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PREFACE

This report summarizes Pacific-Sierra Research Corporation's
(PSR) work in developing a practical numerical method for computing
radio field strengths in regions of strong focusing, using input
from a standard ray tracing program. The computer program was %
designed for use with the Jones-Stephenson high-frequency ray

trace code.
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1. INTRODUCTION

-

This report presents a method for using ray tracing to calculate
radio field strengths in strong-~focusing regions of the ionosphere
or troposphere. Ray tracing is an established technique for predict-
ing radio field strengths in regions without strong focusing. Because
of the versatility and numerical efficiency of ray tracing, it is a
desirable technique for computing radio fields in strong-focusing
regions, using a state-of-the-art ray tracing program such as that
of Jones and Stephenson [1975}. This report presents a practical
numerical method for doing so.

The procedure for computing radio fields in stratified media from
ray tracing outside caustic regions uses the well-known correspondence--
developed by Booker {1939], Budden [1961a], and others--between ray
trajectories and the first-order asymptotic approximation to the
angular spectral representation of the field components. Budden {1976]
and others show how the phase and amplitude of fields are directly

related to the path-integrated refractive-index variation and the ray

curvature, both easily computed with a ray tracing program in regions ;J
where neighboring rays do not cross. That correspondence solves the l
radio field problem for stratified media outside caustic areas. H
Breakdown of the first-order stationary-phase result near caustics
has led to the development of higher order asymptotic formulas that
"

uniformly interpolate the field through caustic regions and can extend
field strength calculations based on ray density into strong focusing

regions [Maslin, 1976b; Budden, 1976]. Unfortunately, asymptotic
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methods have two drawbacks that make them inconvenient for use with a
ray tracing program:

1. Different closed-form expressions involving special functions ‘

T

are needed for different degrees of focusing--e.g., Airy func-
tions for caustics and Pearcey'’s [1946] function for cusps.
Further, only the Airy functions are both well known and
convenlent for numerical calculation.

l 2. The contributions from all rays intercepting each field point

must be calculated--a numerically cumbersome procedure re-

quiring a search to identify the specific plane wave compo-
nents intercepting a given field point.
Because of these limitations, only simple refractive-index profiles
can be studied, wasting much of the potential power of the ray trace.
An alternative to asymptotic methods is to evaluate the integral
expressions for the field numerically using phase information derived
from the ray trace. Thus, a broader range of refractive-index pro-

files could be analyzed by a single method; cusps and even higher

order focusing effects would require no special analysis. However,
this method has two potential difficulties:
1. The integrands are highly oscillatory and standard numerical
integration techniques fail.
2. For points in the vicinity of caustics, more accurate phase u
differences between neighboring plane-wave spectral compo-

nents are needed than the ray trace can supply directly

through its path integration of the refractive-index varia-

tion. That limitation is simply due to a loss of numerical




precision and disappears if the ray directions through a
given field point are widely separated--as indeed they are
when the first-~order calculation is valid.
The numerical method presented here overcomes these difficulties.
Section II briefly summarizes the plane-wave angular spectral
representation of radio fields, including RBuddern's [1976) generaliza-~
tion to allow the phase integral method to be applied uniformly through-
out reflection ragions. Section 111 discusses a method for using ray
trace data to accurately estimate the phase Aifferences between neigh-~
boring plane~wave components. Section IV shows that the highly oscil-
latory spectral integrations can be performed by a numerical quadrature
technique developed independently by Woodic [1976) and Barakat [1976].
Field calculations using our method are compared with asymptotic re-
sults of Maslin [1976b].
The only potentially important feature lost with our approach is ;
the ability to include evdnescent wave components in the spectral
integral; they must be excluded if the ray trace can propagate only

real rays. That limitation precludes treating problems such as leak-

age through layers at frequencies slightly below the penetration fre-
quency. Section V gives a partial solution to the leakage problem,
generalizing Budden's single-reflection height interpolation to the
case of two arbitrarily close roots ol the Booker q function.

For conveniencr, mathematical details of the phase determination
and numerical integration procedures are given in two appendixes.
Throughout our analysis, we assume an isotropic propagation medium
varying in only one dimension--which, however, can be either hefight

(flat earth) or radius (spherical earth).
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II. UNIFORM ANGULAR SPECTRAL REPRESENTATION

The basis of aur analysis is Budden's |1976) integral expression
for a ficld component ¥ that is uniformly valid throughout caustic and

reflection regions:

3 T =/fdsl as, G(s,, sz)(c/q)”2 2614 22 piy

“0

X oexp | ~ik Slx it Szy + f dzq 5 (1)
0

written as a superposition, weighted by the function G, of plane

waves with complex direction cosines S C in free space. We

1’ SZ’
use Cartesian coordinates X, y, 2z, with z denoting altitude; k is
the free-space wave number. The function q is defined as
; ; 2
qZ = nz(z) - Sz - S, ., )
1 2
where the complex refractive index n is taken to be a Function of

height = only. Follawing Budiden, € is defined as

2 2/3
£ = :; ikf dzq ; (3)
%0
Al is Alry's integral, and zO(Sl. SZ) is the reflection height '
Iq(zo) = 0} Tor the planc wave component labeled Sl' SZ. Ruclden

