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ABSTRACT
-~

A model is developed that describes, at least qualitatively, the
sound field within a wavelength of an aperture in an opaque, plane
screen insonified by harmonic wav3§. The normal component of the
particfé/velocity is assumed to be the same in the aperture as if no
screen were present and zero everywhere else in the plane of the screen.
Using this assumption, an expression for the transmitted sound field
is developed in the form of the inverse Fourierttransform of the
product of the Fourier transform of the normal component of the particle
velocity in the plane of the screen and the Fourier transform of the
Greeﬁ/function appropriate for Neumann boundary conditions on a plane.
This expression can be evaluated quickly using a fast-Fourier-transform
(FFT) algorithm. The validity of the above assumption is demonstrated
in the extreme nearfield by comparison with experiment for the case of
a diffraction grating of straight strips separated by a distance less
than a wavelength and insonified by plane waves. The model is then used
to study the diffraction of cylindrical waves by a grating of straight
strips. A rapid method of calculating exactly the sound field of an

oscillating piston of arbitrary configuration in a rigid baffle is also

indicated.

Finally, a simple model is developed to calculate the extreme

nearfield for points of observation on the axis of symmetry of an aperture

consisting of concentric rings insonified by plane waves. It is shown

that a significant focusing effect can be observed at distances within

a wavelength of the aperture.
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CHAPTER I

i BACKGROUND AND OBJECTIVES

! 1.1 1Introduction

o aapkr e

A diffraction grating consists of an array of slits having a
width comparable to the wavelength of the waves illuminating the
; grating. The illuminating radiation may be electromagnetic waves,
acoustic waves, or may even consist of a stream of particles interpreted
quantum mechanically. Recently an experiment was conducted to determine
the effects of an acoustic diffraction grating placed very near (within
a fraction of a wavelength) to a receive transducer. The results
; obtained could not be interpreted in terms of the usual Fraunhofer
or Fresnel diffraction theories since these require that the obser-

vation point be at least several wavelengths from the grating. Other

s b i A o 2053

recent experiments [14} have shown that the extreme nearfield (with-
in a fraction of a wavelength) of even the simplest sources can behave
quite independently from what one would expect from observing only

the customary nearfield (usually more than one wavelength away). In

the research presented in this thesis, a simple numerical technique

to calculate the nearfield of complex sound sources is used to develop

a model for the diffraction grating observations. This model is

then used to study the effect on the received sound radiation when the
incident waves are no longer plane waves, Finally, a model is developed
to evaluate the pressure at points on the axis of symmetry of a grating \

consisting of concentric rings.

1

.“




1.2 Background

Prior to 1970 [16], the sound field of an oscillating, circular
piston in an infinite baffle had remained, except for the solution
of Stenzel [11], inadequately investigated for points of observation
located at distances comparable to a wavelength and off the axis of
symmetry of the piston. No accurate calculations of the nearfield
have been performed for such fundamental problems as radiation from
a rectangular piston or the analogous problem of diffraction of a plane
wave through a rectangular aperture in an infinitely extended plane
screen. For these problems, the most accurate calculations that can
be readily performed usually include the standard approximations of
Fresnel diffraction [3, 10, 15)]. These approximate solutions thus
lose validity for points of observation located at distances less than,
or of the order of magnitude of, the width of the piston or aperture [3].
The reasons for these approximations are made apparent below.

Through the use of Green's theorem, it is possible to compute
the sound field everywhere in a region of space given the sound pressure
or its gradient on an enclosing surface. The resulting expression for
the sound field in the volume of intercst is in the form of a surface
integral over the bounding surface; this integral is usually very
difficult if not impossible to evaluate in closed form without
making various approximations that simplify the form of the integral.
When considering sound passing through an aperture in a plane screen

or sound radiated by an oscillating piston in a rigid baffle, the

approximation made in the Fresnel theory of diffraction is to assume




that the observation point is far from the aperture (or piston)
compared to a distance comparable to the size of the aperture (or
piston). In addition, when considering the diffraction of waves
through an aperture, mathematically inconsistent values for the

sound field and its normal derivative are assumed as boundary conditions
(Kirchhoff boundary conditions). As can be seen from the date of the
paper by Zemanek [16], it was not realized until rather late that one
need not make such approximations if the above integral is to be
evaluated by computer. All this was in spite of the fact that a need
was demonstrated as early as 1958 [9] for precise knowledge of the
extreme nearfield of a circular piston for use in ultrasonics in
medicine.

