
AD-AU3 916 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE—ETC F/6 9/2
OPTIMIXING SYNCHRONOUS SYSTEMS.(U)
MAR 82 C E LEISERSON» J B SAXE N0001U-80-C-0622

UNCLASSIFIED MIT/LCS/TM-215 NL

i OF i HT

•II END im-B'c

•

LABORATORY FOR
COMPUTER SCIENCE

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

<0 MIT/LCS/TM-215

CO

"OPTIMIZING SYNCHRONOUS SYSTEMS"

O

Charles E. Leiserson

James B. Saxe

March 1982

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Tka döaunmtkäii be*© approved
far public- ralja»« and «ale; M|

82 04 28 00?

 jfl^H
'- ' •«- '"- '•

—m

SECURITY CLASSIFICATION OF THIS RftBjj fjjfcjR Dm» Enl.rmd)

 REPORT DOCUMENTATION PAGE
I. REPORT NUMBER

MIT/LCS/TM-215
2. OOVT ACCESSION NO.

4UM/1 <U i p

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. RECIPIENT'S CATALOG NUMBER

4. TITLE fond Sublltl,)

"OPTIMIXING SYNCHRONOUS SYSTEMS"

S. TYPE OF REPORT o PERIOD COVERED

Memorandum, March 1982
« PERFORMING ORC. REPORT NUMBER

MIT/LCS/TM-215
1- AUTHORS

Charles E. Leiserson and John B. Saxe

•. CONTRACT OR SRANT NUMBERf«;

N00014-80-C-0622

10. PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNIT NUMBERS

• • PERFORMING ORGANIZATION NAME ANO ADDRESS

Laboratory for Computer Science
Massachusetts Institute of Technology
545 Technology Square, Cambridge, Ma. 02139

II. CONTROLLING OFFICE NAME AND AODRESS

DARPA
1400 Wilson Blvd.
Arlington, Va. 22217

12. REPORT DATE

March 1982
13. NUMBER OF PAGES

28
14 MONITORING AGENCY NAME A ADORES«" different /ram Controlling Olli et)

Office of Naval Research
Department of the Navy
Information Systems Program
Arlington, Va. 22217

IS. SECURITY CLASS. (»I ihi, r.porij

Unclassified

is«, DECLASSIFICATION/DOWNORAOING
SCHEDULE

18- DISTRIBUTION STATEMENT (el Oil« R.pori)

This document is approved for public sale and release, distribution
is unlimited.

17. DISTRIBUTION STATEMENT (ol (no aoofroct entered In Slock 20. II dllltreni «ran Report)

It. SUPPLEMENTARY NOTES

<9 KEY WORDS (Continue on rerorte tide II neeeetmy end Identity by block number)

circuit optimization, design methodology, graph theory, parallel computation,
path algorithms, pipelining, synchronous systems, systolic systems, VLSI.

20. ABSTRACT (Continue en reverie tide If meooootr end Identity by Mock number)

The complexity of integrated-circuit chips produced today makes it feasible to
build inexpensive, special-purpose subsystems that rapidly solve sophisticated
problems on behalf of a general-purpose host computer. This paper contributes
to the design methodology of efficient VLSI algorithms. We present a trans-
formation that converts synchronous systems into more time-efficient, systolic
implementations by removing combinatorial rippling.

(over)

DO t j AN 71 1473 EOITION OF I NOV •• IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAOE fBnon Dato Entered)

»«Cm*TV ClAWnCATlO« Or TMI» PAgtgWfcg» Pgg

The problem of determining the optimized system can be reduced to
the graph-theoretic single-destination-shortest-paths problem. More
importantly from an engineering standpoint, however, the kinds of rip-
pling that can be removed from a circuit at essentially no cost can be
easily characterized. For example, if the only global communication
in a system is broadcasting from the host computer, the broadcast can
always be replaced by local communication.

:v

• tCUAlTY CkAMHMCATION or TMI« »A««WM« Dim

Optimizing Synchronous Systems

Charles E. Leiserson
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

James B. Saxe
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Accession For
OTIS SRAftX
OTIC TAB
Un; '. 9
Just if icati oil

B

By
Dlstrll u1 .'on/

Avfül ' Litj Codes

/or
Dist Special

ä
Abstract—The complexity of integrated-circuit chips produced today makes it feasible to build

inexpensive, special-purpose subsystems that rapidly solve sophisticated problems on behalf of a
general-purpose host computer. This paper contributes to the design methodology of efficient VLSI
algorithms. We present a transformation that converts synchronous systems into more time-efficient,
systolic implementations by removing combinational rippling.

The problem of determining the optimized system can be reduced to the graph-theoretic single-
destination-shortest-paths problem. More importantly from an engineering standpoint, however, the
kinds of rippling that can be removed from a circuit at essentially no cost can be easily characterized.
For example, if the only global communication in a system is broadcasting from the host computer,
the broadcast can always be replaced by local communication.

Key words and phrases:
Circuit optimization, design methodology, graph theory, parallel computation,
algorithms, pipelining, synchronous systems, systolic systems. VLSI.

path

This research was supported in part by the Defense Advanced Research Projects Agency under Contract
No. N00O14-8Ö-C-0622 and by the Office of Naval Research under Contract NO0O14-76-C-0J7O.

i

 -^

Contents

1. Introduction
2. A Model for Synchronous Systems
3. The Systolic Conversion Theorem
4. A Real-Time Palindrome Recognizer
5. A Design Methodology for Systolic Systems
6. Further Topics
7. Conclusion
Acknowledgment
A. Proof of the Retiming Lemma
References

1
2
5
9

14
16
19
20
20
24

]

"•""•"' " •' »•

Figures and Tables

Figure I: The communication graph Gx of a synchronous system S,. One vertex of the 2
graph is distinguished as representing not an ordinary functional clement but a
host processor, which is the system's only interface to the external world.

Figure 2: The communication graph of a system S2 which is equivalent to the system Sj 4
from Figure 1 as viewed from the host. Internally, the two systems differ in that
vertex v3 lags by one clock tick in S2 with respect to Sj.

Figure 3: The constraint graph C,—1 for the system S. in Figure 1. This graph is 6
identical to 6. except that the weight of each edge in £?,—1 is one less than the
weight of the corresponding edge in G\. Fach vertex has been labeled with the
weight of the shortest (i.e., lightest) path from that vertex to the host.

Figure 4: The systolic system S, produced by applying the Systolic Conversion Theorem 7
to the system Sj from Figure 1. Fach edge (u. \\ w) from ffj has been replaced
by the edge (u. v. w-f lag(v)- lag(u)). where die fag of a vertex is taken as the
weight of the shortest path from that vertex to the host in (7, - 1 as indicated in
Figure 3.

Figure 5: A cycle c and a path p from a vertex v of c to the host in die communication 7
graph of a synchronous system.

Figure 6: Contents of the A and 6 registers. 10
Figure 7: A synchronous system P which recognizes palindromes in real time, (a) A 10

diagram of P showing registers and functional elements. The part enclosed in
the dashed box corresponds roughly to a "processor" in the description of P in
the text, (b) P's communication graph. G. (c) Details of a functional clement

Figure 8: The configuration of the system P from Figure 7 as it recognizes the palindrome 11
"rcdivider".

Figure 9: Ihc constraint graph (7-1 for the real-time palindrome recognizer P from 11
Figure 7. Since this graph contains cycles of negative weight, the Systolic
Conversion theorem is not applicable to P.

Figure 10: Ihc communication graph 2(7 for a 2-slow simulator 2P of the system P from 12
Figure 7. This graph is obtained by doubling the weight of every edge in the
communication graph C of P.