119761 provides the proper integration cantour and phase chaices




that make (1) unambiguous. When IEI >> 1, the factor

£0

251/4 11”2 A(E) exp | -ik [ dzq (4)
0

assumes the asymptotic form

Z 7

exp -ikf dzq ) + i exp —ikf dzq | (5)
0 0

representing a sum of upgoing and downgoing waves.  The path integral
over g in the sccond term is understood to circle the reflection

height z_  clockwise in the analytical continuation of height; on the

0
downgoing path, q is chosen negative. Although it is valid to re-
place the Airy function factor (4) with the asymptotic limit (5) cven
at caustics when IEI >> 1 [Maslin, 1976a], the Airy form is capabtle
of including plane wave components near a reflection level, where
q(Sl, SZ) vanishes. For completeness we prefer to retain the gencerat
form (1) although, for most spectral components appearing in the in-
tegral, the asymptotic approximation using (5) is both adequate and
faster to compute. The asymptotic form is in fact the basis for
the higher order asymptotic approximations of fields near caustics
and cusps constructed by Maslin [197G)]. His results’contain Adry
functions only because of his use of the uniform asvmptotic method
of Chester et al. [1957].

The spectral weighting function G is determined by both the
field component represented by F and the transmitter. For most appli-

cations, the angular spectral! dependence of G will be fairly simple.

danion
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For example, the spectral weighting of the y-component of the elec-
tric field in the magnetic dipole example studied by Maslin [1976D ]

and Budder [1976] is represented by

G(s =G, S,/C . (6)

l’

It is thus convenient to expand G in harmonics of its azimuthal de-
pendenie and treat cach component separately. That is, we expand G

das

“(51’ Sz) = Z gn(S) ein¢ 5 €]
n=_on
where
2
8 (S) = 5‘;[ d¢ G(s,, S,) e ", (8)
0

and S1 = S cos ¢, 52 = § sin ¢. Substituting (7) into (1) and inte-

grating over ¢ produces

oy 8]

B s 20 = 20 Z o oV fds s gn(S)(c/q)”2 AGS, #)3_(kSp)

(9)
where x = p cos P, y = p sin §, and A(S, z) denvtes either the Airy
functfon factor (4) or its asymptotic approximation (5). For points
not directly over the transmitter, the Bessel functions may be approx-

imated as

T PV ——— T = v o Sy # . T e

g



2 e " i
Jn(kSQ) a-(;;gg) oS (kSp IRy & Z-) . (10)

Specializing to the magnetic dipole represented by (6) for the plane

y = 0, using (10) and the asymptotic form of A, viclds

/2 ciﬂlﬁ G 1

3/
0 S

B0 aDh o (Al das s°'% (cqd”

—CK}

Z

x exp | -ik Sx+[ dzq (11)
0

for the upgoing wave. An analogous expression results for the re-
flected wave. Equation (11) here is equivalent to Eq. (7) of Maslin

{1976b] and Eq. (23) of Budden [1976).
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L1l. . COMPUTATION OF PUASE FROM RAY TRACE DATA

For sufficiently simple refractive-index profiles, the phase

integrals such as

Z

/ dzq($ ), S,, 2)
(0]

needed in (9) arc most simply computed with numerical or analytic

. methods. For complicated media, however, such evaluation becomes

tedious--cspecially when ducting with multiple turning points is in-
volved. On the other hand, ray truuing techniques have been found
useful in producing (icld estimates through ray density calculations
for quite general ionospheric or tropospheric models [Wong, 1958;
Buddden and Perry, 1971]. The principal disadvantage of ray density
calculations is their breakdown in caustic regions. Nonetheless, the
identification of rays with spectral wave components is the basis for
a simple means of using the ray trace to estimate the phase inte-
grals required in the fudden/Maslin theory discussed above.

The connect ion bhetween ray tracing and phasce integration can be
established through the Hamiltonian formalism. The following are the
canonical equations [llasclgrovoe and llaselgrove, 19601 for the ray

trajectory specificd by position x, y, z and direction cosines S,

1
. 2 o By, 4liae 81
52. q, wherc b‘ + 52 + ¢ = n"(z):
dx _ M dy _an dz _ 0w a5
dt 931 ' dt 852 * dt Jq

e ittt - i ST e




and

By oa, . %y w o oag

dt ax *  dr dy * dt i UL
Here T parameterizes the ray trajectory and can be taken to be the
arc length along the ray. The Hamiltonian H can be specified in a

number of ways; a convenient choice is

)| (5 2 2 2
H = 2-[31 +8,+4q" -n (A)] =0 . (14)

