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PREFACE 

This report summarizes Pacific-Sierra Research Corporation's 

(PSR) work in developing a practical numerical method for computing 

radio field strengths in regions of strong focusing, using input 

from a standard ray tracing program.  The computer program was 

designed for use with the Jones-Stephenson high-frequency ray 

trace code. 

FKECEDINQ PAOS •»»-HOT flLMD 
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I.  INTRODUCTION 

This report presents a method for using ray tracing to calculate 

radio field strengths in strong-focusing regions of the ionosphere 

or troposphere.  Ray tracing is an established technique for predict- 

ing radio field strengths in regions without strong focusing.  Because 

of the versatility and numerical efficiency of ray tracing, it is a 

desirable technique for computing radio fields in strong-focusing 

regions, using a state-of-the-art ray tracing program such as that 

of Jones and Stephenson  [1975].  This report presents a practical 

numerical method for doing so. 

The procedure for computing radio fields in stratified media from 

ray tracing outside caustic regions uses the well-known correspondence-- 

developed by Booker   [1939J, Budden   [1961a], and others—between ray 

trajectories and the first-order asymptotic approximation to the 

angular spectral representation of the field components. Budden  [1976] 

and others show how the phase and amplitude of fields are directly 

related to the path-integrated refractive-index variation and the ray 

curvature, both easily computed with a ray tracing program in regions 

where neighboring rays do not cross.  That correspondence solves the 

radio field problem for stratified media outside caustic areas. 

Breakdown of the first-order stationary-phase result near caustics 

has led to the development of higher order asymptotic formulas that 

uniformly interpolate the field through caustic regions and can extend 

field strength calculations based on ray density into strong focusing 

regions [Manlin,   1976/?; Budden%   1976].  Unfortunately, asymptotic 
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methods have two drawbacks that make them inconvenient for use with a 

ray tracing program: 

1. Different closed-form expressions involving special functions 

are needed for different degrees of focusing—e.g., Airy func- 

tions for caustics and Peccroey's   [1946] function for cusps. 

Further, only the Airy functions are both well known and 

convenient for numerical calculation. 

2. The contributions from all rays intercepting each field point 

must be calculated—a numerically cumbersome procedure re- 

quiring a search to identify the specific plane wave compo- 

nents intercepting a given field point. 

Because of these limitations, only simple refractive-index profiles 

can be studied, wasting much of the potential power of the ray trace. 

An alternative to asymptotic methods is to evaluate the integral 

expressions for the field numerically using phase information derived 

from the ray trace.  Thus, a broader range of refractive-index pro- 

files could be analyzed by a single method; cusps and even higher 

order focusing effects would require no special analysis.  However, 

this method has two potential difficulties: 

1. The integrands are highly oscillatory and standard numerical 

integration technique«: fail. 

2. For points in the vicinity of caustics, more accurate phase 

differences between neighboring plane-wave spectra] compo- 

nents are needed than the ray trace can supply directly 

through its path integration of the refractive-index varia- 

tion.  That limitation is simply due to a loss of numerical 
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precision and disappears if the ray directions through a 

given field point are widely separated—as indeed they are 

when the first-order calculation is valid. 

The numerical method presented here overcomes these difficulties. 

Section II briefly sunmarizes the plane-wave angular spectral 

representation of radio fields, including Ruddcn'e   |1976] generaliza- 

tion to allow the phase integral method to be applied uniformly through- 

out reflection ragions.  Section III discusses a method for using ray 

trace data to accurately estimate the phase differences between neigh- 

boring plane-wave components.  Section IV shows that the highly oscil- 

latory spectral integrations can be performed by a  numerical quadrature 

technique developed independently by Woodic   [1976] and Bcwakat   [1976]. 

Field calculations using our method are compared with asymptotic re- 

sults of Maslin  [1976fo]. 

The only potentially important feature lost with our approach is 

the ability to include evanescent wave components in the spectral 

integral; they must be excluded if the ray trace can propagate only 

real rays.  That limitation precludes treating problems such as leak- 

age through layers at frequencies slightly below the penetration fre- 

quency.  Section V gives a partial solution to the leakage problem, 

generalizing Budden's  single-reflection height interpolation to the 

case of two arbitrarily close roots oi the Booker  q function. 

For convenience, mathematical details of the phase determination 

and numerical integration procedures are given in two appendixes. 

Throughout our analysis, we assume an Isotropie propagation medium 

varying in only one dimension—which, however, can ho either height 

(flat earth) or radius (spherical earth). 
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II. UNIFORM ANGULAR SPECTRAL REPRESENTATION 

The basis of our analysis is Budden'ii   [197b| integral expression 

for a field component F that is uniformly valid throughout caustic and 

reflection regions: 

// 
II   dS(   dS2  (;(S,,   S2)(C/q)1/2 2C1M  TT

1/2
  Ai(C) 

x exp ik [ SjX + S2.y +  f   dzq 
/ 

(1) 

written as a superposition, weighted by the function G, of plane 

waves with complex direction cosines S , S , C in free space.  We 

use Cartesian coordinates x, y, s, with z  denoting altitude; k is 

the free-space wave number.  The function q is defined as 

2    2^        e2   c2 (2) 

where the complex refractive index n is taken lo be a function of 

height y.  only.  Following HuMrn,   F,   is defined as 

l  = 

2/3 

(3) 

