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ABSTRACT - A steady-state one phase Stefan problem corresponding

to the solidification process of an ingot of pure metal by conti-

nuous casting with a non-linear lateral cooling is considered via

the weak formulation introduced in [BKS] for the dam problem.

Two existence results are obtained for a general non-linear flux

and for a maximal monotone flux. Comparison results and the regu-

larity of the free boundary are discussed. An uniqueness theorem is

given for the monotohe case. 'T7C.
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0. INTRODUCTION

In this paper we study the one phase model of the soli-

dification of a pure metal in continuous casting submitted to a

non-linear lateral cooling.

In the liquid phase we assume that the metal is at the

melting temperature, which is zero after a normalization. In the

solid phase the temperature 0 satisfies the heat equation. The

ingot is extracted with constant velocity b, and the liquid -

solid interface (the free boundary) is unknown but steady with

respect to a fixed system of coordinates of IR3 , in which our

problem will be studied. Assuming that the free boundary 0 is

representable by a surface z= (x,y), the steady Stefan condition

is

(0.1) Sz -x x - 0y y = Xb, for z= (x,y) r
where X is a positive constant representing the heat of melting.

In the lateral boundary one specifies a non-linear

flux condition
*F

(0.2) - ao/an = G(O)

which expresses the law of cooling, and may be quite general.

Namely, we shall consider a maximal monotone graph G, which may inclu-

de a cooling process with climatization as in Chapter 1 of

the book of Duvaut and Lions [DL] * {
This model has been considered in a particular case by V

Rubinstein [Ru] and, with a linear flux condition of Newton type,

*by Briire [Br] and Rodrigues [R], via variational inequalities

after a transformation of Baiocchi's type. However this approach

doesn't work with a non linear cooling.

Since this problem has some similarities with the dam

problem, we formulate it in section 1 using the method of Brizis,

Kinderlehrer and Stampacchia [BKS]. In sections 2 and 3 we prove
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the existence theorems, first using compactness arguments and next

combining compacity and monotonicity tecniques for the maximal

monotone case.

In section 4 we discuss comparison properties which

show that when the extraction velocity b is small the ingot soli-

difies immediatly and there is no free boundary. For some type

of cooling and for ahigh enough velocity b one can show the

existence of a free boundary. In this case it is shown, in section

5, that the free boundary is an analytic surface and a weak solu-

tion is also a classic one, as in the linear case of [R].

To conclude this paper we give an uniqueness theorem for

the monotone case in section 6, using the technique of Carrillo-

-Chipot [cc]

i. tMATHENATICAL FORIULATION
3

Let 0 denote a cylindric domain in IR , in the form

s=rx]O,H[, where r c IR 2 is a bounded domain with lipschitz

boundary @r representing a section of the ingot and H>O its

height. We denote ri=rx{i}, for i=O,H, the bottom and the top of

the ingot respectively, and by r1=arx]O,H[ its lateral boundary.

We have a2=roUT u H

Considering z the direction of extraction, we can for-

mulate our problem in its classical form:

Aosession For
PROBLEM (C) : Find a couple (0,o), such that A a

NTIS GRAHi
(1.1) 0>0 in Q and 0=0 for O<z<4(x,y) < H DTIC TAB 5

Unannounced 0
Justification

(1.2) AO=b 0z  for 0<0(xy)<z<Hz By

Distribut ion/ L
(1 .3) 0=0 on r , O=h(x,y)>O on FH Availability Codes

- Avail and/or
Dist Special

(1.4) - 30/an u g(O) on r I  OA

of0, i



(1.5) 0 )b if z=¢(x,y) 0

(1.5') oz  > Ab, if z=o(x,y)=O.

In this formulation b and X are positive constants,

h is a given function, and g will be specified in the next two

sections. The reader will note that the condition (1.5') is a

degeneration of the Stefan condition (1.5) in the case when

the free boundary €) can touch the. Known boundary Fo, where the melting

condition 0=0 is assumed by (1.3).