1.3 Scope of this Work

In this thesis, it is shown that it is possible to study, at least
qualitatively, the extreme nearfield (less than a wavelength) of an
aperture in an opaque plane screen illuminated by sound waves where
the primary working assumption is that the particle velocity in the
aperture is the same as if no screen were present and zero everywhere
else in the plane of the screen. Specifically, in Chapter II an
expression for the sound field transmitted through an aperture of
arbitrary configuration is derived for any incident, harmonic wave-
form. 1In Chapter III, the above expression is specialized to the
case of a diffraction grating of slits comparable in width to the N

wavelength of the incident sound., To test the validity of the work-

ing assumption in the extreme nearfield, the results of computations




of the transmitted sound field for incident plane waves are compared

with experiment. A diffraction grating insonified by cylindrical

waves emitted from a line source parallel to the slits is also
considered. In Chapter IV, a model is developed and predictions are
made of the sound pressure on the axis of symmetry of an aperture
consisting of an array of concentric rings in an infinite baffle.
Finally, in Chapter V a summary of the results of this study is
presented, along with suggestions for future work. In addition,

it is pointed out that the technique developed in Chapter II allows
rapid and accurate calculation without approximation of the extreme

nearfield of an oscillating piston or plamar complex vibrator of any

configuration in a rigid baffle.
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CHAPTER II

DEVELOPMENT OF THE GENERAL SOLUTION

2.1 Introduction

In this chapter a general expression is derived for the sound
field transmitted through an aperture in an infinite, opaque screen
for harmonic waves incident from the side of the screen opposite to
the point of observation., It is assumed that the particle velocity
in the aperture is the same as if no screen were present and zero
everywhere else in the plane of the screen. The limitations of
this assumption are discussed in Chapter III.
2.2 Solution

Consider an aperture in an opaque screen of infinite extent
located in the 2z = 0 plane of a rectangular coordinate system having
axes X, y, and z. Let the point where the sound field is to be
computed (observation point) have a 2z coordinate greater than zero.
Let G;(z,t) represent the particle velocity of the incident wave.

If the incident wave is assumed to be an harmonic wave, then Ei(;,t) =

wt iwt

;i(§)e—i The factor e is hereafter neglected.

Employing the assumption that the particle velocity in the
aperture is the same as if no screen were present and zero everywhere
else ip the z = 0 plane, we may write the 2z component of the particle

velocity in the z = 0 plane as

u (x,y) = £(x,y)u; (x,y,0) . (2.2.1)
z
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f(x,y) is a function having the value one for all points (x,y,0)
in the aperture and zero for all other points in the plane of the
screen.
The pressure at any point (x,y,z>0) is known to be [5]
o -]
p(x,y,2) = - J j dx'dy" Ta—st (X',Y'.O)GN(X-X',}".V',Z),
provided of course one can specify %% everywhere for z = 0. GN is
the Neumann Green function for the plane z = Q: .
1 i
ka2
G, (x,y,z) = . (2.2.2) ;
N 21!(::2'l'yz+22)!2
, k 1is a constant equal to uw/c for plane waves. Using the relation [8] ]

connecting the particle velocity of an harmonic sound wave with the

pressure, we have
p(x,y,2) = -iwp [ f dx'dy' uz(X',y')GN(x-X'.y-Y',Z)-

-g0 00

For constant 2z , this expression is in the form of a convolution
integral. Thus, denoting the two-dimensional Fourier transform [8]

by FZ and the inverse Fourier transform by F2 , we develop the i

following expression for the pressure:

P(x,y,2) = -impF;l[Fz(uz)Fz(GN)]. (2.2.3)
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The two-dimensional Fourier transform of GN(x,y,z) can be written
in closed form as (Appendix A)
{
i exp[iz(kz-ki-kz)%] 2 2 9
—L—, 0<k‘+k <k®,z>0
(kz_k2_k2)1 Xy
F,(G) = G (k_,k ,z)= 4 Xy
2N N"x"y 2 2 21 (2.2.4)
H exp[—z(kx+k -k )1] 2 2 2
R » Ok <k tky,2>0.
(kx+ky-k ) 4

A general expression for Fz(uz) does not exist as it depends on the
geometry of the aperture, through f(x,y), and on the incident wave-

form, through ui(x,y,O).
2




CHAPTER III

GRATING OF PARALLEL SLITS

3.1 Introduction

Because no general expression exists for the two-dimensional
Fourier transform of Equation (2.2.1), it must be evaluated for
each aperture geometry and incident waveform considered. In this
chapter, an expression for the transform of Equation (2.2.1) is
written for the case of plane waves and cylindrical waves incident
on a grating of a finite number of infinitely long, parallel slits.
A simplified form of Equation (2.2.3) is then evaluated numerically
for both plane waves and cylindrical waves. The results of these
computations, for incident plane waves, are compared with experiment.

3.2 1Incident Plane Waves

3.2.1 Expression for the transmitted sound field. Consider a

finite number of slits of width a and infinite length in an opaque
screen of infinite extent placed symmetrically in the z = 0 plane
of a rectangular coordinate system. Let the edges of the slits
be parallel to the y axis and separated by a width b of screen,
as in Figure 1.
For a plane wave incident from below the grating, having a
wave vector k perpendicular to the y axis, and making an angle
8 with respect to the 2z axis as in Figure 1, Equation (2.2.1) -

becomes

uz(x,y) = uof(x) exp[i(2-/1) x sin@] cos8,
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where u is the amplitude of the particle velocity of the incident

plane wave, k = fE] = 2n/X, and f(x) is a function having the value
one for all points (x,y,0) in the slits and zero for all other points
in the plane of the grating. After lengthy but straightforward
calculation, the two-dimensional Fourier transform of uz(x,y) is
found to be

. 2r . 3y 2 L a+b
Anuocoseé(ky)31n[( X 31n6—kx) 2]51n[n( A sin® kx)(_i—)]

Fyu,) = ,

2r . 2r . a+b
( X 51n6—kx)51n[(—x51n8-kx)( 5 )]

where n 1is the number of slits. The delta function arises from
the infinite extent of the slits in the positive and negative vy
directions.

