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Abstract 

A scattering matrix theory is presented for studying the multiple 

scattering of both longitudinal and transverse elastic waves in a medium 

containing a random distribution of inclusions or voids of arbitrary shape. 

A statistical analysis with QCA and Percus-Yevick pair correlation function 
/ 

isthen employed to obtain expressions for the average amplitudes of the 

coherent fields which may be solved to yield the bulk or effective properties 

of the inhomogeneous medium.  Suggestions for incorporating CPA in conjunction 

with QCA so that materials with dense concentration of inclusions can be 

considered are also given. 
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Introduction 

In recent years, considerable effort has been devoted to promoting 

the development of elastomeric absorbing materials, containing a 

distribution of cavities and inclusions, which are bonded to submerged 

structures to control the sound radiated by these structures as well as 

to modify their acoustic reflection characteristics (echo reduction). To 

use such absorbing layers, it is important to determine how their physical 

properties such as density, thickness and effective elastic moduli, and 

material composition such as distribution and orientation of the inclusions 

and their size distributions affect the acoustical behavior of any actual 

sturcture coated with that material. 

The waves incident on such inhomogeneous media undergo multiple 

scattering due to the presence of inclusions thus reducing the scattering 

amplitude or cross section by absorption and attenuation of waves. The 

attenuation depends critically on the material properties of the host 

medium (matrix) and inclusions, the distribution of the inclusions and the 

frequency of the incident wave. The problem is very difficult and to our 

knowledge, rigorous theories with numerical results are not available in 

the literature. 

In multiple scattering theories, approximations are usually made at 

a very early stage for a) the geometry of the inclusion, b) the size of 

the inclusion relative to the wavelength of incident wave, and c) 

distribution of the inclusions in the matrix medium. The approximations 

with respect to geometry and size are related.  If the inclusion is small 

compared to the incident wavelength, it is not possible to "see" exact 



details of the inclusion and usually one is content to obtain the gross 

scattering properties of the inhomogeneous medium. This is the so-called 

Rayleigh or low frequency limit, and yields corrections to the solution 

for point scatterers. As far as the distribution of the inclusions is 

concerned, one either has regular arrays of inclusions or a random 

distribution.  In the former case, one performs a lattice sum while in 

the latter case, one  employs a configurational averaging procedure.  If 

the concentration of inclusions is small, i.e., the inclusions are sparsely 

distributed, we may use a single scattering or first Born approximation. 

Approximations have been employed by many authors and the corresponding 

effective properties of the medium were studied at the low frequencies and 

low concentrations,, see for example, Waterman and Truell [1], Merkulova [2], 

Chaban [3,4], Chatterjee and Mai [5], Domany, Gubematis and Krumhansl [6], 

Korringa [7], Kroner [8], Datta [9] and the references therein. Actually 

the real problem warrants a rigorous multiple scattering theory and a 

computational approach to study the frequency dependent properties of the 

inhomogeneous media which will be valid for frequencies comparable to 

scatterer size and for a wide range of concentrations, shapes and sizes. 

Recently, the present investigators have developed a multiple scattering 

formalism by introducing the concept of a T-matrix for individual inclusions 

that makes the formulation more general and applicable to a variety of 

different scatterers, see Refs. [10-20]. The method also lends inself to 

numerical computations for higher frequencies of the incident plane wave as 

well as more realistic geometries for the inhomogeneities. The dynamic 

elastic properties of composite elastic media have been studied in [20] 

using this formulation, and the concept of an average frequency dependent 
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elastic stiffness tensor following the work of Bedeaux and Mazur [21], 

and Varadan and Vezetti [22]. The results seem to be promising for future 

research in this area.  In Ref. [20], we have shown that a Clausius-Mosotti 

type formula for the average shear modulus can be recovered in the low 

frequency limit.  For higher frequencies, we have obtained the dynamic 

properties for a range of frequencies.  The extension of the theory 

presented in [20] to acoustic and elastic wave scattering will be useful 

for Naval applications. 

The present state of the art is as follows:  the statistical considerations 

seem to be the most difficult for three dimensional inclusions and the least 

amount of progress has been made in this area. All formalisms that involve 

ensemble averaging result in a heirarchy of equations for the average fields 

that involve higher and higher order correlation functions. This heirarchy 

must be truncated in some fashion.  Foldy [23] approximated the field incident 

on a scatterer by the average field itself.  Lax [24] was the first to use 

a quasi-crystalline approximation which involves the two particle correlation 

function. At the moment, only the 'hole correction' has been taken into 

account in a systematic way.  Bose and Mai [25] have tried correlation 

functions that fall off exponentially with distance.  Recently, Twersky [26] 

has used the scaled particle equation of state of a gas of hard spheres to 

obtain improvements to the hole correction integral.  The T-matrix formalism 

employs Lax's quasicrystalline approximation (QCA), the hole correction 

integral and results in a set of equations that must be solved in a self- 

consistant manner. 

In this paper, a radially symmetric pair-correlation function given by 

Percus-Yevick (P-YA) integral equation [27] is introduced which gives 

I 
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improvements to the hole correction integral. The "well-stirred" approximation 

(WSA) was used previously by us which assumes no correlation between the 

scatterers except that they should not interpenetrate. The WSA seems to 

depend on concentration and frequency. At low frequency or Rayleigh limit, 

WSA gives good results up to concentration, c <_ 0.04 and unphysical results 

for c >_ 0.125 [28], However, at higher frequencies and higher concentration, 

the WSA with quasi-crystalline approximation (QCA) yields better results. 

At resonance frequencies we note that P-YA is so far the appropriate 

correlation function to  be employed [29-31]. 

Formulation of the Problem 

Consider N identical, finite elastic inclusions that are randomly 

distributed in a different elastic medium, see Fig. 1. The scatterers are 

homogeneous with elastic properties given by Lame's constants X. and y. and 

density p.. The properties of the outside medium (call matrix) are given 

by X, \x  and p.  In Fig. 1, 0. and 0. refer to the center of the i-th and j-th 

scatterers, respectively and they are referred to the origin 0 by the 

spherical polar coordinates (r. , 6., <j>.). P is any point in the medium 

outside the scatterers (the matrix medium). 

A time harmonic plane wave of unit amplitude and frequency u is 

incident on the medium such that the direction of propagation of the incident 

waves is along the z-axis, which may be written in terms of displacement 

field vector u : 

+0 *    i(k 2-ut)z   i(k 2- t)x 
u (r) = e  P     • e 

(1) W 

•! 
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where k and k are the compressional and shear wave numbers given by 

k = u/c  ; c = /(X *2U)/P (2) 

ks = u/cs  ;  cs = ^7p^ (3) 

t 
and t is the time.  The waves incident to the discrete random media will 

•^s •* 
undergo multiple scattering.  Let u.(r) be the field scattered by the i-th 

scatterer. The incident and scattered fields satisfy the vector Helmholtz 

equation. The problem at hand reduces to computing the total wave field 

at any point in the matrix medium and hence the bulk properties, satisfying 

the appropriate boundary condition on the surface of the scatterers and 

radiation conditions at infinity. 

The total field at any point in the matrix medium can be interpreted 

as the sum of the incident field and the fields scattered by all the scatterers, 

which can be written as 

N 
-*"0,-*\ 

u(r) = u (r) + I    u.(p.)  ; p. = r-r 
i=l x x     x     1 

(4) 

i: 

ii 

However, the field that excites the i-th scatterer is the incident field u 

plus the fields scattered from all other scatterers except the i-th. The term 

~*e 
exciting field u is used to distinguish between the field actually incident 

on a scatterer and the external incident field u produced by a source at 

infinity. Thus, at a point r in the vicinity of the i-th scatterer, we write 

i 

+0 *    N 
üf(r) = ü (r) • l    uf(p.)  ; a <_ \p   | <2 1 W    J J J (5) 
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where 'a' is a typical dimension of the scatterer. 