Ai is Airy's integral, and / (S , S ) is I he reflection height 

lit*«) = "I ,or l'H' plane wave component labeled S , S_. Buddcn 

|1976| provides the proper integration contour and phase choices 
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that make (1) unambiguous.  When |£ I >> I, the factor 

2t}lk  i',/2 Ai(0 cxp (     f  clx.q 
/ 

(A) 

assumes the asymptotic form 

(5) 

representing a sum of upgoing and downgoing waves.  Tin' path integral 

over q in the second term is understood to circle the reflection 

height z_ clockwise in the analytical continuation of  height; on the 

downgoing path, q is chosen negative.  Although it is valid to re- 

place the Airy function factor (4) with the asymptotic limit (r>) even 

at caustics when |£| » 1 [Maslin,    1976a], the Airv form is capable 

of including plane wave components near a reflect Ion level, where 

q(S., S„) vanishes.  for completeness we prefer to retain the general 

form (1) although, for most spectral components appearing in the in- 

tegral, the asymptotic approximation using (r>) is both adequate and 

faster to compute.  The asymptotic form is in fact the basis for 

the higher order asymptotic approximations of  fields near caustics 

and cusps constructed by Manlln   [1976«'].  His results contain Airy 

functions only because ot his use of the uniform asymptotic method 

of Chester et al. [1957]. 

The spectral weighting funccion (I is determined by both the 

field component represented by F and the transmitter.  For most appli- 

cations, the angular spectra' dependence of G will be- fairly simple. 

_<v 
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lur oxainp 11-, tin' spectral weight i »g of tilt' y-component of the elec- 

tric field in the magnetic dipole example studied by Maelin 11976/'] 

and Hudden   (1976 ] is represented by 

c(sr s2) = c0 S^C (6) 

It is thus convenient to expand G in harmonics of its azimuthal de- 

pendence and treat each component separately.  That is, we expand G 

(;(V V • >^ 8n(S) l 
i nd> (7) 

where 

2v 

gn(S) I. h f   "*<:<V V <•"'"* (8) 

and S  • S cos <J>, S  = S sin <J>.  Substituting (7) into (1) and inte- 

grating over <f> produces 

I'(x, y, z) = 2ir 

Q9 it 

L • *  J ds s gn(s)(c/q)
,/2 MS, z)Jn(kSp) , 

(9) 

where x = p cos ty,   y = p sin iji, and A(S, z)   denotes either the Airy 

function factor (A) or its asymptotic approxim.it ion (5).  For points 

not directly over the transmitter, the Bessel functions may be approx- 

imated as 
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«^>-(i5p)  «»(kSp-„f-j) (10) 

Specializing to the magnetic dipole represented hy (6) for the plane 

y = 0, using (10) nnd the asymptotic form of A, yieldR 

F(x, 0, ,)  ~ (27f/kx)
1/2 e1*'* G0  f dS SV2 (Cq)- 

ao 

/ 

l-Xp -ik I Sx + I  dzq 

/ 
(11) 

for the upgoing wave.     An analogous expression results for the re- 

flected wave.  Equation (11) here is equivalent to Eq. (7) of Maclin 

[19762?] and Eq. (23) of Hudderi   [1976]. 

ii 
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III.  COMI'll'I'ATION OK I'llASK KKOM KAY TRACE DATA 

Kor sufficiently simple refractive-index profiles, the phase 

Integrals such as 

( 

dzq(S , S2, /.) 

needed in (9) are most simply computed with numerical or analytic' 

methods.  For complicated media, however, such evaluation becomes 

tedious—especially when ducting with multiple turning points is in- 

volved.  On the other hand, ray tracing techniques have been found 

useful in producing field estimates through ray density calculations 

for quite general ionospheric or tropospheric models \Wontj,   1958; 

Hudrlen ami Tuny,   19711.  The principal disadvantage of ray density 

calculations is their breakdown in caustic regions.  Nonetheless, the 

identification of rays with spectral wave components is the basis for 

a simple means of using the ray trace to estimate the phase inte- 

grals required in the ßudden/Monlin   theory discussed above. 

The connection between ray tracing and phase integration can be 

established through the Hamiltonian formalism.  The following are the 

canonical equations [Hatte Lijroor rmd llat:r/jrt>n<',   19601 for the ray 

trajectory specified by position x, y, t  and direction cosines S , 

1 2 2   2 
S^, q, where S  +• S + q  = n {/.) : 

dx u   ,111 
dx  ;>s 

dy  m   8H 
dT " 38, 

di 
dr 

3H 
9q (12) 
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d_Sj 
dx 

3H 
dx 

dS. 
 i 

dx 
3H 
3y ' 

& _ 
dT 3z 

(13) 

Here x parameterizes the ray trajectory and tan be taken to be the 

arc length along the ray.  The Hamiltonian H can be specified in ;i 

number of ways; a convenient choice is 

[• {i.? • 4 +,» n2(z)] = Ü (14) 