Thus, Fz(uz) = Zﬂé(ky)uz(kx) where

21, a, . 2n o a+b
2u0cose sinf( 3 siné kx)2]51n[n( S siné kx)(—i—)]
u (k) = (3.2.1.1)

2n . cop M o at+b
(5 sinb-k )sin[ (5 sind-k ) ()]

Finally, substituting the above expression into Equation (2.2.3) we

obtain the result

p(xiz) = ~twoF]l [u (k) Gy(k,,0,2)], (3.2.1.2)

-1 . . . .
where Fl denotes the one-dimensional inverse Fourier transform.
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3.2.2 Evaluation on a digital computer. Equation (3.2.1.2)

was evaluated using a standard 256-point fast-Fourier-transform
(FFT) algorithm. For all cases considered in this chapter, the
Nvquist rate of two samples per wavelength was satisfied.

An FFT algorithm was chosen to evaluate Equation (3,2.1.2)
because the number of arithmetic operations required is approximately
N logzN as compared with N2 operations required for the direct integral
evaluation of Equation (3.2.1.2), where N 1is the number of integra-
tion points [2]. For N=256, this results in a factor of 30 savings
in computer processing time compared to the time required for a
direct integral evaluation of Equation (3.2.1.2).

It should be noted that as the distance =z of the point of
observation from the screen increases, the frequency of oscillation
of GN(kx’ky’z)' in the transform space, increases for 0<ki+k§<k2.

As 2z becomes large it becomes increasingly difficult to satisfy

the criterion expressed in the Nyquist rate theorem and, thus,
aliasing becomes a significant problem. Aliasing also arises if the
width a of the slits becomes very small as is obvious from

Equation (3.2.1.1), which for 8=0 is merely the Fraunhofer diffraction
pattern for a grating of n slits [l1]. Hence, if one wishes to

study the transmitted sound field far from the grating or consider a
grating of very narrow slits, an FFT algorithm having a large number

of integration points must be used.

3.2.3 Brief description of an experiment. Before presenting the

results of the numerical evaluation of Equation (3.2.1.2), we consider




briefly an experiment the results of which can be compared with
calculated results.

An experiment was performed at the Applied Research Laboratory
of The Pennsylvania State University by W. Jack Hughes in which the
effects of a diffraction grating placed within a wavelength of a
receive transducer were studied. An LC-10 hydrophone having an
omnidirectional directivity pattern in isclation was placed symmetri-
cally behind and 0.375 inches away from a diffraction grating'
consisting of sixteen styrofoam strips. Styrofoam was selected ™u-
cause it is a low pc material and thereby acts as an opaque screen.
The strips were 3/8 inches square, two feet long, and were carefully
placed parallel to each other and 1.5 inches apart, as in Figure 2.
Both the hyvdrophone and grating were suspended, in water, in the far-
field of a projector such that the waves incident on the grating were
plane to a good approximation. The graphs in Figures 3 and 4 of the
experimentally measured pressure at the hydrophone as a function of
the angle of incidence of the incident plane waves were obtained by
rotating the grating about the axis of the hydrophone. The data in
Figures 3 and 4 are normalized with respect to the pressure méasured
when no grating is present in the vicinity of the hydrophone.

3.2.4 Modeling of experimental results and comparison with experi-

ment. To model the experimental situation, fifteen parallel slits
1.125 inches wide and infinitely long are considered, each slit being
separated by 0.375 inches of screen. The point of observation is

assumed to be 0.375 inches from the screen and centered directly

behind the center slit (i.e., at (0,0,0.375) for a grating symmetri-
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cally placed in the z = 0 plane and insonified from the negative =z
direction). The grating is assumed to be insonified by a plane wave,
and the passage of sound around the grating as a whole is neglected,

as though the slits were in a rigid screen of infinite extent. Also,
the particle velocity in the slits is assumed to be the same as if

no screen were present and zero everywhere else in the plane of

the grating. To take into account in a simple manner the non-zero
extent of the styrofoam strips in the direction normal to the grating,
a geometrical analysis is performed to determine the pressure measured
at the point of observation in the high frequency limit. 1In order

to perform such an analysis, a scaled drawing of the experimental
apparatus is cqnstructed with the hydrophone positioned as shown in
Figure 2. If the pressure measured by the hydrophone is assumed to

be approximately proportional to the insonified area of the hydrophone
normal to the direction of the incident sound (dP«|k-dA| , where P is
the pressure measured and dA is a vector perpendicular to the surface
of the hydrophone), then the solid curve in Figure 5 is obtained. As
can be seen from the solid curve, the calculated pressure curve (in dB)
in the high frequency limit as a function of the angle of incidence
(hereafter called a directivity pattern) has roughly the shape of a
parabola for angles of incidence between ~90° and +90°. Thus, to the
directivity pattern obtained from the evaluation of Equation (3.2.1.2),
a parabola of the form aez (in dB) is added, where a(dB/degz) is a
negative parameter adjusted to best fit the experimental data.

