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0. INTRODUCTION

2

In this paper we study the one phase model of the soli-
dification of a pure metal in continuous casting submitted to a
non-linear lateral cooling. '

In the liquid phase we assume that the metal is at the
melting temperature, which is zero after a normalization. In the

solid phase the temperature O satisfies the heat equation. The ) ‘
ingot is extracted with constant velocity b, and the liquid - : ?
- solid interface (the free boundary) is unknown but steady with } ;

respect to a fixed system of coordinates of m3, in which our ' p
problem will be studied. Assuming that the free boundary ¢ is
representable by a surface 2=¢(x,y), the steady Stefan condition

- is »

(0.1) ©,-0,¢, - @y¢y = Ab, for z=¢(x,y) r
where X is a positive constant representing the heat of melting.

In the Tateral boundary one specifies a non-linear b
flux condition

—y

(0.2) - 20/3n = 6(0)

which expresses the law of cooling, and may be quite general.
Namely, we shall consider a maximal monotone graph G, which may inclu-

de a cooling process with climatization as in Chapter 1 of
the book of Duvaut and Lions [DL] -

This model has been considered in a particular case by
Rubinstein [Ru] and, with a linear flux condition of Newton type,
"by Briere [Br] and Rodrigues [R], via variational inequalities
! after a transformation of Baiocchi's type. However this approach
doesn't work with a non linear cooling.
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Since this problem has some similarities with the dam
problem, we formulate it in section 1 using the method of Brezis,
Kinderlehrer and Stampacchia [BKS]. In sections 2 and 3 we prove




the existence theorems, first usingcompactness arguments and next
combining compacity and monotonicity tecniques for the maximal
monotone case.
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In section 4 we discuss comparison properties which

show that when the extraction velocity b is small the ingot soli-
difies immediatly and there is no free boundary. For some type
of cooling and for ahigh enough velocity b one can show the

[
existence of a free boundary. In this case it is shown, in section !
5, that the free boundary is an analytic surface and a weak solu- |
tion is also a classic one, as in the linear case of [R]. ?
To conclude this paper we give an unigueness theorem for
the monotone case in section 6, using the techniqueof Carrillo- 3
-Chipot [CC] - ,
T
]

1. MATHEMATICAL FORMULATION

Let @ denote a cylindric domain in |R3, in the form
Q=I'x]0,H[, where T < RZ is a bounded domain with lipschitz
boundary 3I' representing a seetion of the ingot and H>0 its
height. We denote ri=rx{1), for i=0,H, the bottom and the top of
the ingot respectively, and by F]=arx]0,H[_its lateral boundary.

We have BQ=F0UF]UFH.

. . - . . .
Considering z the direction of extraction, we can for-
mulate our problem in its classical form:

. Acsession Yor
PROBLEM (C) : Find coupl 0,¢), such that | —"—"
() ! ? uple (©,9) NTIS GRARI i!
O

L bt sl et i S s o bl omaan ool B oh ol o
L4

(1.1)  ©>0 1in 2 and 0=0 for O0<z<¢(x,y)<H DTIC TAB
Z - Unannounced 0 ),
Justification !
(1.2) so=b O, for 0<é(x,y)<z<H y
By. p
| Distrivution/ | { 1
(1.3) 0=0 on T, , 6=h(x,y)>0 on T, _Availability Codes '

" jAvail and/or _5
Dist Special

ALl |

(1.4) - 30/3n = g(0) on ry




(1.5) Oz-0x¢x-0y¢y < Ab, if z=¢(x,y) > 0

(1.5") 0, 2 Ab, if z2=¢(x,y)=0.

In this formulation b and A are positive constants,
h is a given function, and g will be specified in the next two
sections. The reader will note that the condition (1.5') is a
degeneration of the Stefan condition (1.5) in the case when
the free boundary ¢ can touch the known boundary ro, where the melting
condition 0=0 is assumed by (1.3).

Let us remark that by the maximum principle it must be
e>0 for z>¢(x,y). Denoting by x+ the characteristic function of
the set Q+={O>0} and integrating formaly by parts, for every re-
gular function ¢, such that ¢=0 on rH and >0 on TO, from
Problem (C) one has

J (VO-Vr+bO c-Abx+; ) = J (VOsVz+b0O _z-Abr_)
Q z z Q z z

+

= f (-40+b0, )z + J %% c+AbJ 24
Q

+ , roueur, our

= - Jr]g(o);+Jrzg(xb-oz)+J¢2c(ex¢x+oy¢y-oz+xb)
(o]

< - Jr g(0)z,
|

‘where 2'2=¢§+¢§+1. Therefore, following [BKS], we introduce the
weak formulation of Problem (C)