The ray trajectory results from substituting (14) into (12) and (13), 

then solving them either numerically or analytically.  Since S  and 

S- are conserved along the ray trajectory (Snell's law), the spectral 

component labeled S., S.. can be identified with a unique ray.  Proa 

elementary calculus 

dx 
dz 

dx 
dx 

/dz = 9H_ /9H m  h 
I dx   3S / Dq   q and 

dz 
(13) 

and integration gives 

x(Sr S2, z) = S, /  dzq 

z 
-1 _3 

9S 

z 

dzq(Sl, S2, z) ,    (\(yt) 

y(S1, S2, z) = S2 /  dzq  = - sg- /  dzq(Sj, S2, z) , 

•'o 2 •'o 

(166) 

where (14) was used for the last step.  Kquat ions (lb) are identical 

to Eq. ("3) of Mae tin   |1976/>1 and are the ray tracing equations <>t 
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Hookci'   [1939]. Maslin  and Budden  derive thorn by applying the first- 

order stationary-phase method to the angular spectral representation 

(1).  The important point is that (16) remain valid when the ray 

passes through a caustic, even though the associated first-order 

stationary-phase approximation to the field breaks down.  Aside from 

a constant, the phase integral 

({.(S^ S2, 7.)   = f    dzq (S,, s2, /.) 

is recovered by integrating (16) with respect to S or S .  The inte- 

grands x or y are produced using ray intercepts on the plane at height 

z as a function of S , S .  Appendix A details this construction. 

Because this method of constructing the phase from the ray trace 

uses the ray intercepts and not the path-integrated refractive-index 

variation directly, it provides a much more reliable estimate of the 

small phase differences between neighboring plane wave components. 

This is essential to the success of the approach. 

Although <}> is in general complex, only its real component can be 

recovered by this method, which employs a real-valued ray tracing 

program such ,is that of rlonc.fi/titephrmnon   |197r>].  Thus, a primary 

assumption ol our model is that evanescent waves contribute negligibly 

to tin' Field represented by (9).  Nevertheless, weak collisions may 

be included in this approach by formally tracing the rays as it they 

were real, then Adding the path-integrated attenuation computed by 

the ray trace to the spectral weighting function (.' for each wave com- 

ponent [Booker,   1939]. 

Ml 
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The neglect of evanescent waves appears to be valid as long as 

the spectral weighting function G is continuous.  For G continuous, 

the absence in the integral of spectral components with a slowly vary- 

ing phase in the shadow region beyond the caustic leaves only rapidly 

varying components, leading to destructive interference and a decaying 

field.  For an infinitely distant transmitter, however, there is only 

a single plane-wave component S ; C thus becomes a delta function 

6(S - S_) and our model would not provide information about the field 

above the reflection height of the plane wave component S_. 

Because q is double-valued, (16) can be taken to represent inter- 

cepts of either the upgoing or the reflected parts of the ray tra- 

jectory.  In the latter case, the integral Is understood to run up 

to ZQ, then to return to z witli q changing sign as it passes through 

zero.  Thus we define the phase of the up- and downgoing rays (Ji  and 

*d aS 

*u<Sl' V »> • 

z 

X dzq(St, S2, •/.) (17) 

and 

z 

i •d(S,, S2, z) - f> dzq(Sj, S2, : 

W V Z0} '  ' 
•/ 

(18) 
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The ray trajectory is symmetrical about its reflection point, M (18) 

ran be written 

z0 

•d(8,, S2, ,) = ^(Sl> S2, *> + 2 j    d "•hi • (19) 
V. 

Integration of the up- and downgoing ray intercepts produces <{> and 

4'. on tlif piano at 2 only up to constants; the proper phase differ- 

ence between the up- and downgoing waves is produced by requiring the 

phases to agree at the reflection point. 

Substituting those results into (3), we obtain 

2/3 
I.   = [| ik(<t>d - d,u)J '  , (20) 

and (9) becomes 

1 

f-(x, v, ,) - 21 ]£ i" i>* f  dS S gn(S)(C/q)
l/;- 2*}'*   ,1/2 Al(f.) 

n—»     •'o 

* 1'XP ["' 2 (<),d + •u'J Jn(kSp) • (21) 

Using (10) for points not directly over the transmitter yields 

.1/2 

'(x, y, z)   •» e     (2ll/kp) 

IM i Ml J _ 1 n=-°"    "-1 

2n'/;' f.lM AKO exp  -ik [sp + | (#d + d)u)l  . 

(22) 
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In equations (21) and (22), the actual Integratton limits arc deter- 

mined by the r;iys that intercept the plane a\   •/..     Pi»r | f, | '  I, the 

factor 

271 £ Ai(fJ   ex "H (*d +v] (23) 

becomes 

exp   (-ikcj^)  +   i   exp   (-ik^) (24) 

In practice, Budden ami Tavry   [1971] show |f,| need only be >J.3 to 

make (24) a good estimate of (2'5) .  Following Budden   [1961], £ is 

computed as 

I  - - 4 k(*d " V 
2/3 

(25) 

and 

1/4 it-ii/4 m/4 
£    e (26) 

These are the proper phase choices for producing the asymptotic form 

(24) from (23) well below the reflection height. 

