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Two-dimensional, steady, incompressible, laminar flow in a diffuser and 
nozzle is considered as a model problem.  A sheared mapping is used to provide 
a rectangular, wall-fitted, computational domain.  This transformation produces 
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relaxation and Newton-Raphson iteration.  Comparison of Navier-Stokes and 
parabolized vorticity results are presented for two diffusers (both with 
separation and reattachment of the boundary layer) and one nozzle flow. 
T M parabolized and Navier-Stokes solutions are found to be in excellent 
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NOMENCLATURE 

* 

wall friction coefficient 
w 

1    *    * 
2P      Uoo 

w 
wall pressure coefficient = w 

l  * * 

2p U» 

spline derivative approximation of -^- 

spline derivative approximation of K 
3n 

L 

n 

An 

* 

spline derivative approximation of 
2 

3 » 

3n2 

A spline derivative approximation of —^ 
3n 

reference length (dimensional) 

transformed normal coordinate 

step size in n-direction 

wall static pressure (dimensional) 

Re 

RF1 

RF2 

s 

As 

* * 
U L 

Reynolds number 

relaxation factor for ij; and Z 

relaxation factor for £ and 2, 

transformed axial coordinate 

step size in s-direction 

4> 
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* 
U free-stream speed (dimensional) 

x axial coordinate 

0 axial coordinate of start of computational domain 

x, axial coordinate of end of computational domain 

y normal coordinate 

y normal coordinate of outer edge of computational domain 

y normal coordinate of wall 

ty stream function 

C vorticity magnitude 

T wall shear stress (dimensional) 
w 
* 

V kinematic viscosity (dimensional) 

p fluid density (dimensional) 

All other quantities are defined in the text. 

All quantities in the text are made dimensionless as followr: 

^ 

distances by L 

velocities by 
* 

stream function by 
* * 

00 

vorticity by *, * 

•s 

__ 

I 
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I. INTRODUCTION 

In Reference 1 a model strong interaction problem for two-dimensional, 
incompressible, laminar flow was solved numerically.  The treatment involved 
a coupled solution of the stream function equation and a parabolized form of 
the vorticity equation.  Fourth-order accurate polinomial splines were used 
to resolve the wall boundary layer with a relatively sparse grid while finite 
differences were used in the other direction.  The geometry considered was a 
diffuser or nozzle made up of two flat plates connected by a cubic midsection. 
To produce a rectangular computational domain, a simplt sheared mapping was 
used.  Then on this mapped domain, the coupled spline-finite difference 
equations were solved by line relaxation plus Newton-Raphson iteration to take 
care of the nonlinearity. 

In this report the full Navier-Stokes equations are solved for the problem 
of Reference 1 using the same numerical approach. The aim is to assess the 
effect of the mild nonorthogonality of the shearing transformation on t^e 
parabolized vorticity approximation.  As part of this assessment, a slightly 
different parabolization is used from that of Reference 1 (the details are 
given in Section II). 

When this work was nearly completed, a similar study came to light 
performed by Inoue in Japan [2].* Inoue treats laminar, incompressible, 
two-dimensional flow in a diffuser using the displacement body approach 
coupled with a sheared mapping and standard finite difference discretiza- 
tion in both coordinate directions. He also uses a parabolized vorticity 
approximation, but different from the one used here. 

The numerical results presented in this report provide an assessment 
of the effect of a non-optional coordinate system with mild nonorthogonality 
on the parabolized vorticity approximation.  In addition, comparisons with 
the results of Inoue [2] are given. 