The directivity patterns obtained using this semi-empirical

model are compared with the experimentally obtained directivity patterns
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in Figures 6, 7, and 8. The graph of a as a function of frequency
in Figure 9 indicates that, as expected, a decreases in magnitude

as the wavelength increases. The dashed curve in Figure 5 represents
the parabola aez for a corresponding to a frequency of 40 kHz

(a= -3Ox10-4). As is apparent from Figures 6, 7, and 8, the agreement
between theory and experiment is excellent for the frequencies
considered. The deviation occurring at large angles is due in large
part to the fact that in the experiment the hydrophone becomes
directly insonified for large angles of incidence; this is not taken
into account in the theory. This deviation decreases as the frequency
increases, as expected.

It is exiremely difficult to model the experimentally measured
directivity pattern for plane waves incident at 20 kHz. The assumption
‘made concerning the particle velocity in the plane of the grating,
because it neglects interactions between slits and the precise mechanism
of diffraction through a slit, apparently begins to produce a signi-
ficant discrepancy between the experimental and calculated directivity
patterns for frequencies below 25 kHz (0.625 wavelengths spacing between
slits). .

To gain physical insight into the experiment considered above,
the model used to calculate the directivity patterns can be simplified
by replacing the grating of fifteen slits by fifteen point sources
distributed on a line and separated by 1,5 inches. The point sources

must be properly phased to take into account the variation in the

angle of incidence of the plane waves and a parabola an must be added
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to the resulting directivity patterns,where o takes on the values
given in Figure 9. The directivity patterns obtained from this
model are in fairly good accord with experiment. If one replaces
the styrofoam strips by 16 point sources separated by 1.5 inches as
opposed to replacing the slits by point sources, as done above, poor
agreement with experiment is obtained. Hence, better agreement with
experiment is obtained if one does not consider the styrofoam strips
as re-radiation sources.

3.2.5 Further calculated results for incident plane waves.

Before leaving this iavestigation of the transmission of plane waves
through a diffraction grating, we consider the effects on the
directivity pattern of moving the hydrophone from its position in
Figure 2 to other positions beneath the grating and the effects of
decreasing the number of slits in the grating. The grating is still
assumed to be composed of strips extended 0.375 inches in the
direction normal to the grating.

Directivity patterns for 40 kHz plane waves incident on a
grating of 15 slits are presented in Figures 10, 11 and 12, for a hydro-
phone on the axis of symmetry of the grating (z axis) and 0.1 inches,
0.4 inches, and 0.7 inches, respectively, from the grating. For
these patterns, a 1s assumed to remain constant (—3Ox10—4 at 40 kHz)
because we are considering excursions of the point of observation
from the grating less than the width of a slit. Justification for
this and other assumptions concerning the effects of geometry on

a is offered at the end of this subsection. Notice that as the

distance of the hydrophone from the grating increases, the directivity
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Figure 11. Calculated directivity pattern at 40 kHz for
an LC-10 hydrophone 0.4" from a grating of
15 slits and on the axis of symmetry of the
grating.
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Figure 12. C(Calculated directivity pattern at 40 kHz for
an LC~10 hydrophone 0.7" from a grating of
15 slits and on the axis of symmetry of the
grating.




pattern at high angles remains relatively unchanged while the peak at
§=0° in Figure 10 drops to form a minimum at 0.7 inches from the grating.

In Figures 13, 14, and 15, keeping the hydrophone 0.375 inches
away from the grating, directivity patterns are given illustrating
the effects of moving the hydrophone from beneath a slit to beneath
a styrofoam strip. a 1is assumed to decrease in magnitude linearly
from its value beneath a slit (-30){10”4 at 40 kHz) to zero directly
beneath a styrofoam strip. As expected, the patterns flatten and
become asymmetrical as the point of observation moves off the axis
of symmetry (z axis) towards a strip. Note the bright spot in the
directivity pattern in Figure 15 for a hydrophone beneath a strip.

Tinally, Figures 16, 17, 18, and 19 illustrate the effects
on tﬁe directivity pattern of decreasing the number of slits in the
grating for a hydrophone 0.375 inches from the grating and on the
z axis. a 1is assumed to remain constant (-3Ox10-4 at 40 kHz) as
the number of slits decreases. Of significance is the observation
that forward directivity increases as the number of slits decreases
despite the fact that a 1is the same in all four figures.