The ray trajectory results from substituting (14) into (12) and (13),

then solving them either numerically or analytically. Since Sl and

32 are conserved along the ray trajectory (Snell's ltaw), the spectral

component labeled S S, can be identified with a unique ray. From

I

elementary calculus

e 2 O s i Wl e Ged oo
dz dt/ dt 331 dq q . dz q’ '
and integration gives
¥4 ¥4
x(S,, S z) =S dzq-1 % = == dzq(S,, S z) (16a)
1> =2 1 35, 2 ’
0 0
z ¥4
(S<y S, 2) = S @y | s - 2 dzq(S,, S,, z) (16h)
s Ol 2 q 3s e :
0 2 Jy

where (14) was used for the last step. Equations (16) are identical

to Eq. (5) of Maslin [1976b] and are the ray tracing equations of

=7 A
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Booker 11939]). Maslin and PBudden derive them by applying the first-

order stationary-phase method to the angular spectral representation

(1). The important point is that (16) remain valid when the ray
passes through a caustic, even though the associated first-order
stationary-phase approximation to the field breaks down. Aside from 1

a constant, the phase integral

Z

0(S,, S, 2) =f dzq (S, $,, 2)
0

is recovered by integrating (16) with respect to S1 or SZ' The inte-

grands x or y are produced using ray intercepts on the plane at height

z as a function of S, S Appendix A details this construction.

IO 78
Because this method of constructing the phase from the ray trace

uses the ray intercepts and not the path-integrated refractive-index

variation directly, it provides a much more reliable estimate of the
small phase differences between neighboring plane wave components.
This is essential to the success of the approach.

Although ¢ is in general complex, only its real component can be
recovered by this method, which employs a real-~valued ray tracing
program such as that ol Joncs/Stcphenson [1975]).  Thus, a primary
assumpt ion of our model is that evanescent waves contribute negligibly
to the field represented by (9). Nevertheless, weak collisions may
be included In thls approach by formally tracing the rays as il they
were real, then adding the path-integrated attenuation computed by
the ray trace to the spectral weighting function ¢ for each wave com-

ponent [Booker, 1939].
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The neglect of evanescent waves appears to be valid as long as
the spectral weighting function G is continuous. For G continuous,
the absence in the integral of spectral components with a slowly vary-
ing phase in the shadow region beyond the caustic leaves only rapidly
varying components, leading to destructive interference and a decaying
field. For an infinitely distant transmitter, however, there is only
a single plane-wave component SO; G thus becomes a delta function
§(S - SO) and our model would not provide information about the field
above the reflection height of the plane wave component SO.

Because q is double-valued, (16) can be taken to represent inter-
cepts of either the upgoing or the reflected parts of the ray tra-
jectory. 1In the latter case, the integral is understood to run up
to zo. then to return to z with q changing sign as it passes through
zero. Thus we define the phase of the up- and downgoing rays ¢u and

¢d as

2
¢ll(sl’ SZ‘ 7-) = [ dzq(sl, 52‘ 7-) (17)
0

and

¢d(51' Sy0 2) = dzq(S, , Sy 2)

S,

¢U(S]. Sys 7) + dzq . (18)

S
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Fhe ray trajectory is symmetrical about its reflection point, so (I8)

can be written

/|
. ’ |
“0
baSyr Bypr 1) = 6,(5), 8y, 2y + 2 / dzfa] . (19)
2
Integration of the up- and downgoing ray intercepts produces ¢u and
¢d on the plane at z only up to constants; the proper phase differ-
ence between the up- and downgoing waves is produced by requiring the
phases to agree at the reflection point.
Substituting those results into (3), we obtain
1
3 2/3 '
1 PR TEE ) (20)
{
| and (9) becomes ]
o 1 \
| F(x, y, #z) = 2m z gt (-““Pf ds $ gn(S)(C/q)I/z 2614 712 ar e ;
1 n=-m 0 ‘j
% axp =t & @+ 80y | o, e (21)
2 'd u ] 'n '

Using (10) for points not directly over the transmitter yields

[} ¢] l
. . 172
Foe, vy 0 = ey V2 Y v‘"q’/ as g, (%)
=

= (X0

l

x 2."1/2 r'I/IO /\l({:) exp }-jk [SD + ; (Rbd + ¢ll)]‘

(212

v = R S S R - 1 = i fiedid et 4 ‘ _i“‘"[ ia » -




S

In equations (21) and (22), the actual Integration limits are deter-
mined by the rays that intercept the plance at 2, For ICI ==, ohe

factor

an!/? 51/4 AL(E) oxp [-i %’(¢d s ¢u)] (23)

becomes
exp (-ik¢u) + 1 exp (—ik¢d) . (24)

In practice, Budden and Terry [1971] show ICI need only be 21.3 Lo
make (24) a good estimate of (23). Following Audden [1961], £ is

computed as

3 2/3 '
E=- |y k-0 (25)

and
1/4 = I{ll/[& Oi'ﬂ/[& ! (26)

£

These are the proper phase choices for producing the asymptotic form

(24) from (23) well below the reflection height.
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IV.  NUMERICAL EXAMPLES

Although our method is suitable for a wide range of realistic

profiles, we illustrate it by application to two relatively simple

ionospheric profiles studied by Mus/lin {1976a,h], allowing our

numerical results to be compared with his asymptotic results.

