time required for a 

signal to propagate through a single processing clement. Thus the clock period of a systolic system is 

short because it is independent of the size of the system. 

The principal deficiency of the systolic design methodology is that the burden on the designer 

may be excessive. In particular, global communication such as broadcasting is more easily described 

in terms of rippling logic. In a systolic system the effect of broadcasting must be achieved by 

multiple local communications. The propagation of a datum from one end of a systolic system to the 

other may take many ticks of the system clock, and therefore different processing elements will see 

the same data at different times. Orchestrating the individual behaviors of processors can be a large 

bookkeeping chore. 

In this paper, we address the design issue head on. We demonstrate how a synchronous system 

can be designed with rippling logic, and then converted to a systolic implementation that is 

functionally equivalent to the original system—the principal difference being the shorter clock period 

of the systolic implementation. We charactcri/c the systems that can be so transformed, and show 

that an algorithm based on the graph theoretic single-desttnatton-shoricsipaths problem can compute 

tnc transformation quickly. 



2 OPTIMIZING SYNCHRONOUS SYSTEMS 

The remainder of this paper is organized as follows. Section 2 presents a graph-theoretic model 

for synchronous systems. The principal result of the paper is given as the Systolic Conversion 

Theorem in Section 3. To illustrate the power of the theorem in a design situation. Section 4 details 

the construction of a simple systolic system. The design process from Section 4 is abstracted in 

Section 5 and applied to the problem of replacing global communication in a system with local 

communication. Section 6 is devoted to brief discussions of further topics relating to applications and 

extensions of the results. In Section 7 we discuss earlier related work and present some concluding 

remarks. 

2. A Model for Synchronous Systems 

We view a large circuit as a system which is partitioned into functional elements (combinational 

logic) and registers (clocked memory). Such a system S can be modeled as a finite edge-weighted 

directed multigraph (henceforth, we shall simply say "graph") G = (V. F). The vertices V of this 

communication graph correspond to functional elements, and the edges F correspond to intercon- 

nections between the functional elements. Each edge e in F is a triple of the form (a, v, H), where u 

and v arc (possibly identical) vertices of G, called the tail and head of c, and w is the nonnegative 

integer weight of the edge. The weight is the number of registers along the interconnection between 

the two functional elements. A configuration of a system is some assignment of values to all its 

registers. With each clock tick, the system maps the current configuration into a new configuration. 

h'iguic 1: The communication graph G. of a synchronous system S. One >erte\ of the graph is distinguished as 
representing not an ordinary functional clement but a Itost protestor, which is the system's only interface to the external 
world , 

If the weight of an edge happens to be zero, no register impedes the propagation of a signal 

along the corresponding interconnection.  Such is the case, for instance, in the system S. shown in 
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Figure 1. A signal emanating from v. will proceed unhindered üioiigh \, and subsequent)) through 

i', before it is stopped by a register. If the rippling ean feed back on itself, problems of latching, 

oscillation, and race conditions can arise. In our model this corresponds to a zero-weight cycle in the 

communication graph, where the weight of a path is taken to be the sum of the weights of its edges. 

In order to preclude anomalous behavior associated with asynchronous design, wc restrict our 

attention to synchronous systems. 

Definition: A system is a synchronous system if every cycle in its communication graph 
has positive weight. 

Systolic systems exhibit no combinational rippling, and in our model correspond to those 

synchronous systems whose edge weights arc all positive. 

Definition: A synchronous system S is a systolic system if for each edge (u, v, w) in the 
communication graph of S. the weight w is strictly greater than zero. 

So far wc have dealt with the internal organization of systems, but of course, no system operates 

in a vacuum. Rather, it communicates with the external world via an interface. In our model, one 

vertex called the host represents this external interface. If the system were an integrated circuit, for 

example, the connections to the host might be the pins of the chip. 

'Die host is important because when two systems arc compared, it is the behavior of the systems 

from the point of view of the host that is at issue. 

Definition: Let c be a configuration of a synchronous system S. and let c' be a 
configuration of another synchronous system S'. ITic system S started in configuration c 
has the same behavior as the system S' started in configuration c' if for any sequence of 
inputs to the system from the host, the two systems produce die same sequence of outputs 
to the host. 

Before going on, we briefly call attention to a technical fine point relating to this definition. 

While the combinational logic in a system is settling, the system outputs to the host may change. We 

insist, however, that the internal state of the host depend only on the final settled values of the system 

outputs and not on any transient values. Furthermore, if signals ripple through the host to the system 

inputs during a single clock cycle, we similarly require that the eventual values of the system inputs 

not depend on any transient values. Of course in a synchronous system it is impossible for transient 

values on the system inputs to ripple back out to the host. 

Suppose the system S. from Figure 1 is modified so that the weight of every edge leading into 

v. is increased by one and die weight of every edge leading out of »« is decreased by one (sec 

Figure 2). As viewed from the host, the resulting system S, is equivalent (in a sense that wc will 

presently make precise) to S.. TTK two systems differ internally in that each computation performed 

by the functional clement at v3 in S2 is performed one clock tick later than die corresponding 

computation in the original system S,. Vertex v. is said to lag by one tick in S, with respect to Sj. or 

alternatively, to lead by one tick in Sj with respect to Sj. 
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Figure 2: The communication graph of a system S7 which is equivalent to the system S, from Figure 1 as viewed from 
the host. Internally, the two systems differ in that vertex v, lags by one clock tick in S-, with respect to S,. 

This simple operation of retiming a functional clement in a system forms the basis of the 

optimization techniques in this paper. Indeed, the system S2 exhibits a performance improvement 

overS, because the longest path of combinational rippling has been shortened by the retiming of the 

functional clement at v.. But although it may appear intuitive that the two systems are effectively tie 

same from the point of view of the host, a closer examination reveals some technical difficulties. In 

particular, it is not true that whatever configuration the system St is started in, there exists a 

configuration in which the new system S2 can be started such that the two systems exhibit the sane 

behavior. If the first register on the edge from Vj to v4 is initialized in S( with a value that is not in 

the range of values produced by the functional element at vy then the transformed system S2 cannot 

necessarily mimic the subsequent behavior of S,. 