Figure 11: Ihc constraint graph 26 -1. Fach \crtcx v is labeled with the weight of the 12
shortest path from t to the host.

Figure 12: Ihc communication graph of a systolic 2-slow simulator SP of the real-time 12
palindrome recognizer P of Figure 7. Fach vertex is labeled with its lag in SP
with respect to the system 2P shown in Figure 10.

Figure 13: A sequence of configurations of the system SP showing its recognition of the 13
palindrome "rcdivider".

FIGURES AND TABLES

Figure 14: Broadcast from the host to all functional elements of a system can be IS
implemented by a breadth-first spanning tree (dashed edges) of the connection
graph. Kach vertex is labeled with its distance from the host.

Figure IS: Communication graph of an optimized simulator for the real-time palindrome 18
recognizer P of Figure 7. In the optimized simulator, no signal propagates
through more than two functional elements in one clock period. Fach vertex is
labeled with its lag in this system with respect to P.

Figure 16: A fast implementation of the palindrome recognizer using three-phase clock- 18
ing. Bach vertex is labeled with its lag in this system with respect to P.

Figure 17: Division of an edge e = («, v, w) into wires. 21

• _

1. introduction

Gone arc the days when the chips in an electronic system were mostly NANI) gates and flip-

flops. 'IT)c computcr-on-a-chip is the fashion today, and microprocessors are being produced with

ever-increasing functionality in an attempt to exploit the improving technological capability. In the

future, we can expect designers to put entire multiprocessor systems on a single chip. By exploiting

the massive potential that VLSI holds for parallel computation, such special-purpose systems will

greafh augment the power of general-purpose computing environments.

Designers of these large systems will face the problem of communication, which arises in any

parallel system. In order to cope with communication costs, the design methodology of systolic

systems [6,7] has been proposed. 'Phis design methodology allows a high-level, algorithmic

description of a circuit which deals directly with communication costs. As a result, the performance

of circuits implemented with this design methodology matches well the performance predicted by a

simple algorithmic analysis [3]. Signal processing, numerical linear algebra, and raster graphics

provide many applications for systolic systems, but their utility is hardly restricted to these areas

alone.

The systolic design methodology manages communication costs effectively because the only

communication permitted during a clock cycle is between a processing element and one of its neighbors

in the communication graph of the system. This constraint is in direct contrast with, for example, the

propagation of a carry signal which ripples down the length of an adder. Such combinational rippling

and global control such as broadcasting are forbidden in systolic designs. Whereas the clock period in

most synchronous systems is long in order to allow signals to ripple through cascades of

combinational logic, in systolic systems the clock period depends only on the time required for a

signal to propagate through a single processing clement. Thus the clock period of a systolic system is

short because it is independent of the size of the system.

The principal deficiency of the systolic design methodology is that the burden on the designer

may be excessive. In particular, global communication such as broadcasting is more easily described

in terms of rippling logic. In a systolic system the effect of broadcasting must be achieved by

multiple local communications. The propagation of a datum from one end of a systolic system to the

other may take many ticks of the system clock, and therefore different processing elements will see

the same data at different times. Orchestrating the individual behaviors of processors can be a large

bookkeeping chore.

In this paper, we address the design issue head on. We demonstrate how a synchronous system

can be designed with rippling logic, and then converted to a systolic implementation that is

functionally equivalent to the original system—the principal difference being the shorter clock period

of the systolic implementation. We charactcri/c the systems that can be so transformed, and show

that an algorithm based on the graph theoretic single-desttnatton-shoricsipaths problem can compute

tnc transformation quickly.

2 OPTIMIZING SYNCHRONOUS SYSTEMS

The remainder of this paper is organized as follows. Section 2 presents a graph-theoretic model

for synchronous systems. The principal result of the paper is given as the Systolic Conversion

Theorem in Section 3. To illustrate the power of the theorem in a design situation. Section 4 details

the construction of a simple systolic system. The design process from Section 4 is abstracted in

Section 5 and applied to the problem of replacing global communication in a system with local

communication. Section 6 is devoted to brief discussions of further topics relating to applications and

extensions of the results. In Section 7 we discuss earlier related work and present some concluding

remarks.

2. A Model for Synchronous Systems

We view a large circuit as a system which is partitioned into functional elements (combinational

logic) and registers (clocked memory). Such a system S can be modeled as a finite edge-weighted

directed multigraph (henceforth, we shall simply say "graph") G = (V. F). The vertices V of this

communication graph correspond to functional elements, and the edges F correspond to intercon-

nections between the functional elements. Each edge e in F is a triple of the form (a, v, H), where u

and v arc (possibly identical) vertices of G, called the tail and head of c, and w is the nonnegative

integer weight of the edge. The weight is the number of registers along the interconnection between

the two functional elements. A configuration of a system is some assignment of values to all its

registers. With each clock tick, the system maps the current configuration into a new configuration.

h'iguic 1: The communication graph G. of a synchronous system S. One >erte\ of the graph is distinguished as
representing not an ordinary functional clement but a Itost protestor, which is the system's only interface to the external
world ,

If the weight of an edge happens to be zero, no register impedes the propagation of a signal

along the corresponding interconnection. Such is the case, for instance, in the system S. shown in

1 '• ' - ' iliiiui •! ii u ii "^ r- ~, ^^^^^^^^^^m

A MODI I RJRSYNUlRONOl SSYSIliMS

Figure 1. A signal emanating from v. will proceed unhindered üioiigh \, and subsequent)) through

i', before it is stopped by a register. If the rippling ean feed back on itself, problems of latching,

oscillation, and race conditions can arise. In our model this corresponds to a zero-weight cycle in the

communication graph, where the weight of a path is taken to be the sum of the weights of its edges.

In order to preclude anomalous behavior associated with asynchronous design, wc restrict our

attention to synchronous systems.

Definition: A system is a synchronous system if every cycle in its communication graph
has positive weight.

Systolic systems exhibit no combinational rippling, and in our model correspond to those

synchronous systems whose edge weights arc all positive.

Definition: A synchronous system S is a systolic system if for each edge (u, v, w) in the
communication graph of S. the weight w is strictly greater than zero.

So far wc have dealt with the internal organization of systems, but of course, no system operates

in a vacuum. Rather, it communicates with the external world via an interface. In our model, one

vertex called the host represents this external interface. If the system were an integrated circuit, for

example, the connections to the host might be the pins of the chip.

'Die host is important because when two systems arc compared, it is the behavior of the systems

from the point of view of the host that is at issue.

Definition: Let c be a configuration of a synchronous system S. and let c' be a
configuration of another synchronous system S'. ITic system S started in configuration c
has the same behavior as the system S' started in configuration c' if for any sequence of
inputs to the system from the host, the two systems produce die same sequence of outputs
to the host.

Before going on, we briefly call attention to a technical fine point relating to this definition.

While the combinational logic in a system is settling, the system outputs to the host may change. We

insist, however, that the internal state of the host depend only on the final settled values of the system

outputs and not on any transient values. Furthermore, if signals ripple through the host to the system

inputs during a single clock cycle, we similarly require that the eventual values of the system inputs

not depend on any transient values. Of course in a synchronous system it is impossible for transient

values on the system inputs to ripple back out to the host.

Suppose the system S. from Figure 1 is modified so that the weight of every edge leading into

v. is increased by one and die weight of every edge leading out of »« is decreased by one (sec

Figure 2). As viewed from the host, the resulting system S, is equivalent (in a sense that wc will

presently make precise) to S.. TTK two systems differ internally in that each computation performed

by the functional clement at v3 in S2 is performed one clock tick later than die corresponding

computation in the original system S,. Vertex v. is said to lag by one tick in S, with respect to Sj. or

alternatively, to lead by one tick in Sj with respect to Sj.