II. ANALYSIS 

Coverning Equations 

Under the following shearing transformation 

s = x (1) 

y»M 

ye - yw(*> 
(2) 

the two-dimensional, steady, incompressible Navier-Stokes equations in stream 
function-vorticity form become: 

6 
Numbers in brackets [ ] indicate References.  See Page 18. 
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2   2 
*  + 2n *  + (n + n ) 4  + n  ^ + C = 0 rss    x sn    y   y Tnn   Xx n (3) 

Vorticity 

n (<|> <;  - C * ) - ~- [5  + 2n t n + (n
2 + n2) C,      +  n C ]   ,  (4) y n s  ^nrs   Re  ss    x^ n  v x   y

7 ^nn   xx'n
J   '   y 

where subscripts denote differentiation with respect to the subscripted 
variable.  Neglect of the underlined diffusion terms in Eq. (4) gives the 
parabolized form of the vorticity equation, the same as used in Reference 1. 

The transformation, Eqs. (1) and (2), is identical to that used by 
Inoue [2],  A slightly different transformation was used in Reference 1 where 
s was taken to be the wall arc length.  The purpose of the shearing trans- 
formation is to map the diffuser geometry, sketched in Figure 1, into a 
rectangle on which a finite-difference grid can be easily superposed. 

The boundary conditions to be used are also the same as in Reference 1, 
namely: 

On the initial line, s = s  ,  0 «^ i < 1 

4» = iKsQ,n) = *0 

5 = C(s0,n) = C0 
(5) 

where (^,On are obtained from the Blasius solution. 

On the wall, n = 0 ,  s <_ s _< s 

<Ks,0) = *n(s,0) = 0  , 

On the diffuser centerline, n = 1  ,  s £ s £ s , 

(6) 

.JKs.l) = i|;e(s) 

S(s,l) = o 
(7) 

On the downstream boundary, s=s   , 0 < n < 1, 

*ss(sf,n) = 0 

;ss(sf,n) = 0 
(8) 

In the parabolic approximation, the condition on X,  at sf is not needed. 
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Numerical Treatment 

The discretization of the Navier-Stokes equations employed in this study 
is as follows: 

1. Second-order accurate finite differences are used in the s-direction 
with a constant step size As.  Central difference formulas are used 
for all s derivatives except for the convective terms in the vorticity 
equation where a three-point backward difference formula is used to 
maintain stability. 

2. Fourth-order accurate spline approximations are used in the n direc- 
tion with a variable step size An. 

If the following spline derivatives are defined: 

r 

nn 

nn 

(9) 

and the cross derivative is treated as £ , then Eqs. (3) and (4) become: 

Stream Function 

\b      + 2n 2/ + (n +n. ) 1/ + n  «/ + C = 0 
ss    x s    x   y       xx 

(10) 

Vorticity 

n (X^ - tS ) = •£-  [?  + 2n &  + (n2 + n2) LC + n ZQ) yv ^s    rs   Re L^ss    x s    x   y      xx  ' (11) 

All boundary conditions remain as before except the no-slip condition which 
now reads 

A*(s,0) = 0 (12) 
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A rectangular grid is next placed over the computational domain with 
nodal points located according to, 

si = (i - 1) As     ,     sQ <_ s±  < sf 

n.^. • n. + An.     ,     0 < n, < 1 
J+l   J    J - j - 

(13) 

Then Eqs. (10) and (11) are discretized at (i,j) as previously described. 
As in Reference 1, the unknowns at (i,j) are $, £^, L*, £, £^ and L?.  The 
two discretized equations of motion must therefore be supplemented by four 
spline relations.  In this case, S1(A,0), spline 4, is used four times. 
The number of unknowns at (i,j) is then reduced from six to four by use of 
the discretized form of Eqs. (10) and (11) to eliminate iy  and l£.  At each 
interior node point a coupled system of nonlinear algebraic equations 
results.  The system of equations is completed by writing the boundary 
conditions in spline variables. At the wall, one two-point spline relation 
is required to close the system while at the diffuser centerline, two two-point 
spline relations must be used.  These relations are given in Reference 1. At 
the downstream boundary, because of Eq. (8), the coefficients in the spline- 
finite difference (SFD) equations considerably simplify. 