Although the system S2 cannot mimic the behavior of Sj for all possible configurations of S'>r 

however, it can for any sufficiently old configuration of S,, that is, any that arise after S1 has been 

run sufficiently long. In the example, a configuration of Sj that has at least one predecessor is 

sufficiently old to allow S, to mimic the subsequent behavior. 

Definition: Let S and S' be synchronous systems. Suppose that for every sufficiently old 
configuration c of S, there exists a configuration c' of S' such that when S is started in 
configuration c and S' is started in configuration c'. the two systems exhibit the same 
behavior. Then system S' can simulate S. If two synchronous systems can simulate each 
other, they arc equivalent 

I"he following lemma shows that retiming a vertex in a synchronous system, as in the example 

above, produces an equivalent system as long as no edges in the communication graph are givon 

negative weight by the transformation. In fact, the Retiming lemma shows that many functional 

elements in a system can be given arbitrary leads and lags under the same condition. 
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Lemma  I:   (Retiming Ixnuna) I et S be a synchronous system with communication 
graph G. and let lag be a function that maps each vertex v of G to an integer and the host 
to zero. Suppose that for every edge (;/, v. it) in G the value w < lag(v) - !<IK(U) is 
nonnegative. Let S' be the system obtained by replacing every edge e - (u. t, w) in S 
with e' = (u, v. w+hg(v)— lag(u)). Then the systems S and S' are equivalent. 

Sketch of proof. The proof is an induction argument. Let L be the maximum lag of any vertex in G. 

If S is started at time zero and run until time rQ, there exists a configuration of S' such that for all I 

greater than or equal to /0, each functional clement v in S' performs the same computation at time I 

as the corresponding functional clement in S at time / -fog(v). Appendix A gives a detailed proof of 

this lemma. D 

Two synchronous systems may be equivalent even though their internal organizations are 

radically different. For example, one system might be a tree and the other a mesh. A system S' 

obtained by retiming a system S, however, is not only equivalent, but also has the same structure as S. 

Definition: Two systems have the same structure if they arc composed of the same 
functional elements with the same inputs and outputs connected by the same intercon- 
nections. The numbers of registers on the interconnections, however, may differ. 

Preservation of structure is a valuable property of any system transformation because it allows the 

new system to inherit the benefits of independent design decisions, for example: 

• Anything done to make the functional elements in the original swem small or fast will 
carry through to the new system. 

• Any topological properties of the communication graph that lead to an area-efficient 
layout of the original system will retained by the new system. If the original system is 
structured as a mesh, for instance, the new system will not be com cried to. say. a 
shuffle-exchange graph, which is much more expensive to lay out [15). 

• A system that has been partitioned across muluplc chips will not require additional pins 
for the transformed system. 

3. The Systolic Conversion Theorem 

The previous section demonstrated that a synchronous system could be modified by retiming 

functional elements to reduce the period of the system clock. A natural question to ask is, "Is there a 

way to assign a lag to each vertex of the communication graph G of a synchronous system so that the 

retimed system is systolic?" The answer depends upon the constraint graph G—1, which is the graph 

obtained from G by replacing every edge (u. v, w) with (u, v, w— 1). 

Theorem 2: {Systolic Conversion Theorem) I et S be a synchronous system with 
communication graph G, and suppose the constraint graph G- 1 has no cycles of negative 
weight. Then there exists an equivalent system S' which has die same structure as S and 
which is systolic. 

Proof:  The desired system S' may be constructed by a procedure whose key step is the solution of a 
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single-dcstination-shoriesl-paths problem in 0-1. Without loss of generality, suppose that there 

exists a path from every vertex v in 6 to the host—whenever there is not such a path, it is impossible 

for the functional clement at v to have any influence on the behavior of S. A corresponding path 

must exist in 6-1. and since <7— 1 is finite and has no negative cycles, there must exist in 6-1 a 

path of minimal weight from each vertex to the host. For each vertex v define lag(v) as the weight of 

any such shortest path from v to the host in 6-1. The systolic system S' is obtained by modifying S 

using the Retiming Lemma (l.emma 1) to give each vertex the designated lag. 

To show that this construction indeed produces a systolic system, we must demonstrate that all 

edge weights in the communication graph 6' of S' are strictly positive. This demonstration will also 

show that the conditions of the Retiming Lemma arc met because all edge weights in 6' will perforce 

be nonnegative. For any edge (u, v, w) in G. the weight of the corresponding edge in G — 1 is w—1, 

and the weight of a shortest path in G-1 from v to the host is lag(v). The weight lag(u) of a shortest 

path in G-1 from vertex u to the host can be no greater than (w-1)+ lag(v). (Consider the path 

obtained by prcpending the edge (u, v, w-1) to a shortest path from vertex * to the host.) The 

weight of the edge (u, v, w+Iag(v)-lag(u)) in G' is therefore positive. D 

The Systolic Conversion Theorem can be applied to the system Sl from Figure 1. Figure 3 

shows the constraint graph Gl — 1 for that system with the weights of the shortest paths to the host 

labeled in the vertices. Using the Retiming Lemma to give each vertex in Sj the lag designated by 

the weight of its shortest path to the host yields the systolic system S, which is shown in Figure 4. 

/ 

Figure 3: The constraint graph 0,-\ for the system S. in Figure 1 This graph is identical to (7, except thai Cie 
weight of each edge in 0. -1 is one less than the weight of the corresponding edge in 0".. l-^ch vertex has been label -d 
with the weight of the shortest (I e., lightest) path from thai vertex to the host. 