Let us remark that by the maximum principle it must be

0>0 for z>4(x,y). Denoting by X+ the characteristic function of

the set ={0>O and integrating formaly by parts, for every re-

gular function , such that t=0 on TH and ;>0 on F0, from

Problem (C) one has

J (VOVC+bO z-XbX + = f (V0'VW+b0z-Xbcz)

f (-AO+boz) + A+Xb Z;

+ F 1 UUF 0

=-Jg(0)) Z;X- -+We+ +Xb) I

f- g(o)j,
1 0 1

fr
lI

where t2= 2+€2+1. Therefore, following [BKS], we introduce the ib
x y

weak formulation of Problem (C) I
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PROBLEM (P) Fing a couple (e,X) c HI (Q)xL'(0),

such that,

(1.6) 0>0 a.e. in 0, 0=0 on r0  an.d O=h on PH;

(1.7) O<x<l a.e. in 0 and X=l where 0>0;

(1.8) (vO.v +bOz;-XbX z) + g(o) <O, for every1L

E H (0), such that c>0 on Fo and C=0 on rH

If we consider a more restrictiwcl-ass of test functions

one can introduce a more general formulation, which we call

Problem (P'), if we replace (1.8) by

(1.9) (Vo-VCbo z-Xbx )+ g(0)C=O, VccH (Q):C=O on FoUTH*

It is clear that every solution of Problem (P) verifies

(1.9), but the Problem (P') hs more solutions than Problem (P).

In particular, if

I

has a solution 0>0, by the maximum principle, one has 0>0

in 0 and (0,1) is a solution to Problem (P'), which may not

satisfy (l.5')(see Proposition 4).

2. EXISTENCE OF A WEAK SOLUTION

In this section we assume the lateral cooling given by
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(2.1) " a" ( ) = g(.X,p(X),0(X)), X rtD n

where p>O is a given function representing the cooling tempe- r
rature, and

(2.2) g(X,p,e) is a bounded Carathiodory function,

i.e., is continuous in 0 c JR, a.e. (X,p) c r1 x IR+, measurable

in (X,p) for all 0 , and maps bounded sets of rlxJR xjR in boun-

ded sets of JR.

Since the cooling process is determined by p, we shall

assume that

(2.3) g(X,p,O)<O, a.e. (X,p,e) c r xjR xJR

r
(2.4) g(X,p,6)=O for 1eJ>p, a.e. Xcr1 .

Consider a parameterized family of functions Xc (jR)

such that

o0 , for t<O

(2.5) xC(t) = 0 < x(t)<l , for O<t<c

, for t>c

and so it approaches the Heaviside function when e'SO.

Introduce now the following penalized problem, where for the sake of

simplicity we denote g(X,p(X),O(X)) by g(O) :

PROBLEM (PE) Find OccHl(Q)n C°(? ), such that,

(2.6) O =O on ro ,  eCah on r.,-0



(2.7) [ g(oc)i=O, VcH (2): =Oon rI"1

Assuming the functions h and p verify

(2.8) 0 < h(x,y)<M, a.e. (x,y) c rH ,

(2.9) 0 < p(X) < M, a.e. X c rI ,

one can prove the following "a priori" estimate:

LEPTiA 1 If 0 E
. is a solution to Problem (P ) with assumptions

(2.2-4) and (2.8-9), one has

(2.10) 0 < OE(X) < M, for all X c Ti and O<E<M.

P.Itoo • Let =[Oc]" in (2.7). One has

o J {vOc.v[Eo]" + bOE[E] - Xb X (0 ) loc]} + f

V jI[(D:]I 2+b[E)C]-[E)E]- =JvGI 2

from which it follows [0c]=O and E~c>0.

From (2.4) (2.9) and (2.5), one has respectively

g(OE)[C-M]+=O and X (0c)[F--M]+[OE-MJz for O<c<M.

Then =[Oc-M] in (2.7) implies

I-0 fJ(Vec.v[oc-M]++b O~c[e-M]+ - b[Ef-M]+}

f IIv[eEr'M]+I 2,

~~-0



and therefore [C -M]+=O.* The lemmais proved. m
We shall need the LO and the Holder estimates due to

Stampacchia [S] for the following eliptic problem with mixed

boundary conditions:

au

(2.11) - Au+buz=f in 9 , a-=g on F1 and u=h on FoUrH.

LE A 2 [S] The unique solution of (2.11) verifies

(2.12) flu IlL ( )- f w 1 P() L L (jh To
L-Q) W-  ll )L q( rL-(c O U H

(2.13) lull <cO( 2  lCp(a) +l (holj ))

I
for all p>3 and q>2, and for some constants CIC2 >0 and O<a<l

which are independent of f,g,h and u.