*     
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IV.  NUMERICAL EXAMPLES 

Although our method is suitable lor a wide range of realistic 

profiles, we illustrate it by application to two relatively simple 

ionospheric profiles studied by Ma&lin   [197ba,b],   allowing our 

numerical results to be compared with his asymptotic results. 

LINEAR IONOSPHERIC PROFILE 

First consider the linear refractive—index height profile used 

by Maul in   11976a,b]: 

a    - I , z < h , 

= I - a(z - h) ,     7.   >   h , (27) 

where u and h are constants. Because of the simplicity of the model, 

analytic expressions for the ray intercepts on an arbitrary horizontal 

plane at height /. are easily found from (2) and (16); in the plane 

y = o, 

x(S) - zS/C , 

- (2h + 4C /a - *)S/C , 

- hs/c + c -fc2 - a(« - h) 2S/a , 

- hs/c + ;: + %c   - a(a - h) 2.s/u , 

z h upgoing , 

Z i h downgoing , 

/. s h upgoing , 

7. > h dovngoing . 

(28) 

Figure I plots x(S) as a function of S for various heights z, using 

h - 100 km, a • 0.002 km . Pot graphical clarity, the Intercepts 
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Fig. 1--Ray intercepts on horizontal planes at various heights z for 
the linear ionospheric model (27), with h = 100 km, 

a = 0.002 km-1. Caustic loci are shown as 
dashed lines that meet at two cusps. 
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have been left incomplete for z = 110 and 120 km.  Dashed lines plot the 

loci of the caustics.  The loci meet at two cusps—one below the ground 

at x ~ 1360 km, the other at a height of about 1 1 r> km at x —  800 km. 

A comparison of our figure witli Figure i o[~ Maslin   |1976<z] helps 

to clarify the configuration of the ray paths.  For each height 

v.   in our figure, the up- and downgoing rays form the lower and upper 

branches of a closed loop, respectively.  The branches conn. i't at the 

reflection value S (/.); ravs with S N S (/.) do not reach the height v.. 
c i' 

The figure also shows that the caustics are associated only with 

the downgoing branches. 

For the magnetic dipole represented I v (6). only the n = S3 terms 

contribute to (22).  In the plane y = 0, 

1 

F(x, 0, Z) - enl//' (2n/kx)'/'- ( ;0 f dss'
J'W/:' **m C1M AM O 

* exp . — i k I  Sx + 2 <•< + •„>] I • (29) 

with f, given bv (2'i).  Here F represents the y-component of the elec- 

tric field.  The phase integrals (J>  and $     can he found either an- 

alytically (in this case) or through the rav tracing procedure dis- 

cussed in Sec. IM.  Co compare with /•',.•/''•'.• \197bb]  asymptotic ral- 

i ulation, we set /.   • 0, k • 4H km  .  Owing to th* very Large phase 

oar Illations In (29), its numerical evaluation requires special care. 

Appendix B describes I numerical quadrature method developed inde- 

pendently by tfoodie   |1976) and BcOKtkat   [1976], the piecewise linear 

phase (PLP) algorithm.  Although more standard methods such as 

«     



IV 

7- 

the fast Fourier transform (FFT) could be as efficient as the PL I' 

algorithm, we have obtained consistently good results using the latter 

with highly oscillatory integrals.  Its appllcal[tin here with 100 sub- 

intervals produced the result shown in Figure 2 For the modulus ol tin 

field.  Our figure agrees closely with Figure I of Mustlin   [1976b], 

even in the vicinity of the caustics at 1189.6 and 122b.7 km. 

HYPERBOLIC SECANT PROFILE WITH COLLISIONS 

A well-known model of an ionospheric layer is tho hyperbolic 

secant profile 

n = 1 - - — seen [a(/.  - /. ) 
1 - 1/ m 

(30) 

where a, Z.   a,   z     are constants.  For Z = 0, the ray intercepts in 
m 

the plane y = 0 are given by Eq. (32) of Maßlin   [1976a]: 

x(S) = ~ On 
Cot 

I 2    2 2'
1/2 

)C cosh  (-nz ) - a j C sinh (-uz ) 
m 

4. I ,-2      . 2  I  I M ± , C.  cosh [a(7.  -  • )  - a , 
I    \ »I 

• 11/« 
C sinh |u(z - z ) m 

(31) 

Figure 3 plots x(S) for various t,   using a = 0.1), a  • Q.05 km 

?.    = 100 km, and ignoring collisions (Z • 0).  For this choice of the 
m 

parameter a, rays having S < S  • 0.43 penetrate the taver and .ire 

not reflected at any height.  The interpretation ol Figure ! is similar 

to that of Figure I; the caustics are shown as dashed lines meeting at 

a   single cusp at z • 91 km.  Again, for graphical clarity, two ol the 

upgoing branches have been left incomplete. 
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Fig. 3--Ray intercepts on horizontal planes at various heights z for the 
sech ionospheric model (30), with a = 0.9, a = 0.05 km-1, 

Zm = 100 km, Z = 0. Caustic loci are shown as dashed 
lines that meet at a single cusp at z — 91 km. 
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To test Che phase-integral estimation technique described in 

See. Ill, we used the Jonen/Stephenson   [1975] ray tracing program to 

compute ray Intercepts x(S) on the horizontal plane at height 88 km 

for both up- and downgoing rays with S values between 0.47 and 0.65. 