This algebraic system is solved by straightforward line relaxation with 
sweeps in the direction of s increasing using Newton-Raphson iteration at each 
s = constant line to take cae of the nonlinearity.  Thus, the numerical 
treatment and solution procedure of the full Navier-Stokes equations is 
identical to the method used for the parabolized vorticity approximation in 
Reference 1. 

Equations at a Map Junction 

At a junction in the mapping, which occurs at the leading or trailing 
edge of the diffuser, the metric coefficient nxx is discontinuous because 
y^ is discontinuous. Thus, a special form of the SFD stream function and 
vorticity equations is required.  The procedure for obtaining this special 
form is the same as in Reference 1, but is presented here in a different 
manner to clarify the nature of the SFD equation at such a discontinuity. 

At a map junction, Q  and its x and y derivatives of all orders are 
continuous. If i • IJ is the location of the junction and superscripts (H) 
and (r) denote left and right limits at IJ, then the continuity conditions 
lead to 

J 
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^IJ       ^IJ       ^IJ (14a) 

,C(i) . 9C(t) 
IJ IJ 

= I (14b) 

C(£) 5(r) (14c) 

(c )a)= (c )(r) 
^VlJ       ^VlJ (14d) 

The simple form of these relations occurs because we have a weak discontinuity; 
namely, in yw only. 

To make use of continuity of £g, we extend each region one step As into the 
other and introduce two lines of fictitious  (or analytically extended) nodes, 
denoted by an asterisk superscript. Thus, Eq. (14d) can be approximated by 
central differences and after simplification yields: 

*(r)     *(£) 
"-IJ-l.j  ^U+l,j  fcLI-l,J  ^U+l,j 

(15) 

The special form of the vorticity equation on IJ is obtained as follows: 
Noting that at IJ, n = 0 and n^ is continuous, we write the vorticity equation 
in regions (I)  and (r) at IJ and form the average, making use of the continuity 
relations (14a)-(14c). The result is: 

^y^s-^llJJ 
1  —     2 C       —   C 
Re l^ss   y      xx   IJ,j 

(16) 

where 

«s.'lJ.J -*"--' 
U) 

'ss 
(r) 
ss JIJ,j 

(17) 

'"xx'lJ.J 
1 ,«> . n(r), 
2 Inxx + nxx ]U,j 

(18) 

Thus, the map discontinuity is reflected in n  at (IJ,j). 

Next, C.      is approximated by central differences using the fictitious 
node lines with the result, 

^ss^J.j 2As 2 
lQu-i,j    nj+i.j    ^u,j + nj-i,j    HJ+I,J

J 

and making use of Eq.   (15),   the above  simplifies  to 

••••••••••••••• 
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«Jut • t"'1,J" '!",J *Wt1   • (1» J As 

In the present case, (£ )    reduces to the standard central difference 
formula which uses points from both regions as though no discontinuity 
existed. 

The convective terms in Eq. (16) involve only first derivatives of ty and 
X,  with respect to s.  For these derivatives three-point backward difference 
formulas  are used which make use of nodal values in region (£) only. 

Derivation of the special form of the stream function equation at IJ is 
practically identical to the above except convective terms are absent. 

The parabolization of the vorticity equation at IJ can be achieved in 
two ways.  The first method, used in Reference 1, is to use only the equation 
in region (Ä,) and drop £(*•).  The second method, which takes into account the 

ss 
influence of both regions, is to use the averaged form Eq. (16), and omit 

^ss- 

Vorticity Equation One Step Downstream of a Map Junction 

In the SFD form of the vorticity equation one step downstream of a map 
junction (i = IJ + 1) second-order accuracy in the convective terms can be 
maintained by using the proper values of ty  and ? at (i-2,j) required by the 
three-point backward difference formulas.  Since we are in region (r), these 
values lie on the fictitious nodal line in (r) one step upstream of the map 
junction.  To obtain these values, we proceed as follows: 

First, define a two-component column vector z by 

zT • [*,C]  • (20) 

Then continuity of z at IJ, when put into finite difference form, leads to 

Z
IJ-LJ 

+ zij!i,j - zu-i,j+ zu+i,j  • (2i) 