- v g - = T e -—'*'”.1
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PROBLEM (P) : Find a couple (0,x) € H'(R)xL™(a),
such that, :

(1.6) ©>0 a.e. in Q, 0=0 on Ty and ©O=h on Tys
(1.7) 0<x<1 a.e. 1in @ and x=1 where 0>0;
(1.8) J (VO.V;+bOZc-Abxcz) + J g(0)z<0, for every
9] F1
r € H](Q), such that ¢>0 on Fo and z=0 on rH .
If we consider a more restrictiwclass of test functions

one can introduce a more general formulation, which we call
Problem (P'), if we replace (1.8) by

(1.9) J (VO-Vz+bO_%-Abxi )+J g(0)z=0, VceH](Q):;=0 on T UrH.
Q z z T )
1
It is clear that every solution of Problem (P) verifies

(1.9), but the Problem (P') hags more solutions than Problem (P).
In particular, if -

PROBLEM (P]) : Find © verifying (1.6) and

(1.10) J (VO-V;+bOz;)+J g(e)c=0,' vceH](Q); z=0 on rOUFH
7} T
' 1

has a solution 0>0, by the maximum principle, one has 0>0
in © and (0,1) is a solution to Problem (P'), which may not
-satisfy (1.5')(see Proposition 4).

2. EXISTENCE OF A WEAK SOLUTION

In this section we assume the lateral cooling given by
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(2‘]) . < Xn (x) = g(X,p(X),O(X)), X € r]

where p>0 is a given function representing the cooling tempe-
rature, and

(2.2) g(X,p,8) 1is a bounded Caratheodory function,
i.e., is continuous in 6 ¢ R, a.e. (X,p) € Ty x R, measurable
in (X,p) for all 6 , and maps bounded sets of T]AR+AR in boun-
ded sets of R.

Since the cooling process is determined by p, we shall
assume that

(2.3) g(X,p,0)<0, a.e. (X,p,8) ¢ r]xR+AR

(2.4) 9(X,p,0)=0 for |6]>p, a.e. XeT,.

Consider a parameterized family of functions Xe € CmUR)
such that

0 , for t<0
(2.5) Xe(t) = 0 < xe(t)_<_1 ,» for O<t<e
1 » for t>e

~and so it approaches the Heaviside function when ex0.
Introduce now the following penalized problem, where for the sake of
simplicity we denote g(X,p(X),0(X)) by g(0)

PROBLEM (P_) Find 0%eH'(R)n c°(R), such that,

(2.6) 0%=0 on Tys o%=h on Ty

~ —— -
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(2.7) f [voe-v;+b®§c-xb”xe(ee);z]+J g(0%)z=0, VgeH'(Q):z=0 on T UT,.
Q . T

1
Assuming the funcfions h and p verify
(2.8) 0 < h(x,y)<M, a.e. (x,y) € Ty,
(2.9) 0 < p(X) < M, a.e. X e Tys
one can prove the following "a.priori" estimate:

LENNA 1 17 6f is a solution to Problem (Pe) with assumptions
(2.2-4) and (2.8-9), one has

(2.10) 0 < 05(X) < M, for all X € % and O<e<M,

Proof : Let ¢=[0°] in (2.7). One has

0 = jn{vee-v[ee]' + boi[@g]’ - Ab xe(ee)[ee];} + frg(ee)[eej'

< - | 0vIeyT B (0] [0F) ) =< [9[e]" 12
Q Q
from which it follows [0°]7=0 and 0%>0.
From (2.4) (2.9) and (2.5), one has respectively

g(0%) [e®-M]*=0 and x_(0F)[0®-M]]=[0%-M]] for O<esM.

Then ¢=[0%-M]* in (2.7) implies

0 = Jn{vo‘-v[ec-n]*+b of [0%-M]" - Ab[d-M]}}

= J |V[0€‘M]+|2,
f

- -y -
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and therefore [06%-M]*=0, The lemma is proved. |

We shall need the L™ and the Holder estimates due to
Stampacchia [S] for the following eliptic problem with mixed
boundary conditions: )

au

(2.11) - Au+buz=f in Q , Tp°9 on T, and u=h on roUFH.

LEMMA 2 [S] The unique solution of (2.11) verifies

2.1 <
(2.12) flUlle(Q)_ Cy( Hflm_1,p(g) + Hglkq(r )+ ol @ ))

1 L (I'OUJH

(2.13 < C f h
I L R L PRI L PP

for all p>3 and g>2, and for some constants C],C2>0 and O<ax<l
which are independent of f,g,h and u.

Prcog : See the results of §5 of [S] or a more explicit result
extended to variational inequalities in Section 2 of [MS] B

Now we can state an existence result for the penalized
problem, from which we shall construct a sequence of functions
converging to a solution of Problem (P).