The fits were adjusted to yield <j)  = (j>  for S = 0.65, corresponding 

to the ray grazing the plane at z = 88 km. 

Collisions were modeled using the procedure suggested by 

Booker  |1939] of propagating the rays as though they were real, but 

modifying the spectral weighting function G by the path-integrated 

attenuation for each ray traced.  This was easily done, since the 

Jonen I'.'•'/. phinr.on  program can compute the attenuation.  For comparison 

with Mm; I. in   [1976/;], constant collisions given by the parameter Z of 

0, 0.0005, 0.0018, and 0.0045 were used.  Application of the PLP 

algorithm to the magnetic dipole in the plane y = 0 produced the 

curves shown in Figure 4 for the modulus of the y-component of the 

field as a function of range.  Our figure agrees well with Figure 6 

of MarJ.in   |1976/>|.  The two figures show the same reduction in oscil- 

lations for larger collision frequencies. 
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V.  UNIFORM ANCULAR SPECTRAL REPRESENTATION FOR AN EVANESCENT LAYER 

The foregoing treatment of fields in regions of strong focusing 

using ray tracing techniques was based on Budden's   [1976] approximate 

solution (1) to the wave equation, uniformly valid in the neighbor- 

hood of a single reflection height.  His solution is a good approxi- 

mation to the exact wave-equation solution throughout the reflection 

region if, first, higher order derivatives of the refractive index 

with respect to altitude are well behaved; and, second, the reflection 

height is sufficiently remote from other roots of Booker's   11939] 

quartic function q.  The second condition, however, excludes problems 

such as the leakage of tropospheric ducts. 

Considerable work has been done in modeling duct propagation 

using the waveguide mode approach [Fook,   1950; Voak,   Weinstein,  and 

Belkina,   1956, 1958; Budden,   196L6; Wait,   1962; Chang,   1971; Pappert 

and Goodhart,   1977, 1979].  However, no one has generalized the 

angular spectral representation to include the case of partial trans- 

mission through a thin evanescent layer in which there are two neigh- 

boring roots of q.  That extension is needed to allow our analysis 

to be applied to superrefraction in leaking tropospheric ducts.  We 

outline the construction of the generalized spectral integral holding 

uniformly through evanescent regions and show that asymptotic limits 

of the expression produce the correct results for thick layers. 

It is well known that any field component F in free space can 

be written as a superposition of plane waves as 
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P(x, y, 2) = ff dS2 dS2 CfSj, S2) exp [-ik^x + S2y + Cz)l  .   (32) 

In a medium varying in z only, the x- and y-dependence of a 

given spectral component of F in (32) is unchanged but the z-dependoneo 

is determined approximately by the equation 

92F   2 2_ 
 r + k q F 
9z 

0 . (33) 

Additional terms involving derivatives of n may be present in (33), 

depending on the choice of transmitter and field component; they are 

neglected here.  We wish to solve (33) approximately for the case in 

which there are two arbitrarily close roots z s.  z„ of q.  For con- 

creteness, we assume 

q > 0 ,    z > z2, z < z1 , 

q < 0 ,    z1 < z < z2 

(34) 

This choice corresponds to the case of an evanescent region between 

z1 < z < z„ with real, propagating rays outside. The complementary 

problem of taking 

q  > 0 ,    z < z < z- , 

q < 0 ,    z  > z2,   z  > z^   , 

(34a) 

represents an elevated duct.  Because the latter case has been well 

researched [Fock,   Weinstein,  and Itelkina,   1956, 1958; W,iiL,   1962), 

we concentrate on the evanescent-layer problem. 

«     
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For large k, (33) is a special case of a more general equation 

studied by L*xn<jer>  f 1959J.  The essence of his method is to change 

variables to produce an equation resembling Weber's   [1869] equation 

asymptotically as k -*• °°.  The change of variables is defined, first, 

by the equation 

/' 
dx(x - 1) f t 2Q J dzq * (35) 

with 

Q S /  ds|q| ; 

z. 

(36) 

and, second, by 

(S2 - D1M F(z) - ^    ^ u(C) , (37) 

in terms of which (33) becomes 

Here 

% + [{¥?«?• »-}{$)' + &]*•<>•   '     <38) 
de, 

,. -• dz _ (C2 - D1/2 2Q 
dC 71 

(39) 

with analogous expressions for z" and z'" .  Following Lanier,   the 

2    1/2 
arguments of q and (£ - 1)   in (35) are defined as 

_'—• — 
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0, 

arg q(z) = arg (£2 - 1)1/2 = < 

0, 

z < z and £ < -1 , 

z < z < z„ and -1 <  E, <   1 , 

z > z and £ > 1 

(40) 