Continuity of zxx, noting that (nx)IT • 0, leads to the additional relation, 

(z  + n lZ)rl,\  • <«  + n  **>{?, (22) SS    XX    IJ,j     ss    XX    IJ,j 

Making use of 

z (£)     z (r) 

IJ.J IJ.J        * 

J 
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the finite difference form of Eq. (22) yields 

*(«,)     *(r) 
ZIJ+l,j " ZIJ-l,j " ZU+l,j " ZU-l,j 

L A 
2 r (*)   W, „z + As  [n   - nv ']TT . Ä,TT . xx    xx IJ,j  U,j (23) 

Then, solving Eqs. (21) and (23) for j v   ., we obtain 

zIJ-l,j " IJ-l.j   2  xx " xx J IJ,j  IJ,j (24) 

where the square bracket is related to the jump in y at IJ.  Since I 
can be quite large, the last term on the right in Eq. (24) is not negligible. 
Hence, using ZJJ_^ 4 in place of z£Cr^ . could lead to a noticeable error. 

III. NUMERICAL RESULTS 

Problem Geometry and Numerical Solution Procedure 

The wall geometry of the diffuser or nozzle is defined by the same 
equation as in Reference 2, namely 

f 0 

yw(*> - -1 Ax (3 - 2x) 

A 

xQ < x < 0 

0 < x <  1 

1 1 x 1    xf 

(25) 

where A is the cnange in height between the leading and trailing edges of the 
cubic transition section.  For a diffuser, A is negative and for a nozzle it 
is positive. An additional geometric parameter is H, the throat half height. 
The geometry is shown in Figure 1. 

The numerical solution procedure for the Navier-Stokes equations and 
parabolized vortlcity approximation is identical, as described in Section II. 
The details of the Blasius starting solution, the initial guess and SLOR 
procedure are given in Reference 1. 

In the present work a "consistent form" of the parabolized vorticity 
approximation is used by which is meant the following: 

1. At map junctions the averaged form of the vorticity equation, 
given by Eq. (16), is used with C,      omitted. 

2. One step downstream of a map junction, second-order accuracy in the 
s-direction is mantalned in the convective terms by use of Eq. (24). 

lift 
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In the "consistent form," as in Reference 1, one step downstream of the 
starting solution the convective derivatives are approximately by first- 
order accurate backward formulas to avoid the necessity of two starting 
profiles. 

Comparison of Navier-Stokes and Parabolized Vorticity Approximation 
Solutions 

Three cases were run to compare SFD results for the Navier-Stokes 
equations with the parabolized vorticity approximation.  The problem 
parameters for these cases are given in Table 1 below: 

Case No. Re A H xo Xf X 
s Ax RF1 RF2 

1 1000 -0.15 1.0 -1.0 2.0 1.0 0.2 1.0 1.0 

2 10,000 -0.075 0.25 -1.0 3.0 1.0 0.2 1.0 0.6 

3 1000 0.10 1.0 -2.0 3.0 1.0 0.2 1.2 1.0 

Table 1. Problem Parameters. 

In Table 1, xs denotes the distance from the initial line, at 
leading edge of the initial flat plate. 

v0' to the 

For all three cases, 20 nonuniformly spaced intervals were used in the 
n-direction with 11 points in the Blasius starting solution.  The n nodal 
spacing was generated with the step size ratio a  = 1.1 in the Blasius solution 
and with o adjusted slightly in the outer uniform flow region to give 10 
intervals.  This same procedure was used in Reference 1.  The convergence 
tolerance in the relaxation solution, as described in Reference 1, was taken 
to be unity in all three cases. 