The exciting and scattered fields for each scatterer can be expanded 

in terms of vector spherical functions with respect to an origin at the 

center of that scatterer: 

2 •       ft       Z . . 
ue(r)  »    I I        I        I b\       Re*,     (p.)  =    I b1    Re?           (6) l               L, .L,       Ln      L, Tino xlnc    1/ L      xn          tn 

T = 1 «,= 1 n=0 a=l tn 

uS(r)  =1      B1    V (7) iK  J      L        xn Yxn 

where i> (T = 1,2,3) are the vector spherical vector basis functions [19]. 

Field quantities that are regular at the origin are expanded in terms of the 

regular (Re) basis set (Re *   ) obtained by replacing the Hankel function 

of the first kind, h , in the above equations by the spherical Bessel functions 

j of the first kind.  In Eq. (7), we abbreviate these vector basis functions 

-*•.-*• -* • 

as $ „  = i>     .  We note that il>,  is for the longitudinal part while la- tino   in In r 2n 

and *,  for the transverse parts.  The choice of the basis set in Eq. (7) 

satisfies the radiation condition at infinity for the scattered field, 

while the choice in Eq. (6) satisfies the regular behavior of the exciting 

field in the region a < |p.| < 2a. The superscript i on the basis functions 

refer to expansions with respect to 0., and b  and B  are the unknown r r      l     tn    tn 

exciting and scattered field coefficients.  We also expand the incident 

field in terms of vector spherical functions: 



' ' •—'—-'—  
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I 
I 
I ±0- e       1 I  c*• 1) 1»«. ?}t, *t>0 i k s=0 t=-s 

ike.  °°   s 

I 
r. 

•**~pl l L&v'-'l-K'lw1»...*] 

1    r.  "ti 
+ iT Re*3t; s 

[5t,l "S(S+1) 5t,-l]( (8) 

where 5  is the Kronecker 6.  For the sake of simplicity, we write the 
mn 

incident wave field in terms of expansion co-efficients a  as follows r xn 

-»•Or       _  -fi u = >  a  Re <p  e 
xn 

i k -T. 
x i (9) 

where a  are the known incident field coefficients, 
xn 

The unknown coefficients b  can be related to B  by means of any xn xn 

convenient scattering operator, in this case we employ the T-matrix, see 

Ref. [32]. 

B1 - I        T1   , , b\ ,  . tn  TTn,  xn.x'n1 x*n' 

Substituting Eqs. (6), (7) and (8) in (5), we obtain 

(10) 

B 
I 
I 
I 

I      b1 Re V    = e L        xn    xn 

ik z>r. N 

xn 
I   Re?1  +  y    I    BJ V      an L xn  M.    L        xn xn 

Ji*i xn xn 
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Since the field quantities are expanded with respect to centers of each 

scatterer, we obtain Eq. (9) with basis functions with respect to i-th 

and j-th centers.  In order to express them with respect to a common 

origin 0., we employ the translation and addition theorems for the vector 

spherical functions [35] which may be written in a compact form as follows: 

V    = %    (r-r.) = y   o   . , (r.-r.) Re ip1, ,  .      (12) 
•en   xnv  \J V i  tn t'n1 k I l    rT'n' J T'n' J 

Employing Eq. (12) in (11) and using the orthogonality of the vector 

spherical basis functions, we obtain the following set of coupled algebraic 

equations for the exciting field coefficients b 

i k T     N 
b1 = a  e  T1+  T   I        BJ, , o , .   (r.-r.)   (13) 
in   in .jj. Ttn,  T'n' T'n'.to  l jJ 

With the scattered field coefficients B  expressed in terms of exciting 
m 

field coefficients b  and the T-matrix as given by (10), Eq. (13) gives 

the exciting field formulation of the multiple scattering.  If we multiply 

both sides of Eq. (13) by the T-matrix, then we obtain the scattered field 

formulation of multiple scattering which may be written as 

B1     H  B*(i)   - xn        xn &.    T5n.T»n"    [Vn" exP(i V?> 

N 1 
*   J.     L    Vn' Bf«'.fW CVVJ jfi    x'n' *   -> 

(14) 

J 
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From Eq. (14), it can be seen that the scattered field coefficients 

of the i-th scatterer explicitly depend on the position and orientation 

of other scatterers.  In this paper, we consider a random distribution 

of spherical scatterers and the case when N •* °° and the volume occupied 

by the scatterers V * " such that N/V = n. is a finite number density. 

For such distribution, a configurational average of Eq. (14) can be 

made over the positions of all scatterers [28-32] with QCA [24] to arrive 

at an equation for the configurational average <B >. of the scattered 

field coefficients with one scatterer fixed: 

<B 1 >• = I 
Tn x   ,»t«n T"n' 

i k T. 
T  i 

T"n' 

+ (N-l)  y   / p(r-|r )<Bj >. a , ,  „ „ dr. 
Trn,  v    J  x   n }     T'n' T"n"  j 

where p(r.|r.) is the two particle joint probability density. 

The joint probability density is defined as 

Ig(|r.-r.|)  ;  |r.-r.| > 2a 

PC^Ir.) = 
;  r.-r.  > 2a 

3  i 

(15) 

Equation (16) implies that the particles are hard (no-interpenetration) and 

the excluded volume is a sphere of radius 'a' although the particles 

themselves may be non-spherical. The function g(|r.-r.j) is 

called the pair correlation function and depends only on [r.-r.[ due to 

i 

J 
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translational invariance of the system under consideration. The pair 

correlation function for an ensemble of particles depends on the nature 

and range of the interparticle forces. The average of several measurements 

of a statistical variable that characterizes an ensemble will depend on 

the pair correlation function. To obtain expressions for the pair 

correlation function, one needs a description of the interparticle forces. 

In our case we assume that the scatterers behave like effective hard 

spheres (where the radius 'a' is that of the sphere circumscribing the 

scatterer).  Percus and Yevick [27] have obtained an approximate integral 

equation for the pair correlation function of a classical fluid in 

equilibrium. Wertheim [34] has obtained a series solution of the integral 

equation for an ensemble of hard spheres. The statistics of the fluid 

are then same as those of the ensemble of discrete hard particles that 

we are considering. 

Although integral expressions for the correlation functions also 

result in a heirarchy, Percus and Yevick have truncated the heirarchy by 

making certain approximations that result in a self-consistent relation 

between the pair correlation function g(x) and the direct correlation 

function C(x). The direct correlation function may be interpreted as 

the correlation function resulting from an 'external potential' that 

produces a simultaneous density fluctuation at a point and the external 

potential is taken to be the potential seen by a particle given that 

there is a particle fixed at another site. Fisher [35] comments that 

the Percus-Yevick approximation is a strong statement of the extremely 

sho-* range nature of the direct correlation function. The integral 

equation has the form 
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T(X) = 1 • n   /   T(x')dx' - n      /     T(x')T(x-x')dx'   (17) 
0 x<2a °   x'<2a 

|x-xrj>2a 

where 

T(X] s g(x) ; x > 2a 

g(x) • 0 ; x < 2a 

T(X) = -C(x) ; x < 2a 

C(x) s 0 ; x > 2a 

(18) 

Wertheim [34] has solved the integral equation by Laplace transformation 

that results in an analytic expression for C(x) in the form 

C(x) = -(1-n)"4 [(l+2n)2 - 6n(l+j n)2x • n(l+2n)2 x3/2] ; n = c/8    (19) 

where 'c' is the effective spherical concentration of the particles.  The 

Percus-Yevick approximation fails as the concentration approaches the 

close packing factor for spheres and is expected to be good for c < 0.3 or 

0.4. 

Equation (19) can be substituted back into Eq. (17) to yield a 

series solution for g(x) in the form [34] 

8(x) • I      g (x) 
n=l 

(20) 

where 

LW • ^~T /et(X"n) [L(t) I S(t)]n tdt Mnxi (21) 

  
•Mfc^h . 
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S(t) = (l-n2)t3 + 6n(l-n)t2 + 18n2t-12n(l+2n) (22) 

and 

L(t) = 12n [(l*n2)t • (l+2n)] (23) 

Throop and Bearman [36] have tabulated g(x) as a function of x for values 

of n = c/8.  A few representative plots of the pair correlation function 

are shown in Fig. 2. 