OPTIMIZING SYNCHRONOUS SYSTEMS

OH* I

Figure 2: The communication graph of a system S7 which is equivalent to the system S, from Figure 1 as viewed from
the host. Internally, the two systems differ in that vertex v, lags by one clock tick in S-, with respect to S,.

This simple operation of retiming a functional clement in a system forms the basis of the

optimization techniques in this paper. Indeed, the system S2 exhibits a performance improvement

overS, because the longest path of combinational rippling has been shortened by the retiming of the

functional clement at v.. But although it may appear intuitive that the two systems are effectively tie

same from the point of view of the host, a closer examination reveals some technical difficulties. In

particular, it is not true that whatever configuration the system St is started in, there exists a

configuration in which the new system S2 can be started such that the two systems exhibit the sane

behavior. If the first register on the edge from Vj to v4 is initialized in S(with a value that is not in

the range of values produced by the functional element at vy then the transformed system S2 cannot

necessarily mimic the subsequent behavior of S,.

Although the system S2 cannot mimic the behavior of Sj for all possible configurations of S'>r

however, it can for any sufficiently old configuration of S,, that is, any that arise after S1 has been

run sufficiently long. In the example, a configuration of Sj that has at least one predecessor is

sufficiently old to allow S, to mimic the subsequent behavior.

Definition: Let S and S' be synchronous systems. Suppose that for every sufficiently old
configuration c of S, there exists a configuration c' of S' such that when S is started in
configuration c and S' is started in configuration c'. the two systems exhibit the same
behavior. Then system S' can simulate S. If two synchronous systems can simulate each
other, they arc equivalent

I"he following lemma shows that retiming a vertex in a synchronous system, as in the example

above, produces an equivalent system as long as no edges in the communication graph are givon

negative weight by the transformation. In fact, the Retiming lemma shows that many functional

elements in a system can be given arbitrary leads and lags under the same condition.

r AM0I1II l"OR SYNCHRONOUS SVS11-MS 5

Lemma I: (Retiming Ixnuna) I et S be a synchronous system with communication
graph G. and let lag be a function that maps each vertex v of G to an integer and the host
to zero. Suppose that for every edge (;/, v. it) in G the value w < lag(v) - !<IK(U) is
nonnegative. Let S' be the system obtained by replacing every edge e - (u. t, w) in S
with e' = (u, v. w+hg(v)— lag(u)). Then the systems S and S' are equivalent.

Sketch of proof. The proof is an induction argument. Let L be the maximum lag of any vertex in G.

If S is started at time zero and run until time rQ, there exists a configuration of S' such that for all I

greater than or equal to /0, each functional clement v in S' performs the same computation at time I

as the corresponding functional clement in S at time / -fog(v). Appendix A gives a detailed proof of

this lemma. D

Two synchronous systems may be equivalent even though their internal organizations are

radically different. For example, one system might be a tree and the other a mesh. A system S'

obtained by retiming a system S, however, is not only equivalent, but also has the same structure as S.

Definition: Two systems have the same structure if they arc composed of the same
functional elements with the same inputs and outputs connected by the same intercon-
nections. The numbers of registers on the interconnections, however, may differ.

Preservation of structure is a valuable property of any system transformation because it allows the

new system to inherit the benefits of independent design decisions, for example:

• Anything done to make the functional elements in the original swem small or fast will
carry through to the new system.

• Any topological properties of the communication graph that lead to an area-efficient
layout of the original system will retained by the new system. If the original system is
structured as a mesh, for instance, the new system will not be com cried to. say. a
shuffle-exchange graph, which is much more expensive to lay out [15).

• A system that has been partitioned across muluplc chips will not require additional pins
for the transformed system.

3. The Systolic Conversion Theorem

The previous section demonstrated that a synchronous system could be modified by retiming

functional elements to reduce the period of the system clock. A natural question to ask is, "Is there a

way to assign a lag to each vertex of the communication graph G of a synchronous system so that the

retimed system is systolic?" The answer depends upon the constraint graph G—1, which is the graph

obtained from G by replacing every edge (u. v, w) with (u, v, w— 1).

Theorem 2: {Systolic Conversion Theorem) I et S be a synchronous system with
communication graph G, and suppose the constraint graph G- 1 has no cycles of negative
weight. Then there exists an equivalent system S' which has die same structure as S and
which is systolic.

Proof: The desired system S' may be constructed by a procedure whose key step is the solution of a

6 OI'II\II/IN(J SYNCHRONOUS SYSTEMS

single-dcstination-shoriesl-paths problem in 0-1. Without loss of generality, suppose that there

exists a path from every vertex v in 6 to the host—whenever there is not such a path, it is impossible

for the functional clement at v to have any influence on the behavior of S. A corresponding path

must exist in 6-1. and since <7— 1 is finite and has no negative cycles, there must exist in 6-1 a

path of minimal weight from each vertex to the host. For each vertex v define lag(v) as the weight of

any such shortest path from v to the host in 6-1. The systolic system S' is obtained by modifying S

using the Retiming Lemma (l.emma 1) to give each vertex the designated lag.

To show that this construction indeed produces a systolic system, we must demonstrate that all

edge weights in the communication graph 6' of S' are strictly positive. This demonstration will also

show that the conditions of the Retiming Lemma arc met because all edge weights in 6' will perforce

be nonnegative. For any edge (u, v, w) in G. the weight of the corresponding edge in G — 1 is w—1,

and the weight of a shortest path in G-1 from v to the host is lag(v). The weight lag(u) of a shortest

path in G-1 from vertex u to the host can be no greater than (w-1)+ lag(v). (Consider the path

obtained by prcpending the edge (u, v, w-1) to a shortest path from vertex * to the host.) The

weight of the edge (u, v, w+Iag(v)-lag(u)) in G' is therefore positive. D

The Systolic Conversion Theorem can be applied to the system Sl from Figure 1. Figure 3

shows the constraint graph Gl — 1 for that system with the weights of the shortest paths to the host

labeled in the vertices. Using the Retiming Lemma to give each vertex in Sj the lag designated by

the weight of its shortest path to the host yields the systolic system S, which is shown in Figure 4.

/

Figure 3: The constraint graph 0,-\ for the system S. in Figure 1 This graph is identical to (7, except thai Cie
weight of each edge in 0. -1 is one less than the weight of the corresponding edge in 0".. l-^ch vertex has been label -d
with the weight of the shortest (I e., lightest) path from thai vertex to the host.

The Systolic Conversion Theorem shows that the absence of negative weight cycles in the

constraint graph 6-1 allows a synchronous system to be transformed by application of the Retiming

Lemma into an equivalent systolic system. We call the graph 6- 1 a "constraint graph" because for

mmmmm^— • •

misvsioi ICCONVPRSION IIIIOKIM

Figure 4: The systolic system S, produced by applying the Systolic Conversion Theorem to the system S, from
Figure 1. Each edge (u. v, w) from G. has been replaced by the edge (u, v, w + lag(v)- lag(u)). where the lag of a vertex
is taken as the weight of the shortest path from that vertex to the host in G. -1 as indicated in Figure 3.

each edge (u, v, w) of G, the edge (M, V, W— 1) in (7-1 constrains the weights lag(u) and lag(v) of

the shortest paths from u and v to the host to satisfy the inequality lag(u) < lag(v)+w-\, thereby

guaranteeing that the edge (w, v, w + lag(v)-lag(u)) in G' will have positive weight

The applicability of the Systolic Conversion ITieorcm to a system S docs not depend on the

specific functions computed by the functional elements of S. The next theorem shows that the

Systolic Conversion Theorem is the strongest possible result of such generality. (Figure 5 shows the

situation described in the statement of the theorem.)