Detailed comparisons of numerical results between the parabolized 
vorticity and Navier-Stokes solutions for the three cases are presented 
in Tables 2-7. These tables show wall friction coefficient and wall 
pressure coefficient.  In all cases, results for the consistent parabolized 
vorticity approximation are given.  For Case 1 only, results for the 
original form of the parabolized vorticity approximation, as described in 
Reference 1, were also obtained. Tables 2-7 show that the difference 
between consistent parabolized vorticity approximation and Navier-Stokes 
results for cj and c are negligible everywhere.  For Case 1, Ta!les 2 
and 3 show that the original parabolized vorticity approximation and 
Navier-Stokes solutions differ significantly at x * 0.2, one step 
downstream of the diffuser leading edge.  This disagreement is most 
likely caused by the first-order accurate s-differencing used in the 
convective terms of the original parabolized vorticity approximation. 

» 

A 
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Plots of convergence history for the three cases are presented in 
Figures 2-4.  In all cases the initial flow field guess and relaxation 
factors were the same for the parabolized vorticity approximation and 
Navier-Stokes solutions. These plots show that the extra terms in the 
equation between parabolized vorticity and Navier-Stokes make essentially 
no difference in the convergence. 

Comparison with Results of Inoue 

Inoue [2] has also solved numerically laminar flow in a two- 
dimensional diffuser, the same configuration treated here and in 
Reference 1.  Although a nearly identical shearing transformation 
is used, the equations solved are somewhat different as are the 
numerics and method of solution. 

Inoue uses a displacement body approach with parabolized viscous 
equations solved in place of the standard first-order boundary-layer 
equations.  In the inviscid outer flow, the solution of Laplace's 
equation gives the velocity at the edge of the viscous layer.  The 
viscid and inviscid problems are solved alternately until convergence 
is reached. 

The parabolization is performed before the shearing transformation 
is applied which is opposite the present treatment.  Thus, if 

h(x) = yw(x) - y£ (26) 

and 

H = 1 - n (27) 

then working out the metric coefficients, the present parabolized vorticity 
equation is, 

h\l>    r    - r    \b  ) • i 
hvvn s  ^n s        Re 

whereas the equation used by Inoue is, 

1 + h 2n| 
k 

h2 
4 

\^ 

(      2 
2h'* h" 

n<L (28) 

h vrn s  n rs' Re h 2 
Cnn 

(29) 

 _ A 
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W 

Inoue discretizes his governing equations using second-order accurate 
finite differences.  The parabolized vorticity equation was differenced 
in such a way as to account for the direction of the x-component of velocity 
which was not found to be necessary here.  For both the viscid and inviscid 
regions, he used a constant step size in both transformed directions with a 
grid of 141  (in s) by 41 (in n) nodes.  His computational zone length was 
seven units which gave As = 0.05. 

For comparison with results given in Inoue's Figure 12, two Reynolds 
numbers were chosen.  The parameters describing the problem as given in 
Table 8 below. 

A H xo Xf X s Ax RF1 RF2 

-0.08 1.0 -1.0 3.0 2.0 0.10 1.0 1.0 

Table 8.  Diffuser Parameters for Comparison with Inoue 

The Reynolds numbers were 6250 in Case 4 and 1000 in Case 5, which 
represent flows with and without a separation bubble. Only consistent PVA 
results were run for these cases. The convergence tolerance was tightened 
to 0.1 which required 107 and 62 iterations for convergence in Cases 4 and 5, 
respectively. After a tolerance of 1.0 is reached the convergence markedly 
slows down which is characteristic of the relaxation process. 

Comparisons with Inoue's results are presented in Figures 5 and 6 
or Cases 4 and 5, respectively. The agreement in both cases is quite good 
although some discrepancy does show up in the diffuser proper where the 
shearing transformation takes effect.  The slight disagreement here is 
most likely caused by the different parabolizations used rather than by 
a step size effect.  By examining the present numerical results closely, 
the second term on the right side of Eq. (28), proportional to C , has been 
found not to be negligible compared to the first term, proportional to 
5__, and results from Cases 1-3 bear this out. 

No comparisons can be given on the efficiency of Inoue's approach 
in contrast to the present one because no convergence information is given 
in Reference 2 for the diffuser solutions. 