The Systolic Conversion Theorem shows that the absence of negative weight cycles in the 

constraint graph 6-1 allows a synchronous system to be transformed by application of the Retiming 

Lemma into an equivalent systolic system. We call the graph 6- 1 a "constraint graph" because for 
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Figure 4: The systolic system S, produced by applying the Systolic Conversion Theorem to the system S, from 
Figure 1. Each edge (u. v, w) from G. has been replaced by the edge (u, v, w + lag(v)- lag(u)). where the lag of a vertex 
is taken as the weight of the shortest path from that vertex to the host in G. -1 as indicated in Figure 3. 

each edge (u, v, w) of G, the edge (M, V, W— 1) in (7-1 constrains the weights lag(u) and lag(v) of 

the shortest paths from u and v to the host to satisfy the inequality lag(u) < lag(v)+w-\, thereby 

guaranteeing that the edge (w, v, w + lag(v)-lag(u)) in G' will have positive weight 

The applicability of the Systolic Conversion ITieorcm to a system S docs not depend on the 

specific functions computed by the functional elements of S. The next theorem shows that the 

Systolic Conversion Theorem is the strongest possible result of such generality. (Figure 5 shows the 

situation described in the statement of the theorem.) 

Figure 5: A cycle € and a path p from a vertex v of c to the host in the communication graph of a synchronous system. 

Theorem 3: Let G be the communication graph of a synchronous system S. and suppose 
the constraint graph (7 - 1 has a cycle c of negative weight and a path p from some vertex v 
on c to the host. Then it is impossible to construct a systolic system that both simulates S 
and has the same structure as S without using knowledge of the particular functional 
elements of S. 
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Proof: Supposo there docs exist a structure-preserving transformation th.it produces a systolic 

system S' which is equivalent to S. An adversary argument shows that this transformation must use 

specific properties of the functional elements of S. The adversary chooses functional elements for a 

system T which has the same structure as S, and then the transformation that produced S' from S is 

applied to T. Hie resulting systolic system T' fails to simulate T. 

Let G' be the communication graph of S', and let x and x' be the weights of cycle c in G and 

G'. Since system S' is systolic, the weight x' must equal or exceed the number of edges along e. 

Cycle c has negative weight in G — 1, however, and thus x must be strictly less than the number of 

edges along c. Therefore, x is strictly less than x'. 

The adversary now chooses the functional elements of the system T, which has the same 

communication graph G as S. Functional elements that lie neither on the cycle c nor on the path p 

from v to the host arc chosen arbitrarily. Those on c and p pass their input values along c or p 

unchanged, except for the single functional element at v which takes an integer input a along c and 

propagates (a +1) MOD xx' along c and p. After a sufficiently long time, the outputs from T to the 

host along p at times / and t + xx' will always differ by x' (modulo xx'). Now consider the system 

T' which is produced by applying to T the same transformation that produced S' from 5. Since T' 

has x' registers along the cycle c', the outputs from T' to the host along p' at times t and t + xx' will 

differ by x (modulo xx'). Since x and x' are distinct, the system T' cannot possibly simulate T. D 

When a synchronous system with regular structure—such as a rectangular mesh or a complete 

binary tree—is converted to a systolic system, the conversion will typically be very uniform. The lead 

or lag of a functional clement may, for example, be equal to the sum of its indices in the mesh or to 

its depth in the tree. Section 4 provides an example in which the functional elements are arranged in 

a linear array, and the lead of each functional clement in the transformed system turns out to be its 

index in the array. For systems with less regular structure, however, an algorithm may be needed lo 

determine the transformed system, if indeed the original system can be transformed. 

The central computational problem involved is the single-destination-shortest-paths problem: 

Given an edge-weighted directed graph G = (V, F.) and a distinguished vertex d in V. find for each 

vertex v in V the weight of the shortest path from v to d, or else detect that G contains a cycle of 

negative weight. This problem can be solved for arbitrary graphs in 0(| Y\ • |/"|) time in the worst 

case by an algorithm due to Bellman and Ford[S, pp. 74-75}. Upton, Rose, and Tarjanfll] have 

shown that this bound can be improved for families of graphs that have small separators using a 

method they call generalized nested dissection. The use of separators is particularly interesting 

because graphs with small separators have area-efficient layouts as well (9J. For any family of graphs 

that is closed under subgraphs and that has an /^-separator theorem, where n is the number of 

vertices and a > 1/3, the method of generalized nested dissection can be used to solve the single- 

destination-shortcst-paths problem in 0(/i3") time, provided that separators can be computed 

quickly enough. Thus a system with a planar communication graph can be transformed in 0(w3/!) 

»         
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time because planar graphs have a Vw"-separator theorem. Also, there is a 0(/TV2) lime algorithm 

for any graph that has a VLSI layout with area A. (Use a homeomorphism between such graphs and 

subgraphs of cubic meshes of fixed depth, which have a vT -separator theorem.) Further 

improvements over the Bellman-Ford algorithm can be obtained for families of graphs with smaller 

separators. 

4. A Real-Time Palindrome Recognizer 

This section illustrates the power of the Systolic Conversion Theorem through an example. 

Although many more applications of this theorem may be found in such areas as signal processing or 

numerical linear algebra, we have chosen a simple symbol manipulation problem. A multitude of 

other applications of the theorem can be found in [10]. 

A string of n characters is a palindrome if the /'th character for / = 1 n is the same as the 

w-i' + lst character. Cole[2] constructs a linearly connected systolic array which is supplied 

characters from a string, and for each character tells immediately whether the string input up to that 

character is a palindrome. Whereas Cole constructs this real-time palindrome recognizer explicitly, 

his construction is elaborate and unintuitive. Here we demonstrate the same result, bui the Systolic 

Conversion Theorem greatly simplifies the construction. 