Equation (35) thus can be used to define a mapping between heights 

throughout the region of the layer and the real line.  For sufficiently 

high frequencies, the last two terms in (38) are small relative to the 

first two; dropping them and using the substitution 

(ff2. • W(t) = u(5) , (41) 

produces the following form of Weber's  equation: 

SK*-¥)— (42) 

Besides Weber  [1869], many others have studied solutions to this i-qua- 

tion, including Darwin  [1949], Miller  [1952], Olvcr  [1959], and Erdchji, 

Kennedy,  and McGregor  [1954]. Abramowi.tr. and Sie gun  [1965] summarize 

those previous analyses.  Using the normalization and notation in 

Abramowitz and Si.cgun,   two independent solutions of (42) arc given 

by 

«(? • «) 
Physical requirements dictate the proper combination of these 

solutions.  For kQ/ir >> 1, we require the result to agree with Budden'e 

[1976] uniform asymptotic result for • near ?.   .  For z >> z„, the 
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solution shouid represent an outgoing plane wave.  As shown below, 

those limits can be achieved by choosing the combination 

with 

M * (l • ."«f kQ 
(44) 

From (37), (41), and (43), the expression for a single spectral com- 

ponent is 

1      A    1/2    E (f • Wf o (45) 

The factor A is chosen to match Buddcn's  result for z << z1 when 

kQ/iT is large: 

A = e    C ̂ (fr^^-i^i-^jf1 
dzq  .  (46) 

Finally, the complete expression For F is 

• // dsL ds2 (KSj, sjic/i)1'* •*«*(¥) 
1/4 

(C2  ~ D1/4 

x e 
-kQ (!-*.-"*)-»(-*,( 4 «*(* .«vf'O 

x  exp Ulk^x +  S2y)J (47) 
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This is the desired generalization, holding uniformly throughout an 

attenuating layer, of Budden's  result for a single reflection level. 

ASYMPTOTIC LIMITS 

The expression (47) must be shown to produce the correct asymp- 

totic limits for a thick evanescent layer. For kQ/rr large, we apply 

the asymptotic approximations in terms of Airy functions given by 

Abramcwitz and SUujuri   [1965]: 

and 

•(*.** «)-^Ww^-H(?^f Bi(-C) , 

(49) 

where 

3kQ f. 
.2/3 

dx(x - 1) C ^ -i , (50) 

2/3 

*£~ x2)1/2 5J-I. (51) 

and ^ SO.     Using   (35)   gives 

C = 

(*>/ 

v 2/3 

dzq z   <   Zj    , (52) 

\2/3 

ifl    /     dz|c 
/ 

z     <   z  <   z„ (53) 
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From (44), 

u ~ - e 
1 -kQ 

Combining (43), (48), (49), and (54) gives 

(f, 2v? «)- «.>>» («r w 

(54) 

x [2 ekQ Al(-C) - »I J.  -kQ 
2 >]• 

For z << z , the Airy functions can be replaced by their asymptotic 

approximat ions: 

Ai(-C) if1'2  C"1/4  si 

•(•/' 
dzq  + (56) 

and 

BK-Ü 
-1/2    -1/4 

IT r, COS 

(•/' 
dzq  + -r (57) 

Expanding the trigonometric functions in their exponential representa- 

tions, substituting into (55), and collecting terms, we obtain 

..(¥.2^5)_(M)-1V-1,-"v(-i5).«'(1+4
?) 

x exp [ ik I  dzq 
/ 

1 Z 

uxp \ -ik I  dzq 

+ i exp |-i2k j      dzqVl - —2- J exp f ik / dzq) 

(58) 
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Substituting (58) and (46) into (45) gives 

F =- (C/q) 
1/2 

z 

L exp ( -ik I  dzq) + i exp 

0 (- (' 

dzq 

(. - 4?) „ L ^ exp [ ik /  dzq 

0 

7.   <<    Z, (59) 

This represents the usual decomposition of the field far below the 

layer into upgoing and downgoing waves with reflection coefficient 

R = i exp L±n f   dzq j (i - si!5)  , (60) 

which in turn yields 

i 12  ,   -2kQ 
R|  •*• 1 - e 

-kQ 

1 • e"2kQ 
(61) 

to terms of second order in e *"*,  The last result is a generalization 

of the reflection coefficient expression for a parabolic layer [Budden, 

1961a]. 

For z near the higher root z of q, applying (48) and (49) to (43) 

gives 

F - exP (i |) (C/q)
1/2 ,1/2 e-kQ exp (-ik f    dzq\ 

51/4 fBK-O - iAi(-C)] , (62) 
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whcre 

H 
z2     \2/3 

!     I   dz|q| j    ,     «j < z < z2 , (63) 

s   \2/3 

S k /  dzq ]   , z > z„ . (64) 

/ 
Z2 

For z >> z„, the Airy functions can be approximated as 

A.,  .    -1/2 -1/4  ./,/*.   . TT 
Ai(-C) =-71     C    «in I k I  dzq + T 

and 

z 

/ 
*2 

Substituting into (62) produces the field far above the layer 

/ ( \ I 
I -ik    I       dzq Je exp I -ik    I 

\       Jo / \       4 

(65) 

• TT"
1/2

  C~1/4 cos ( k    /    dzq + J | 

F =- (C/q)1/2 exp (-ik I   dzq I e *v exp [    I  dzq j ,    (67) 

'2 

which is seen to be an outgoing plane wave, as required. 