IV. CONCLUSIONS 

The following conclusions can be drawn from this study for the 
particular problem considered: 

J  
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1. All parameters being the same, the consistent parabolized vorticity 
approximation described in Section II, gives nearly identical 
numerical results to the Navier-Stokes equations.  Thus, mild non- 
orthogonality of the coordinate system, introduced by a shearing 
transformation, has negligible effect on the parabolized solution. 

2. For line relaxation there is practically no difference in convergence 
properties of the Navier-Stokes equations and parabolized vorticity 
approximation. 

3. The consistent parabolized vorticity approximation gives results in 
much closer agreement with the Navier-Stokes equations than does the 
original form used in Reference 1.  The reason appears to be the 
increased accuracy of the former one step downstream of map junctions. 

4. Comparison of consistent parabolized vorticity approximation results 
for wall friction coefficient with those of Inoue [2] show good agree- 
ment with detectable differences occurring in the diffuser section. 
The reason for these differences is most likely due to the different 
parabolizations used.  In light of conclusion 1, the present procedure, 
in which the vorticity equation is parabolized after transformation, 
is the better approximation. 

I 
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Sta. WALL FRICTION COEFFICIENT 

Original PVA Consistent PVA Navier- 
Stokes 

1 -1.0 .021002 .021002 .021002 

2 -0.8 .021174 .021156 .021077 

3 -0.6 .020821 .020786 .020701 

4 -0.4 .020545 .020482 .020387 

5 -0.2 .020842 .020727 .020602 

6 0.0 .023059 .022841 .022717 

7 0.2 .014322 .013027 .012764 

8 0.4 .003817 .003324 .003081 

9 0.6 -.000331 -.000540 -.000689 

10 0.8 -.001570 -.001699 -.001843 

11 1.0 -.001517 -.001725 -.001907 

12 1.2 -.000222 -.000542 -.000741 

13 1.4 .001290 .000939 .000750 

14 1.6 .002787 .002436 .002260 

15 1.8 .004161 .003835 .003675 

16 2.0 .005414 .005125 .005012 

Table 2. Wall Friction Coefficient, Case 1, 

i 
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Sta. X 
WALL PRESSURE COEFFICIENT 

Original PVA Consistent PVA Navier-S tok.es 

1 -1.0 0 0 0 

2 -0.8 -.005094 -.005068 -.005147 

3 -0.6 -.016517 -.016407 -.016563 

4 -0.4 -.030148 -.029870 -.029984 

5 -0.2 -.047103 -.046395 -.046318 

6 0.0 -.073750 -.072556 -.072530 

7 0.2 -.084109 -.075889 -.075375 

8 0.4 -.059274 -.044703 -.042874 

9 0.6 -.027230 -.12197 -.009627 

10 0.8 -.003817 .011095 .013962 

11 1.0 .014969 .030059 .033431 

12 1.2 .031811 .047487 .051499 

13 1.4 .046000 .062511 .067099 

14 1.6 .056420 .073774 .078830 

15 1.8 .063076 .081232 .08f*62 

16 2.0 .066304 .085177 •J90908 

Table 3. Wall Pressure Coefficient, Case 1 
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Sta. X 

WALL FRICTION COEFFICIENT 
Consistent PVA Navier-Stokes 

1 -1.0 .0066413 .0066413 

2 -0.8 .0066338 .0066320 

3 -0.6 .0064226 .0064210 

4 -0.4 .0061799 .0061784 

5 -0.2 .0060107 .0060090 

6 0.0 .0062597 .0062582 

7 0.2 .0029994 .0029893 

8 0.4 .0002452 .0002380 

9 0.6 -.0005525 -.0005538 

10 0.8 -.0007590 -.0007613 

11 1.0 -.0009366 -.0009408 

12 1.2 -•0011086 -.0011139 

13 1.4 -•0010899 -.0010960 

14 1.6 -.0009775 -.0009843 

15 1.8 -.0008091 -.0008163 

16 2.0 -.0006033 -.0006108 

17 2.2 -.0003785 -.0003861 

18 2.4 -.0001506 -.0001581 

19 2.6 .0000689 .0000617 

20 2.8 .0002732 .0002662 

21 3.0 .0004609 .0004545 

Table 4.    Wall  Friction Coefficient,  Case 2. 