To solve the integral equations given by (15), we consider the 

inhomogeneous medium with discrete scatterers as a homogeneous continuum 

and assume that the average coherent wave is a plane wave propagating 

with an effective wave number K in the same direction as the incident 

plane wave.  We can thus write 

i KT. 
<BX > = X  e    1 

tn    xn 
(24) 

where X  is the amplitude of the coherent wave. 
tn        p 

Substituting Eq. (24) in (15) employing the joint probability function 

as defined before and the divergence theorem to convert the volume 

integral in (15) to surface integrals and using the extinction theorem 

which cancels the incident wave, we obtain a set of simultaneous coupled 

homogeneous equations for the coefficients X  given by 

X  • C 
in 

|n'+n"| 
y  y  y       XT     cH       *   rx) 

,/„  * , ' | , „|  Vn'  Tn,T"n" T»n',T"n"  ,.2  IT 2   ^:>) 

•c"n" x'n'  q= n'-n" ' (k  -K )a 
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where c = 4ir a n_/3 is the effective spherical concentration of the 

scatterers per unit volume, C is an expression containing Wigner 

coefficients, and 

I (K,kT,c) = 
6c 

(kTa) -(Ka) 
j    [2kxa j (2Ka) h'(2kTa) 

• 2Ka h (2k a) j (2Ka)] + 24c  /  x2[g(x)-l] h (k x) j (Kx) dx  (26) 
q     q        x=i        q    q 

At low values of concentration c, g(x) ?£ 1, see Fig. 2, and hence the 

integral in Eq. (26) is negligible which results in a system of uncorrelated 

hard particle statistics. This is what has been referred to as the 'well 

stirred approximation' (WSA) and yields the 'hole correction integral' as 

outlined by Fikioris and Waterman [37] and by us earlier.  If g(x) > 1, 

one can regard the Eq. (26) as a modified 'hole correction integral' which 

is of the same form used by Twersky [26]. 

Equation (25) is a system of simultaneous linear homogeneous equations 

for the unknown amplitudes X  .  For nontrivial solution, we require that 

the determinant of the truncated coefficient matrix vanishes, which yields 

an equation for the effective wave number K in terms of k and the T-matrix 

of the scatterer.  This is the dispersion relation for the scatterer 

filled medium.  Equation (25) is a general expression valid for any 

arbitrary shaped scatterer, since the T-matrix is the only factor that 

contains information about the exact shape and boundary conditions at the 

scatterer. Thus the formalism presented here is valid for all the three 

wave fields. The effective wave number K obtained in the analysis is a 
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complex quantity, the real part of which relates to the phase velocity, 

while the imaginary part relates to attenuation of coherent waves in the 

medium. 

Results and Conclusions 

In the Rayleigh or low frequency limit, the size of the scatterers 

is considered to be small when compared to the incident wavelength.  It 

is then sufficient to take only the lowest order coefficient in the 

expansion of the fields.  In this limit, the elements of the T-matrix can 

be obtained in closed form for various simple shapes (46).  It can be 

shown that at low frequencies, only X , X  and X  .of Eq. (25) 

make a contribution. After some manipulations of the resulting 

3x3 determinant, we obtain the following dispersion relations for 

elastic spherical inclusions embedded in a different elastic medium 

(matrix): 

(l*9c EjHU-Sc E0) 

E2    3V 1+3C r (2+ rf 
1-lSc E. [1+3c Eo] + 

(27) 

(l*9c EMU  I c E2 

9k • 
|*}c|(4. -f ] 

2+ 
3k ' 
 s_ 
k 2 
__2_ (28) 

i 

j 
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where 

j  3X*2u-(3A1+2w1) 
:0 =  3    4u+3X1+2u1 

(29) 

E„ = 
Ju(urP) 24Ul(Ul-u) - (x1+2yi) (19^+1610 

24^(1^-^) - (X1*2p1) (19^ + 16;]) . 

4u(uL-u) + 3(X+2u) (2u1+3u) 

and c = 4wa an/3 is the concentration of spheres, and K and K are the 

coherent wave numbers for longitudinal and shear waves, respectively, in 

the new medium.  Similar expressions can also be derived for spheroidal 

inclusions using the T-matrix obtained in Refs. [32,38].  In the Rayleigh 

limit, the value of K as determined by the above dispersion relations is 

a real quantity for lossless (elastic) material and a complex quantity for 

lossy (viscoelastic) material, and relates to phase velocity V = w/K. 

In this limit, we normally study the dependence of phase velocity on 

concentration, angle of incidence and aspect ratio of the scatterers. The 

teneral tendency of the phase velocity is to increase slightly (for 

inclusion) and decrease slightly (for cracks and cavities) as concentration 

increases. Thus, the phase velocity vs. concentration information is not 

very useful both from theoretical and experimental point of view. The 
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plots of absorption and coherent attenuation due to multiple scattering 

vs. frequency for various concentrations carry more information which may 

eventually be used for designing absorbing materials [39]. 

The dispersion relations given in Eqs. (27) and (28) may also be 

useful in obtaining the effective shear modulus and bulk modulus at low 

frequencies.  Following the work by us [20,22] and by Bedeaux and Mazur [21], 

we arrive at the following shear and bulk moduli (<u> and <B>) of an elastic 

material containing a random distribution of stress free bubbles or 

cavities 

< >   4u-3c E2 (9X+14u) 

U    4y+6c E- (3X+8u) 
(30) 

<B> 
B 

3X + 2u [l-6c E ] 

(3X+2y) [l+3c EQ] 
(31) 

where E and E are defined in Eq. (29). 

To study the response at resonant and higher frequencies, we must 

consider higher powers of k a, and this implies that a larger number of 

terms (X ) must be kept in the expansion of the average field. This is 

best done numerically.  For a given value of ka, the T-matrix for the 

scatterer is computed.  Next, the coefficient matrix M corresponding 

to X  (Eq. (25) is formed. The complex determinant of the 

coefficient matrix is computed using  standard Gauss elimination techniques. 

For a given k a, the root of the equation det M = 0 is searched in the 

complex K plane (K. • iK.) using Muller's method.  Good initial guesses 

were provided by the Rayleigh limit solutions at low values of k a and 

i 

' 

. 
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these could be used systematically to obtain convergence of roots at 

increasingly higher values of k a. The real part K. determines the phase 

velocity, while the imaginary part K. determines the coherent wave 

attenuation. 

Here, we present some sample numerical calculation of spherical 

glass inclusion in epoxy matrix. The longitudinal and shear wave 

velocities of the glass and epoxy matrix are taken as (c ) = 5.28 mm/ysec, 

c = 2.S4 mm/usec, (c ), = 3.24 mm/ysec and c = 1.16 mm/usec, respectively. 
p si s 

We consider a concentration of 44.1% to reflect a high concentration. The 

coherent wave attenuation vs. frequency (longitudinal wave number) for 

this configuration is shown in Fig. 3. The general tendency of attenuation 

is to increase at lower frequencies and shows some oscillation as shown. 

These results are compared with some experimental observations for the 

same composite obtained by Kinra (private communication). The theoretical 

results obtained in this paper compare with Kinra's experimental results 

qualitatively not quantitatively. The reason for this factor difference 

must be explored in the future. The oscillation at higher frequencies, 

however, indicate that the scattering is mostly in the forward direction. 

Thus, in this case repeated scattering should not be important, since 

the backscattered wave is significantly smaller than the forward scattered 

wave. The same observation may be noticed even for electromagnetic waves 

[28] where the theoretical results obtained by our theory are compared 

with experimental data.  (The paper [28] is enclosed for the benefit of 

the reader. 

Since the phase velocity does vary very slightly as a function of 

frequency, the bulk properties depend totally on coherent wave attenuation 
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only. Thus, one can compute the bulk properties which can be plotted 

in the complex plane (Cole-Cole plot) as shown in our paper [30] which 

is also enclosed. 