The construction of the palindrome recognizer is based on a linearly connected systolic array of 

"processors" which is augmented with rippling combinational logic. The Systolic Conversion 

Theorem is applied to this intermediate synchronous system to remove the rippling logic and yield 

once again a systolic array. 

A processor/? in the systolic array has two registers, A and B„ each of which can hold either an 

ordinary character or a special null character, NIL. The contents of register A. arc provided as input 

to pj + y The host appears as p0 in the system, and provides the input character in its register AQ. 

The control of the processors is quite simple, but let us first understand what the systolic array is 

trying to do. Suppose the character string input to the systolic array is jr... .X_. Figure 6 shows the 

contents of the A and B registers after ten characters have been input, and again after eleven. For 

1 < / < [n/2j, register B in processor/? contains the character jr, and for 1 < i < \n/2], register A in 

processor p contains the character xn_j + l. All other registers in the system contain NIL. Thus the 

input string is a palindrome if and only if whenever A and B are nonnull. they contain the same 

character. 

On each clock tick, the new values of all the A and B. arc computed by the formulae 

4  *   '/ß,_i = NIL *• NIL *» Ai-\ 

and 

Bj  *• if (A. = NIL)v(ß. = NIL) then A. else Bjt 
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Figure 6: Contents of the A and B registers. 
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Figure 7: A synchronous system P which recognizes palindromes in real time (a) A diag.am of P showing registers and 
functional elements. The part enclosed in the dashed box corresponds roughly to a "processor" in the description of P in 
the text, (b) P's communication graph. G. (c) Details of a functional clement. 

where all assignments arc performed simultaneously, so that all references to registers on the right 

hand sides denote values from the previous time step. While the host docs not actually contain a 

register BQ, the system acts as if there were such a register which always had a nonnull value. Thus, 

A j is always given the value that AQ held on the previous time step. 

. 
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Ihis system is now augnicntcd by combinational logic which runs back to the host and reports 

whether a palindrome is recognized. This rippling "collection" logic returns TRUE if. for each 

processor p such that A. and Bj both contain valid characters, A. = £.. Ihc collection logic is 

implemented by giving each processor/), an output I'Al. whose value is defined by the formula 

MI,   i   (Bi = NIL) V (PALt. + 1 A U, = Ä.)). 

Since the PAL are propagated by rippling logic, the values on the right hand side of this definition 

are based on the current time step. The last processor in the array will have no PAL signal coming 

into it, but will act as if it had such a signal which always had the value TRUE. 

The preceding text describes the palindrome recognizer in terms of "processors". Figure 7 

shows how the recognizer may be modeled as a synchronous system P of functional elements and 

registers. Also shown in the figure is P's communication graph, which will be referred to as G for the 

remainder of this section. Figure 8 shows the state of P as it recognizes the palindrome "redividcr". 

Figure 8: The configuration of the system P from Figure 7 as it recognizes the palindrome "redivider". 

The chain of rippling logic that extends through all the functional elements to the host allows 

the recognition of a palindrome to be signalled on PALX on the very next clock tick after the last 

letter of the palindrome becomes available in A.. The disadvantage of this chain of rippling logic is 

that it must be allowed to settle after each clock tick, so the clock period of P must be linear in the 

length of the array. A systolic real-time palindrome recognizer with the same structure would be a 

great improvement since the clock period would be independent of the size of the system. 

If we could verify that G— 1 had no cycles of negative weight, we could use the Systolic 

Conversion Theorem to construct a systolic palindrome recognizer with the same structure as P. 

Unfortunately, G -1 has many cycles of negative weight (sec Figure 9). 

Figure 9: The constraint graph (7-1 for the real-time palindrome recognizer P from Figure 7    Since this graph 
contains cycles of negative weight, the Systolic Conversion theorem is not applicable to P. 

Consider, however, the system formed by modifying P so that the number of registers on each 
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interconnection is doubled. Ilic communication graph 20 of this system 2P is shown in Figure 10. 

All the data flow in P is slowed down by a factor of two in 2P, so that 2P provides a sort ofhalf-spced 

version of P which communicates with the host only on every other clock tick. In fact, 2P can be 

thought of as a pair of 2-.v/ow simulators of P—one communicating with the host on even-numbered 

ticks and the other processing a completely independent data stream and communicating with the 

host on odd-numbered ticks. 

Figure 10: The communication graph 2G for a 2-slow simulator 2P of the system P from Figure 7.  This graph is 
obtained by doubling the weight of every edge in the communication graph G of P. 

Unlike G-1. the constraint graph 2G-1 is free of negative cycles (sec Figure 11). Thus the 

Systolic Conversion Theorem can be applied to 2P to produce a systolic array SP (shown in 

Figure 12) which recognizes palindromes in real time—two clock ticks per character. Fach processor 

p. has a lead of i in SP with respect to 2P. Figure 13 shows a sequence of internal states of SP ;is it 

recognizes the palindrome "redivider". 

-/ -/ -/ -/ -/ 

Figure 11: The constraint graph 2G -1. Each venex v is labeled with the weight of the shortest path from v to the host. 

/ / / / / 

Figure 12: The communication graph of a systolic 2-slow simulator SP of the real-lime palindrome rccogni/.er P of 
Figure 7. Fach vertex is labeled with its lag in SP with respect to the system 2P shown in F'igure 10. 

Although SP is a "2-slow" simulator of P, its performance is actually better than that of P if 

sufficiently large systems arc compared. Since rippling in P runs the length of the system, the pciiod 

of its clock must be at least proportional to the length of the array. System SP. which is systolic, can 

be run with a clock period that is constant with respect to the length of the system. Thus the dura um 

of two clock ticks of SP will be less than the duration of one clock tick of P if the two systems are 

large enough. 