Pco : See the results of §5 of [S] or a more explicit result

extended to variational inequalities in Section 2 of [MS] I

Now we can state an existence result for the penalized

problem, from which we shall construct a sequen.ce of functions

converging to a solution of Problem (P).

PROPOSITION 1 Under assumptions of Lemma 1, and if

(2.14) h c C O'I(TH)

then there exists a solution Oc to Problem (Pc) for all

OE<M satisfying the estimate

(2.15) E+ IEl < C,
H (Q) ' -a
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where the constants C>O .,and O<a<l are independent of c.

P'toc6 For T c B R={Ir C Co() <R}, (R>O),

define

0 = s (T)

as the unique solution of the following mixed linear problem

0 = 0 on r , O=h on H

j (VO'V +be )=Xbl ( )z - g(T) , V;EH.I(Q): =O on roUTH

Since, by definition, 0 < XC <1 and g is bounded

independently of T (for IT(X) >M> p(X) one has g(X,p(X),T(X))=O)

by (2.4)) one can apply Stampacchia's estimate (2.13). Therefore,

there exists C > 0 and O<a<], independent of T and E such that

11011 < C2 (;b+jOg'j + ihlc ) C
C Lc CO~

and for R>C one has S (B) c B R R

From the compactness of the imbedding C' (T)C.C°(T)

one finds that S is a continuous and compact mapping of BR into

itself. By the Schauder fixed point theorem there exists a

function 0 c BR satisfying 0.e=S (0C) , which is clearly a solution

to Problem (P).

The estimate in Hl(P) is classical, since Xc and g(CE)

are bounded independently of c.

THEOREM I Assuming (2.2,3,4) and (2.8,9,14) there exists a

solution (0,X) c[H (S)nC' "(?7)]x L'( 0) to Problem (P).



-10-

Ptoo6 By (2.15) one can consider a sequence of solutions Oc

of Problem (Ps), such that, when e4

(2.16) 0 - 0 in Hl(2)-weak

(2.17) Oe (X)-C(X) uniformly in X=(x,y,z) c

(2.18) X (0c) - X in Lc()-weak *

where 0 is some function belonging to HI(2) n C°'0(7) satisfying

(2.10) and O<X<I. Moreover in the open set {0>O one has

X (E) ) - I and therefore x=l a.e. in {0>01.

Let C E H (2), >O on F and ;=0 on T

By the Green's formula and since 30 /anO on F one has

DV.

[V)'-V+bC-)e Abx (0 ) ]+ g(G)J -n- f < 0
z an

I'

and in the limit we obtain (1.8). The proof is complete. 3

3. THE CASE OF A MAXIMAL MONOTONE COOLING

In this section we consider the existence of a weak

solution with a lateral cooling

(3.1) - c c G(O) on r , 

where G denotes a maximal monotone graph , that is, G is a

multivalued function which graph is a continuous monotone increa-

sing curve in JR2  (see [B]). We shall assume

(3.2) G(O) ]--,0] I.

(3.3) [0,+-[ c Dom (G)s{xc PIG(x)#)• J,
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The weak formulation of the corresponding problem takes

now the following form:

2r
PROBLEM (P) Find (D,x,g)E H (Q)xLOO(Q)xL (Fl), such that

(3.4) 0>0 a.e. in 2 , 0=0 on T and O=h on IH;

(3.5) O<X<l a.e.in Sq, x=l if 0>0

(3.6) jf(V0OVC+bO z-AbXz )+j g4<O, Vl(i):c>O on Fo, =O on F H;

(3.7) g(X) c G(O(X)) a.e. X c F

We shall obtain a solution to Problem (P) as the limit

of a sequence of solutions to Problem (P) with a non-linear cooling

given by a function g satisfying

(3.8) g is monotone increasing, lipschitz and such that g(0)<O.

r

THEOREM 2 Assume (3.8) and let h c H ] 2 (F) h>O.