1 
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Sta. X 
WALL PRESSURE COEFFICIENT 

Consistent PVA Navier-Stok.es 

1 -1.0 0 0 

2 -0.8 -.004503 -.004517 

3 -0.6 -.013959 -.013996 

4 -0.4 -.023760 -.023811 

5 -0.2 -.033833 -.033890 

6 0.0 -.048304 -.048393 

7 0.2 -.040744 -.040768 

8 0.4 -.008176 -.008079 

9 0.6 .016028 .016110 

10 0.8 .029595 .029633 

11 1.0 .040106 .040146 

12 1.2 .051999 .052060 

13 1.4 .066015 .066108 

14 1.6 .080605 .080736 

15 1.8 .094879 .095053 

16 2.0 .10831 .10853 

17 2.2 .12050 .12077 

18 2.4 .13126 .13157 

19 2.6 .14051 .14088 

20 2.8 .14834 .14875 

21 3.0 .15485 .15529 

Table 5. Wall Pressure Coefficient, Case 2 
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Sta. X 
WALL FRICTION COEFFICIENT 

Consistent PVA Navier-Stokes 

1 -2.0 .021002 .021002 

2 -1.8 .020719 .020650 

3 -1.6 .019930 .019867 

4 -1.4 .019012 .018954 

5 -1.2 .018116 .018062 

6 -1.0 .017269 .017219 

7 -0.8 .016446 .016399 

8 -0.6 .015587 .015542 

9 -0.4 .014597 .014556 

10 -0.2 .013317 .013285 

11 0.0 .011326 .011262 

12 0.2 .014672 .014507 

13 0.4 .023851 .023556 

14 0.6 .033256 .032949 

15 0.8 .037465 .037297 

16 1.0 .029313 .029191 

17 1.2 .020060 .019966 

18 1.4 .018175 .018120 

19 1.6 .017424 .017375 

20 1.8 .017015 .016969 

21 2.0 .016707 .016660 

22 2.2 .016426 .016381 

23 2.4 .016159 .016112 

24 2.6 .015895 .015849 

25 2.8 .015636 .015587 

26 3.0 .015369 .015366 

Table 6.  Wall Friction Coefficient, Case 3. 
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Sta. X 

WALL PRESSURE COEFFICIENT 

Consistent PVA Navier-Stokes 

1 -2.0 0 0 

2 -1.8 -.00380 -.00391 

3 -1.6 -.01178 -.01205 

4 -1.4 -.01979 -.02015 

5 -1.2 -.02700 -.02745 

6 -1.0 -.03326 -•03378 

7 -0.8 -.03845 -•03904 

8 -0.6 -.04234 -.04299 

9 -0.4 -.04440 -.04513 

10 -0.2 -.04374 -.04456 

11 0.0 -.03847 -.03913 

12 0.2 -.04303 -.04271 

13 0.4 -.08784 -.08551 

14 0.6 -.18239 -.17801 

15 0.8 -.29729 -.29251 

16 1.0 -.36802 -.36381 

17 1.2 -.37540 -.37113 

18 1.4 -.36578 -.36125 

19 1.6 -.36480 -.36023 

20 1.8 -.36728 -.36271 

21 2.0 -.37158 -.36703 

22 2.2 -.37686 -.37233 

23 2.4 -.38263 -.37810 

24 2.6 -.38859 -.38408 

25 2.8 -.39456 -.39006 

26 3.0 -.40043 -.39587 

Table 7.  Wall Pressure Coefficient, Case 3. 
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Figure 3.     Convergence History,  Case 2. 
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