PROPOSITION 1 under assumptions of Lemma 1, and if

(2.14) he e (T

then there exists a solution 0% to Problem (P.) for all
O<e<M satisfying the estimate

(2.15) %1l y  +1le|] C,
H' ()

Lova g <
(R)

-




where the constants C>0 .,and O<a<l are independent of -

Proed : For 1 e Bp={t ¢ c®(q) HTIEO(F)gR}, (R>0),
define L
0 = SE(T)

as the unique solution of the following mixed linear problem

O =0 on r , O=h on r

0 H

](Q):c=0 on TOUT

J (VO'V¢+bozc)=AbJQxC(T)cZ - J g(t)r, ¥geH H

Since, by definition, 0 < x_ <1 and g is bounded
independently of 1t (for [T(X)|>M> p(X) one has g(X,p(X),t(X)=0)
by (2.4)) one can apply Stampacchia's estimate (2.13). Therefore,
there exists C > 0 and 0<a<l, independent of 71 and € such that

ol _ < C(ab4lgil o * Il ) < ¢C
Co’a(ﬂ) 2 L Co,l

[

and for R>C one has S _(By) < Bp.
From the compactness of the imbedding C°'%(R)oc%(Q)

one finds that SC is a continuous and compact mapping of BR into

itself, By the Schauder fixed point theorem there exists a

function 0F ¢ BR satisfying OF=SéOE), which is clearly a solution

to Problem (PC).

The estimate in H1(Q) is classical, since x° and g(c%)

‘are bounded independently of «¢. B

THEOREM 1 Assuming (2.2,3,4) and (2.8,9,14) there exists a
solution (0,x)e[H'(2)nc® %(W)]x L™(Q) to Problem (P).




Proof : By (2.15) one can consider a sequence of solutions ot
of Problem (Pe)' such that, when £+0

(2.16) 0 — 0 in H'(2)-weak
(2.17) 05 (X)+0(X) uniformly in X=(x,y,z) € @
(2.18) X (05) — x in L7(Q)-weak *,

where © is some function belonging to H](Q)f\co’“(ﬁ) satisfying
(2.10) and 0<x<1. Moreover in the open set {0>0} one has
Xe(ee) +~ 1 and therefore x=1 a.e. in {0>0}-

Let ¢ ¢ H](Q), t20 on I'j and ¢=0 on I~
By the Green's formula and since 3OE/an§0 on TO, one has

J [vee.vg+bO§§-Abxe(OE)gz]+J g(@e)?;:J ETHR I
Q Ty To

and in the l1imit we obtain (1;8). The proof is complete. |}

3, THE CASE OF A MAXIMNAL MONOTONE COOLING

In this section we consider the existence of a weak

solution with a lateral cooling

£

2

l

(3.1) | - <= € 6(0) on Ty,

Q

n

where G denotes a maximal monotone graph , that is, G is a

- multivalued function which graph is a continuous monotone increa-

sing curve in RZ (see (B]). We shall assume
(3.2) 6(0) = J-=,0]

(3.3) [0,+=[ < Dom (G)z{xe R|G(x)#P} -

i
ik
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- The weak formulation of the corresponding problem takes
now the following form:

PROBLEM (P) Find (0,x,9)e H'(2)xL™(2)xLZ(r ), such that

(3.4) >0 a.e. in Q , 0=0 on ro and 0=h on TH;

(3.5) 0<x<1 a.e.in 9, x=1 if 0>0

(3.6) { (VO.vL+b0O_z~Abyxe )+r gz<0, V;eH](Q):c>0 on I' ,z=0 on T ;
la z ') = - 0 H
L3 ]

(3.7) g(X) € 6(0(X)) a.e. X e T,

We shall obtain a solution to Problem (P) as the limit
of a sequence of solutions to Problem (P) with a non-linear cooling

given by a function g satisfying :

(3.8) g is monotone increasing, lipschitz and such that g{0)<0.

THEOREN 2 Assume (3.8) and let heh'/2(r,), h>0.

Then Problem (P) has a solution.

Procg : The proof follows the lines of the one in theorem 1.

by considering the penalized problem (Pe) with g satisfying (3.8).
The fixed point is now constructed in LZ(Q) by means of the
mapping

LZ()s 1> ¢ = (1) € V.

where V={vcH](Q): v=0 on ro} and & 1is the unique solution
of the following problem

- -

3

-y ——p = —— - = -

R




i) if he cON(T

E eV , £ = h on TH

- (3.9)