Recommendations for Future Work 

It is obvious from the preceding discussions on the QCA as well as 

the numerical results that the two major improvements required are for 

the QCA as well as the pair correlation function, so that good results 

can be obtained for all concentrations even at long and intermediate 

values of the wavelength.  In a review article, Lax [40] has suggested 

that in the quantum mechanical context, the QCA could be improved by 

using modified propagators for the fields.  In the classical context, 

this implies that on the average, single particle scattering takes place 

in a macTOScopically homogeneous medium, and, in this respect, this idea 

is the same as the coherent potential approximation (CPA) of Solid State 

Physics. The repeated multiple scattering between pairs of scatterers 

or cluster effects can be improved by making the self consistent 

approximation (SCA) in addition to the CPA. 

For the purpose of discussion of these ideas within the T-matrix 

formalism given earlier, we denote bv u. and u. the fields scattered by 
J     J 

and exciting the j-th scatterer, respectively. The expansion coefficients 

of these fields are denoted by B^ and b , respectively, omitting all 

subscripts. 

The CPA can be expressed succinctly as 

<BJ>. = T(K) <bK. 
J J 

(32) 

. 
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where the T-matrix relating the exciting and scattered field coefficients 

is evaluated using the bulk propagation constant K for the embedding 

medium. Thus the CPA implies that the field scattered by a single 

obstacle in the presence of several others when averaged over the position 

of all scatterers is the same as the field that would be produced by a 

single particle embedded in a macroscopically homogeneous medium described 

by the propagation constant K. The incorporation of the CPA into the 

previous formalism involves changes only in the computations and a 

redefinition of the T-matrix in Eq. (10).  It would be interesting to see 

the change, if any, in the numerical computations as a result of invoking 

the CPA. 

The idea behind the 'self consistent approximation' (SCA) is somewhat 

more suble.  From the discussion in the section on the QCA, it is now clear 

that QCA-CPA neglects multiple scattering between two fixed scatterers. 

The SCA as defined by Schwartz and Ehrenreich [41] restores this by 

stating that 

<B^>.. = T(K) <b3>. 
lj j 

(33) 

where T(K) is the T-matrix of scatterer 'j' in the presence of scatterer 

'i' in the effective medium with propagation constant K. Expressions for 

T(K) as given by Varadan and Varadan [42] may be written as 

T(K) = R(r../2) T[l-o(-r..)To(r..)T] X) l     lj     IJ ' 

fl*a(-r..)TR(r..)] RC-r^/2) 

-1 

(34] 
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where a is a compact notation for the translation matrices B and C 

introduced in Eq. (12). The R matrix is simply the part of o that is 

regular at the origin, i.e., for |r..| =0.  All matrices in Eq. (34) 

are obtained using the bulk Propagation Constant for the host medium. 

We observe that T(K) explicitly depends on r.. the distance between 

'i' and 'j'. The integration procedure will no longer be simple as 

before and the SCA may be rather difficult to enforce in computations, 

especially if more realistic models are chosen for the pair correlation 

function. 

Incorporation of the CPA as well as improved models of the pair 

correlation function into our computations are in progress.  We hope that 

they will shed some light on the sensitivity of multipl; sca:tering 

theories to approximations like QCA and SCA as a function of frequency 

and scatterer concentration. Needless to say additional experimental 

results are required for comparison with these computations. 

J 
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Figure 1.  Random distribution of inclusions of arbitrary shape 
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ABSTRACT 

Acoustic wave scattering by prolate and oblate spheroids and finite 

cylinders immersed in water is compared when rigid body and elastic 

boundary conditions respectively are satisfied at the fluid-scatterer 

interface. The results obtained in the case of rigid body boundary 

conditions are new. The frequency dependence of the scattered far field 

is obtained for various angles of incidence for both types of boundary 

conditions using the Null Field or T-matrix approach. From our computations 

it is concluded that only for restricted material properties of the 

scatterer, scattering geometry and scatterer shape, the scattering 

characteristics of an elastic obstacle and a rigid obstacle of the same 

shape are comparable up to wavelengths comparable to the size of the 

obstacle. 
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INTRODUCTION 

For submerged obstacles in water where rigid boundary conditions are 

rarely satisfied, it has been demonstrated by some authors   that the 

scattering of solid elastic obstacle, whose density and wave velocity is 

much higher than that of water, closely follows the corresponding results 

for a rigid body until the lowest order resonance due to the excitation 

2 4 5 
of a Rayleigh surface wave is observed ' ' . The results are thus usually 

interpreted in terms of a rigid body reflection term and a resonance term. 

This is particularly true for a material such as tungsten carbide . Other 

important considerations are the geometry of the obstacle and the angle 

of the incident wave in question. Until a few years ago, numerical 

results were available only for infinite circular cylinders and spheres 

especially for the elastic case. 

The purpose of this paper is to compare the scattering of acoustic 

waves by non-spherical rigid and elastic obstacles immersed in water so 

that one can verify if in fact the scattered pressure field produced by 

rigid and elastic obstacles of the same shape are the same for a wide range 

of frequencies of the incident plane wave, as well as several angles of 

incidence. The geometries that we consider are the prolate spheroid, 

the oblate spheroid and a finite circular cylinder with hemispherical 

end caps. The first two represent quite well long, narrow and flat 

obstacles respectively while the third is a good practical model to 

test the effectiveness of the scattering theory proposed here. 

Recently, theoretical results have been obtained for the elastic 

7-9 
obstacle in water for all three cases   using the Null field or T-matrix 

!. 
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method for arbitrary angle of incidence.  For a review of the T-matrix 

approach, we refer to Varadan and Varadan . Surprisingly enough results 

are not presently available in the literature for the scattering of sound 

waves by rigid scatterers although this is easier than the corresponding 

problem with an elastic obstacle. At the present time the only result 

that can be found in the literature for non-spherical rigid scatterers 

are those given by Bowman, Senior and Uslenghi    • They have presented 

the frequency dependence of the scattering cross section of several 

different prolate and oblate spheroids but with the restriction that the 

incident plane wave propagates along the symmetry axis of the spheroid. 

The method employed by them is the separation of variables approach 

employing spheroidal functions.  It is generally understood that spheroidal 

functions of non-zero azimuthal index are difficult to compute numerically 

and these are necessary to study the case of oblique incidence. Moreover, 

numerical results are not available for rigid finite cylinders in the 

literature. Experimental investigations in the high frequency range 

have been carried out by Dragonette , Lang  et. al, for various rigid non- 

spherical scatterers and comparisons were made with the modified Freedman theory 

In Section II, the necessary equations for obtaining the T-matrix 

of a rigid scatterer are presented briefly. Details of the formulation 

may be obtained from Refs. 8 and 4.  In Section III, numerical results 

are presented for rigid prolate and oblate spheroids as well as finite 

circular cylinders with spherical end caps. These results are presented 

in terms of the far field scattered pressure as a function of frequency 

for several scattering geometries. Comparisons are made with the 

corresponding case of elastic obstacles and the similarities and 
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differences are noted and discussed.  From our computations it is 

concluded that only for restricted material properties of the scatterer, 

scattering geometry and scatterer shape, and the scattering characteristics 

of an elastic obstacle and a rigid obstacle of the same shape are 

comparable up to wavelengths comparable to the size of the obstacle. 
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II.  T-MATRIX OF RIGID AND ELASTIC OBJECTS IN WATER 

%)    Rigid Objects 

Consider an obstacle described by the boundary S and continously 

turning unit outward normal n immersed in a fluid of mass density p 

and compressibility Xf. A plane harmonic wave of frequency oo is incident 

on the scatterer. All fields will have the same harmonic time dependence 

and this time dependence is not written explicitly. The pressure %  in 

the fluid is given by 

<)>(r) = <J»°(r) + <f>S(r)  ; r outside S (1) 

where 4> and <J> are the incident and scattered pressure fields respectively. 