Then Problem (P) has a solution.
if

Ptoc6 The proof follows the lines of the one in theorem 1.

by considering the penalized problem (P 2) with g satisfying (3.8).|

The fixed point is now constructed in L (o) by means of the

mapping

L2( P) , r = T (T) C V.

where V={v£HI(fl): v=O on ro) and is the unique solution

of the following problem
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V = h on FH

(3.9)

( .V +b ) g() = Xb X ();z Vz V: =O on TH-

which is a coercive and (strictly) monotone problem in V by

assumption (3.8) (see [L]). Denoting by h some function in V,

which trace on FH is h, and letting C= -h in (3.9) one easily
finds I

1 < C C(h),
H ( ) -

where C is a constant independent of T and E.

Since the imbedding Hl( 0) c- L2 (E2) is compact, the

Schauder fixed point Theorem assures the existence of a solution 0-

to Problem (P ). As in Lemma 1 one finds that 0'>0, since g is

monotone increasing and g(O)<O, and therefore one has g(oc) •

-  0.

The passage to the limit as c40 is straightforward
since c--  0 in H (0)-weak and g is a lipschitz function. 3

REMARK 1 Since g is lipschitz, by Sobolev imbeddings one

has g(0) L HI/ 2 (rI) 4 L4 (Fl) (see [A, p. 218]) and therefore

applying Lemma 2, it follows that

i) if h e L'(rH), then 0 E L a(2); and
I,

i'i if h c Col(FH), then 0 F C°'a(T), for some O<l. <I

Since G is a maximal monotone operator one can intro- K
duce the Yosida regularization, defined by

g6 (I-J6 ) , for 6>0,I6
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where J6=(I+6G)
"I is the resolvent of G. Consider T=a6(o),

that is 0 e(I+6G)(t) . From the monotonicity of I+6G and using

assumption (3.2) one finds ->0. Therefore g6 (0)=-j 6 (O)/6 <0,

which means that, for each 6>0, the Yosida regularization g6

satisfies the condition (3.8) (see [B]). So we may apply Theorem

2 to conclude the existence of a solution (0 6X6 ) E H (0)xL (2)

to Problem (P) with lateral cooling given by g6. We shall obtain

a solution to Problem (P) by considering a subsequence 640.

THEOREM 3 The Problem (P) with a maximal monotone graph G

satisfying (3.2) and (3.3) , and with h c Hl (FH) r L (rH) has a

solution (O,x,g) c [H (Q)n L-(Q)]xL-(S2)xL (r).

Moreover, if h C C°'I(TH) one has 0 c Co's(U), for some 0<cz<l.

Ptoo6 : Consider the (unique) solution 00 of the following mixed

problem.

0EHl ( ), 00=0 on ro 0 O°=h on r

(3.10)

00

I (V0 ° 'Vc+ b 0 ° ¢ )  +  9 g (O) :O' V CHl(S )' :O on Fro utH '

where g (t)=ProJ G(t)0 is the smallest (in norm) number of G(t).
Since g0 (0)<O it is easy to show that 00>0. Since h E L*(rH ) one has

°L (Q) by (2.12), and we assume that 0<M°=M (h,g°())

Then, for every solution 06 to Problem (P) with g6 , we

have

(3.11) 0 < o6 0 <.M

Indeed (3.11) follows by a comparison argument:

take 4=[060O]+ in (1-8)6 and in (3.10); one has
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Since 00>0 and =l in {0 >01, the middle term in (3.12)

vanishes;using g6 (O)<O, together with

(3.13) 1g6(t) < Ig°(t) (seE [B, p. 26)

in order to deduce the chain

g6 (0 ) > g6( O) > g6 (o) > g°(o),

one finds that the last term in (3.12) is non-negative, which

proves (3.11).

Using again (3.13), by (3.11) one ha.s

(3.14) Ig6(O ) I < Igo(06 )i < max [Ig°(O),lig (M°) I]= ,

from where we easily conclude

l l 1 1  < (=const.independ. of 6).
H (0)

It follows that there exists a subsequence 640

such that

(3.15) 0 6 0 in H1 (0)-weak and O<O<M 0

(3.16) x6 - X in L O(o)-weak *, O<x<l

(3.17) g5(0 ) - g in Lw(rI)-weak *, with lgil L < I "

L L
Since one can also consider 0 -0 uniformly in each

compact subset KcO, one has X=I in the open set {0>0).

Using the compactness of the trace mapping, one can
Scensider 0 in L2(rl)-strong and from (3.3) J6(06)+O in L2

Since g6(0)c G(j6 (0 )), it follows, by a classical argument
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([B],p.27), that g c G(Q).