LINEAR TONOSPHERIC PROFILE

First consider the linear refractive-index height profile used

by Ma:lin [1976a,b]:

I - a(z - W) , z > h , 27)

where o and h are constants.  Because of the simplicity of the model,

anatytic

pltane at

=
~
142
~
L]

i

Figure |

expressions for the ray intercepts on an arbitrary horizontal

height # are casily found from (2) and (16); in the plane

zS8/C , 7z < h upgoing ,
1 2 /i .
(2h + 4C7 /o - 2)S/C 2 < h downgoing |,
EI ' V.'Z'-m”“ . X )
hs/¢ + | ¢ - YC© - a(z - h) | 28/ 7z > h upgoing ,
O I e T | .
hs/¢ + LL +N¥C° - a(z - h) |28/ , 7z > h downgoing

(28)

plots x(8) as a function of § for various heights z, using

h = 100 km, @ = (.002 km-‘. For graphical clarity, the intercepts

.. --‘ - T
Sl il 9 - RIEEE L T A
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1800 =T T T T T T T T T

1600 - | .

1200 |-

800 -

Ray intercept, x (km)
|

2=100

1 1

: i 1
0 0.2 0.4 0.6 0.8 1.0

Direction cosine, S (dimensionless)

m—

Fig. 1--Ray intercepts on horizontal planes at various heights z for
the linear ionospheric model (27), with h = 100 km,
a = 0.002 km-1, Caustic Toci are shown as
dashed lines that meet at two cusps.
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have been left incomplete for z = 110 and 120 km. Dashed lines plot the
loci of the caustics. The loci meet at two cusps—-one below the ground

at x ~ 1360 km, the other at a height of about 115 km at x ~ 800 km.

A comparison of our figure with Figure 3 of Mas//in |1976a] helps
to clarify the configuration of the ray paths. For each height
z in our figure, the up- and downgoing rays form the lower and upper
branches of a closed loop, respectively. The branches conncct at the
reflection value Sp(z); rays with § > Sc(z) do not reach the height z.
The figure also shows that the caustics are associated only with
the downgoing branches.

For the magnetic dipole represented tv (6;. only the n = #]1 terms

contribute to (22). 1n the plane v = 0,

1
Fx, 0, 2) = o' @i f as 53 % cqy™V? a2 M4 ey
=] ;
X exp ‘-ik Sx + ! (b, + ¢ ) ' (29) ‘j
X l ; 2 "' u ‘ i i |

with £ given by (25). Here F represents the y-component of the elec-

tric field. The phase integrals ¢, and ¢u can be found cither an-

d
alytically (in this casce) or through the ray tracing procedure dis-

cussed (n Sce. M. To compare with Mo/in's: [19760) asymptotic cal- .
culation, we set z = 0, k = 4n km-|. Owing to the very large phase

oscillations in (29), its numerical evaluation requires special care.

Appendix B describes a numerical quadrature method developed inde-

pendently by qudiv {1976] and Barakat [1976), the piecewise linear

phase (PLP) algorithm. Although mare standard methods such as

—_ i = e -
L RS A | PERT T -
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the fast Fourier transform (FFT) could be as efficient as the PLP

algorithm, we have obtained consistently good results using the Latter
with highly oscillatory integrals. Its application bere with 100 sub- ;
intervals produced the result shown in Figure 2 for the modulus of the 3
field. Our figure agrees closely with Figure 3 of Me:/in [19760], ]
even in the vicinity of the caustics at 1189.6 amd 1226.7 km. %
i
HYPERBOLIC SECANT PROFILE WITH COLLTSIONS :
A well-known model of an ionospheric layer is the byperbolic ;
secant profile '}
}
2 ;
R R T L LG  S (30) “
where a, 7, a, zm are constants. For Z = 0, the ray intercepts in ]
the plane y = 0 are given by Eq. (32) of Muus/in [1976a): ;

) ) T
g (C cosh™ (-az ) - a - ¢ sinh (-az )
_ m m
x(S) = Eaf/n —“‘ "2' ‘“““;""-"*'-‘-—"—';I']'/E' == =50 -
* lc cosh” fa(z - zm)] - a ‘ - ¢ sinh fa(z - zm)]

(31)

Figure 3 plots x(S) for various 2z, using a = 0.9, o = 0.05 km-].

z0 = 100 km, and ignoring collisions (Z = 0). For this choice of the
parameter a, rays having S < Sp = 0.43 penctrate the layer and are

not reflected at any height.  The interpretation of Figure 3 is similav
to that of Figure 15 the caustics are shown as dashed lines meeting at
a single cusp at z = 91 km. Again., for graphical clarity, two of the

upgoing branches have been left incomplete.
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Direction cosine, S (dimensionless)
! Fig. 3--Ray intercepts on horizontal planes at various heights z for the
} sech ionospheric model (30), with a = 0.9, a = 0.05 km-1,

Zm = 100 km, Z

0.

Caustic loci are shown as dashed
lines that meet at a single cusp at z = 91 km.