NUMERICAL EXAMPLE 

The energy transmission through an evanescent layer is given 

approximately by (61) or (67) as 

|T|2-e-2kQ. (68) 

%. .     — 
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For the hyperbolic secant layer used in Sec. IV (with /. • 0), (36) 

gives 

cosh  a/C 

Q = 2 - a f     H u2        ,-2/ 2 du ( sech u - C /a )1/2. C <: C  , 
p 

= o , c > c (69) 

where C = a.  Rays with C > C  (or S < S ) are refracted but not 
P P P 

attenuated by the layer.  Following Budden   f!96l<v], the parameter 

represents f /f, where f and f are the wave and penetration fre- 
P P 

quencies, respectively.  For 

2TTf 

a   ca » 1 , 

i/C =- 1 and 

*§(H (70) 

Substituting into (68) gives 

exp [**(!-»)]• (71) 

9 — 1 
Figure 5 plots |T|  versus S computed with (71) for a  = 0.05 km  , 

k • 4TT km  , and various values of a. 

As expected, |T|  falls rapidly with increasing S beyond S . 

Nevertheless, for frequencies close to the penetration frequency 

(a ~ 1), plane wave components within ~3 dog of vertical will suffer 

less than 10 dB loss and should be included In the spectral integral (47) 
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F1g. 5--Transmission through the sech ionospheric layer, Eq. (30), 
at various values of the parameter a = f/fp 
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VI.  CONCLUSIONS 

The numerical method presented here for modeling radio field 

strengths in caustic- and cusp regions lias two advantages over the 

asymptotic method: 

1. Use of a ray tracing program permits phase integrals for 

complicated media to be computed straightforwardly. 

2. Use of numerical quadrature for spectral integration obvi- 

ates the problems of locating and calculating the contribu- 

tions of the stationary components in the integral, par- 

ticularly when higher order asymptotic methods are necessary. 

Numerical integration is both feasible and much easier even for the 

simple cases discussed here.  Our algorithm avoids the excessive com- 

puter running time often associated with highly oscillatory integrands. 

For simple profiles amenable to asymptotic calculation, our method 

yields results nearly identical to those of MasLin   |1S>7(W'); moreover, 

it is applicable to a much broader range of profiles.  Weak collisions 

can be included through use of attenuation information provided by 

the ray trace.  Possible generalizations would include treatment ol 

anisotropic media and leakage through thin layers.  The latter prob- 

lem is partially solved by extending the angular spectral integral 

to include regions throughout the vicinity of a thin layer. 
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Appendix A 

CURVE FITTING THE RAY INTERCEPT DATA 

This appendix considers the problem of constructing phase inte- 

grals from ray trace intercept data on a plane at height z.  Because 

of the polar symmetry in S, it is sufficient to consider rays in the 

plane y = 0.  The up- and downgoing phase integrals <t>   (S, z) and 

0,(S, z) defined by (17) and (18), respectively, are found from rays 

penetrating the plane z from below or above.  Using (16), one can find 

<j> or <j>, up to constants by integrating an analytic representation of 

the ray intercepts x(S) with respect to S.  The problem then is one 

of curve fitting the ray data to a suitable set of basis functions 

over the range of S values that produce rays intersecting the plane. 

For the upgoing rays, that range extends from zero to the value S 

for which the ray is tangent to the plane.  The downgoing range runs 

up to S from S , which labels the smallest incidence angle ray not 

penetrating the medium. 

For a given height z, we require a fit to both branches of x(S) 

for 8« £ S < S., where S < S (z).  On the upgoing branch, S_ ^ 0; 

on the downgoing branch, S„ > S .  The values of S and S must 

be chosen to include all rays near the x values for which the field 

is to be computed.  Because of the well-known problem of numerical 

instability in least-squares fitting of a polynomial of degree greater 

than about five, orthogonal polynomials are often used as basis func- 

tions.  A particularly convenient choice is the Chebyshev polynomial 

set, because of its orthogonality with respect to summations in 

I 1-HECKD1NO PiOS. MJkMC-NOT IllMB 
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addition to its ability to produce a uniform fit over the function 

domain.  Those properties are well described by Seheid  [1968].  To 

use the orthogonality property, rays must be traced at definite, dis- 

crete values of S given by the equation 

(P. + 1) 
Si - so + (si " V —T  i = 0, .... N - 1 ,     (A.l) 

where 

P4 = c os [(2i + 1) *.]   , i = 0 N - 1 , (A.2) 

and N is the number of rays traced between S„ and S .  Following 

Scheid,  we approximate x(S) with 

x(S) -}] akTR[p(S)] ,    m <: N - 1 , 

k=0 

(A.3) 

where T is the kth  Chebyshev polynomial, 

2(S - S ) 
P(S) = -_- „— - 1 , 

Sl  so 
(A.4) 

and the coefficients a, are given by 

N-] 

and 

a0 = N]CX(Si: 
i=0 

(A.5) 

N-l 

ak = N-2x(Si)Tk(Pi) •    ] Sks 
i-0 

(A.6) 
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For m = N - 1, this procedure produces ;i collocation polynomial through 

the data points x(S.); for smaller m, it yields a least-squares fit. 