If we assume h c C° 'I(H), by Lemma 2 one easily

concludes that 0 c C°'a(?) for some O<a<l. The proof is complete. r

REMARK 2 Assuming that there exists some v>O such that

0 c G(v), one can find a more simple estimate in L (P) for every

solution 0 to Problem (P)

0 < M = max (v, lihil
L (rH)

Indeed, it is sufficient to consider ;=[O-M] +  in (3.6) and to

recall that the monotonicity of G implies

g>O if O>M. 3

REf'jA 3 The results of this section can be easily

extended to the case of a lateral boundary condition

DO- (X) E G(z,O(X)) , for X=(x,y,z) c rl

where , for each z c ]O,H[, G(z ,.) denotes a maximal monotone

graph satisfying (3.2),(3.3) and £ in (3.14) being uniformly bounded in z.

An interesting case could be a lateral boundary

submitted to N differents cooling zones, that is, when, for

i=l,...,N,

G(z,)=G(* =z 0 < ... *<Z <Z< z N=H

4. COMPARISON RESULTS

If the cooling is given by a monotone function one

can adapt the technique of [BKS] to prove the
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t

PROPOSITION 2 Let O (resp. E ) a solution to

Problem (PC) and corresponding to

g and h (resp.g and fi), where g and § are monotone functions

satisfying(3.8) . Then if 6>h and §<g it follows that u>OL*.

PVaO0

Set f6(t)=[l-6/t] + , t c IR and 6>0.

From (2.7) and denoting n=OE-bc, one has

J Vn-V=b {n+x[X(o)-X(c)]}z
11

for every c c H (a),C=0 on FUFH. In particular, for 4=f 6 (n),

which is different from zero if OE>bc where g(oC)>g(6F)>g(6L),

it follows

(4.1) . (ri)I< b Lj Inl [f 6 (n)]z,

I
being L~ the Lipschiz constant of t t+X X~ (t).

As in [BKS], (4.1) implies, for any 6>0,

t+) 'I

6log (1+ )I2 < C(=const.independ.of 6)
6

from which it follows OE0C= n < 0. 3 '

EMARK 4, This argument also proves the uniqueness of the

solution of the Problem (P ) when g is monotone. Of course if

0(resp.O) is a solution of (P) which is the limit of the subse -

quence O'(resp.6c ') the above proposition implies that 5>0.

II
Next we shall prove comparison results with respect

AL-
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to the extraction velocity b.

7

PROPOSITION 3 Assume that there exists constants p,M such

that

(4.2) 0 < p < h(x,y) _ M, a.a.(x,y) e rH . L

and that the function g verifies (3.8) with

(4.3) {t : g(t)=O} C [M,+-[,

or else that g verifies (2.2,3,4,9).Then if b<Ilog(l+ ) a

solution 0 to Problem (Pl) is also a solution to Problem (P)

with X=1.

Pktoo6 If g satisfies (3.8), then the Problem (Pl) has a unique

solution (let X, O in (3.9)). Moreover by (4.3) one has g()<O

(see Lemma 1).

Under assumptions (2.2,3,4,9) the existence of 0

may be shown essentialy as in Proposition 1, being also g(O)<O,

by hypothesis. r
Consider now the function 0 (z)=l(ebZ l)(ebH1l)l.

Taking ;=O W-0) in (1.10) and since g(o)<O in both cases, one
easily finds that 0>0 Therefore, if follows

< =_b(eb - on r
an an 0"

b

Using the Green's formula with a smooth function € such that

>O0 on r and ;=0 on rH1 one has

(VO.v;+bz -Xb z)J g(O) = (E + Xb) < < 0r fro aIn
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for Xb<pb(ebH-l) " This means that, for all bH'log(l+w/X),

(e,l) is also a solution to Problem (P). m

This proposition suggests that, for small velocities

b, the whole region Q is occupied by solid metal, since if the

Problem (P) admits only one solution 0, one has 0>0 in 0 for

O<b<l log(l+li/X). Conversely the next proposition suggests that

for big velocities the free boundary exists, since we will show

that the volume of the set {0>01 vanishes when b+w

I
PROPOSITION 4, Under assumptions of the Theorem 1 or Theorem 3

I

and denoting by 10+1 the Lebesque measure of the set i+={XI0(X)>O},

one has

C

(4.4) + C X

where C is a positive constat independent of X and b.