All three fields satisfy the Helmholtz equation given by 

• 0 (2) 

where c. is the sound speed in the fluid. The integral representation 

and the extended boundary condition or null field equation have been 

presented in Waterman's original paper on the T-matrix formulation of 

acoustic wave scattering . They are 

I ^ <fr+ n-7 g(r,r ) - (n-V+*) g(r,r ) | dS 

S •*•     •*• 
| (r) ; r outside S 

o •*•   * 
-4> (r) ; r inside S 

(3) 

J 
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where 

,-*• •*• -»• -•' 
g(r,r )  = exp  [i kf|r-r'|]/ kjr-r |     ;  kf = <o/cf (4) 

is the free space Green's function of the Helmholtz equation. The 

quantities <f> and n'V $ are respectively the pressure and normal component 

of the fluid velocity just on the outside of S. 

If the scatterer is rigid, the boundary condition at S is that 

n«V <j>(r') =0 ; r on S (5) 

The philosophy of the T-matrix approach is to expand all field quantities 

appearing in Eq. (3) in terms of a set of spherical functions in order 

to obtain the T-matrix that relates the known coefficients of expansion 

of the incident plane harmonic wave to the unknown expansion coefficients 

of the scattered field. To this end we define the following scalar 

basis function 

fnma (r) E  h (k.r) P"'(cos 9) 
nm n r   n 

cos mj> 

sin m<J> 

a=l 

0=2 
(6) 

1 
1 
1 
I 
I 

where 

m     r   (2n+l) (n-m)i ] 
nm   L m  4ir (n+m)!  J 

1/2 
e • 1, c =2;n>0. 
0      • 

The wave function defined above may be used to expand fields that 

satisfy radiation conditions at infinity, but to expand fields that are 

finite at the origin, we replace the Hankel function h (•) by the spherical 



  

Bessel functions j (•). The functions that are regular at the origin are 

denoted by the letter 'Re1. Here 'Re' stands for regular rather than 

real. 

The incident and scattered fields outside S are expanded according to 

CO QO 2 

)°(r)  •      I J        Fa        Re $.      (r) *  ' L
n 

L
n      L,      nma        Yfnmav 

n=0 m=0 a=l 

S,-* (r)  •      I        J        J      f       *-      (r) L
n      '•        L.      nma    fnma n=0    m=0    a=l 

(7) 

(8) 

where a        are known and f       are unknown.    For a plane harmonic wave nma nma 

incident in the x-z plane  (<)>    =0),  see Fig.  2 

4IT    _       .n-1  „mf„  N   , a        = s—   £       l        P  (6  )   S     . nma      k-      nm n    o      a,l (9) 

The Green's function g and the unknown surface pressure <t>    in Eq.   (3) 

are also expanded as follows: 

g(r,r')  = i kf I H •fterCT>)  h^lT,), (10) 
nma 

> + (r)  -HI *—*!*.& (11) 
nma 

Using Eqs. (5) - (11) in Eq. (3) and considering points r that are 

inside the sphere inscribing S and points r that are outside the sphere 

circumscribing S respectively (see Fig. 1) we obtain 16 
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& , *•, '•     Tin» ,n'm'o ' an n1 m' a m'a' = -a nmo (12) 

and 

i J J I Re 0    ..,*..." f *•, '•, L, Tima.n'm'a' n'm'a'   1 n'm'a 
nnu (13) 

: 

where 

% ma 
,   f 

, n'm'a'    / Re <b. ,   ,    n-7 <Ji-   dS 
fn'm'a     fnma (14) 

From Eqs. (12) and (13), we obtain the following relationship between 

the incident and scattered field coefficients 

f = -Ta (15) 

where T is the T-matrix given by 

T *  *   Re 0 0 nmo,n'm'a'  n"m"a"   T\mo,n"m"o" TI'V'O",n'm'a' (16) 

!. 
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The T-matrix depends on the frequency of the incident wave, the geometry 

of the obstacle and the boundary conditions at the interface. 

Any symmetries that the scatterer has will reduce certain elements 

of the T- and Q-matrices to zero. Scatterers with an axis of revolution will 

make the Q- and T-matrices block diagonal in the azimuthal index thus 

simplifying the computations. 

From Eqs. (15) and (16), we obtain expressions for the coefficients 

of expansion of the scattered field. At distances far from S, the field 



consists of outgoing spherical waves with an amplitude that depends on 6 

and <f>.  The amplitude of the scattered far field may be written as 

*CM)   • Z  I  «n-  4"     PJCOS   8>      ffln,nCOS  m*   +   f9rnnSin  "*] (17> 
n m 

nm    n 2mn" 

where we have explicitly written all subscripts and superscripts for 

the scattered field coefficients f nmcr 

A  
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b) Elastic Obstacle 

Now we consider an elastic scatterer of arbitrary surface S immersed 

in water. The elastic properties of the scatterer are given by the 

Lame constants X  and y and mass density p while the properties of the 

fluid are given by the compressibility X and mass density p..  In this 

case although the scatterer is again immersed in a fluid governed by the 

scalar wave equation, it is convenient to use a vector formalism for 

both the fluid (outside S) and solid (inside S) regions to facilitate 

application of the boundary conditions. All the details of the vector 

formulation have been given in Ref. 2. Only the most pertinent results 

will be presented here. 

The integral representation for the displacement field u = u + u , 

the sum of the incident and scattered parts, in the fluid region is given 

by 

J    {«; • fa' • IfCr,r')] - Gf(r,r') • t;} dS1 

(18) 
-»S 
u 

-»•o 
-u 

r outside S 

r inside S 

where G_and J. are the vector analogs of the free space Green's function 

4 -*- 
g and its gradient . The quantity t in Eq. (18) is the traction vector 

-»• 

which is related to u by Hooke's law according to 

t * n • [XIV'u + u(Vu + uV)J (19) 

! . 

[ 
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In an invicid fluid the shear modulus, u, is zero and the Lame constant x 

is simply the compressibility and hence t becomes the fluid pressure 

on the surface S. 

For the region inside S, the displacement u, is governed by the 

following representation 

/ j u • [n • I(r,r')] - £(r,?) . t_(r') JdS 

-u.(r)  ;  r inside S 
(20) 

0    ;  r outside S 

•+• 
•+• 

where G is the Green's displacement dyadic and l  is the Green's stress 

dyadic that is related to G by Hooke's law 

The incident and scattered displacement fields are expanded in 

vector spherical functions as follows 

-•o 
*i°(r) = J      I      I      a   Re I. 

n=0 m=0 o=l  nma    fnma 

and (21) 

n  2 
uS(r) -I      I      It 

n=0 m=0 a=l 
nmo fnma 

where 

fnno   Tnmov f ' 
(22) 

is the wave function in the fluid. 

10 
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The relevant boundary conditions at S are given by 

n1 • u1 = n' • u'   :    n1 * i* = n' * t'     ; 

(23) 

(n' • t')      . , = 0 (r1 on S) 
+ tangential 

Omitting all the details which can be found in Ref. 8, the incident and 

scattered field coefficients are related through the T-matrix as given 

by 

nm I 
n'm'a' nma,n'm'a' n'm'a 

a 
•m'fl1   n lmfrr * 

(24) 

where 

T = -Re [QR_1P] [QR_1P]-1 (25) 

r 
The matrices Q, R and P are given in Ref. 8. The far field scattered 

amplitude given by Eq. (17) can thus be computed by numerically evaluating 

the Q, R and P matrices. 

II I- 
i: 

I i: 
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III  DISCUSSION OF NUMERICAL RESULTS 

The amplitude of the scattered field at distances far from the 

scatterer has been calculated for three different geometries a) prolate 

spheroid, b) oblate spheroid and c) finite cylinders with spherical end 

caps for two types of scatterers namely rigid fixed obstacles and elastic 

solid obstacles. The incident wave was taken to be a plane harmonic 

wave of frequency w. Since the obstacles considered have an axis of 

revolution which is taken to be the z-axis, without loss of generality 

the plane of incidence can be taken to be in the x-z plane and a is 

the angle of incidence with respect to the positive z-axis (see Fig. 2). 