Figure 5: A cycle € and a path p from a vertex v of c to the host in the communication graph of a synchronous system.

Theorem 3: Let G be the communication graph of a synchronous system S. and suppose
the constraint graph (7 - 1 has a cycle c of negative weight and a path p from some vertex v
on c to the host. Then it is impossible to construct a systolic system that both simulates S
and has the same structure as S without using knowledge of the particular functional
elements of S.

- • - -

"I"

8 OITIMI/ING SYNCHRONOUS SYS I lAtS

Proof: Supposo there docs exist a structure-preserving transformation th.it produces a systolic

system S' which is equivalent to S. An adversary argument shows that this transformation must use

specific properties of the functional elements of S. The adversary chooses functional elements for a

system T which has the same structure as S, and then the transformation that produced S' from S is

applied to T. Hie resulting systolic system T' fails to simulate T.

Let G' be the communication graph of S', and let x and x' be the weights of cycle c in G and

G'. Since system S' is systolic, the weight x' must equal or exceed the number of edges along e.

Cycle c has negative weight in G — 1, however, and thus x must be strictly less than the number of

edges along c. Therefore, x is strictly less than x'.

The adversary now chooses the functional elements of the system T, which has the same

communication graph G as S. Functional elements that lie neither on the cycle c nor on the path p

from v to the host arc chosen arbitrarily. Those on c and p pass their input values along c or p

unchanged, except for the single functional element at v which takes an integer input a along c and

propagates (a +1) MOD xx' along c and p. After a sufficiently long time, the outputs from T to the

host along p at times / and t + xx' will always differ by x' (modulo xx'). Now consider the system

T' which is produced by applying to T the same transformation that produced S' from 5. Since T'

has x' registers along the cycle c', the outputs from T' to the host along p' at times t and t + xx' will

differ by x (modulo xx'). Since x and x' are distinct, the system T' cannot possibly simulate T. D

When a synchronous system with regular structure—such as a rectangular mesh or a complete

binary tree—is converted to a systolic system, the conversion will typically be very uniform. The lead

or lag of a functional clement may, for example, be equal to the sum of its indices in the mesh or to

its depth in the tree. Section 4 provides an example in which the functional elements are arranged in

a linear array, and the lead of each functional clement in the transformed system turns out to be its

index in the array. For systems with less regular structure, however, an algorithm may be needed lo

determine the transformed system, if indeed the original system can be transformed.

The central computational problem involved is the single-destination-shortest-paths problem:

Given an edge-weighted directed graph G = (V, F.) and a distinguished vertex d in V. find for each

vertex v in V the weight of the shortest path from v to d, or else detect that G contains a cycle of

negative weight. This problem can be solved for arbitrary graphs in 0(| Y\ • |/"|) time in the worst

case by an algorithm due to Bellman and Ford[S, pp. 74-75}. Upton, Rose, and Tarjanfll] have

shown that this bound can be improved for families of graphs that have small separators using a

method they call generalized nested dissection. The use of separators is particularly interesting

because graphs with small separators have area-efficient layouts as well (9J. For any family of graphs

that is closed under subgraphs and that has an /^-separator theorem, where n is the number of

vertices and a > 1/3, the method of generalized nested dissection can be used to solve the single-

destination-shortcst-paths problem in 0(/i3") time, provided that separators can be computed

quickly enough. Thus a system with a planar communication graph can be transformed in 0(w3/!)

»

•^^^^• "^^HKKB***"" ' ' '"•' '"'"

I lll:.SYSTOI.lt• CONVERSION IIIIOUI M 9

time because planar graphs have a Vw"-separator theorem. Also, there is a 0(/TV2) lime algorithm

for any graph that has a VLSI layout with area A. (Use a homeomorphism between such graphs and

subgraphs of cubic meshes of fixed depth, which have a vT -separator theorem.) Further

improvements over the Bellman-Ford algorithm can be obtained for families of graphs with smaller

separators.

4. A Real-Time Palindrome Recognizer

This section illustrates the power of the Systolic Conversion Theorem through an example.

Although many more applications of this theorem may be found in such areas as signal processing or

numerical linear algebra, we have chosen a simple symbol manipulation problem. A multitude of

other applications of the theorem can be found in [10].

A string of n characters is a palindrome if the /'th character for / = 1 n is the same as the

w-i' + lst character. Cole[2] constructs a linearly connected systolic array which is supplied

characters from a string, and for each character tells immediately whether the string input up to that

character is a palindrome. Whereas Cole constructs this real-time palindrome recognizer explicitly,

his construction is elaborate and unintuitive. Here we demonstrate the same result, bui the Systolic

Conversion Theorem greatly simplifies the construction.

The construction of the palindrome recognizer is based on a linearly connected systolic array of

"processors" which is augmented with rippling combinational logic. The Systolic Conversion

Theorem is applied to this intermediate synchronous system to remove the rippling logic and yield

once again a systolic array.

A processor/? in the systolic array has two registers, A and B„ each of which can hold either an

ordinary character or a special null character, NIL. The contents of register A. arc provided as input

to pj + y The host appears as p0 in the system, and provides the input character in its register AQ.

The control of the processors is quite simple, but let us first understand what the systolic array is

trying to do. Suppose the character string input to the systolic array is jr... .X_. Figure 6 shows the

contents of the A and B registers after ten characters have been input, and again after eleven. For

1 < / < [n/2j, register B in processor/? contains the character jr, and for 1 < i < \n/2], register A in

processor p contains the character xn_j + l. All other registers in the system contain NIL. Thus the

input string is a palindrome if and only if whenever A and B are nonnull. they contain the same

character.

On each clock tick, the new values of all the A and B. arc computed by the formulae

4 * '/ß,_i = NIL *• NIL *» Ai-\

and

Bj *• if (A. = NIL)v(ß. = NIL) then A. else Bjt

 • • WW

10 Ol'lIM1/ING SYNCHRONOUS SYSTEMS

i

B,

B,

10

li *10

4 5

5

6 7 8
NIL NIL NIL
NIL NIL NIL

6 7 8

^6 NIL NIL
NIL NIL NIL

Figure 6: Contents of the A and B registers.

•<r-^ 1-

1 Si
1

1
1

PAL • / Specification of 8:

i_„_^r_J

'out

'out

out

•{
£ Pin

NIL B. NIL

BM * NIL

4 * NIL AÄ ^ NIL
in in

8 (ß,„ = N'L)v(/>inA(/lill=Äjn))

(c)

Figure 7: A synchronous system P which recognizes palindromes in real time (a) A diag.am of P showing registers and
functional elements. The part enclosed in the dashed box corresponds roughly to a "processor" in the description of P in
the text, (b) P's communication graph. G. (c) Details of a functional clement.

where all assignments arc performed simultaneously, so that all references to registers on the right

hand sides denote values from the previous time step. While the host docs not actually contain a

register BQ, the system acts as if there were such a register which always had a nonnull value. Thus,

A j is always given the value that AQ held on the previous time step.

.

r
A Kl Al -I IMI PAUNUROME Kl COGM/IR 11

Ihis system is now augnicntcd by combinational logic which runs back to the host and reports

whether a palindrome is recognized. This rippling "collection" logic returns TRUE if. for each

processor p such that A. and Bj both contain valid characters, A. = £.. Ihc collection logic is

implemented by giving each processor/), an output I'Al. whose value is defined by the formula

MI, i (Bi = NIL) V (PALt. + 1 A U, = Ä.)).

Since the PAL are propagated by rippling logic, the values on the right hand side of this definition

are based on the current time step. The last processor in the array will have no PAL signal coming

into it, but will act as if it had such a signal which always had the value TRUE.