To test the phase-integral estimation technique described in

Sec. 11T, we used the Jones/Stephenson [1975] ray tracing program to
compute ray intercepts x(S) on the horizontal plane at height 88 km
for both up- and downgoing rays with S values hetween 0.47 and 0.65.
The fits were adjnsted to yield ¢d = ¢u for S = 0.65, corresponding
to the ray grazing the plane at z = 88 km.

Collisions were modeled using the procedure suggested by
Booker [1939] of propagating the rays as though they were real, but
modifying the spectral weighting function G by the path-integrated
attenuation for each ray traced. This was easily done, since the
dJonca/Stephenson program can compute the attenuation. For comparison
with Maslin [1976h]), constant collisions given by the parameter Z‘of
0, 0.0005, 0.0018, and 0.0045 were used. Application of the PLP
algorithm to the magnetic dipole in the plane y = 0 produced the
curves shown in Figure 4 for the modulus of the y-component of the

field as a funcrion of range. Onr figure agrees well with Figure 6

]
o 9
3
]

of Ma::lin [1976h]. The two figures show the same reduction in oscil-

lations for larger collision frequencies.
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V. UNIFORM ANGULAR SPECTRAL REPRESENTATION FOR AN EVANESCENT LAYER

The foregoing treatment of fields in regions of strong focusing
using ray tracing techniques was based on HKudden's [1976] approximate
solution (1) to the wave equation, uniformly valid in the neighbor-
hood of a single reflection height. His solution is a good approxi-
mation to the exact wave~equation solution throughout the reflection
region if, first, higher order derivatives of the refractive index
with respect to altitude are well behaved; and, second, the reflection
height is sufficiently remote from other roots of Booker's [1939]
quartic function q. The second condition, however, excludes problems
such as the leakage of tropospheric ducts.

Considerable work has been done in modeling duct propagation
using the waveguide mode approach {[l'ock, 1950; Fock, Weinstein, and
Belkina, 1956, 1958; Budden, 1961b; Wait, 1962; Chang, 1971; Pappert %
and Goodhart, 1977, 1979]}. However, no one has generalized the .;
angular spectral representation to include the case of partial trans-

mission through a thin evanescent layer in which there are two neigh-

boring roots of q. That extension is needed to allow our analysis
to be applied to superrefraction in leaking tropospheric ducts. We
outline the construction of the generalized spectral integral holding
uniformly through evanescent regions and show that asymptotic limits
of the expression produce the correct results for thick layers.

It is well known that any field component F in free space can

be written as a superposition of plane waves as




<98

F(x, y, z) =/]' dSl dS2 C(Sl’ Sz) exp [-—ik(Slx + Szy + Cz)] 3 (32)

j Y In a medium varying in z only, the x- and y-dependence of a
given spectral component of F in (32) is unchanged but the z-dependence

is determined approximately by the equation

2
—3——5 + B ou s @ . (33)
oz

Additional terms involving derivatives of n may be present in (33),

depending on the choice of transmitter and field component; they are 1

neglected here. We wish to solve (33) approximately for the case in
which there are two arbitrarily close roots z, <z, of q. For con-

creteness, we assume

q >0, Z>22,Z<Zl,
(34)
q2<0 z < z < 2z
* l 2-
This choice corresponds to the case of an evanescent region between
2y <z < z, with real, propagating rays outside. The complementary
problem of taking
q2 >0 z, <z<z
r b '1 20
] (34a)
F " q2<0y Z>22,Z>Zl,

1 represents an elevated duct. Because the latter case has been well
|

1 researched [Fock, Weinstein, and Belkina, 1956, 1958; Wait, 1962],
|

we concentrate on the evanescent-layer problem.

L e g — - ¥ l
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For large k, (33) is a special case of a more general equation

studied by Langer [1959]. The essence of his method is to change

| variables to produce an equation resembling Weber's [1869] equation

asymptotically as k » «», The change of variables is defined, first,

by the equation

- -1 21
dx(x2 - 1)1/2 = ;—Q f dzq ° (35) |
£ z
with
z, :
: Q = / dz|q] ; (36)
2z
L 4
and, second, by
2 _ ,\1/4
Fz) = &g — e a7
q
in terms of which (33) becomes
2 2 2
a%u , [(2xQ)? g2 _ z_) _1_51]- ‘
2+[(ﬂ)(£ 1) A(z' +22' u=90. (38)
dg
Here
Z . a2
A (39)

with analogous expressions for 2" and z"'. Following Langer, the

1/2

arguments of q and (52 -1 in (35) are defined as

P " ; Gt L) e e T it e A P [ZEs o - . .




o, z < z; and § < -1 ,
2
arg q(z) = arg (§° - 1)1/2 =< 7/2, z, <z < z, and -1 < § < 1 ,
o, z > z, and § > 1 .

(40)

Equation (35) thus can be used to define a mapping between heights
throughout the region of the layer and the real line. For sufficiently
high frequencies, the last two terms in (38) are small relative to the

first two; dropping them and using the substitution

1/2
t =2 (59> €, w(t) = u(g) , (41)

m

produces the following form of Weber's equation:

2 2
9-—‘2!+(t7-1<9>w=o. (42)
dt il

Besides Weber [1869], many others have studied solutions to this cqua-
tion, including Darwin [1949], Miller {19521, Olver [1959], and Erdélyt,
Kennedy, and McGregor [1954). Abramowit: and Stegun [1965] summarize
those previous analyses. Using the normalization and notation in
Abramowitz and Stequn, two independent solutions of (42) are given

by
W(®, ).