If b/a > 1, the spheroid is prolate and is oblate for b/a < 1. 

The elements of the Q-matrix in Eq. (14) and the matrices Q, R and P 

in Eq. (25) were obtained by Gauss-Legendre quadrature formulas by 

using the appropriate equations to describe the surface. The inverse 

matrices appearing in the definition of the T-matrix in Eqs. (16) and 

(25) were obtained with both the Waterman procedure of orthogonalization 

incorporating the symmetry and unitary properties as well as by 

straight inversion of the Q-matrix using Gaussian elimination. 

In Figs. 3-7, we compare the far field amplitude of the scattered 

pressure field for the elastic and rigid prolate spheroid with an 

aspect ratio of 2:1. The material properties used in our computations 

are given in Table I.  Figure 3 is the far field amplitude for 9 = 0°, 

end-on incidence, along the z-axis and 9 * 90°, i.e., observation in the 

x-y plane.  For this scattering geometry it is not possible to distinguish 

an elastic spheroid (solid line) from a rigid spheroid (dotted line) 

12 
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in the low kfJ,> region (kA = 0-2), where l>  is half the largest dimension of 

the scatterer. However, the null at kJl ~ 6.0 is very sharp for the 

elastic case and fairly shallow for the rigid case. Figure 4 is the 

back-scattered pressure field for 9 =0°. The maxima and minima come 
o 

very close and only at the highest value of k Ji, some differences are 

noticeable. Figure 5 is for 9 = 45° and 9 = 180°.  In Fig. 6, a 

dramatic difference can be noticed for 9 = 45° and 9 = 135° (back 

scattering). Two prominent peaks are present for the elastic case at 

k-£ -«- 4.0 and k t » 7.0 which are absent for the rigid case.  In 

Fig. 7 the back scattered field for 9 = 90°  is plotted. The elastic 

scatterer behaves in a noticeably different manner although the 

difference is not as much as that seen in Fig. 6. 

Figures 8-12 compare the scattering from rigid (dotted lines) and 

elastic (solid line) oblate spheroids of 2:1 aspect ratio. Figure 8 

compares the scattered pressure amplitude for 9=0° and 9 = 90°. This figure 

is very similar to Fig. 3, which is for a prolate spheroid. Again the 

minima for the elastic case are more noticeable than for the rigid case. 

Figure 9 is the comparison of the back scattered field for 9 =0°. 

It is seen that the behavior of the elastic oblate spheroid is signifi- 

cantly different from that of a rigid one. Figure 10 is the bistatic 

amplitude for 9 = 45° and 9 = 180°. The elastic spheroid has a 

very pronounced minimum at kJl> ^5.3 which is absent for the rigid case. 

The back scattered field for 6 • 45° shown in Fig. 11 is also dramatically 

different for rigid and elastic boundary conditions. Finally, for the 

oblate spheroid back scattering at 9 • 90° is compared for the rigid 

and elastic cases in Fig. 12. Although there are differences, it is 

not as much as for 9 « 45°. 
o 

13 



m^mmmimi« ' 

Figures 13-17 are for the finite circular cylinder of length 

2h capped by hemispheres of radius 'a' at either end, see Fig. 2. 

The plots are of the scattered pressure versus Y..L  where I -  h+a, the 

half length of the cylinder. The bistatic (9 = 90° in the x-y plane) 

and backscattered fields for 8 =0° are almost identical for the rigid 

and elastic cases, see Figs. 13 and 14, except at kJl *6.0 where elastic 

obstacle shows a sharp null in the bistatic amplitude. For 9 = 45°, 

the bistatic field for 9 = 180° (Fig. 15) displays a sharp minimum at 

kJl *» 6.0 for the elastic obstacle whereas a maximum can be noticed at 

the same wavenumber for the rigid obstacle. The back scattered field 

for 9 = 45° displays a very prominent maximum at k JL  — 4.0 and a minimum 

at kj. — 5.5 for the elastic finite cylinder which are absent in the 

rigid case, see Fig. 16.  It is interesting to observe from Figs. 6 and 

16 that the position of the peak (kJl ^4.0) is the same for the prolate 

spheroid and the finite cylinder. However, the peak present at k-£ — 7.0 

for the prolate spheroid is absent in Fig. 16. The backscattered field 

for the rigid finite cylinder at 9 = 90° differs noticeably from the 

elastic case as depicted in Fig. 17.  In Figs. 7 and 17, we note a 

striking similarity in the back scattered far field for 9 = 90° 

between prolate spheroid and finite cylinder of the same aspect ratio. 

In general it is noticed from the data that the position of 

the first peak is the same for rigid and elastic scatterers and that the 

peak is higher for the rigid body for all geometries.  It has also been 

noticed that as the properties of the elastic obstacles approach that 

of a rigid body as in the case of tungsten - carbide ,the scattered fields 

have the same value as that of rigid body. From the studies made thus far, 

14 
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it would appear that one can infer a wealth of information on the geometry 

of an elastic body by calculations on a rigid body of the same shape for 

the frequency range considered. The calculations for the rigid case are 

of course many times less expensive and more accurate. However, we have 

observed (Figs. 6, 9, 10 and 16) that the above statement is not true at 

certain frequencies dependent on the scattering geometry and shape at 

which the elastic case differs widely from the corresponding rigid case. 

These prominent differences as seen in Figs. 6, 9, 10 and 16 are closely 

related to the resonance phenomena of submerged elastic objects and need 

further study and explanation. The numerical results for the elastic 

case are correct and have been verified by experiments, see Refs. 9 and 17. 

The scattering from a rigid body for all angles of incidence may be 

easily explained on the basis of creeping wave analysis . The frequency 

dependence is a periodic damped oscillation. Although a creeping wave 

pattern is noticeable even for the elastic scatterer, the pattern is not 

as regular and breaks down for certain scattering geometries. 

I. 
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TABLE I. Material properties used in computations. 

Water Aluminum 

Density , 
(g/cm 1.00 2.70 

Compressional wave speed 
(X 10-5 Cni/S) 1.482 6.376 

Shear wave speed 
(X 10-5 cm/s) 3.1: 
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Figure  1:    Solid in a fluid 
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Figure 2a: Homogeneous solid spheroid 
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Figure 2b: Scattering geometry 
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Figure 2c: Homogeneous finite cylinder 
with hemispherical end caps 
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ABSTRACT 

The coherent electromagnetic wave attenuation in an infinite medium 

composed of a random distribution of identical, finite scatterers is 

studied. A self-consistent multiple scattering theory using the T-matrix 

of a single scatterer and a suitable averaging technique is employed.  The 

statistical nature of the position of scatterers is accounted for by ensemble 

averaging. This results in a hierarchy of equations relating the different 

orders of correlations between the scatterers.  Lax's quasicrystalline 

approximation (QCA) is used to truncate the hierarchy enabling passage to 

a homogeneous continuum whose bulk propagation characteristics such as 

phase velocity and coherent wave attenuation can then be studied. Three 

models for the pair correlation function are considered. The Matern 

model and the well stirred approximation (WSA) are good only for sparse 

concentrations, while the Percus-Yevick approximation (P-YA) is good for 

a wider range of concentration. The results obtained using these models 

are compared with the available experimental results for dielectric 

scatterers embedded in another dielectric medium.  Practical applications 

of this study include radar meterology and communications through 

hydrometers, dust, vegetation, etc. 
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1.  INTRODUCTION 
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We consider the propagation of plane coherent electromagnetic waves 

in an infinite medium containing identical, lossless randomly distributed 

particles. Our aim is to characterize the random medium by an effective 

complex wave number K which would be a function of the particle concentration, 

electrical size and the statistical description of the random positions of 

the scatterers. The imaginary part of K describes the coherent attenuation 

which is due to multiple scattering only since the particles themselves 

are assumed to be lossless. The understanding of the behavior of Im(K) as 

a function of particle concentration c and/or frequency ka is very 

important in many practical applications, including wave propagation in 

tl  atmosphere and oceans and whenever distribution of random scatterers 

influence electromagnetic wave behavior. 