\s a comparison t>l Figures 8 and 13 reveals. sy>>tcm SP is much more complex than P in its 

: 1 
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Figure 13: A sequence of configurations of the system SP showing its recognition of the palindrome "redivider". 

internal workings. The recognition of any string as a palindrome by SP is spread out over several 

time steps, rather than happening all in a single clock cycle as in P. Consequently, any direct 

verification of SP's correctness requires careful bookkeeping to verify that all the data arrive at the 

right places at the right times. The effort involved in constructing such an argument is not 

superhuman—indeed, the correctness proof for Colo's palindrome rccogni/cr[2J depends on just 

such a careful bookkeeping argument. It is the authors' contention, however, that it was an easier and 

less error-prone task to design and verify P than it would have been to design SP directly. The 

comparison would be even more favorable for a complicated system. In proving the Retiming 

I.cmma and the Systolic Conversion ITicorcm. we have gone through the painstaking bookkeeping 

once and for all. and captured the result in a form th.it can be used again and again. 

We can illustrate this point again by taking note of an interesting properly of SP: supplying a 
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NIL from the hosi to either of the two (odd ticks and even licks) data streams being processed by SP 

effectively reinitializes the computation on that data stream. ITie reader may attempt to verify this 

property by a direct examination of SP, but we think it is easier to check that a NIL input effectively 

resets P. 

5. A Design Methodology for Systolic Systems 

The real-time palindrome recognizer from Section 4 was obtained by a three-step design 

process. First, an initial systolic system was designed which performed an important piece of the 

desired computation. Second, this systolic system was augmented with zero-weight edges to produce 

a synchronous system with combinational rippling. The edges were added in such a way that the 

Systolic Conversion Theorem could be applied to a 2-slow simulator of the intermediate system to 

yield the final systolic design as the third step of the design process. The subject of this section is the 

design methodology of augmenting a systolic system with rippling that can be eliminated by the 

Systolic Conversion Theorem. 

In order to prejudice the designer as'little as possible in his other design decisions, the method 

of design presented here preserves the physical organization of the original systolic system as 

captured by its connection graph, which is its communication graph viewed as an unweighted, 

undirected graph. There may be greater differences between two systems that share only the same 

connection graph than between two systems that have the same structure as defined in Section 2. 

Two systems with the same connection graph may have different functional elements as well as 

different numbers of registers on interconnections. In addition, the direction of information flow is 

ignored in the connection graph. 

Broadcasting is a means by which information known by the host is made known to all the 

functional elements of a system in a single clock cycle. Broadcasting is the most common kind of 

global communication found in parallel systems because designers find it easy to think of controlling 

all processors in unison. A designer who wishes to add broadcasting to his otherwise systolic system 

will typically find considerable flexibility in exactly how it might be implemented. A common 

approach is to use a bus, which is a single interconnection that visits all processors and conveys the 

global information throughout the system. In fact, the connection graph of the system need not be 

disturbed if the bus is routed along any spanning tree of the connection graph. In our model ihc 

interconnections composing the broadcast tree can be represented as zero-weight edges in the 

communication graph of the synchronous system. 

Kvcn with such tricks as precharging the bus [12, pp. 156-157], the simple fact that information 

must be communicated across the system limits the performance of a broadcast because the clock 

period of the system must be sufficiently long to allow the global information to reach all proccssc rs. 

It should be apparent, however, that the first two steps of the three-step design process have been 

followed thus far—a systolic system has been augmented with zero-weight edges to produce an 
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intermediate synchronous system. But can the third step succeed? If so, applying the Systolic 

Conversion Theorem to a 2-slow simulator of the intermediate system will produce a final systolic 

design whose clock period will be independent of the size of the system. 

The third step need not succeed, but if broadcasting is implemented using a breadth-first 

spanning tree of the connection graph instead of an arbitrary spanning tree, it always will succeed. 

Let H be the connection graph of the original systolic system, and define the depth d(v) of a vertex v 

in H to be the minimal number of edges in any path from v to the host. Let S be the intermediate 

synchronous system obtained by implementing broadcasting along a breadth-first spanning tree in /i, 

and let G be the communication graph of S. (Thus each zero-weight tree edge (u, v, 0) in G satisfies 

d(v) = d(u)+1, as in Figure 14.) 

Figure 14: Broadcast from the host to all functional elements of a system can be implemented by a breadth-first 
spanning tree (dashed edges) of the connection graph. Each vertex is labeled with its distance from the host. 

To show that the third step of the design process will work, we must demonstrate that the 

constraint graph 2G-1 has no negative-weight cycles. Consider the changes in the depth d of 

vertices during a traversal of a directed cycle in G. By the definition of depth, traversing any edge 

changes d by at most one. Since traversing a zero-weight tree edge increases d by one and the net 

change in d around any cycle is zero, it follows that at most half the edges in any cycle of G can be 

tree edges. Now consider the constraint graph 2G — 1. For any tree edge in G, the corresponding 

edge in 2(7-1 has weight negative one. For any positive-weight edge in (7, the corresponding edge 

in 2G -1 has weight at least one. Because at most half the edges in any cycle of G are tree edges, no 

cycle in 2G-1 has negative weight Consequently, the Systolic Conversion Theorem can be applied 

to 2S to produce a systolic system which is equivalent to 2S and which has the same structure as S. 

Thus if broadcasting is the only form of global communication in an otherwise systolic system, it can 

be replaced by local communication. 

Another common instance of global communication is collection where rippling logic runs from 

functional elements toward the host as in the palindrome example from Section 4.   If the logic 
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computes an associative and commutative function (such as addition, multiplication, maximum, or 

boolean conjunction) over values generated by the functional elements, then any spanning tree of tic 

connection graph can be used to implement the collection. In order to obtain a systolic 2-slow 

simulator, a breadth-first spanning tree can once again be employed. In contrast to the broadcasting 

situation, however, all tree edges arc directed toward the host instead of away. 