Physical requirements dictate the proper combination of these
solutions. For kQ/m >> 1, we require the result to agree with Hudden's

[1976] uniform asymptotic result for z near z For z >> Zgs the

1

[ T racene ] b

T - e = L T e &
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solution should represent an outgoing plane wave. As shown below,

those limits can be achieved by choosing the combination i

E*(m,t)Eu—l/?'w($,t)—iul/ZW($,—t), (43)

e

with

1/2
= (1 + e2kQ> - ekQ 3 (44)

From (37), (41), and (43), the expression for a single spectral com-

ponent is

2 1/4 =
cmp (8D %k Jm
F=A 172 E TT,2 ng 5 (45)
q
The factor A is chosen to match Budden's result for z << z; when
kQ/T is large:
z
in/4 1/2 { k 1/4 ~kQ 1 -2kQ .
A=c¢e c (78) e (1 e ) exp | -ik dzq} . (46)
0

Finally, the complete expression for F is

. 1/4
F =/] ds, ds, G(s,, s?_)(c/q)llz ei"“’ (%Q) (52 = 1)1/1' )

X exp [—ik(Slx + Szy)] ; 47

p e v npd de Pl k . u L i m" P T
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This is the desired generalization, holding uniformly throughout an

attenuating layer, of Budden's result for a single reflection level.

Ry ST

ASYMPTOTIC LIMITS

.
OO Y

The expression (47) must be shown to produce the correct asymp-

totic limits for a thick evanescent layer. For kQ/m large, we apply

i s

3 the asymptotic approximations in terms of Airy functions given by

Abramowitz and Stegun [1965):

-1/4 1/4 :
K kQ 1/2 ( 4k 1 M ,
W(—“Q o 2"; E) o 27 (ﬁnﬂ) exp (5 kQ)(gz i 1) Ai(-z) (48) 3;(
i and
- -1/4 1/4
K m)gllzm il ! r
w(“, ZJ“E; m - exp sz 52—1 Bi(-z) ,
(49)
1 where
-1 2/3 ,
= 9-:3 dx(x2 - l)l/2 g £ <-1, (50)
g
|
£ 2/3
3= 3—1‘?'/ ax1 - HY2) 0 es a1, (51)
~1
and £ < 0. Using (35) gives
z, 2/3
C-‘-%k[ dzq , 2 <z, (52}
z
3 z 2/3
"'fkfdzlql ; 2, <z <z, . (53)
2
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From (44),

u n-% e (54)

Combining (43), (48), (49), and (54) gives

- 1/4
[ « K 1/2 {4kQ\ 1/% Z
E (—HQ 5 ZV—,"Q £)=- (2m) (—W—Q) (gz o 1)

x [2 s Ai(-T) - i % o 0 Bi(-z;)] . (55

For z << zl, the Airy functions can be replaced by their asymptotic

1 approximations:
i
Ai(-7) =~ ,"-1/2 & 1/4 sin | k / dzq + T (56)
z
and
21
Bi(-g) =~ ﬂ-1/2 C-l/l‘ cos [ k [ dzq +—g (57)
z

Expanding the trigonometric functions in their exponential representa-

tions, substituting into (55), and collecting terms, we obtain

-1/6 ., -2kQ
(5 2V )= () e (1) 2 (14 )

3] z
x exp | ik / dzq exp | -ik / dzq
0 0
z, ! z
+ i exp {-i2k / dzq (1 - £ 5 )exp ik f dzq
0 0

~ pe— 4 P At e SR i Y ey
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Substituting (58) and (46) into (45) gives

Z

Il

z
|
F =~ (C/q)l/?. exp -ik[ dzq} + i exp | -12k f dzq |
0 0

1 e-2kQ
x{1l - ) exp ikf dzq 3 z <<z . (59)
0

This represents the usual decomposition of the field far below the

layer into upgoing and downgoing waves with reflection coefficient

z

L e~2kQ
R =1 exp|-i2k dzq ( I ) o (60) :
0 :
which in turn yields 1
| |R|2 1l e-2kQ m.——}TZ—]-(E (61)
Wt @

to terms of second order in e-kQ. The last result is a generalization

of the reflection coefficient expression for a parabolic layer [Kudden,

1961a]. N
For z near the higher root z, of q, applying (48) and (49) to (43)

gives
|

F = exp (i %) (C/q)ll2 ﬂl/?' e_kQ exp | -ik / dzq
0

X c1/4 [Bi(-z) - 1Ai(-L)] ., (62) !