The theoretical formulation presented here closely follows the 

procedure described in Varadan et. al. [1979] and Bringi et. al. [1981]. 

This approach is based on a self-consistent multiple scattering theory 

and relies on the T-matrix [Waterman 1971] which relates the field 

scattered by a particle to an arbitrary exciting field. The statistical 

description of the random position of the scatterers is used to define a 

configurational average which results in a hierarchy of equations relating 

the different orders of correlations between the scatterers.  Lax's 

[1952] quasi-crystalline approximation is used to truncate the hierarchy 

which results in the usual "hole-correction" integrals.  Following Twersky 

[1977, 1978 a,b], a radially symmetric pair-correlation function is 

introduced and approximate models are chosen from Talbot and Willis [1980]. 
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The "well-stirred" approximation (WSA) was used previously by Varadan 

et. al. [1979] and Bringi et. al. [1981] which assumes no correlation 

between the particles except that they should not inter-penetrate.  In 

particular, the WSA gives unphysical results for c >_ 0.125 at the Raleigh 

or low frequency limit. 

In this paper, we consider two other pair-correlation functions, 

viz. (i) the Matern [1960] model and (ii) the Percus-Yevick [1957] model 

for a classical system of hard spheres.  Computations of Im(K) are presented 

for dielectric scatterers in a dielectric medium, using the above three 

models as a function of frequency and concentration.  We also compare our 

solution to some recent optical propagation experiments conducted by 

Ishimaru [1981].  Sample computations are also presented comparing the WSA 

and the single scattering approximation for a rain medium. 

2.  FORMULATION OF THE PROBLEM 

Consider N identical, finite dielectric scatterers that are randomly 

distributed either in free space or in a different dielectric medium.  The 

scatterers are homogeneous with a relative dielectric constant of e , their 

centers being denoted by 0., 0-, 0_, ..., 0...  They are assumed to be bodies 

of revolution with symmetry axis parallel to the z-direction.  Monochromatic 

plane coherent electromagntic wave is assumed to propagate along the symmetry 

axis of the scatters to satisfy the condition that the effective medium be 

isotropic and polarization insensitive.  The time dependence of the incident 

field and hence the fields scattered by the individual scatterers is all of 

the form exp(-jtut) and this is suppressed in the equations that follow. 

__ 
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Even though the theory presented here is valid for spheroidal scatterers 

[Varadan, et. al. 1981], we present numerical results only for spherical 

scatterers in order to compare our results with available experiments. 

Let E (r) be the electric field arising from the incident plane wave 

and E.(r) the field scattered by the i-th scatterer.  Both these fields 

satisfy the vector Helmholtz equation.  The problem at hand reduces to 

computing the total wave field at any point outside the scatterers, 

satisfying the appropriate boundary condition on the surface of the scatterers 

and radiation conditions at infinity. 

The total field at any point outside the scatterers can be interpreted 

as the sum of the incident field and the fields scattered by all the 

scatterers, which can be written as 

E(r) - E°(r) • f  if $}     ;    %    -  « (1) 
i=l  x  x x     l 

•+S •* 
where E.(p.) is the field scattered by the i-th scatterer at the observation 

point r.  However, the field that excites the i-th scatterer is the incident 

field E plus the fields scattered from all other scatterers except the i-th. 

The term exciting field E is used to distinguish between the field actually 

incident on a scatterer and the external incident field E produced by a 

source at infinity.  Thus, at a point r in the vicinity of the i-th 

scatterer, we write 

a <   | < 2a l?(?) * E°(r) • I      ESAe.)     ; a < |p | 1 in    J   J J 
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where * a' is a typical dimension of the scatterer. 

The exciting and scattered fields for each scatterer can be expanded 

in terms of vector spherical functions with respect to an origin at the 

center of that scatterer: 

Ee(?) 'I        I I I      b\      Re | ,  (p.) 
T-l til      n=0  a=l  T*no    xlna    ' 

= I    b1 Re?1 L
      tn    Tn 

tn 

(3) 

ES(r) = I    B1 V x    J L      tn xn xn 
(4) 

where the vector spherical functions are defined as 

W?> =7x[;hi1)(kr)] Y*no«-» (5) 

*2tno^ =k Vx«Wr) (6) 

In equations (3-6), k is the wave number; hj ' is the Hankel function of the 

first kind and the Y.  (6,$) are the normalized spherical harmonics defined 

with real angular functions.  In Equation(3), the exciting field is expanded 

in terms of the regular (Re) basis set (Re ty    ) obtained by replacing h   in 

Equations (5-6) by j , the spherical Bessel functions of the first kind. Thus, 

ehe  choice of the basis set in Equation (4) satisfies the radiation condition 

at infinity for the scattered field, while the choice in (3) satisfies the 
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regular behavior of the exciting field in the region a < |p.| < 2a. The 

superscript i on the basis functions refer to expansions with respect to 

0., and b  and B  are the unknown exciting and scattered field coefficients, 
l'    tn    in 6 

We also expand the incident field in terms of vector spherical functions: 

f°(?) =elkz'ri I    a  Re £ <?.) (7) L      in    xn l 
xn 

where a  are the known incident field coefficients, 
xn 

The unknown coefficients b  can be related to B  by means of any 
xn xn 

convenient scattering operator, in this case we employ the T-matrix as defined 

by Waterman [1971]: 

Bxn =   . Txn,x'n' bx'n' • (8) 
x'n1 

Substituting Equations (3), (4) and (7) in (2), we obtain 

I    b1 Re t    = eikz'ri [ t  to |L • I   \    Bj P (9) 
ra  xn   vxn        J  xn   ^xn   Jf ^  xn ^xn 

Since the field quantities are expanded with respect to centers of each 

scatterer, we obtain Equation (9) with basis functions expanded with respect 

to i-th and j-th centers.  In order to express them with respect to a common 

origin 0.,  we employ the translation and addition theorems for the vector 

spherical functions [see, for example, Bostrom, 1980] 

which may be written in a compact form as follows 



*xn<pj> - 

Li aTn,T-n'^ij) Re*T'n'^ ; !•«! > l?±l x'n 

? , R.n,fn'^ij) ^fB'^  ;  '•«! < I'll x'n 

(10) 

where p.. = r.-r. is the vector connecting 0. to 0., a   , , is the 

translation matrix for the vector functions and R   , , is a matrix with tn, T * n' 

spherical Hankel functions in a , , , replaced by spherical Bessel functions. 

Employing Equations (8) and (10) in (9) and using the orthogonality 

of the vector spherical basis functions, we obtain the following set of 

coupled algebraic equations for the exciting field coefficients b tn 

,1      lkZT-, b  = e    x a      + 
tn tn j 7* 1 tn T ' n * 

a      (0 •) TJ      bJ Tn,T*n,l-MijJ Tn.T'n'  T'n' (11) 

From Equation (11), it can be seen that the exciting field coefficients 

of the i-th scatterer explicitly depend on the position and orientation of 

the other scatterers.  In this paper, we consider a random distribution of 

spherical scatterers and the case when N •* • and the volume occupied by the 

scatterers V * <-  such that N/V = n is a finite number density.  For such o ' 

distribution, a configurational average of Equation (11) can be made over 

the positions of all scatterers [see Varadan et. al., 1981] with QCA 

[Lax, 1952] to arrive at an equation for the configurational average 

<b >. of the exciting field coefficients with one scatterer fixed: 

.1 „     lkZT 
<b >. = e xn x 

rn'  T"n" 

/ p(r.|r.) a . . ,, „(p. .) <b^ >. dr. 

(12) 
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where p(r.|r.) is the two particle joint probability density.  In obtaining 

the above equation, we have assumed that all the scatterers are identical. 