Moreover, for b big enough, one has x1l.

P'oo6. Let C=H-z in (1.8) and in (3.6). One has

(4.5) - J +b J O (H - z )  + Xb x + J g(H-z) < 0,

where g=g(o) and g c G(O), respectively. In the first case, g

is a bounded function and from O'O<M (see Theorem 1 and Lemma 1), jib

we may assume -k 1<g<O, with.t 1 independent of b and X. In the

second one, by (3.17) and (3.14) we have IIgl <k and k is also

indepenoent of b ano ) • L

Denoting L- max ( £ , ) from (4.5) it follows that

lb
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b X J_ h + L (H-z)flrH r I I:

since one has

f ez f h and J,,Ez(H-z) f E) >0

Recalling that O<x<l and X=l in + one has

i+I , J x < irl (M+LH 2 /2) /Ab,

which completes the proof of the proposition .

Now we assume the existence of d, O<d<H, such that

(4.6) g(X p,O) = 0 for O<z<d, V(X,p,o)cr xR xR

or, for the monotone case (see Remark 3),

(4.7) G(z,.)-O for O<z<O<H

U
IHi 4 Let (Ox) (resp.(O,x,g)) a solution to Problem (P)

(resp. (P)) under assumptions of Theorem 1 with (4.6) (resp.

Theorem 3 with(4.7)). Then there exists 6,0<5<d, such that

(4.8) 0 (x,yz) < Ab[z-6] +, V(x,y,z) ,

..(4.9) O=x=O for O<z<6,

for all b>M/Ad. where M11I(01 is a constant independent of
L

b (see (2.10) and (3.15)).

The proof of this theorem uses the following lemma.

Amp

4 . .-
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EiA.... 3. Under asswuptijons of Theoremu 4, one has

(4.10 f 6 X(XbX- z ) < 1z 6 (bo+XbX-0~ < 0

for 0<6<d and Z 6=[(x,y,Z)E S11 O<z<6}

P400d Let r =[6-z]+ in (1.8) or in (3.6) .One has

J [-0 z +bEO (6-z)+Xbxl <~ 0,

because (4.6) or (4.7) imply g[6-z]+=O. Since

fz e('6-z) = fz 0 > 0 and _ _~

6 6r

it follows

fI6XXb- < fz6(?Xb-0)< 6 (bE)+Xbx-o ) < 0. 3

PROOF OF THEOREM 4. ;Consider iv=p(z)=)Xb[z-6]+ with 6 fixed

such that O<6<d-M/Xb. The function i=[O-ij]+ vanishes on z=O

and for z>d. Therefore g[o-jj]=O and from (1.8) or from

(3.6) ,one has

JVO.V[e-lj] +bJ0 [0-.KI+-Xb Jx~o-.141+ < 0

or

2_

J (I VE)I Ab o ) V - [)jj -b( -j +} b 0 l -J < 0
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Adding the quantity

Xblx(Abx-z)- b J Xb[E-p] +

6 \6

which is non-positive by Lemma 3, one obtains

{J 2+02+(0 -Xbx) 21+ fV[o-1 J]+ 2+b (p) [O-p1]+<0.

z x y z -- zZ6 a\2
6

Since the last term is zero, if follows that O<p

in O\Z ={z>61 and 0x=Oy=O, ez=AbX in Z ={z<6}.Since 0=06 y
for z=O and z=6, one has 0=0 for z<6 and consequently also

x=O for z<6

5. REGULARITY OF THE FREE BOUNDARY
The goal pf Theorem 4 is to provide sufficient

conditions in order to assume the global existence of a free
boundary. In this case we shall prove that the free boundary

is an analytic surface.

We begin with the following

PROPOSITON 5, A solution (Ox) (resp. (e,x,g)) to Problem
(P) (resp.(P)) satisfies

(5.1) -Ae+bez+Xb )z  = 0 in 5'(SI) ,

(5.2) Xz  > 0 in Q .