Ce— - T S T S0
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where
z, 2/3 !
T = - 3 k dziql ZIZ N7 (63) : i
2 i 1 2 5"

z

7 2/3 f
=%k/dzq , 2>z, . (64)
3

For z >> 2z the Airy functions can be approximated as

2’

z
Ai(-L) = 11_1/2 C—I/A sin k/ dzq +% (65)
%2
vr
and
z
Bi(-g) = 11’—1/2 (_.nl/l' cos| k f dzq +12- (66)
=2
Substituting into (62) produces the field far above the layer
ol z
F = (C/q)l/‘Z exp | -ik [ dzq e_kQ exp [ -ik f dzq ’ (67)
0 z,
which is seen to be an outgoing plane wave, as required. .
NUMERICAL EXAMPLE )
The energy transmission through an evanescent layer is given
approximately by (61) or (67) as
e = & (68)

PR XYL Y vty

|
i
[
|
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S

For the hyperbolic secant layer used in Sec. IV (with Z = 0), (36)

gives
-1
cosh = a/C
: 2 2 2\l/2
Q=2~= du (Sech u-C/a . c<cC |,
a P
0
=0, Cc > Cp ] (69)
where Cp = a. Rays with C > Cp (or S < Sp) are refracted but not

attenuated by the layer. Following Budden [1961a]), the parameter a

represents fp/f, where f and fp are the wave and penetration fre-

quencies, respectively. For 1
1

a 2mf i

_ = __P. >> %

. o ca L E

a/C =1 and

afa
Q‘*TT&'(E—I) A (70)

Substituting into (68) gives

IT|2 = exp [—Zn 5&3(%- 1)] : (71)

Figure 5 plots ITIZ versus S computed with (71) for a = 0.05 km-l,
k = 47 km-l, and various values of a.
As expected, |T|2 falls rapidly with increasing S beyond Sp.
Nevertheless, for frequencies close to the penetration frequency
(a ~ 1), plane wave components within ~3 deg of vertical will suffer

less than 10 dB loss and should be included in the spectral integral (47).




Transmission, IT12 (dB)

Fig.
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‘ 1 T
0.92 e
0.94
0.96
0.98
0.99
| \ i |
0.2 03 0.4

Direction cosine, S (dimensionless)

5--Transmission through the sech ionospheric layer, Eq. (30),

at various values of the parameter a = f/f,




VI. CONCLUSIONS

The numerical method prescented here for modeling radio field
strengths in caustic and cusp regions has two advantages over the

asymptotic method:

1. Use of a ray tracing program permits phase integrals for
complicated media to be computed straightforwardly.

2. Use of numerical quadrature for spectral integration obvi-
ates the problems of locating and catculating the contribu-
tions of the stationary components in the integral, par-

ticularly when higher order asymptotic methods are necessary.

Numerical integration is both feasible and much easier even for the
simple cases discussed here. Qur algorithm avoids the excessive com-
puter running time often associated with Lighly oscillatory integrands.
For simple profiles amenable to asymptotic calculation, our method
yields results nearly identical to those of Musi7n [1976L1; moreover,
it is applicable to a much broader range of profiles. Weak collisions
can be included through use of attenuation information provided by

the ray trace. Possible generalizations would include treatment of
anisotropic media and leakage through thin layers. The latter prob-
lem is partially solved by extending the angular spectral integral

to include regions throughout the vicinity of a thin layer.
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Appendix A

CURVE FITTING THE RAY INTERCEPT DATA

This appendix considers the problem of constructing phase inte-
grals from ray trace intercept data on a plane at height z. Because
of the polar symmetry in S, it is sufficient to consider rays in the
plane y = 0. The up- and downgoing phase integrals ¢u(S, z) and
¢d(S, z) defined by (17) and (18), respectively, are found from rays
penetrating the plane z from below or above. Using (16), one can find
¢u or ¢d up to constants by integrating an analytic representation of
the ray intercepts x(S) with respect to S. The problem then is one
of curve fitting the ray data to a suitable set of basis functions
over the range of S values that produce rays intersecting the plane.
For the upgoing rays, that range extends from zero to the value SC
for which the ray is tangent to the plane. The downgoing range runs
up to SC from Sp, which labels the smallest incidence angle ray not
penetrating the medium.

For a given height z, we require a fit to both branches of x(S)
for S, <S < Sl’ where §

0 1

on the downgoing branch, SO > Sp. The values of S0 and S1 must

be chosen to include all rays near the x values for which the field

< Sc(z). On the upgoing branch, S0 £ (03

is to be computed. Because of the well-known problem of numerical
instability in least-squares fitting of a polynomial of degree greater
than about five, orthogonal polynomials are often used as basis func-
tions. A particularly convenient choice is the Chebyshev polynomial

set, because of its orthogonality with respect to summations in

[ PRECEDING PAGE BLANK-NOT F1LMED
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addition to its ability to produce a uniform fit over the function
domain. Those properties are well described by Scheid [1968]. To ) 2
use the orthogonality property, rays must be traced at definite, dis-

crete values of S given by the equation

(p; + 1) !
Si = S0 + (S1 = SO) 5T i=0, ..., N=-1 (A1) }
where
= (21+1)—"—] i =0 N -1 (A.2)
pi cos 7N ’ 1 =0, ..., , .
and N is the number of rays traced between So and Sl' Following
Sceheid, we approximate x(S) with
m
x(S) = E aka[p(S)] 3 m<N-1, (A.3)
k=0 :
:
where Tk is the kth Chebyshev polynomial,
2(8 - s :
SR N
1 0