The preceding text describes the palindrome recognizer in terms of "processors". Figure 7

shows how the recognizer may be modeled as a synchronous system P of functional elements and

registers. Also shown in the figure is P's communication graph, which will be referred to as G for the

remainder of this section. Figure 8 shows the state of P as it recognizes the palindrome "redividcr".

Figure 8: The configuration of the system P from Figure 7 as it recognizes the palindrome "redivider".

The chain of rippling logic that extends through all the functional elements to the host allows

the recognition of a palindrome to be signalled on PALX on the very next clock tick after the last

letter of the palindrome becomes available in A.. The disadvantage of this chain of rippling logic is

that it must be allowed to settle after each clock tick, so the clock period of P must be linear in the

length of the array. A systolic real-time palindrome recognizer with the same structure would be a

great improvement since the clock period would be independent of the size of the system.

If we could verify that G— 1 had no cycles of negative weight, we could use the Systolic

Conversion Theorem to construct a systolic palindrome recognizer with the same structure as P.

Unfortunately, G -1 has many cycles of negative weight (sec Figure 9).

Figure 9: The constraint graph (7-1 for the real-time palindrome recognizer P from Figure 7 Since this graph
contains cycles of negative weight, the Systolic Conversion theorem is not applicable to P.

Consider, however, the system formed by modifying P so that the number of registers on each

12 0IT1MI/1NG SYNCHRONOUS SYSTEMS

interconnection is doubled. Ilic communication graph 20 of this system 2P is shown in Figure 10.

All the data flow in P is slowed down by a factor of two in 2P, so that 2P provides a sort ofhalf-spced

version of P which communicates with the host only on every other clock tick. In fact, 2P can be

thought of as a pair of 2-.v/ow simulators of P—one communicating with the host on even-numbered

ticks and the other processing a completely independent data stream and communicating with the

host on odd-numbered ticks.

Figure 10: The communication graph 2G for a 2-slow simulator 2P of the system P from Figure 7. This graph is
obtained by doubling the weight of every edge in the communication graph G of P.

Unlike G-1. the constraint graph 2G-1 is free of negative cycles (sec Figure 11). Thus the

Systolic Conversion Theorem can be applied to 2P to produce a systolic array SP (shown in

Figure 12) which recognizes palindromes in real time—two clock ticks per character. Fach processor

p. has a lead of i in SP with respect to 2P. Figure 13 shows a sequence of internal states of SP ;is it

recognizes the palindrome "redivider".

-/ -/ -/ -/ -/

Figure 11: The constraint graph 2G -1. Each venex v is labeled with the weight of the shortest path from v to the host.

/ / / / /

Figure 12: The communication graph of a systolic 2-slow simulator SP of the real-lime palindrome rccogni/.er P of
Figure 7. Fach vertex is labeled with its lag in SP with respect to the system 2P shown in F'igure 10.

Although SP is a "2-slow" simulator of P, its performance is actually better than that of P if

sufficiently large systems arc compared. Since rippling in P runs the length of the system, the pciiod

of its clock must be at least proportional to the length of the array. System SP. which is systolic, can

be run with a clock period that is constant with respect to the length of the system. Thus the dura um

of two clock ticks of SP will be less than the duration of one clock tick of P if the two systems are

large enough.

\s a comparison t>l Figures 8 and 13 reveals. sy>>tcm SP is much more complex than P in its

: 1

—

A REAL-TIME PALINDROME RECOGNIZER 13

Figure 13: A sequence of configurations of the system SP showing its recognition of the palindrome "redivider".

internal workings. The recognition of any string as a palindrome by SP is spread out over several

time steps, rather than happening all in a single clock cycle as in P. Consequently, any direct

verification of SP's correctness requires careful bookkeeping to verify that all the data arrive at the

right places at the right times. The effort involved in constructing such an argument is not

superhuman—indeed, the correctness proof for Colo's palindrome rccogni/cr[2J depends on just

such a careful bookkeeping argument. It is the authors' contention, however, that it was an easier and

less error-prone task to design and verify P than it would have been to design SP directly. The

comparison would be even more favorable for a complicated system. In proving the Retiming

I.cmma and the Systolic Conversion ITicorcm. we have gone through the painstaking bookkeeping

once and for all. and captured the result in a form th.it can be used again and again.

We can illustrate this point again by taking note of an interesting properly of SP: supplying a

14 ÜI'IJMI/ING SYNCHRONOUS SYSI IMS,

NIL from the hosi to either of the two (odd ticks and even licks) data streams being processed by SP

effectively reinitializes the computation on that data stream. ITie reader may attempt to verify this

property by a direct examination of SP, but we think it is easier to check that a NIL input effectively

resets P.

5. A Design Methodology for Systolic Systems

The real-time palindrome recognizer from Section 4 was obtained by a three-step design

process. First, an initial systolic system was designed which performed an important piece of the

desired computation. Second, this systolic system was augmented with zero-weight edges to produce

a synchronous system with combinational rippling. The edges were added in such a way that the

Systolic Conversion Theorem could be applied to a 2-slow simulator of the intermediate system to

yield the final systolic design as the third step of the design process. The subject of this section is the

design methodology of augmenting a systolic system with rippling that can be eliminated by the

Systolic Conversion Theorem.

In order to prejudice the designer as'little as possible in his other design decisions, the method

of design presented here preserves the physical organization of the original systolic system as

captured by its connection graph, which is its communication graph viewed as an unweighted,

undirected graph. There may be greater differences between two systems that share only the same

connection graph than between two systems that have the same structure as defined in Section 2.

Two systems with the same connection graph may have different functional elements as well as

different numbers of registers on interconnections. In addition, the direction of information flow is

ignored in the connection graph.

Broadcasting is a means by which information known by the host is made known to all the

functional elements of a system in a single clock cycle. Broadcasting is the most common kind of

global communication found in parallel systems because designers find it easy to think of controlling

all processors in unison. A designer who wishes to add broadcasting to his otherwise systolic system

will typically find considerable flexibility in exactly how it might be implemented. A common

approach is to use a bus, which is a single interconnection that visits all processors and conveys the

global information throughout the system. In fact, the connection graph of the system need not be

disturbed if the bus is routed along any spanning tree of the connection graph. In our model ihc

interconnections composing the broadcast tree can be represented as zero-weight edges in the

communication graph of the synchronous system.

Kvcn with such tricks as precharging the bus [12, pp. 156-157], the simple fact that information

must be communicated across the system limits the performance of a broadcast because the clock

period of the system must be sufficiently long to allow the global information to reach all proccssc rs.

It should be apparent, however, that the first two steps of the three-step design process have been

followed thus far—a systolic system has been augmented with zero-weight edges to produce an

•"—

A DESIGN METHODOI OGY 1 OR SYSTOLIC SYSTKMS 15

intermediate synchronous system. But can the third step succeed? If so, applying the Systolic

Conversion Theorem to a 2-slow simulator of the intermediate system will produce a final systolic

design whose clock period will be independent of the size of the system.

The third step need not succeed, but if broadcasting is implemented using a breadth-first

spanning tree of the connection graph instead of an arbitrary spanning tree, it always will succeed.

Let H be the connection graph of the original systolic system, and define the depth d(v) of a vertex v

in H to be the minimal number of edges in any path from v to the host. Let S be the intermediate

synchronous system obtained by implementing broadcasting along a breadth-first spanning tree in /i,

and let G be the communication graph of S. (Thus each zero-weight tree edge (u, v, 0) in G satisfies

d(v) = d(u)+1, as in Figure 14.)

Figure 14: Broadcast from the host to all functional elements of a system can be implemented by a breadth-first
spanning tree (dashed edges) of the connection graph. Each vertex is labeled with its distance from the host.