Because of the orthogonality for a given N, the coefficients a are 

fixed for all fits of order m :C N - 1.  Therefore, in contrast to the 

usual least-squares polynomial fit, increasing the order of the approx- 

imation does not result in a reshuffling of lower order coefficients. 

We illustrate the curve-fitting procedure using data produced 

from the JonesIStephenson   [1975] ray tracing program for the seen 

ionospheric model (30) with the parameters in Sec. IV and z = 89 km. 

We consider here only the downgoing rays and set S = 0.47, S = 0.63, 

N = 12.  The table lists the coefficients produced for each fit with 

Osms 11 and the associated RMS defined as 

RMS = {- 

N-l p 

i=o L 

m 

E Vk(p 

k=0 •']]"' (A.7) 

Only the highest degree a is given, because the a, , k < m, are already 

determined.  The RMS is given in kilometers, so a fifth-order fit pro- 

duces a representation of the ray intercepts valid to about 0.03 km. 

The method thus should be accurate enough to produce reliable results 

in the angular spectral integration when used with Maalin'B   frequency 

of 600 kHz. 

•  
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COEFFICIENTS PRODUCED BY CHEBYSHEV FITS 
TO RAY TRACE INTERCEPT DATA 

Order 
of Fit, 

Highest Degree 
Coefficient, 

RMS 
m m (km) 

0 91.143250 1.8698 
I -2.358955 0.8448 
2 0.771790 0.6449 
3 0.901365 0.0983 
4 0.027617 0.0963 
5 0.128946 0.0311 
6 -0.031670 0.0218 
7 0.015146 0.0190 
8 -0.002624 0.0189 
9 0.013373 0.0165 
10 -0.016300 0.0143 
11 -0.019619 0.0029 

» 

: 

m 
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Appendix B 

PLP ALGORITHM 

This appendix describes the numerical quadrature algorithm of 

Woodie f1976 ] and Barakat [1976] used in performing the plane-wave 

angular spectral integrations.  The spectral integrals are of the form 

Kx) 
/• 

dS g(S) e -IkP(S.x) (B.l) 

mm 

where both g(S) and P(S, x) are continuous functions over the inter- 

val S .  < S < S   .  Because k can be large, the integrand contains 
min       max 

a highly oscillatory phase term.  Since P(S, x) is continuous, we can 

subdivide the integration interval into N segments such that in the 

ith  segment 

P(S, x) - P(S., x) + H (S - S.) , (B.2) 

where  S.   =  S   .     + AS(i   -   1/2),   i  =   1,   N +  1,   and  AS  =   (S -  S   .   )/N. l         min                              "              *              '                           max min 

It   is also assumed  that  N  is   large  enough  that  g(S) =• g(S   ) within 

each  element.     Substituting  into   (B.l)   produces 

2£i -ikP(s.,x)   r1 

Kx)  •»> A g(S.)   e J 

S.+AS/2 

dS  e 
•ikCKSj.xMS-Sj) 

i=l S1-AS/2 

N+l __^ -ikP(S   ,x)   sin kC(S   ,   x)   AS/2 
AS2W R(V • 

i = l 
kC(S.,   x)  AS/2 

(B.-J) 

I^B —  
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where G(S. ,   x) 
9J1 
3S 

Si 

Because of   the approximation   (B.2),   this  pro- 

cedure  has  been  named   the  piecewise   linear  phase   (PLP)  algorithm. 

Its  extension   to  two dimensions   is  straightforward. 

•NMBh—.  
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SYMBOLS 

A(S, z) = Budden'u  reflection region factor, given by (A) or 

its asymptotic limit (5). 

Ai(£), Bi(£) = Airy integral functions. 

C = z-direction cosine of plane wave component in free 

space. 

E (a, x) = parabolic cylinder function. 

F = component of electromagnetic field, 

g (S) = n/Ji  azimutha] component of (i. 

G(S , S„) = spectral weighting function. 

H = H;imi 1 ton i an. 

J = nth   Bessel function. n 

k = free-space wave number, ü)/c, where a) is the angular 

frequency and c is the speed of light. 

n(z) • refractive index. 

q= ln2(,) -S2|1/2. 

Q = integral of |q| through the evanescent region. 

S 

S1, S~ = x- and y-direction cosines of plane wave component in 

free space. 

W(a, x) = Weber's function. 

x, y, z = Cartesian coordinates with the z-axis vertically 

upwards. 

Z = v/ü), where V is the electron collision frequency and 

U is the angular frequency. 

(sj + sy\ 
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£, = argument of Airy function given by (3). 

p = (x + y ) 

T = independent variable in Hamilton's ray equations. 

(J) = tan  (S2/S ). 

)u(
sp S > z) = phase integral for upgoing wave at height •/.. 

t>.(S.» S , z) • phase integral for downgoing wave at height z. 

IJJ • tan  (y/x) . 
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