SI,
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P4oo: The equation (5') follows immediatly by taking

E c (0) in (1.8) or in (3.6)

Choosing as a test function in (1.8) or in

(3.6) t=min (O,cn), where e>O and n c ,(),n>O one has

I= VOV min (G,cn)+bJ G z min (Or)-Xbf [min (0,cn)]z<O

since x=l in {0>0}. Since min (O,en)=O on aQ, the last integral

is zero and it follows

I=J Ivol +E VOoVn+b Uno +0 [min (O, n)-cnD}f f z z

{OCri {O>Cn}

>eJVO-Vn+cb .fzr - b 0 r01

from which one concludes

Jxo~~VO.Vn+bf 0 r) < b E)z [n-23

Passing to the limit c',O, one obtains

(VO.Vn + bOzr) _ 0, V n (f2):n>O

and using (5.1), one deduces (5.2). 3

From (5.1) it follows that the function 0 is locally

Lt
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Hblder continuous. Therefore the set
b

(5.3) {X E 21 o(X)>o1

is an open set. Since X is monotonous increasing in the z-coordi-

nate one can introduce

(5.4) (x,y) = inf {z : O(x,y,z)>O, (x,y,z)C(21

where * is an upper semi-continuous function, by the continuity

of 0. Then we can state.

TH E For any solution of Problem (P) or (P) one has

(5.5) 12+ ={O>O}={xc(2:z>O(x,y))

where 0 is an upper semi-continuous function given by (5.4)

COROLLARY 1 Under conditions of Theorem 4, for all b>M/Xd,
one has

H > ¢(x,y)>d-M/Xd > 0, for all (x,y)E r, which, in r
particular, assures the existence of a free boundary. 3 1
Consider now the function

(5.6) s ulx,Y,z) = e(x,yt) dt, for (x,yz) E ,
0

which is a Baiocchi type transformation (see [BC] for instance).

r
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THORM Let (0,x) (resp.(0,x,g)) be a solution to Problem
(P) (resp.(P)) under the assumptions of Theorem 4. Then the

function u defined by (5.6) satisfies the following variational

inequality in i2

(5.7) u>O, (-Au+buz+Xb)>O, u.(-Au+bu +Xb)=O,

and X is a characterTstic function, being

(5.8) X=X(O)=X(u) a.e. in Q

where X(v) denotes the characteristic function of the set

{v>01.

P :oo6 From definition (5.6) and recalling 0>0 it is obvious

that u>O. Since O=u z and 0 satisfies (5.1) one has

(-Au+buz+XbX)z= -A+bO +Xb z =0

which, together with (4.9) anq O<X<l, imply

(5.9) O= -Au+bu +XbX < -Lu+bu +Ab.

Recalling (5.5) it is clear that

(5.10) {0>01 = {u>O}

from which one deduces X=l if u>O, and the third condition of

(5.7) follows by (5.9).

From the classical regularity to solutions of variatio-

nal inequalities one has

(5.11) U C W20 (0) (see [KS], for instance) and (5.8)

follows easily from (5.g) and (5.10). 3
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1jAR If one considers a linear flux

(5.12) g(X,p(X),e(X)) = c,(z) [e(X)-p(x)]

with p>0 and a((z)=0 for O< z <d and a.(z)=c=const.>O for

d< z <H, then we have that u is the unique solution of the

following variational inequality with mixed boundary conditions

(see [Br] and [R]):

u c 1K = {veH (Q)I v>O in S2, v=O on F }

JVuV(v-u)+b uz(V-U)+ fu(v-u)>J h(v-u)-XbJ(v-u)+aj,(v-u),
Frl H" 1

V v E jK, 
i,

where p(z)= p(t)dt for z>d.fd-

In particular, this implies the uniqueness of the

solution of Problem (P) for a linear cooling given by (5.12). i

The transformation (5.6) and its consequence (5.8)

allow us to include the study of the free boundary

nI
+ v,

in the Known results of Ca'ffarelli [C] Kinderlehrer and

Nirenberg [KN]. In order to apply these results we must show

that f has not singular points. This may be done by using a

technique due to Alt [Ai] for the dam problem.

L
L 4 Let Xoe¢ and Br(Xo)c 0. Then there is a cone

Arc{Xc JR31z<O). such that

(a1 3 u S 2  ,
(513 -(X)=Vu(X).n<O for XcBr(X whenever n .

. .... .. r I IIIo T 11 1 ~ lIII I .. . ' I r I "1 I



P'too6: Recalling (5.11).,and that uz= 0 O in Q,the proof of this

lemma is a simple adaptation of Lemma 6.9 of [KS], page 255, and

therefore we omit it. 