To show that the third step of the design process will work, we must demonstrate that the

constraint graph 2G-1 has no negative-weight cycles. Consider the changes in the depth d of

vertices during a traversal of a directed cycle in G. By the definition of depth, traversing any edge

changes d by at most one. Since traversing a zero-weight tree edge increases d by one and the net

change in d around any cycle is zero, it follows that at most half the edges in any cycle of G can be

tree edges. Now consider the constraint graph 2G — 1. For any tree edge in G, the corresponding

edge in 2(7-1 has weight negative one. For any positive-weight edge in (7, the corresponding edge

in 2G -1 has weight at least one. Because at most half the edges in any cycle of G are tree edges, no

cycle in 2G-1 has negative weight Consequently, the Systolic Conversion Theorem can be applied

to 2S to produce a systolic system which is equivalent to 2S and which has the same structure as S.

Thus if broadcasting is the only form of global communication in an otherwise systolic system, it can

be replaced by local communication.

Another common instance of global communication is collection where rippling logic runs from

functional elements toward the host as in the palindrome example from Section 4. If the logic

16 OKI IMI/INO SYVUKONOLS SYS II MS

computes an associative and commutative function (such as addition, multiplication, maximum, or

boolean conjunction) over values generated by the functional elements, then any spanning tree of tic

connection graph can be used to implement the collection. In order to obtain a systolic 2-slow

simulator, a breadth-first spanning tree can once again be employed. In contrast to the broadcasting

situation, however, all tree edges arc directed toward the host instead of away.

The three-step design procedure proposed in this section can be applied to any augmented

systolic system as long as the rippling follows a breadth-first spanning tree in the connection graph,

and all zero-weight edges go toward the host, or all go away from the host. The follow ing theorem

generalizes these conditions and can be proved by adapting the argument for broadcasting.

Theorem 4: Let S be a synchronous system with communication graph G and
connection graph H, and let R be some subset of the vertices of G. For each vertex v of G,
define the distance h (v) of r from R as the minimal number of edges in any path in H that
joins v to an element of M. Suppose that every zero-weight edge (u. v. 0) of G is directed
away from R (i.e., h(v) > h(u)). or alternatively that every zero-weight edge of G is
directed towards R. Then there exists a systolic system which is equivalent to 2S and
which has the same structure as S.

6. Further Topics

ITiis section is a pot pourri of topics which include extensions both to the model and o the problem

considered in this paper. The results of the first part of this section are straightforward and

justification is given in sufficient detail to allow the reader to fill in the gaps. Hie latter part of this

section contains results from a forthcoming paper based on research by the auihors and Flavio Rose

of MIT.

Several hosts. A natural extension to the model of synchronous systems is the inclusion of

multiple, independent hosts. The multiple host model applies to problems where input streams are

independent and may be skewed in time relative to one another, or where outputs arc not fed bick

into the system as for example in many signal processing applications. I"he Rcuming lemma and the

Systolic Conversion Theorem can be applied as long as two hosts cannot communicate in less time

than the difference in their lags.

Clock sken. Moving from the discrete time domain to a continuous time domain permits the

techniques used in this paper to be applied to the problem of clock skew. Since clock signals do not

move across an integrated circuit chip in zero lime, two processors on a chip may sec the same ccge

of the clock signal at different times. The difference between the times that two processors see ihc

change is called the skew. Across a large integrated circuit, the skew can be quite significant. Because

the period of a clock is proportional to the maximum skew (sec |14]), designers lake great pains to

buffer clock signals so that all destinations of the signal arc equidistant from the clock generator.

Unfortunately, the buffering circuitry may not match the system organization and can introduce

complications during the layout of the circuit

—» " ••»">>' -' "in i imrmm^mm

FURTHER TOPICS 17

Using a continuous model for time, however, another approach can be adopted which is based

on the broadcasting results of Section 5. Let the clock generator take the role of the host, and

measure the distance of a processor from the clock generator in continuous time. By running clock

signals away from the clock in a breadth-first spanning tree along existing interconnections, the

contribution of skew to the period of the clock can be reduced to the round-trip communication time

between two adjacent processors. The maximum skew across the system is of no consequence—the

local skew is all that matters.

Two-phase clocking. Clocking considerations arise even in the discrete time model. Hie clocks

of many integrated circuit systems have two or more phases which act like the flood gates of canal

locks. For example, a simple dynamic register consists of two halves—one half clocks data in on <p.

and the other clocks it out on <p,. Many design methodologies for two-phase clocking obey the rule

that all signals must be clocked alternately by <pl and <p2, that is. any signal clocked twice by one

phase must be clocked by the other in between. It is straightforward to verify that die Retiming

Lemma and the Systolic Conversion Theorem preserve this rule. Two-phase clocking of dynamic

logic has another interesting property with regard to the results here. In order to preclude

interference between adjacent dynamic registers, a system implemented with dynamic logic typically

has two equivalence classes of computation of which only one can be used. Thus a systolic system

designed in this way is a "2-slow" system to begin with, and the broadcasting results from Section 5

can be applied with no further slowdown needed.

This paper has investigated how to transform synchronous systems into systolic systems. We

have shown that any synchronous system can be made systolic if we arc willing to use a sufficiently

large number of time steps to simulate one time step of the original system. In many cases the

slowdown of the system in terms of time steps per operation is outweighed by the greater clock speed

made possible by the elimination of long chains of rippling logic. Suppose, though, that we do not

increase the number of time steps taken by a system at all, but just use the Retiming Lemma to

improve its clock period as much as possible. With Flavio Rose, we have obtained the following

results.

Minimizing rippling. Let S be a synchronous system with communication graph G. We know

that if the constraint graph kG-\ has no negative-weight cycles, then there is a *-slow systolic

simulator of S. Surprisingly, die absence of negative-weight cycles in kii- 1 is also a necessary and

sufficient condition for the existence of a synchronous system S' such that S' is equivalent to S and

every path of length k in S's communication graph Ci' has positive weight. Ihus the maximum

amount of combinational rippling in S' is through k functional elements. For example, consider the

real-time palindrome recognizer from Section 4. The original synchronous system P shown in

Figure 7, had a 2-slow systolic simulator. Figure 15 shows the communication graph of another

system which is equivalent to P. but whose clock period is less than that of P. No signal ripples

through more than two functional elements.

18 OPriMl/JNG SYNCHRONOUS SYSTEMS

Figure 15: Communication graph of an optimized simulator for the real-time palindrome recognizer P of Figure 7. In
the optimized simulator, no signal propagaies through more than two functional elements in one clock period. Fach vertex
is labeled with its lag in this system with respect to P.

Functional elements of unequal speeds. By minimizing, as described above, the number of

functional elements through which any signal can ripple during one clock tick, wc arc guaranteed to

minimize the clock period if the combinational-logic delays through all the functional elements are

equal. A more general issue addressed in the forthcoming paper is to optimize the clock period in a

communication graph where vertices are each given a weight representing the delay through the

functional element. The problem of determining a system with the optimal period can be reduced to

a sequence of mixed integer programming problems. Although mixed integer programming is in

general NP-complete, the special character of th:se problems permits a solution to each in

0(|V\ +|1?|) time. A further generalization allows a polynomial-time solution to opt;. > '.ation

problems in which the delays between various inputs and outputs of the same functional clement

may be unequal.