The three-step design procedure proposed in this section can be applied to any augmented 

systolic system as long as the rippling follows a breadth-first spanning tree in the connection graph, 

and all zero-weight edges go toward the host, or all go away from the host. The follow ing theorem 

generalizes these conditions and can be proved by adapting the argument for broadcasting. 

Theorem 4: Let S be a synchronous system with communication graph G and 
connection graph H, and let R be some subset of the vertices of G. For each vertex v of G, 
define the distance h (v) of r from R as the minimal number of edges in any path in H that 
joins v to an element of M. Suppose that every zero-weight edge (u. v. 0) of G is directed 
away from R (i.e., h(v) > h(u)). or alternatively that every zero-weight edge of G is 
directed towards R. Then there exists a systolic system which is equivalent to 2S and 
which has the same structure as S. 

6. Further Topics 

ITiis section is a pot pourri of topics which include extensions both to the model and o the problem 

considered in this paper. The results of the first part of this section are straightforward and 

justification is given in sufficient detail to allow the reader to fill in the gaps. Hie latter part of this 

section contains results from a forthcoming paper based on research by the auihors and Flavio Rose 

of MIT. 

Several hosts. A natural extension to the model of synchronous systems is the inclusion of 

multiple, independent hosts. The multiple host model applies to problems where input streams are 

independent and may be skewed in time relative to one another, or where outputs arc not fed bick 

into the system as for example in many signal processing applications. I"he Rcuming lemma and the 

Systolic Conversion Theorem can be applied as long as two hosts cannot communicate in less time 

than the difference in their lags. 

Clock sken. Moving from the discrete time domain to a continuous time domain permits the 

techniques used in this paper to be applied to the problem of clock skew. Since clock signals do not 

move across an integrated circuit chip in zero lime, two processors on a chip may sec the same ccge 

of the clock signal at different times. The difference between the times that two processors see ihc 

change is called the skew. Across a large integrated circuit, the skew can be quite significant. Because 

the period of a clock is proportional to the maximum skew (sec |14]), designers lake great pains to 

buffer clock signals so that all destinations of the signal arc equidistant from the clock generator. 

Unfortunately, the buffering circuitry may not match the system organization and can introduce 

complications during the layout of the circuit 
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Using a continuous model for time, however, another approach can be adopted which is based 

on the broadcasting results of Section 5. Let the clock generator take the role of the host, and 

measure the distance of a processor from the clock generator in continuous time. By running clock 

signals away from the clock in a breadth-first spanning tree along existing interconnections, the 

contribution of skew to the period of the clock can be reduced to the round-trip communication time 

between two adjacent processors. The maximum skew across the system is of no consequence—the 

local skew is all that matters. 

Two-phase clocking. Clocking considerations arise even in the discrete time model. Hie clocks 

of many integrated circuit systems have two or more phases which act like the flood gates of canal 

locks. For example, a simple dynamic register consists of two halves—one half clocks data in on <p. 

and the other clocks it out on <p,. Many design methodologies for two-phase clocking obey the rule 

that all signals must be clocked alternately by <pl and <p2, that is. any signal clocked twice by one 

phase must be clocked by the other in between. It is straightforward to verify that die Retiming 

Lemma and the Systolic Conversion Theorem preserve this rule. Two-phase clocking of dynamic 

logic has another interesting property with regard to the results here. In order to preclude 

interference between adjacent dynamic registers, a system implemented with dynamic logic typically 

has two equivalence classes of computation of which only one can be used. Thus a systolic system 

designed in this way is a "2-slow" system to begin with, and the broadcasting results from Section 5 

can be applied with no further slowdown needed. 

This paper has investigated how to transform synchronous systems into systolic systems. We 

have shown that any synchronous system can be made systolic if we arc willing to use a sufficiently 

large number of time steps to simulate one time step of the original system. In many cases the 

slowdown of the system in terms of time steps per operation is outweighed by the greater clock speed 

made possible by the elimination of long chains of rippling logic. Suppose, though, that we do not 

increase the number of time steps taken by a system at all, but just use the Retiming Lemma to 

improve its clock period as much as possible. With Flavio Rose, we have obtained the following 

results. 

Minimizing rippling. Let S be a synchronous system with communication graph G. We know 

that if the constraint graph kG-\ has no negative-weight cycles, then there is a *-slow systolic 

simulator of S. Surprisingly, die absence of negative-weight cycles in kii- 1 is also a necessary and 

sufficient condition for the existence of a synchronous system S' such that S' is equivalent to S and 

every path of length k in S's communication graph Ci' has positive weight. Ihus the maximum 

amount of combinational rippling in S' is through k functional elements. For example, consider the 

real-time palindrome recognizer from Section 4. The original synchronous system P shown in 

Figure 7, had a 2-slow systolic simulator. Figure 15 shows the communication graph of another 

system which is equivalent to P. but whose clock period is less than that of P. No signal ripples 

through more than two functional elements. 
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Figure 15: Communication graph of an optimized simulator for the real-time palindrome recognizer P of Figure 7. In 
the optimized simulator, no signal propagaies through more than two functional elements in one clock period. Fach vertex 
is labeled with its lag in this system with respect to P. 

Functional elements of unequal speeds. By minimizing, as described above, the number of 

functional elements through which any signal can ripple during one clock tick, wc arc guaranteed to 

minimize the clock period if the combinational-logic delays through all the functional elements are 

equal. A more general issue addressed in the forthcoming paper is to optimize the clock period in a 

communication graph where vertices are each given a weight representing the delay through the 

functional element. The problem of determining a system with the optimal period can be reduced to 

a sequence of mixed integer programming problems. Although mixed integer programming is in 

general NP-complete, the special character of th:se problems permits a solution to each in 

0(|V\ +|1?|) time. A further generalization allows a polynomial-time solution to opt;. > '.ation 

problems in which the delays between various inputs and outputs of the same functional clement 

may be unequal. 