THEOREN 7, Let (O,X) (resp.(O,x,g)) be a solution to Problem

(P) (resp. (P)) under conditions of Theorem 4. Then the free

boundary 4) is an analytic surface given by

: z =4(x,y) for (x,y) c F,

and ® is also a classical solution of Problem (C).

S

Ptoo; By (5.13) the function 4 defined by (5.4) is a lipschitz

function in F and we can apply Theorem 3 of [C] to conclude that

(5.:4) 4 is Cl  and uEC2(0+UD). Therefore from equation (5.1)

and Green's formula one finds that condition (1.5) i-s verified

in every point of the free boundary z=4(x,y), for all (x,y)cF,

by Corollary 1.

To conclude that 4 fs an analytic surface it is

sufficient to apply Theorem 1 of [KN], using (5.14) and recalling

that the equation satisfied by u in Q has constant coefficients. I
+ I

6. UNICITY IN THE MONOTONE CASE

In Remark 5 we have already stated the uniquenessof the ,

solution of Problem (.P) with a particular linear cooling.

Adapting to our problem the technique of Carrillo and

•Chipot ([CC]) we shall prove an uniqueness result for the maximal

monotone case assuming that X is a characteristic function, that

is, assuming r

(6.1) x = x(E),

to which we have already stated sufficient conditions in Theorems
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4 and 6.

Denote by (O X g with Xi=X(01) and gicGO
for i=l 2, two solutions of the Problem (P) and set

00O=min (0190 2)1 X0=min (X1'X2)' Y0 suP ( ' )

LIfjA ... 5,. Assuming (6.1), one has

(6.2) fv(Oj- )0 ).Vn+b(o.- 0 ) n-Ab(X.-Xon } dx dy dz

< Xbn(x,y,4(x,y))dx dy

for any ri E: H I(Q2) nl c0 (U), j>O , where

D. {(x,y) E: ri 4.(x,y)<O (x,y)} ,i=1,2.

Pto6: C hoosing the test functions + =+ min(E -0 0 ,sn), C>O, from

(3..6) one obtains for i~j (i,j=1,2)

By the monotonicity of G, one has 1

J (g.-g.) min (o.-00 ,En) > 0

since it is sufficient to integrate in {O.>0 Iwhere 0.=0.
1 0 3

Then it follows '

f J{V(Oj-0 0).V min(O 00 , C TO+b(0.0 O) m in(0.i-0 ,Cn)

- Xb(Xm-X0 ) [min (0i-0ocj)Z <

or, using min (u,v).=v-Lv-u]+,
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JV(oi 0'0).Vn+b f (O'O)zn + ),b(xi-xo) nz
E)i  0- 0> C n }

O G (x -xo) 0 1 O °00 +<_ b f to i-0Oo)z I T1 CX i - " n z

Since the Xi are characteristic functions, integrating

in z, one has

and (6.2) follows by passing to the limite E\O in.:

{0i-0o >  +}

< b ( -o) r - + -I n(x y Oi<). * I

U i o 0 ] , -
i~D D.D Zq0 i  If

1!
an .2) Assuming (6.1) , the Problem (P) has at

most one solution. '

Pkoo For r>O, consider a smooth function a%, such that,
OcaE_1, and

< l in 0 ={o>O}Url and (X):O if d(X,Ao)>L.

ri

P~oo SForce ->O conide fr a l smoo h l~) fnt on hasuc ht

J(V V.V(1-Q)n+bO(1- )n-,bXo[(l-a )njz} o.
Q 0 E 0.
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For n c H (S)NC°(u), > , (1-a n is a test

function in (3.6), and it follows (since I-%=0 on Fl)

f{V(Oi-0 0 V(1 9-a E)n+b(o z (l-ac)n-Xb(Xi-X o ) [(lI-oc,)rJ

< 0 (i=l ,2).

Using (6.2), we.obtain

{V(oi-00o).q+b(Oi-0.o zn-b(Xi-Xo)n z< Iim Ab(a n)(x,y,C(x,y))=O.
f 0+o )Di

Choosing in this inequality n=z and n=H-z, after a

simples calculation one obtains

(0i- 0 0) + xA J(xj-x0 ) = 0,

from where one deduces 0.=.o and xi=Xo, for i=1,2, which proves

the uniqueness of the solution. *
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