Multiphase clocking. Clocking schemes that use more than two phases offer greater flexibility in

adjusting the relative timings of the functional elements. Consider, for example, the functional

clement S used in the palindrome recognizer P (sec Figure 7). In any implementation of this

element it is quite plausible that the delay from P ; to P will be considerably less that the delays

from A. and B- to any of the outputs. Suppose the delay from P. to P were only half as great as

the other delays. How could we take advantage of this? Figure 16 shows a retiming of P using a

three-phase clocking discipline. Signals can propagate from any P. to the P of the same

functional element within one phase transition time, but take two phases to travel through a

functional element in any other way, and no two consecutive registers along any path are clocked on

the same phase. The system shown runs 4/3 as fast as would be possible with two-phase clocking.

Figure 16: A fast implementation of the palindrome recognizer using three-phase clocking Fach vertex is labeled with
its lag in this system with respect to P.

It is natural to ask whether the results described in the preceding paragraphs can be extended to

allow the computation of optimal clock speeds far general circuits under a multiphase clocking

mwrm

FURlllüR lOI'IC'S 19

system. The answer turns out to depend critically on tlic details of the clocking model in question. In

one model, we can show that it is possible to test in polynomial time whether a ciicuil c;m be retimed

to allow clocking at a given speed, while in another model this test is A'/'-completc. Unfortunately,

there is not space here to describe the details of the two clocking disciplines in question.

7. Conclusion

System transformations which optimize clock period have been examined by others. Most of

the transformations considered arc of the basic pipelining kind which improve only the throughput of

a system. The system is usually a one-dimensional array with an input port at one end and an output

port at the other. All rippling goes from the input toward the output. By slowing down the system

and applying the Retiming Lemma, registers are introduced along the length of the "pipeline" so that

the clock period can be reduced (improving throughput) at the expense of skewing the timing of the

two ports (worsening response time). Cohen [1] presents an imaginative methodology based on this

approach.

The study of systolic systems has roots in the theory of cellular automata. A cellular automaton

may be viewed as a synchronous system consisting of an infinite array of functional elements which

are all constrained to compute identical functions and to have identical connections to their

respective neighbors. The idea of designating one cell of a cellular automaton as a host through

which the automaton can communicate with the external world is apparently due to Cole [2],

although Hennie [5] allows external I/O connections to all processors in his iterative arrays. The

observation (in Section 5) that broadcasting to a systolic system can be simulated by a 2-slow systolic

system was made earlier by Seiferas [13] for the special case of cellular automata. In order to preserve

the regularity required of cellular automata, however, his construction introduces additional

combinational logic and uses more state information than ours.

Galil [4] has characterized a "predictability condition" which allows linear-time on-line

algorithms for random-access machines and Turing machines to be converted to real-time algorithms.

The idea he uses is somewhat akin to the observation that a functional element in a synchronous

system may be allowed to lag in its computations provided that it will be a long time before the

results are needed to determine the output to the host.

A system transformation that dews not involve retiming is found in the Reset 'Ihcorcm of [10].

This theorem states that a host can effectively reset all registers in a synchronous system to predefined

values in one clock tick. Although the combinational logic in functional elements is augmented

slightly, the connection graph of the system is left intact, no rippling is introduced where it didn't

exist before, and the applicability of the Systolic Conversion Ihcorcm is not affected.

The efficacy of the Systolic Conversion Theorem is due to the host computer's limited view of

the synchronous system. The smaller the host's view, the more flexibility there is in changing the

underlying system while maintaining the view. For instance, if the host can "sec" the entire system.

M

20 OPTIMIZING SYNCHRONOUS SYSTEMS

there is no flexibility in choosing an implementation. In the context of VLSI systems, however, there

seems to be ample room for optimization because the number of pins on a chip (much less than 103)

is substantially smaller than the number of components (potentially more than 10).

Acknowledgment

Thanks to Jon Bcntlcy, Dan Hocy, and Flavio Rose for comments and suggestions. Thanks also

to S. Rao Kosaraju for acquainting us with the related work of Seiferas.

A. Proo? of the Retiming Lemma

This appendix contains a detailed proof of the Retiming Lemma. The reader is cautioned that if

he has not understood the intuitive explanation given in Section 2, the proof here will not enlighten

him. The proof of the lemma is tortuous, and die simple ideas underlying it are obscured by many

technical details and an elaborate notation. The authors apologize for being unable to provide a

cleaner, shorter proof.

Lemma 1: (Retiming Lemma) Let S be a synchronous system with communication
graph G, and let lag be a function that maps each vertex v to an integer and the host to
zero. Suppose that for every edge (w, v, >v) in G the value w + Iag(v)-Iag(u) is
nonnegative. Let S' be the system obtained by replacing every edge e - (w, v, w) in S
with e' - (u, v, w+lag(v)- lag(u)). Then the systems S and S' are equivalent

Proof: We need only show that S' simulates S, since if the roles of S and S' are interchanged in the

statement of the lemma and - lag replaces lag. the same proof will show that S simulates S'. First,

observe that the weight of any cycle in the communication graph G' of S' is the same as the weight of

the corresponding cycle in G since the additions and subtractions of lags cancel around the cycle.

Conscquendy, S' is a synchronous system because S is.

Because the remainder of the proof examines the internal structure of the two systems in great

detail, we introduce some terminology. A wire is a connection between any two components

(registers or functional elements) of a system. As shown in Figure 17, any edge e of weight w is

divided by the registers along it into w + 1 wires e|Q, e\^ e\w, where e\a is the wire that carries

inputs to the functional element at the head of e, and e| is the wire that carries outputs from the

functional clement at the tail of p. For any time step / and any wire x, define value(x. l) as the value

asserted on x at the end of time step I, that is, after all the combinational logic has settled and after

the inputs for time i have been asserted by the host, but before all the registers arc clocked to begin

time step f+1.

A wire x is a predecessor of another wire y if there is some functional clement v (not the host)

such that x carries a value into v and y carries a value out of v (so that changes might ripple through

v from A to) with no registers intervening). Because S' is synchronous, the transitive closure of the

predecessor relation partially orders the wires of S'.

I
 ^— m " ^m

I'ROOI 01 niiikiniMiNGLEMMA 21

Figure 17: Division of an edge e = (u, v, w) into wires.

The wires of any system arc divided into three mutually disjoint classes: register outputs,

functional outputs, and host outputs. A wire of the form e\., where k < weight(e), is a register

output. A wire of the form el^,,^f v is either a functional output or a host output depending on

whether the tail of e is an ordinary functional element or the host. A functional output may have

zero or more predecessors; register outputs and host outputs never have predecessors.

The proof is based on inductive reasoning about the values asserted on the wires in S and S'.

Let tQ be the maximum lag of any vertex in G, and suppose that S is initialized in any configuration at

time 0 and run with an arbitrary sequence of inputs from the host until time tQ to arrive in some

configuration c. The goal of the proof is to exhibit a configuration c' for S' such that if S' is started

at time u in this configuration, then the behaviors of the two systems will be indistinguishable from

then on.

Before embarking on the inductive proof, however, we introduce the predicate P[e'\k, t] which

is defined to hold for any wire e'\k of S' and any time step / > /-if

value(e'\k, t) = va/«e(e|0, t - !ag(head(e))+ k).

We must show that that P is well-defined, that is, for any wire e'\k in S' and for any time t > tQ the

value va/«e(e|0, t-lag(head(e))+ k) is uniquely determined by the history of S from time 0 to time

f. There are two cases. First, if t — lag(head(e))+ k < t, then value(e\0, t-lag(head(e))+k) is well-

defined provided that t - lag(head(e))+k > 0. But since /0 > lag(head(e)) and k > 0, this follows

immediately.