Multiphase clocking. Clocking schemes that use more than two phases offer greater flexibility in 

adjusting the relative timings of the functional elements. Consider, for example, the functional 

clement S used in the palindrome recognizer P (sec Figure 7). In any implementation of this 

element it is quite plausible that the delay from P ; to P will be considerably less that the delays 

from A. and B- to any of the outputs. Suppose the delay from P. to P were only half as great as 

the other delays. How could we take advantage of this? Figure 16 shows a retiming of P using a 

three-phase clocking discipline. Signals can propagate from any P. to the P of the same 

functional element within one phase transition time, but take two phases to travel through a 

functional element in any other way, and no two consecutive registers along any path are clocked on 

the same phase. The system shown runs 4/3 as fast as would be possible with two-phase clocking. 

Figure 16: A fast implementation of the palindrome recognizer using three-phase clocking   Fach vertex is labeled with 
its lag in this system with respect to P. 

It is natural to ask whether the results described in the preceding paragraphs can be extended to 

allow the computation of optimal clock speeds far general circuits under a multiphase clocking 
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system. The answer turns out to depend critically on tlic details of the clocking model in question. In 

one model, we can show that it is possible to test in polynomial time whether a ciicuil c;m be retimed 

to allow clocking at a given speed, while in another model this test is A'/'-completc. Unfortunately, 

there is not space here to describe the details of the two clocking disciplines in question. 

7. Conclusion 

System transformations which optimize clock period have been examined by others. Most of 

the transformations considered arc of the basic pipelining kind which improve only the throughput of 

a system. The system is usually a one-dimensional array with an input port at one end and an output 

port at the other. All rippling goes from the input toward the output. By slowing down the system 

and applying the Retiming Lemma, registers are introduced along the length of the "pipeline" so that 

the clock period can be reduced (improving throughput) at the expense of skewing the timing of the 

two ports (worsening response time). Cohen [1] presents an imaginative methodology based on this 

approach. 

The study of systolic systems has roots in the theory of cellular automata. A cellular automaton 

may be viewed as a synchronous system consisting of an infinite array of functional elements which 

are all constrained to compute identical functions and to have identical connections to their 

respective neighbors. The idea of designating one cell of a cellular automaton as a host through 

which the automaton can communicate with the external world is apparently due to Cole [2], 

although Hennie [5] allows external I/O connections to all processors in his iterative arrays. The 

observation (in Section 5) that broadcasting to a systolic system can be simulated by a 2-slow systolic 

system was made earlier by Seiferas [13] for the special case of cellular automata. In order to preserve 

the regularity required of cellular automata, however, his construction introduces additional 

combinational logic and uses more state information than ours. 

Galil [4] has characterized a "predictability condition" which allows linear-time on-line 

algorithms for random-access machines and Turing machines to be converted to real-time algorithms. 

The idea he uses is somewhat akin to the observation that a functional element in a synchronous 

system may be allowed to lag in its computations provided that it will be a long time before the 

results are needed to determine the output to the host. 

A system transformation that dews not involve retiming is found in the Reset 'Ihcorcm of [10]. 

This theorem states that a host can effectively reset all registers in a synchronous system to predefined 

values in one clock tick. Although the combinational logic in functional elements is augmented 

slightly, the connection graph of the system is left intact, no rippling is introduced where it didn't 

exist before, and the applicability of the Systolic Conversion Ihcorcm is not affected. 

The efficacy of the Systolic Conversion Theorem is due to the host computer's limited view of 

the synchronous system. The smaller the host's view, the more flexibility there is in changing the 

underlying system while maintaining the view. For instance, if the host can "sec" the entire system. 

M 
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there is no flexibility in choosing an implementation. In the context of VLSI systems, however, there 

seems to be ample room for optimization because the number of pins on a chip (much less than 103) 

is substantially smaller than the number of components (potentially more than 10 ). 
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A. Proo? of the Retiming Lemma 

This appendix contains a detailed proof of the Retiming Lemma. The reader is cautioned that if 

he has not understood the intuitive explanation given in Section 2, the proof here will not enlighten 

him. The proof of the lemma is tortuous, and die simple ideas underlying it are obscured by many 

technical details and an elaborate notation. The authors apologize for being unable to provide a 

cleaner, shorter proof. 

Lemma 1: (Retiming Lemma) Let S be a synchronous system with communication 
graph G, and let lag be a function that maps each vertex v to an integer and the host to 
zero. Suppose that for every edge (w, v, >v) in G the value w + Iag(v)-Iag(u) is 
nonnegative. Let S' be the system obtained by replacing every edge e - (w, v, w) in S 
with e' - (u, v, w+lag(v)- lag(u)). Then the systems S and S' are equivalent 

Proof: We need only show that S' simulates S, since if the roles of S and S' are interchanged in the 

statement of the lemma and - lag replaces lag. the same proof will show that S simulates S'. First, 

observe that the weight of any cycle in the communication graph G' of S' is the same as the weight of 

the corresponding cycle in G since the additions and subtractions of lags cancel around the cycle. 

Conscquendy, S' is a synchronous system because S is. 

Because the remainder of the proof examines the internal structure of the two systems in great 

detail, we introduce some terminology. A wire is a connection between any two components 

(registers or functional elements) of a system.  As shown in Figure 17, any edge e of weight w is 

divided by the registers along it into w + 1 wires e|Q, e\^ e\w, where e\a is the wire that carries 

inputs to the functional element at the head of e, and e| is the wire that carries outputs from the 

functional clement at the tail of p. For any time step / and any wire x, define value(x. l) as the value 

asserted on x at the end of time step I, that is, after all the combinational logic has settled and after 

the inputs for time i have been asserted by the host, but before all the registers arc clocked to begin 

time step f+1. 

A wire x is a predecessor of another wire y if there is some functional clement v (not the host) 

such that x carries a value into v and y carries a value out of v (so that changes might ripple through 

v from A to) with no registers intervening). Because S' is synchronous, the transitive closure of the 

predecessor relation partially orders the wires of S'. 
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Figure 17: Division of an edge e = (u, v, w) into wires. 