1 J (VE'VC+b€ZC)+J g(&)r = AbJ xC(T)cZ, YeeV:z=0 on T -
Q T] Q

which is a coercive and (strictly) monotone problem in V by
assumption (3.8) (see [L]). Denoting by h some function in V,
which trace on I', is h, and letting <Z¢=£-h in (3.9) one easily

finds

H

Hell ;= ¢ =c(h),
H (Q)

where C is a constant independent of T and ¢-

Since the imbedding H1(2) & L2(R) is compact, the

Schauder fixed point Theorem assures the existence of a solution 0

to Problem (Pe)’ As in Lemma 1 one finds that 6530, since g 1is

monotone increasing and g(0)<0, and therefore one has g(Oe)-
£y- .

fev] < o

The passage to the limit as e+0 is straightforward

€

since 05— 0 in H](Q)-weak and g is a lipschitz function. |}

REMARK 1 Since g is lipschitz, by Sobolev imbeddings one

has g(@) ¢ Hl/z(r]) < L4(r]) (see [A, p. 218]) and therefore

applying Lemma 2, it follows that
i) if he L7(r,), then 0 ¢ L7(0); and

) then 6 ¢ ¢®*%(q), for some O<a<l. [

Since G is a maximal monotone operator one can intro-
duce the Yosida regularization, defined by

1 (1-

-

-

. e e e e e e -




where J6=(I+GG)'1 is the resolvent of G. Consider T=J6(0),
that is 0 € (I+8G)(t) . From the monotonicity of I+8G and using
assumption (3.2) one finds 1>0. Therefore 96(0)='J6(b)/6 <0,
which means that, for each §>0, the Yosida regularization 95
satisfies the condition (3.8) (see [B]). So we may apply Theorem
2 to conclude the existence of a solution (OG,XG) € H](Q)me(Q)
to Problem (P) with latera] cooling given by 95- We shall obtain
a solution to Problem (P) by considering a subsequence 6+0.

THEOREM 3 The Problem (P) with a maximal monotone graph G
satisfying (3.2) and (3.3) , and with h e H'/5(r,)nL™(r,) has a
solution (8,x,9) ¢ [H'(2)n L™()]xL™(2)xL™(T}).

Moreover, if h € Co’](TH) one has 0 ¢ €°2*%(%), for some O<a<l.

Prood ¢ Consider the (unique) solution 0% of the following mixed
problem.

{ 0%H'(2), 0%°0 on r,» @%h onr,

i 4
(3.10) <

J (VOO'VQ+bO°g) + j g°(0)c=0, VceH](Q),c=0 on I UT,.
Q Tt r °

where go t)=Proj 0 is the smallest (in norm) number of G(t).
Since g (0)<0 jt js easy to show that ©0°>0. Since h € L (Iy) one has
0, - 0. 0_,0 0 H

0%l () by (2.12), and we assume that 0°§M =M~ (h,g(0)).

Then, for every solution G)(S to Problem (P) with g4, we
have

(3.11) 0 <0’ <e® <M.

Indeed (3.11) follows by a comparison argument:
take c=[OG-O°]+ in (1-8)6 and in (3.10); one has

Py — e

g - ———




(3.12) fﬂlv[oé-ed]*tzsxbjgxé[oé-o°J;+fr[96(05)-g°(o )] [0%-6°] %<0

1

Since ©°>0 and x8=1 in {0%50), the middle term in (3.12)

vanishes;using 96(0)§0, together with
(3.13) l9g(t)] < 19°(t) | (see [B], p.28)

in order to deduce the chain
)
95(0°) 2 9,(0%) > g,(0) > ¢°(0),

one finds that the last term in (3.12) is non-negative, which
proves (3.11).

Using again (3.13), by (3.11) one has
$ 8y -
(3.10)  1g,(0%)] < 19°(e°) | < max [lg°(0)9°(M°)1]= &,
from where we easily conclude

H06||] %) < €(=const.independ, of §).

It follow§ that there exists a subsequence 6+0
such that

8 . 1 0
(3.15) 0" — 0 in H'(Q)-weak, and 0<O<M

(3.16)  x® — x in L7(9)-weak *, 0<x<!

(3.17)  g,(0%) — g in L7(r))-weak *, with ligl ., < %
L

Since one can also consider 05+O uniformly in each
compact subset Kef2, one has x=1 in the open set {0>0}-
Using the compactness of the trace mdpp1ng, one can
consider O6

Since 95 (0 e G(J (06)). it follows, by a class1ca1 argument

-0 in L (F]) strong and from (3.3) J (O }+C in L (T ).

e

Pr e W g mmw B e Ty =

——— -

et bk el




([B).p.27), that g e G(Q).