Implicit in Figures 10 through 19 are various assumptions
concerning the effects of geometry on the parameter o, namely:

1. a remains approximately constant as the distance of the

hydrophone from the grating changes provided the distance

remains less than the width of a slit
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Figure 13. Calculated directivity pattern at 40 kHz for
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Figure 14. Calculated directivity pattern at 40 kHz for
an LC-10 hydrophone 0.375" from a grating of
15 slits and 0.375" off the axis of symmetry. AN
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Figure 18. Calculated directivity pattern for a grating
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0.375" from the grating and on the axis of
symmetry of the grating.




34

10.00

8.00

1 L

-10.00

1

-22.00

RELATIVE PRESSURE LEVEL (DB)

-30.00

-98.08 -45.080 0.08 45.20 98.0@
ANGLE C(DEGREES>

Figure 19. Calculated directivity pattern for a grating
of 3 slits at 40 kHz. The LC-10 hydrophone is
0.375" from the grating and on the axis of
symmetry of the grating.




[P

a decreases in magnitude to approximately zero as the

hydrophone moves from behind a slit to behind a strip

3. a remains corstant as the number of slits changes provided
the number of slits does not become too small.

To justify the above assertions, a geometrical analysis was per-
formed similar to the analysis used to produce the solid curve in
Figure 5. A computer program was written to calculate high frequency
directivity patterns for a specified grating structure and hydro-
phone position and smooth the resulting patterns into a roughly
parabolic shape. While the values of a predicted by this program
were generally higher in magnitude than those obtained from experi-
ment, indicating that more energy is transmitted through the
grating at high angles by various scattering mechanisms than can
be accounted for by a consideration of geometrical shadowing, the
results do support the above assertions.

3.3 Incident Cvlindrical Waves

3.3.1 Expression for the transmitted sound field. Consider a

finite number of slits of width a and infinite length in an opaque
screen of infinite extent placed symmetrically in the z = 0 plane
of a rectangular coordinate system. Let the edges of the slits be
parallel to the y axis and separated by a width b of screen, as
in Figure 20.

For a line source through the point (xo,O,zo <0) and parallel

to the y axis, the emitted sound pressure can be written as [8]

p = A[Jo(kr)+iN0(kr)].
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where r = (x-xo)2 + (z—’o)2 , A is a normalization constant,
and Jo and No are the Bessel functions of the first and second kind,
respectively, of order zero. Then the particle velocity in the

radial direction is

=1 dp _ _ Ak
u - Too [Jl(kr) + i Nl(kr)]

which, on substitution for r , becomes

w2 =~ 2 1 e+ 2z D w6 e ) F ) D),

where Jl and N

respectively, of order one. Hence, we assume the component of the

1 are the Bessel functions of the first and second kind,

particle velocity in the =z direction evaluated in the z = 0 plane

becomes (Figure 20)

Z
u (x) = u (x,00£(x)cos B = 1;91 u_(x,00£(x),

where f(x) is a function having the value one for all points

(x,y,0) in the slits and zero for all other points in the plane of
the grating and r = V(x—xo)2 + Zi

By a procedure similar to that used to derive Equation (3.2.1.2)

it can be shown that
3 -1
P(X,Z) = =lwp Fl [uz(kx) GN(kxlo’z)]v (3-3-1-1)

where GN(kx,ky,z) is given by Equation (2.2.4) and

uz(kx) = Fl[uz(x)]. (3.3.1.2)
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Equation (3.3.1.2) must be evaluated numerically as it involves
integrals of the form

-ik x

8
J (x2 + yz)-%Zl(k /%2 +yz) e Tx" dx,
a

where Zl equals J1 or N1 and a, B, and ¥y are constants.

3.3.2 Calculated Results. Directivity patterns are computed

for the case of three slits of width 1.125 inches separated by
0.375 inches of screen for a hydrophone located at the point
(0,0,0.375)(i.e., on the z axis and 0.375 inches above the z = 0
plane) by evaluating Equation (3.3.1.1) for fixed R (Figure 20),
where R equals the distance of the line source from the center of
the grating, while letting © (Figure 20) range from -90° to +90°
and then adding a parabola of the form a62 to the resulting directivity
patterns since we wish to consider a grating composed of strips
extended 0.375 inches in the direction normal to the grating. a is
assumed to take on the values given in Figure 9. This assumption
can be expected to hold for a line source at least a few wavelengths
from the grating.

The results of this investigation are contained in Figures 22,
23, and 24 for v = 40 kHz and R = 3 inches, 5 inches, and 10 inches,
respectively, in Figures 26, 27, and 28 for v = 33 kHz and R = 3 inches,
5 inches, and 10 inches, respectively, and in Figures 30, 31, and 32

for v = 25 kHz and R = 3 inches, 5 inches, and 10 inches, respectively.

The value of o wused in Figure 30 (a= —10x154) may be questionable as
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Calculated directivity pattern (grating of 3
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Figure 22. Calculated directivity pattern (grating of 3
straight slits) for 40 kHz waves emitted by
a line source 3" from the center of the grating.
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the source is about one wavelength from the center of the grating.
Figures 21, 25, and 29 for incident plane waves at v = 40 kHz, 33 kHz,
and 25 kHz are provided for purposes of comparison. All of the data
in the above mentioned figures have been normalized with respect to
the pressure measured by the hydrophone with no screen present between
the source and receiver. Therefore, the maximum pressure attained in
each directivity pattern is, as expected, fairly constant from one
figure to the next. 1If, instead, a constant normalization is chosen,
then one observes the expected s-15 dependence of the magnitude of
the pressure behind the grating on the distance s from the receiver
to the source.