The second case in the demonstration of the well-definedness of P is for

t-!ag(head(e))+k > tQ. Here we must show that no data originating from the host at a time later

than / can affect the value on e\0 until after time / - lag{head(e))+k. Let the tail and head of e be

called u and v, and define r as the minimum number of registers on any path from the host to u in S,

and define r' as the corresponding minimum number in S'. The relationship r' = r+Iag(u) holds

because the lag of the the host is 0 and the additions and subtractions of lags of the intermediate

vertices cancel along any path from the host to u. Thus the minimal number d of registers delaying

any signal from the host to e\Q is given by

I

r

—

22 , OPTIMIZING SYNCHRONOUS SYS1TMS

d = r+weight(e)

= (r'-lag(u))+(we(ght(e'H lag(u)~Iag(v))

• = r'+weight(e')-lag(v)

> weight(e')~ lag(v)

>k~ Iag(v).

Consequently, no signal originating at the host at time / +1 or later can be propagated to e\0 until at

least time t + l + d > i-Iag(v)+k, which completes the demonstration that predicate P is well-

defi

Kccall that system S is in configuration c at time /Q, and the goal of the proof is to prove the

existence of a configuration c' of S' such that the behavior of S' mimics the behavior of S from time

/0 onward. Let c' be that configuration of S' in which, for each register output wire e'\., the register

whose output is asserted on e'\k holds the value value(e\Q. t()-lag(head(e))+ k). By the argument

used to show the well-definedness of P, all the values specified are well-defined and independent of

the actions of the host at any time later than u.

Suppose that S' is started at time f- in configuration c' while S is allowed to continue from

configuration c, and suppose that all host outputs in S' are identical to the corresponding host

outputs in S at all times from /Q onward. We complete the proof by verifying in order the following

assertions, where i is any time greater than or equal to (» in Assertions (//) through (v/7).

(0 P[x, /Q] for every register output x in S'.

(H) P[X, t] for every host output x in S'.

(«/) If P[x, t] for every predecessor x of a functional output^ in S', then P\y, /].

(iv) lfP[x, t] for every register output x in S', then P\y, t] for every wire y in S'.

(v) If P\x. t] for every wire x in S', then P[y, t +1] for every register output y in S'.

(v/) P[x, i] for every wire x in S'.

(v/7) All wires carrying outputs from S' to the host at time I carry the same values as the
corresponding wires in S at time t.

Assertion (/) follows directly from the definition of c'.

To verify Assertion (ii), let x be any host output in S', and let v be the vertex at the head of the

edge e' that contains x. Then, since host outputs arc always the same in S and S', it follows that

»'•• •"«Il --.••,..-•

PROOF Ol-'THE RETIMING 1 EMMA 23

= nlude^wey')

= *>lMe\„eight(e')+0_lag(vyt)

= value(e\Q, l-lag(v)+ weighl(e'j).

To verify assertion Assertion (•'«*), consider any functional output y, let e! be the edge on which

wire y lies, that is, y = ^/lwftÄ<e'». and let u and v be the tail and head of e/ respectively. Suppose
the predicate P[x, /] holds for any predecessor JC = e2'|0 of y in S'. Then for each such x we have

value(x,t) = va/ueCejIjj, r-/flg(Aea</(€2)))

= valueU^ t - Iag(u)).

Since the functional elements at u in S and S' are identical,

value(y,t) = valueU^^ yt-lag(u))

= valueie^, t - lag(u) + weight^))

= valueie^. t - lag(v) + weight(e[)),

and hence P[y, t] holds.

Assertion (iv) follows from Assertion (//'/') by induction over the partial order imposed on the

wires by the predecessor relation, where the base step is supplied by the hypothesis of the assertion

together with Assertion (H).

To demonstrate Assertion (v), notice for any register output e'\k,

value(e\,l + l) = value(e'\k+vl)

= valueielp l - lag{head(e))+ k + l)

= vaMe|0.(/ + l)-/ag(A«a/(*))+*).

Assertion (vi) follows by induction from Assertion (iv) and Assertion (v) using Assertion (/) as

the base step.
Assertion (v/7) is simply Assertion (vi) restricted to wires of the form e'\^ where head(e') is the

host D

24 OPTIMIZING SYNCHRONOUS SYSTEMS

References

1. Danny Cohen. "Mathematical approach to computational networks." Technical
report IS1/RR-78-73, Information Sciences Institute, University of Southern California,
November 1978.

2. Stephen N. Cole, "Real-time computation by «-dimensional iterative arrays of finite-state
machines," IEEE Transactions on Computers. Vol. C-18, April 1969, pp. 349-365.

3. Michael J. Foster and H. T. Kung, "The design of special-purpose VLSI chips," Computer
Magazine, Vol. 13, No. 13, January 1980, pp. 26-40. An early version of this paper entitled
"Design of special-purpose VLSI chips: examples and opinions" appears in Proceedings of the
7th International Symposium on Computer Architecture, La Baule, France, May 1980.

4. Zvi Galil, "Real-time algorithms for string-matching and palindrome recognition," Proceedings
of the Eighth Annual ACM Symposium on Theory of Computing. ACM Special Interest Group
on Automata and Computability Theory, Hershey, Pennsylvania, May 1976, pp. 161-173.

5. Frederick C. Hennie III, Iterative Arrays of Logical Circuits, MIT Press and John Wiley Sons,
Inc., MIT Press Research Monographs, 1961.

6. H. T. Kung, "Let's design algorithms for VLSI systems," Proceedings of the Callech Conference
on Very Large Scale Integration, Charles L. Seitz, ed., Pasadena, California, January 1979,
pp. 65-90.

7. H. T. Kung and Charles E. Leiserson, "Systolic arrays (for VLSI)," Sparse Matrix Proceedings
1978,1. S. Duff and G. W. Stewart, ed., Society for Industrial and Applied Mathematics, 1979,
pp. 256-282. An early version appears in Section 8.3 of [12].

8. Eugene L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and
Winston, New York, 1976.

9. Charles E. Leiserson, "Area-efficient graph layouts (for VI.SI)," 21st Annual Symposium on
Foundations of Computer Science, IEEE Computer Society, October 1980.

10. Charles E Leiserson, Area-Efficient VLSI Computation, Ph.D. dissertation. Department of
Computer Science, Carnegie-Mellon University, to appear 1981.

11. Richard L. Lipton, Donald J. Rose, and Robert Endre Tarjan, "Generalized nested dissection,"
SI AM Journal of Numerical Analysis, Vol. 16, No. 2, April 1979, pp. 346-358.

12. Carver A. Mead and Lynn A. Conway, Introduction to VLSI Systems, Addison-Wesley,
Reading, Massachusetts, 1980.

13. Joel I. Sciferas, "Iterative arrays with direct central control," Ada Informatica, VoL 8, 1977,
pp. 177-192.

14. Charles L. Seitz. "System timing," in Introduction to VLSISystemsby Carver Mead and Lynn
Conway, Addison-Wesley, Reading, Massachusetts, 1980, pp. 218-262.

15. Clark D. Thompson, A Complexity Theory for VLSI, Ph.D. dissertation. Department of
Computer Science, Carnegie-Mellon University, 1980.

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

Attention: Program Management

Office of Naval Research 3 copies
800 North Quincy Street
Arlington, Virginia 22217

Attention: Marvin Denicoff, Code 437

Office of Naval Research 1 copy
Resident Representative
Massachusetts Institute of Technology
Building El9-628
Cambridge, Mass. 02139

Attention: A. Forrester

Director 6 copies
Naval Research Laboratory
Washington, D.C. 20375

Attention: Code 2627

Defense Technical Information Center 12 copies
Cameron Station
Arlington, Virginia 22314

Office of Naval Research 1 copy
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, Mass. 02210

National Science Foundation 2 copies
Office of Computing Activities
1800 6 Street, N.W.
Washington, D.C. 20550

Attention: Thomas Keenan, Program Director

— -••-^•—