5
5
H
H
;

If we assume h ¢ Co’](TH), by Lemma 2 one easily '
concludes that 0 ¢ Co’a(ﬁ) for some O<a<l. The proof is complete. r

REMARK 2 Assuming that there exists some v>0 such that
0 ¢ G(v), one can find a more simple estimate in L() for every
solution 0 to Problem (P)

-

0 < M= max (v, |[n]] | )
L (T

Indeed, it is sufficient to consider ¢=[0-M]¥ in (3.6) and to
recall that the monotonicity of G 1implies
g>0 if o>M. P

et

REMARK 3 The results of this section can be easily
extended to the case of a lateral boundary condition

——

- gﬁ (X) € G(z,0(X)) , for X={x,y,z) € T],

(@]

. -

where , for each z ¢ JO,H[, 6(z ,-) denotes a maximal monotone
graph satisfying (3.2),(3.3) and & in (3.14) being uniformly bounded in z.

-

An interesting case could be a lateral boundary
submitted to N differents cooling zones, that is, when, for
i=},...,N,

6(z,-)=6,(+), 0=2 <...<zy_; <2<z <...zp=H. B

- e P e ey

4, COMPARISON RESULTS

If the cooling is given by a monotone function one
can adapt the technique of [BKS] to prove the '




PROPOSITION 2 tet ©o% (resp. ©% ) a solution to

Problem (Pe) and corresponding to
g and h (resp.g and h), where g and g aremonotone functions ,
satisfying(3.8) . Then if h>h and g<g it follows that Dﬁzou- r

P&oad :

Set fo(t)=(1-6/t]", t e R and  6>0.

From (2.7) and denoting n=0%-08%, one has

JQVn'Vc=b JQ{nH[xE(@e)-xe(@e)]}cz~--Jr [9(0%)-5(5%)]¢

1 -
for every ¢ ¢ H](Q),c=0 on FOUFH. In particular, for ;=f6(n),

which is different from zero if Oeiée where g(0%)>g(6%)>g(8"), ‘
it follows |
(4.1) IJQVn-V fo(n)l < b LEJQIHI'I[fS(n)]ZI, r
i
being LE the Lipschiz constant of t = t+A xe(t). . §k
As in [BKS], (4.1) implies, for any &>0, ;
+ b
! [Tog (1+ iﬂéél—)|2 < C(=const.independ.of &) V
Q N »
I

from which it follows 0%-8%= p <0. B }I »

REMARK 4, This argument also proves the uniqueness of the ,
solution of the Problem (Pe) when g is monotone. Of course if .;
O(resp.0) is a solution of (P) which is the limit of the subse -
quence OE'(resp.éc') the above proposition implies that 0>0.

Next we shall prove comparison results with respect }




to the extraction veloc{ty b. N

r
PROPQSITION 3 As sume that there exists constants u,M such ‘
that
(4.2) ' 0 <p<h(x,y) <M, a.a.(x,y) € Tp. "
and that the function g verifies (3.8) with ‘
(4.3) {t : g(t)=0} c [M,+=[, i
or else that g verifies (2.2,3,4,9).Then if biélog(]+§) a . !
solution © to Problem (P]) is also a solution to Problem (P) f ;
with x=1. 4 :

Proof : If g satisfies (3.8), then the Problem (?]) has a unique
solution (let xEEO in (3.9)). Moreover by (4.3) one has g(0)<0
(see Lemma 1).

Under assumptions (2.2,3,4,9) the existence of ©
may .be shown essentialy as in Proposition 1, being also g(0)<0,
by hypothesis.

-y —

. - ey ey~
Ganse

Consider now the function Ou(z)=u(ebz-1)(ebH-1)'].
Taking ;=(Ou-0)+ in (1.10) and since g(©)<0 in both cases, one i
easily finds that OZOM- Therefore, if follows

20 ’
80 U bH_ «1
2 < =¥ =oup(eP-1)70 on T il

i
Using the Green's formula with a smooth function ¢ such that i ?
¢>0 on I and ¢=0 on Ty, one has '\ y

A 90 '
[Q(VO'VC+b(§C -Abcz)+Jr g(0)g= Jr T Ab) ¢ <O , f
i

! 0 ' '
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for Abiub(ebH-])-]. This means that, for all bH<log(l1+u/A},
(0,1) is also a solution to Problem (P). Jj

This proposition suggests that, for small velocities
b, the whole region Q is occupied by solid metal, since if the
Problem (P) admits only one solution O, one has ©>0 in Q for
0<b5% log(1+u/X). Conversely the next proposition suggests that
for big velocities the free boundary exists, since we will show N
that the volume of the set ({0>0} vanishes when bt~ - ,

—~y -~

~—p—r~ -

EB“E“§|||QN 4, uUunder assumptions of the Theorem 1 or Theorem 3

——

and denoting by |Q+i the Lebesque measure of the set Q+={XIO(X)>0L
one has

C
(4'4) IQ_.,} i TB' ’

where C is a positive constafit independent of A and b.
Moreover, for b big enough, one has x#1.