Two more observations worthy of note can be made here. As
the distance R of the source from the center of the grating increases,
the directivity pattern converges to the directivity pattern calculated
for incident plane waves. Furthermore, for a line source close to
the grating, the directivity pattern is broadened and smooth as
compared with the pattern calculated for incident plane waves, although
the property of discrimination against grazing incidence sound waves

that seems to be characteristic of any grating extended in the

direction normal to the grating is not unduly affected.




CHAPTER IV

GRATING OF CONCENTRIC RINGS

4,1 1Introduction

In this chapter, we consider the nearfield of a grating consist-
ing of concentric rings in an infinitely extended opaque screen. To
avoid having to evaluate Equation (2.2.3), we restrict discussion to
the case where the point of observation lies on the axis through the
center of the grating and perpendicular to the screen. In the follow-
ing discussion, we assume, of course, that the particle velocity in
the circular slits is the same as if no grating were present and
zero everywhere else in the plane of the grating.

4.2 Expression for the Transmitted Sound Field

Consider a grating consisting of concentric rings in an infinite,
opaque screen placed symmetrically in the z = 0 plane and insonified
by a plane wave having a wave vector k perpendicular to the y axis
and making an angle & with respect to the z axis. For r equal to
the distance from the origin in the z = 0 plane and ¢ equal to the

pclar angle in the z = 0 plane, we assume that the 2z component of

the particle velocity in the plane of the grating is

Uz(r,¢) = f(r)uo cos8® exp(ikrsindcosd) ,

where u, is the amplitude of the particle velocity of the incident

plane wave (incident from the negative 2 direction), f(r) is a

function having the value one for a point (r,¢) in the circular
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2n

slits and zero everywhere else in the z = 0 plane, and k = |k| = X

Hence, the pressure at a point on the z axis having coordinates

(0,0,2z>0) can be written as [6]

L

2n o}

o 2
p(z) = —icck u_cosb j J f(r)exp(ikrsinecos¢)[exp(ik/zz+r2)//zz+r2]rd¢dr
oo

which can be simplified to

o

p(z)'= -ipckuocose Jf(f)Jo(krsine)[exp(ikV22+r2)//zz+r2]rdr. (4.2.1)
)

The results of a numerical evaluation of above integral are presented
in the following section.

4.3 Calculated Results

In Figure 33, the geometrical configuration of the grating to
be considered in this section and a numbering scheme to be used in
discussing subsequent results are described. Because we are Eonsid-
ering a grating with some extent (0.375 inches) in the direction
normal to the grating, it is necessary to add a parabola of the form
a62 to the directivity patterns obtained from the Simpson's rule
evaluation of Equation (4.2.1). By a consideration of Figure 2 and
33, it becomes apparent that o, for 40 kHz incident plane waves, can
be assumed to be —30x10_4.

The effects on the directivity pattern of moving the hydrophone
away from the grating are considered in Figures 34, 35, and 36 for

40 kHz plane waves incident on a grating having eight circular

spaces (L=8). ais assumed to remain constant for excursions of

the hydrophone from the grating less than 1.5 inches for the
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Figure 34. Calculated directivity pattern (concentric
rings, L=8) for 40 kHz plane waves. The LC-10
hydrophone is on the axis of symmetry and 0.1"
from the grating.
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Calculated directivity pattern (concentric )
rings, L=8) for 40 kHz plane waves. The LC-10
hydrophone is on the axis of symmetry and 0.4"
from the grating.
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geometry considered here. Clearly, as the distance of the hydro-
phone from the grating increases, the central spike, characteristic
of directivity patterns at this frequency, remains relatively
unaffected while the response at higher angles decreases.

As can be seen from Figures 37, 38, 39, and 40, as the number
of circular spaces in the grating decreases, the central spike
decreases in height and broadens. o is assumed to remain relatively
unaffected as the number of circular spaces changes.

Finally, the frequency response for ﬂormal incidence plane
waves is presented in Figure 41 for a hydrophone on the axis of
symmetry of a grating having eight circular slits and 0.375 inches
from the grating. Note the peaks in the response at approximately

full wavelength spacing (40 kHz), wavelengths spacing (30 kHz),

3
4
% waveiengths spacing (25 kHz), half wavelength spacing (20 kHz),

and % wavelengths spacing (15 kHz). The grating appears to behave

as a condensing lens particularly well at 40 kHz.
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ANGLE (DEGREES>

Calculated directivity pattern (concentric

rings, L=8) for 40 kHz plane waves. The LC-10

hydrophone is on the axis of symmetry and 0.375" N
from the grating. '
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Calculated directivity pattern (concentric
rings, L=5) for 40 kHz plane waves. The LC-10
hydrophone is on the axis of symmetry and 0.375"
from the grating.
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Calculated directivity pattern (concentric
rings, L=2) for 40 kHz plane waves. The LC-10
hydrophone is on the axis of symmetry and 0.375"
from the grating.
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CHAPTER V

CONCLUDING REMARKS

5.1 Introduction

In this chapter we summarize the major results of this investi-~
gation and present some suggestions for future improvements in the
model. In addition another significant application of the technique
described in Chapter 11 is indicated.