The wires of any system arc divided into three mutually disjoint classes: register outputs, 

functional outputs, and host outputs. A wire of the form e\., where k < weight(e), is a register 

output. A wire of the form el^,,^f v is either a functional output or a host output depending on 

whether the tail of e is an ordinary functional element or the host. A functional output may have 

zero or more predecessors; register outputs and host outputs never have predecessors. 

The proof is based on inductive reasoning about the values asserted on the wires in S and S'. 

Let tQ be the maximum lag of any vertex in G, and suppose that S is initialized in any configuration at 

time 0 and run with an arbitrary sequence of inputs from the host until time tQ to arrive in some 

configuration c. The goal of the proof is to exhibit a configuration c' for S' such that if S' is started 

at time u in this configuration, then the behaviors of the two systems will be indistinguishable from 

then on. 

Before embarking on the inductive proof, however, we introduce the predicate P[e'\k, t] which 

is defined to hold for any wire e'\k of S' and any time step / > /-if 

value(e'\k, t) = va/«e(e|0, t - !ag(head(e))+ k). 

We must show that that P is well-defined, that is, for any wire e'\k in S' and for any time t > tQ the 

value va/«e(e|0, t-lag(head(e))+ k) is uniquely determined by the history of S from time 0 to time 

f. There are two cases. First, if t — lag(head(e))+ k < t, then value(e\0, t-lag(head(e))+k) is well- 

defined provided that t - lag(head(e))+k > 0. But since /0 > lag(head(e)) and k > 0, this follows 

immediately. 

The second case in the demonstration of the well-definedness of P is for 

t-!ag(head(e))+k > tQ. Here we must show that no data originating from the host at a time later 

than / can affect the value on e\0 until after time / - lag{head(e))+k. Let the tail and head of e be 

called u and v, and define r as the minimum number of registers on any path from the host to u in S, 

and define r' as the corresponding minimum number in S'. The relationship r' = r+Iag(u) holds 

because the lag of the the host is 0 and the additions and subtractions of lags of the intermediate 

vertices cancel along any path from the host to u. Thus the minimal number d of registers delaying 

any signal from the host to e\Q is given by 

  

I 



r 
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d = r+weight(e) 

= (r'-lag(u))+(we(ght(e'H lag(u)~Iag(v)) 

• = r'+weight(e')-lag(v) 

> weight(e')~ lag(v) 

>k~ Iag(v). 

Consequently, no signal originating at the host at time / +1 or later can be propagated to e\0 until at 

least time t + l + d > i-Iag(v)+k, which completes the demonstration that predicate P is well- 

defi 

Kccall that system S is in configuration c at time /Q, and the goal of the proof is to prove the 

existence of a configuration c' of S' such that the behavior of S' mimics the behavior of S from time 

/0 onward. Let c' be that configuration of S' in which, for each register output wire e'\., the register 

whose output is asserted on e'\k holds the value value(e\Q. t()-lag(head(e))+ k). By the argument 

used to show the well-definedness of P, all the values specified are well-defined and independent of 

the actions of the host at any time later than u. 

Suppose that S' is started at time f- in configuration c' while S is allowed to continue from 

configuration c, and suppose that all host outputs in S' are identical to the corresponding host 

outputs in S at all times from /Q onward. We complete the proof by verifying in order the following 

assertions, where i is any time greater than or equal to (» in Assertions (//) through (v/7). 

(0 P[x, /Q] for every register output x in S'. 

(H) P[X, t] for every host output x in S'. 

(«/) If P[x, t] for every predecessor x of a functional output^ in S', then P\y, /]. 

(iv) lfP[x, t] for every register output x in S', then P\y, t] for every wire y in S'. 

(v) If P\x. t] for every wire x in S', then P[y, t +1] for every register output y in S'. 

(v/) P[x, i] for every wire x in S'. 

(v/7) All wires carrying outputs from S' to the host at time I carry the same values as the 
corresponding wires in S at time t. 

Assertion (/) follows directly from the definition of c'. 

To verify Assertion (ii), let x be any host output in S', and let v be the vertex at the head of the 

edge e' that contains x. Then, since host outputs arc always the same in S and S', it follows that 
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= nlude^wey') 

= *>lMe\„eight(e')+0_lag(vyt) 

= value(e\Q, l-lag(v)+ weighl(e'j). 

To verify assertion Assertion (•'«*), consider any functional output y, let e! be the edge on which 

wire y lies, that is, y = ^/lwftÄ<e'». and let u and v be the tail and head of e/ respectively. Suppose 
the predicate P[x, /] holds for any predecessor JC = e2'|0 of y in S'. Then for each such x we have 

value(x,t)  =   va/ueCejIjj, r-/flg(Aea</(€2))) 

=   valueU^ t - Iag(u)). 

Since the functional elements at u in S and S' are identical, 

value(y,t)  = valueU^^ yt-lag(u)) 

=   valueie^, t - lag(u) + weight^)) 

=   valueie^. t - lag( v) + weight(e[)), 

and hence P[y, t] holds. 

Assertion (iv) follows from Assertion (//'/') by induction over the partial order imposed on the 

wires by the predecessor relation, where the base step is supplied by the hypothesis of the assertion 

together with Assertion (H). 

To demonstrate Assertion (v), notice for any register output e'\k, 

value(e\,l + l)  =   value(e'\k+vl) 

=   valueielp l - lag{head(e))+ k + l) 

=   vaMe|0.(/ + l)-/ag(A«a/(*))+*). 

Assertion (vi) follows by induction from Assertion (iv) and Assertion (v) using Assertion (/) as 

the base step. 
Assertion (v/7) is simply Assertion (vi) restricted to wires of the form e'\^ where head(e') is the 

host D 
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