Proof. Let ¢z=H-z in (1.8) and in (3.6). One has

(4.5) - JQOZ+b JQGZ(H-Z) + Abfnx + Jr g(H-z) < 0,
1

where g=g(¢) and g € G(©), respectively. In the first case, g

is a bounded function and from 0<0<M (see Theorem 1 and Lemma 1),
we may assume -2]<g<0, with. £y independent of b and A. In the
second one, by (3.17) and (35.14) we haveilgn <% and 2 is also
indepenaent of b and A -

N T R RRTY = f —wy wy—te

Denoting L= max (% ,11) from (4.5) it follows that




since one has

J 6, = J h and J e,(H-2) = J e >0 .
Q Ty Q Q

Recalling that 0<x<1l and x=1 in Q_, one has

+

le,] < J x < IT| (m+LW?/2)  /ab,
2

which completes the proof of the proposition . |

Now we assume the existence of d, 0<d<H, such that
(4.6) g(X,p,0) = 0 for O0O<z<d, V(X,p,e)errxm+xm
or, for the monotone case (see Remark 3),

(4.7) G(z,.)=0 for 0<z<d<H

[HEOREM 4§ , Let (©,x) (resp.(©,xsg)) a solution to Problem (P)

(resp. (5)) under assumptions of Theorem 1 with (4.6) (resp.
Theorem 3 with(4.7)). Then there exists &, 0<5<d, such that
(4.8) 0 (x,y,z) < Ab[2-6]%, V¥(x,y,2) e &

(4.9) 0=x=0 -for 0<z<§,

for al) b>M/xd, where M3jjo|| = is a constant independent of
L

b (see (2.10) and (3.15)).
The proof of this theorem uses the following lemma.

— g e -
.




LEMMA 3, Under assumptjons of Theorem 4, one has

(4.10) IZ x(Abx-Oz) < IZ (b®+Abx-Oz) <0 ‘
' 8 ) r

for 0<s<d and Z,={(x,y,z)e Q| 0<z<$§}

'
Proog : Let g=[6-2]% in (1.8) or in (3.6) . One has i
f

J [-0_+bo_(6-2)+rbx] < O,

8 .

because (4.6) or (4.7) imply g[é-z]+=0. Since A
: !
J OZ(G-z) = J © >0 and 0<x<] |
Zs Zs r

it follows

JZ x(Abx-@z) < jZ (Abx-Oz) < JZ (bO+Abx-OZ) < 0. B
) 8 $

ProOF OF THEOREM 4. : Consider w=u(z)=Ab{z-6]" with ¢ fixed
such that 0<6<d-M/Ab. The function z=[0-u]* vanishes on z=0
and for z>d. Therefore g[6-u]*=0 and from (1.8) or from
(3.6) , one has

JQV0°V[0-u]+ +bJQOZ[O-u]+-Ab jé[e-u]; <0

 mheamman Al o cosneon o die ol it sba S Sana S en adnd od

or

2 + + + <0 . : t
Jzé(|ve| -Abxez)+J{V0-V[o-u] -Ab[@-u]z}+bjnez[0-u] - o ;

(avZ5)n{0>0}




Adding the quantity .

Ab[o-u]?

Abix()bx-@z) - b j
8

5 O\Z

which is non-positive by Lemma 3, one obtains

j {0)2(+02+(O -Abx)2}+flv[0-p]+|2+b( (0-n)_ [0-p]*<0.
z y 2 Jq z -
5 Q\Z6

Since the last term is zero, if follows that 0<u
in O\Z.={z>8} and 0,=0,=0, ©,=Abx in Zg;={z<§}:Since 0=0
for z=0 and z=§, one has ©0=0 for z<$ and consequently also

conditions in order to assume the global existence of a free
boundary. In this case we shall prove that the free boundary

is an analytic surface.

We begin with the following

PROPOSITION 5.

(P) (resp.(ﬁ)) satisfies

(5.1) -A@+bOZ+Ab X, 0 in D'(Q) ,

(5.2) X, 20 in @

A solution (0,x) (resp. (©,x,g)) to Problem

- 2] -

x=0 for z<5 -
5. REGULARITY OF THE FREE BOUNDARY
The goal ¢f Theorem 4 is to provide sufficient

——




Proof: The equation (5.1) follows immediatly by taking
t e&(N) in (1.8) or in (3.6)

Choosing as a test function in (1.8) or in f

(3.6) t¢=min (O,en), where €>0 and n € 2(89),n>0 one has

I= f VOV min (G,en)+bj O, min (O.cn)-kbj [min (6,en)], <0 }
z _ 2~ |
Q Q 9] !
b
I' ‘
since x=1 in {0>0}. Since min (O©,en)=0 on 3R, the last integral i ‘
is zero and it follows ‘ g
. l ]
Isf ]VGIZ+EJVO'Vn+bJ{€n@Z+OZ [min (0,en)-enj} tf 5
Q !
(. {o<en}  {0©>en} f
ir

> € j VO-Vn+eb J on-b J o, [en-0]" ,
= q 2 q 2
{o>en} !