5.2 Outline of Model

The research presented in this dissertation has led to the
development of a model that will, at least qualitatively, describe
the diffraction of sound waves through an aperture in an opaque
screen for points of observation within a wavelength of the aperture.
To achieve this, the component of the particle velocity normal to
the screen is assumed to be the same, in the aperture, as if no screen
were present, and zero everywhere else in the plane of the screen.
Green's theorem is then used to express the transmitted sound field
as the convolution of the assumed normal component of the particle
velocity evaluated in the plane of the screen and the Green function
appropriate for Neumann boundary conditions on a plané. Using the
property that the Fourier transform of the convolution of two functions
equals the product of the Fourier transforms of each function, the
sound field transmitted through the aperture is found to be propor-
tional to the inverse Fourier transform of the product of the Fourier
transform of the Neumann Green function and the Fourier transform of

the normal component of the particle velocity in the plane of the




screen. The Fourier transform of the Green function can be evaluated

in closed form, while the transform of the normal component of the
particle velocity will, in general, have to be evaluated numerically.
The inverse Fourier transform is then evaluated numerically. A fast-

Fourier-transform algorithm is used to evaluate the forward and

inverse Fourier transforms encountered above as computer time is
greatly reduced when compared with a direct integral evaluation of the
transforms. When considering the diffraction of sound through a grating 4

of concentric rings, it is unnecessary to perform the above calcula- 1

tions for points of observation on the axis of symmetry of the
grating. It can be shown that the pressure at a point on the axis
of symmetry for incident plane waves can be evaluated by performing
the integral in Equation (4.2.1).

When considering diffraction through a grating consisting of
straight or circular strips having some extent in a direction normal to
the grating, it is necessary to introduce an empirical parameter to
take into account the attenuation of the transmitted sound due to
geometric shadowing at high angles of incidence.

5.3 Summary of Major Results and Conclusions

It is verified that if one uses a physically appropriate Green
function and the suitably modified Kirchhoff boundary conditions [5],
then good agreement with experiment is obtained when one considers
diffraction of a wave through an aperture where the point of observa- N,

tion is less than one wavelength from the aperture and the aperture

is comparable to a wavelength in width, The restriction that the
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aperture size be very large compared to a wavelength and that the
point of observation be far from the screen encountered when using
the traditional Green function (infinite space Green function for
outgoing waves) and the Kirchhoff boundary conditions may be relaxed
for diffraction of a sound wave through an aperture in an opaque
screen if we assume that the normal component of the particle velocity
is the same, in the aperture, as if no screen were present and zero
everywhere else in the plane of the screen, and use the Neumann
Green function. Considering the good results obtained by Stratton
and Chu [12] when they applied the vector Smythe-Kirchhoff approxi-
mation to a rectangular opening where ka-~l, this result should not be
too surprising.

Specifically, it is shown in Chapter III that if the gross para-~

bolic structure (due to geometric shadowing) of the directivity pattern

is determined by comparison with experiment, excellent agreement is
obtained with experiment for diffraction of a plane wave through an
aperture consisting of a grating of long, parallel strips having some
extent in the direction normal to the grating. In addition, significant
discrimination against grazing incidence sound waves is present for a
point of observation directly beneath a slit and less than the width

of slit from the grating. This property is partly due to geometric
shadowing and partly because the normal component of the partic;e
velocity vanishes for sound incident at 90° with respect to the

normal to the grating. This property of discrimination against

grazing incidence sound is affected, when considering sound emitted by
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a localized source, only to the extent that the directivity patterns

become slightly broader and more smooth when the source is less than

a few wavelengths from the grating.

Also, from considerations presented in Section 3.2.4, it is
seen that the primary working assumption made in this research
(i.e., for diffraction of a wave through an aperture in an opaque
screen, the normal component of the particle velocity is the same,

in the aperture, as if no screen were present and zero everywhere

else in the plane of the screen) begins to lose validity, for the
geometry described in Figure 2, for frequencies below 25 kHz i
(0.625 wavelengths spacing). This deviation between experiment
and theory occurs primarily because the working assumption
neglects the detailed scattering of waves in each slit and the
interaction between slits.