and the coefficients a, are given by

N-1

% = %Z x(S4)

i=0

and

N-1

2 :
o, = NZ x(S)T (0,)

i=0




For m = N - 1, this procedurc produces a collocation polynomial through
the data points X(Si); for smaller m, it yields a least-squares f{it.
: Because of the orthogonality for a given N, the coefficients ak are
fixed for all fits of order m < N - 1. Therefore, in contrast to the
usual least-squares polynomial fit, increasing the order of the approx-
imation does not result in a reshuffling of lower order coefficients.
We illustrate the curve-fitting procedure using data produced
[f' from the Jones/Siephenson [1975] ray tracing program for the scch
ionospheric model (30) with the parameters in Sec. 1V and z = 89 km.
We consider here only the downgoing rays and sct S, = 0.47, S

0 1

N = 12. The table lists the coefficients produced for each fit with

= 0.63,

0 <m< 11 and the associated RMS defined as

1 N-1 . 23172
1 12 Z .

RMS = N X(Si) - ak1k(pi) . (A.7)
| i=0 k=0

Only the highest degrec o is given, because the 0y s k < m, are already
determined. The RMS is given in kilometers, so a fifth-order fit pro-
duces a representation of the ray intercepts valid to about 0.03 km.
The method thus should be aeccurate enough to produce reliable results

in the angular spectral integration when used with Muslin's frequency

of 600 kHz.

(Sl il o
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‘ COEFFICIENTS PRODUCED BY CHEBYSHEV FITS
i TO RAY TRACE INTERCEPT DATA
{

Highest Degree

‘ ggd;:t Coefficient, RMS
| m “m (km)
0 91.143250 1.8698
| 1 -2.358955 0.8448
] 2 0.771790 0.6449
3 0.901365 0.0983
4 0.027617 0.0963
5 0.128946 0.0311
. 6 -0.031670 0.0218
1 7 0.015146 0.0190 :
8 -0.002624 0.0189 1
9 0.013373 0.0165 ;
10 -0.016300 0.0143
11 ~0.019619 0.0029
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Appendix B

PLP ALGORITHM

This appendix describes the numerical quadrature algorithm of
Woodie [19761 and Barakat [1976) used in performing the plane-wave

angular spectral integrations. The spectral integrals are of the form ;

S

max
1(x) = [ ds g(s) e KP(S.x) (5.1)

SIaw
min

where both g(S) and P(S, x) are continuous functions over the inter-

val § ., < S§<S . Because k can be large, the integrand contains
min max

a highly oscillatory phase term. Since P(S, x) is continuous, we can

subdivide the integration interval into N segments such that in the

ith segment

oP
P(S, x) P(Si. x) + 3 . (s - $.) » (8.2)
i
where S, =5 .+ AS(i - 1/2), i =1, N+ 1, and AS = Co, = )1

It is also assumed that N is large enough that g(S) a--;z,(S:[) within

each element. Substituting into (B.1) produces

S . +AS/2
ol ~kP (S, ,%) : ~iKG(S ,%) (5-5,)
I(x) = E g(Si) e dS e
i=1 5,~05/2
— ~1kP(S %) sin kG(S , x) 85/2
= AS E g(Si) e - k-(;—(-s‘}"';a’ AS/2 8 (B.3)

i=1




Shh
; ap . , ,
where G(Si, X) = 33 . Because of the approximation (B.2), this pro-
S.
i
cedure has been named the piecewise linear phase (PLP) algorithm.

Its extension to two dimensions is straightforward.




A(S, 2z)

Ai(E), Bi(&)

C
E*(a, x)

gn(S)

G(s,, S,)

i =2

n(z)

W(a, x)

X, ¥, 2

fl

e 2 IR PP N = T “ - P

—hiS,:

SYMBOLS

Budden's reflection region factor, given by (4) or
its asymptotic limit (5).

Airy integral functions.

z-direction cosine of plane wave component in free
space.

parabolic cylinder function.

component of electromagnetic field.

nth azimuthal component of (.

spectral weighting function.

Hamiltonian.

nlh Bessel function.

free-space wave number, w/c, where w is the angular
frequency and ¢ is the speed of light.

refractive index.

[nZ(Z) _ 32]1/2-

integral of lq, through the evanescent region.

s2 + sH1/2,

x- and y-direction cosines of plane wave component in
free space.

Weber's function.

Cartesian coordinates with the z-axis vertically
upwards.

v/w, where v is the electron collision frequency and

w is the angular frequency.




PR

e

i

Pu(S1s Sg0 2)

¢d(sl’ S, 2)

=

argument of Airy function given by (3).
(x2 " y2)1/2.
independent variable in Hamilton's ray equations.
tan”1(8,/8.).

22 Sl
phase integral for upgoing wave at height z.

phase integral for downgoing wave at height z.

tan_l(y/x).
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