ST T T T i — e —

from which one concludes

| ( O+
; VO-V +bj o,n < b S -=
JQX{O>sn} n 0 "2 lq  [-¢]

—— e W ¥ ® e e ey

Passing to the limit €0, one obtains
J (Vo-Vn + b@zn) < 0, ¥ned(Q):n>0
1]

and using (5.1), one deduces (5.2). [}

~ -

Frbm (5.1) it follows that the function © is locally

i
E
L




Holder continuous. Thereﬁore the set

(5.3) a, = {X e @] o(x)>0}

is an open set. Since x is monotonous increasing in the z-coordi-

nate one can introduce
(5.4) o(x,y) = inf {z : O(x,y,z)>0, (x,y,z)eQ}

where ¢ is an upper semi-continuous function, by the continuity
of ©. Then we can state.

THEOREM 5, For any solution of Problem (P) or (5) one has

(5.5) Q, 2{0>0}={XeR:2>¢(x,y)}

where ¢ is an upper semi-continuous function given by (5.4) ]

"CORQLLARY 1, Under conditions of Theorem 4, for all b>M/Ad,

one has

H > ¢(x,y)>d-M/xd > 0, for all (x,y)e I', which, in
particular, assures the existence of a free boundary. [j
Consider now the function

z

(5.6) u(x,y,z) = j o(x,y,t) dt, for (x,y,z) ¢ 9,
o

which is a Baiocchi type transformation (see [BC] for instance).

v ~r—— = Y

. — - T —— ey




[HEQREM 6., tLet (©,x) (resp.(9,x,9)) be a solution to Problem
(P) (resp.(P)) under the assumptions of Theorem 4. Then the
function u defined by (5.6) satisfies the following variational
inequality in &

(5.7) u>0, (-Au+buZ+Ab)30, u-(-Au+buZ+Ab)=0.
and x is a characteristic function, being
(5.8) x=x{(0)=x(u) a.e. 1in Q

where x(v) denotes the characteristic function of the set

{v>0}.

Procg : 0>0 it is obvious
that u>0. Since 0O=u, and 0 satisfies (5.1) one has

From definition (5.6) and recalling

(-Au+buz+xbx)z= -AO+bOZ+Abe =0
which, together with (4.9) and O<x<1, imply
(5.9) 0= -Au+buz+xbx < -Au+buz+Ab.

Recalling (5.5) it is clear that

(5.10) {050} = {u>0}

from which one deduces x=1 if u>0, and the third condition of
~(5.7) follows by (5.9). '

From the classical regularity to solutions of variatio-
nal inequalities one has

2,

(5.11) u e H]oc(n) (see [KS], for instance) and (5.8)

follows easily from (5.9) and (5.10). B

e

e

e




REMNARK 5 If one considers a linear flux
(5.12) g(X,0(X),8(X)) = a(z) [8(X)-p(X)]

with p>0 and a(z)=0 for 0<z<d and o(z)=a=const.>0 for
d< z <H, then we have that u is the unique solution of the
following variational inequality with mixed boundary conditions
(see [Br] and [R]):

uelks= {VGH](Q)I v>0 in @, v=0 on TO}

uz(v-u)+aju(v-u)3j h(v-u)-AbJ

j Vu-V(v—u)+bJ u .
1 H

v-u)+aj5(v-u),
a f T

(
Q

¥ve K,
_ z
where p(z)=f p(t)dt for z>d.
d

In particular, this implies the uniqueness of the
solution of Problem (P) for a linear cooling given by (5.12). }

»

The transformation (5.6) and its consequence (5.8)
allow us to include the study of the free boundary

¢ =N 00,
in the known results of Caffarelli [C] Kinderlehrer and
Nirenberg [KN]. In order to apply these resuits we must show

that ¢ has not singular points. This may be done by using a
technique due to Alt [AR] for the dam probliem.

LEMMA 4, Let X e¢ and Br(xo)c Qe Then there is a cone
Arc{Xsm3|z<0}. such that

' 2
(5.13) %%(X)sVu(X).nio for XeB, (X ), whenever neA NS,

Ny

v
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Proog: Recalling (5.11) and that uz=630 in fi,the proof of this
lemma is a simple adaptation of Lemma 6.9 of [KS], page 255, and
therefore we omit it. ||

THEQOREH /7, Let (0,x) (resp.(9,x,9)) be a solution to Problem
(P) (resp. (P)) under conditions of Theorem 4. Then the free

boundary ¢ is an analytic surface given by
¢: z =¢(x,y) for (x,y) e T,

and 0@ is also a classical solution of Problem (C).