Finally, for the case of diffraction through a grating of
concentric rings having diameters equal to (2n-1)%,where ¢ 1is a

constant and n equals 1,2,...,L (Figure 33), a significant focusing

effect is observed when the wavelength of normal incidence waves
equals £ for points of observation on the axis of symmetry of

the grating and less than & 1inches away from the grating. This
effect is relatively insensitive to the distance of the observation
point from the grating. If the rings have extent in the direction f

normal to the grating, then discrimination against grazing incidence

sound waves is also present. T
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5.4 Suggestions for Future Work

Geometric shadowing is an essential constituent in any appli-
cation utilizing the property of discrimination against grazing
incidence sound waves characteristic of a grating of strips having
some extent in the direction normal to the grating. Therefore,>to
use the models developed in the preceding chapters for such appli-
cations, a coherent method for calculating the parameter a should
be developed. While it is possible to deduce probable values of a
from high frequency directivity patterns, such techniques are philoso-
phically unsatisfying with only the limited amount of experimental
results available. In the author's opinion a theory applicable to
the study of diffraction of a wave through a grating of straight
strips can only be developed, without more experimental work, by
considering the scattering of waves by an array of square cylinders.
Such a method would be costly, time consuming, and not generalizable
to the case of diffraction through a grating of concentric rings.
Aside from the complications introduced by considering cylinders
having a square cross section, the approximations made by Twersky [13]
and Klyukin and Chabanov {7} for circular cylinders cannot be made
if we consider cylinders having a width comparable to the wavelength
of the incident sound and an observation point less than a wavelength
away from the grating, As pointed out by Klyukin and Chabanov,
computer processing time is likely to become quite long.

However, much useful information can be obtained from the models
developed in the preceding chapters for diffraction through an aperture

in an opaque screen having no extent in the direction normal to the
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screen. Deviations between experiment and theory do not appear to
occur for wavelengths comparable to the dimensions of the aperture.
If one wishes to reduce any deviations, attention should be given
to the detailed perturbation of waves in an aperture. Again, such
refinements will be highly dependent on the geometry of the aperture
and will not be easily generalizable to other aperture geometries.
Finally, using Equation (2.2.3) one should easily be able to
solve exactly and with a minimum of computer time the fundamental
problem of radiation from a piston of any configuration in a rigid
baffle. For pistons having a simple shape, such as a rectangular
piston, the two-dimensional Fourier transform of the piston velocity
may be evaluated in closed form. For more complicated geometries
the Fourier transform of the piston velocity can be evaluated quickly
using a fast-Fourier-transform algorithm. The inverse Fourier
transform can then be evaluated by another FFT. As pointed out in

Chapter I1I, one must use an FFT having a large number of integration

points for points of observation remote from the piston.
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APPENDIX A
THE FOURIER TRANSFORM OF THE NEUMANN

GREEN FUNCTION FOR A PLANE

A.1 Introduction

In Chapter 1I, the determination of the transmitted sound
field required the evaluation of the two-dimensional Fourier
transform of the Neumann Green function for an aperture in the z = 0
plane. We perform this transformation below.

A.2 Evaluation of the Transform

We wish to evaluate the Fourier transform of the Neumann Green

function

1,
eik(x2+y2+22)2
G, (x,y,2) = 1 (2.2.2)
N 2"(}‘ZW’yZ\‘_ZZ’)ﬁ
for fixed 2z. By definition (3},
LT (ke 2e )™ -1k .
- - L 'explik(x +v +z ) "} -ik _x ~ik Vv,
F2(CN) GN(kx’ky‘z) 2n J ) 2,.2.% e xe niex dy

=
(x"+y“+z°)

-0 —ao

Transforming to polar coordinates, this becomes

21 =
1 ( (ex [ik(r2+22231 -ik rcosfcos8 -ik rsin¢sing
G“(k Lk ,z)= — P TR e 0 v e T p ¢sin rdrde
N'xTy 21y (ré42%) %
oo

* 3
=_1_J exp (1k(r2+29) 7]
(c2+22)?

w

e-ikprcosw—e)derdr
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" 2, 2. 27 m

_ 1 [ explik(r®+z%)7?) -ik rsin(; + ¢-6)
= = T e "p 2 dfrdr

2m 2, 2.5

(r™+z7)
o
- 2w
1
_ exp[ik(r2+zz)6j 1) oLk rsin(o-¢- 5
= 2 2% > 2’dérdr .
(r'+z7)

Using Gradshteyn and Ryzhik (8.411.1),

< 2, 2%
_ exp{ik(r"+z7))
GN(kx’ky’z) = J AR JO(kDr)rdr.

(r+2%) %

Then, from Gradshteyn and Ryzhik (6.737.5) and (6.737.6),

/[j z%(k2 kz) [- N_%(z 2-k§)+iJ_%(z/£2—kf)],O<ké<k,z>0

G (k yk 'z):J ) 1 o) =1
Ny = 21D T, (2Ak?) 0ckek 220
2 ] 3 M 0

2 2
sin(zrk —kp)+i

x cos(zvk —k )1,0<k <k,2>0

/: 2 (k2 K27 /" exp( z/k k)1, 0- kek 220
2zvk
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. R

exp(iz/{<2—k§)
i——a———F— , 0<k _<k,2>0

2.2.3% 0
J )
—
exp(~zv4<§-k2)
, O<k<k ,2z>0
k (kz_kZ);i o
o]

exp[iz(kz—ki—kz)%] 2 2 2
53 T, <k +ki<k,2>0
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