We now assume that the average field <b >. (the coherent field) 
-rn l 

propagates in a medium with an effective complex wave number K = (K +iK_)z 

in the direction of the original incident field in the discrete random 

medium: 

<b\       >  - il Y,  , e1 K*ri 
lami l      lam£ 

<bi  > = i* Y    eiK'ri 
2omi i      2ami 

(13) 

(14) 

Substituting Equations (13) and (14) in Equation (12) and invoking the 

extinction theorem to cancel the incident wave term in (12), we obtain 

the following eqqations for the unknown amplitudes Y    and Y 
20mA 

00 oo 

n=l    p=l    m=|n-n'| 

{'m.   [(T"p )%»•»'.»)*(T"p)2l^(n'"'-m)] 

•*m, [(iS )u •!!»•»• •->*(i5)a2xn»-»'-"]} 
(15) 

iU[0,n']     ;    n'e[l,«] 

  
• --—=--i, nifiin 



in'Y22*n' = ^   * 

n+n1 

n=l p=l m=|n-n'| 

+ Y„ [(T-)'V"-'.»'*(^P) 22ip 

ie[0,nf] ; n'etl,»] 

22,  ,   ,  J I ij)22(n,n',nO J  I 

(16) 

where 

6c 
I (K.k.c) = — - 
m        (kaf-(Ka) 

«• [2ka j  (2Ka) h'(2ka) 
e. m      m 

(17) 

-2Ka h (2ka) j'(2Ka)] + 24c  /  x [g(x)-l] hm(kx) Jn(Kx) dx 
x=l 

^(n.n'.m) = if»22(n,n' ,m) = -i 
n'-n+m (2m+l) (2n'+l 

2n'(n'+l) 

[ 
n(n+l) 

1/2 
|"n(n+l) • n'(n'+l) - m(m+l)j (18) 

n   n' 

0   0 

m 

0 

n   n' 

1  -1 

m 

0 
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X21(n,n',m) = •X12(n,n',m) = -l 
,n'-n+m+1 2(m+l) (2n'+l) 

2n'(n'+l) 

rn(n-^l)  "I 
Ln'(n'>l)J 

1/2 r 
m -(n-n1) -n')2 (n+n'+l)2 -1] 

1/2 
(19) 

In the above equation, c = 4u n a /3 is the effective spherical concentration. 

For plane waves propagating parallel to the rotational axis of symmetry of 

scatterers, only I  • 1 contributes, and also only certain combinations of a 

yield non-zero T-matrix elements which are used in Equations (15) and (16). 

In Equation (17), g(x) is the pair correlation function which depends only 

on Ixl = |p..| due to translational invariance of the system under consideration. 

To obtain expressions for g(x), a description of the interparticle forces is 

needed.  In our statistics, the dielectric scatterers are assumed to behave 

like effective hard spheres of radius 'a' where 'a' is the radius of the 

circumscribing sphere, see Figure 1. Wertheim [1965] has obtained a series 

solution of the integral equation for the pair correlation function derived by 

Percus and Yevick [1958] for an ensemble of hard spheres. Throop and Bearman 

[1965] have used the Wertheim result and provided tabulated values of g(x) 

as a function of x for several values of c. Plots of g(x) vs x is shown in 

Figure 2. 

At low values of concentration c, g(x) s:  1, see Figure 2 and hence the 

integral in Equation (17) is negligible which results in a system of uncorrelated 

hard particles. This is what has been referred to as the well stirred 

approximation (WSA) and yields the 'hole correction integral' as outlined by 

Fikioris Waterman [1964] and by us earlier.  If g(x) > 1, one can regard the 
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Equation (17) as a modified 'hole correction integral' which is of the same 

form as used by Twersky [1977, 1978]. 

Equations (15) and (16) are simultaneous linear homogeneous equations for 

the unknown amplitudes Y   .  For a nontrivial solution, we require that 

the determinant of the truncated coefficient matrix C vanishes, which yields 

an equation for the effective wave number K = (K +iK_) in terms of k and the 

T-matrix of a scatterer. This is the dispersion relation for the scatterer 

filled medium. The real part of K relates to the phase velocity while the 

imaginary part relates to coherent attenuation in the medium. 

NUMERICAL COMPUTATIONS 

In the low concentration limit, c -*• 0, it is well known that the single 

scattering approximation (SSA) is valid so that Im(K/k) is given by 

Q. 
Im(K/k) . | c Igi (20) 

where Q   is the normalized (with respect to ira ) extinction cross section 

of a sphere of radius 'a'. An important problem is propagation in a rain 

medium where the single scattering approximation has been widely used.  Indeed, 

even under very heavy rain, the concentration rarely exceeds 0.01 and is 

-4 
typically around 10 . We have compared our theory using WSA with Equation 

(20) for a distribution of spherical water drops of radius 0.1 cm with ka in 

the range 0.1 <_ ka <_ 3. The refractive index, which is a function of frequency, 

is taken from Ray [1972].  In Figure (3), we show the attenuation constant y 

defined as 4TT Im(K)/Re(K) as a function of ka using the WSA for c = 10" , 10" , 

-4 
and 10  which is to be compared with Figure (4) which uses SSA.  We note that 
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both solutions yield nearly identical results.  In Figure (5), we show 

computation of Y vs concentration for different ka values using the WSA. 

Again the SSA is seemed to be excellent for the rain medium. 

We now present computations for a random medium model used by Ishimaru 

[1981] for the optical propagation experiments. The scatterers are latex 

spheres of diameter 0.107u immersed in water with incident wavelength 

\  = 0.6y.  In the Rayleigh limit, Twersky [1978bJ har given an expression for 

Im(K/k) by considering the leading effects of the pair-correlation: 

Im(K/k) = c(ka)' 
e -1 
r 

E +2 
r 

(21) 

where e is the relative dielectric constant and W is the packing factor 

given by 

4 CO 

W = (1'C^   = 1 + 24c / x2[g(x)-l] dx (22) 
(l+2c)" 

i: 
i 
L 
r 

In Figure (6), we show 

and the present theory 

Matern [1960] model is 

that Equation (22) and 

the WSA fall for c^ 0 

c > 0.125. 

In Figure (7), we 

two measured values at 

that the ka value is 0 

be important even at c 

Im(K/k) as a function of concentration c using Equation (22) 

employing the WSA, the P-YA and the Matern model. The 

completely analytic and is valid for c < 0.125. We note 

the P-YA are identical while both the Matern model and 

04, and in fact they give unphysical results for 

show the comparison between the computation and the 

c = 0.01 and 0.10 given by Ishimaru [1981]. We note 

56 and that multiple scattering effects are seemed to 

= 0.01. The measured values at c = 0.01 and 0.1 are in 
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very good agreement with both the WSA and P-YA while the SSA consistently 

overestimates the effective coherent attenuation.  Also, for c > 0.10 where 

measurements are not available at the present time, we feel that only the 

P-YA predicts the correct behavior of Im(K/k).  In Figure (8), we show the 

variation of Im(K/k) with ka for c = 0.21 and compare the results using the 

SSA, the WSA and the P-YA. Values for the WSA for ka <^ 0.75 are not shown 

since the solution fails [Im(K/k) < 0] in this region. However, as ka 

increases it appears that the WSA tends to merge with P-YA for ka l_  3.0. 

The SSA on the other hand predicts a higher attenuation than either the WSA 

or the P-Ya. 
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Figure 2. The Percus-Yevick pair correlation function for hard spheres 
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Figure 3. The coherent attenuation constant -y vs ka for e * e (X) 
using the WSA r   r 
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Figure 4. The coherent attenuation constant Y VS ka for er = er(*) 
using SSA 
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Figure 5.  The normalized attenuation constant y  vs concentration c for 

different values of ka using the WSA 
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Figure 6. The coherent attenuation Im(K/k) vs concentration c at 
ka = 0.05 for latex spheres in water 
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Figure 7. The coherent attenuation Im(K/k) vs concentration c at ka > 0.56 
for latex spheres in water using different models of pair 
correlation functions 
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