Proogs: By (5.13) the function ¢ defined by (5.4) is a lipschitz
function in T and we can apply Theorem 3 of [C] to conclude that
(5.14) ¢ is ¢! and ueC%(@,Ue). Therefore from equation (5.1)
and Green's formula one finds. that condition (1.5) is verified
in every point of the free boundary z=¢(x,y), for all (x,y)eT,
by Corollary 1.

To conclude that ¢ fs an analytic surface it is

sufficient to apply Theorem 1 of [KN], using (5.14) and recalling
that the equation satisfied by u in e, has constant coefficients. |

6, -UNICITY IN THE MONCTONE CASE
In Remark 5 we have already stated the uniquenessof the

solution of Problem (P) with a particular linear cooling.

Adapting to our problem the technique of Carrillo and
- -Chipot ([cc]) we shall prove anuniqueness result for the maximal
monotone case assuming that x is a characteristic function, that
is, assuming

(6.1) x = x(0),

to which we have already stated sufficient conditions in Theorems




4 and 6.

Denote by (Oi’xi’gi)’ with Xi=X(Oi) and g. € G(Oi),
for i=1,2, two solutions of the Problem (P) and set

Go=m1'n (6] ,@2), )(0=m‘in (X] ,Xz)) ¢>0=SUP (¢] ’@2)'
| .
| LEMIA S, Assuming (6.1), one has '
:[ ’ .
’
(6.2) JQ{V(Oi—OO).Vn+b(ei-Oo)zn-xb(xi-xo)nz }dx dy dz 4
< AbJ n{x,y,o{x,y))dx dy
f— D. 1
i
3
for any n e'H](Q)‘ﬂ c%(%), n>0, where ;
r
Dy = {{x,y) e T] ¢.(x,y)<¢ (x,y)} , i=1,2. '
Prnoof: Choosing the test functions ic=inﬁn(61—eo,en), >0, from
(3.6) one obtains for i#j (i,j=1,2) \
r
i
JQ{V(ei-ej).v;+b(ei-ej)zg-xb (Xi'xj)cz}+jr (gi-gj)c=0. : 1

1
By the monbtonicity of G, one has

— ———
. .
” .

J (gi-gj) min (Oi'eoseﬂ) >0
Iy
since it is sufficient to integrate in {ei>oo} where szoo‘

- - g - = - v

Then it follows

f

- Ab(x;-Xy) [min (0;-04.en)],} < 0

{V(oi-eo).v mln(@i-Oo,en)+b(ei-Oo)zmln(oi-eo,en)

()

~ = r

or, using min (u,v)=v-[v-u]®,




fV(oi-Oo)Vn+b jQ(Oi-Oo)zn + Ab(xi-xo) n,

{Oi-00>cn}

0,-6 1+ .
i o i o
h bJQ{oi'Oo)z [n' € ] 'A(Xi'xo)[n' € Jz }

Since the X; are characteristic functions, integrating

in 2z, one has

Zz Z

{6;<2<9 ) 0, i

ST .1 KRR

and (6.2) follows by passing to the limite eNO in

[70,-05) onsb [ [(04-00) n-n(x;=xo)n,] <

f
{@i-00>en}
Oi'Oo + ‘
ibjg(oi-QO)Z{n_ _—5—] + Abj n(X,.V.¢1-)- '
D.
i
[HEOREM 8, Assuming (6.1) , the Problem (5) has at

most one solution.

Proof : For e>0, consider a smooth function a s such that,
O<a <1, and

ag=1 in A={0>0)Ur, and a (X)=0 if d(X,A )>.

Since 1-a_=0 on {050} , for all nch'(2), one has

jQ{VOO.V(l-ae)n+bOOZ(1-ue)ﬁ-kbxo[(l-ac)n]z} = 0.




For n ¢ H](Q)ﬂco(ﬁ), n>0, z=(l-a_)n is a test
function in (3.6), and it fo]lows(sincel-aeﬂ)on T])

| 19(0;-0,) 7100 )n+b(0;-00), (1-ag)n-2b(x;-xg) [(1-a,)n] ;)

4

<0 (i=1,2).

Using (6.2), we obtain

JQ{V(o’i-OO) -Vﬂ+b(0]~'9'o)Zn'lb(xi'xo)nz}f_ 3:12 )\bJ(D:En)(x’.Yﬂt’(x s.V) )=0-

Choosing in this inequality n=z and n=H-z, after a
simples calculation one obtains

J o) + 2 | txxg) = 0,

from where one deduces Oizob and X;¥Xg 2 for i=1,2, which proves
the uniqueness of the solution. |}
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