		AFOS	SR-TR-8	2-0277		
	END					
	105-B-2 DTIC					
						•

AFOSR-TR- 82-0277

84

3000

A11

8

FILE COPY

"ON THE STEADY-STATE CONTINUOUS CASTING STEFAN PROBLEM WITH NON-LINEAR COOLING"

Вy

MICHEL CHIPOT and José-FRANCISCO RODRIGUES

uary 1982

ABSTRACT -A steady-state one phase Stefan problem corresponding to the solidification process of an ingot of pure metal by continuous casting with a non-linear lateral cooling is considered via the weak formulation introduced in [BKS] for the dam problem. Two existence results are obtained for a general non-linear flux and for a maximal monotone flux. Comparison results and the regularity of the free boundary are discussed. An uniqueness theorem is given for the monotone case.

CONTENTS

- 0. Introduction
- 1. Mathematical Formulation
- 2. Existence of a Weak Solution
- 3. The Case of a Maximal Monotone Cooling
- 4. Comparison Results
- 5. Regularity of the Free Boundary
- 6. Uniqueness in the Monotone Case

Approved for public release; distribution unlimited.

B

This research has been supported in part by the Air Force Office of Scientific Research under Contract -AFOSR 81-0198 and in part by the U. S. Army Research Office under contract #ARO-DAAG-29-79-C-0161.

O. INTRODUCTION

In this paper we study the one phase model of the solidification of a pure metal in continuous casting submitted to a non-linear lateral cooling.

In the liquid phase we assume that the metal is at the melting temperature, which is zero after a normalization. In the solid phase the temperature \odot satisfies the heat equation. The ingot is extracted with constant velocity b, and the liquid - - solid interface (the free boundary) is unknown but steady with respect to a fixed system of coordinates of $|R^3$, in which our problem will be studied. Assuming that the free boundary Φ is representable by a surface $z=\phi(x,y)$, the steady Stefan condition is

(0.1)
$$\Theta_z - \Theta_x \phi_x - \Theta_y \phi_y = \lambda b$$
, for $z = \phi(x, y)$

where λ is a positive constant representing the heat of melting.

In the lateral boundary one specifies a non-linear flux condition

$$(0.2) \qquad - \frac{\partial \Theta}{\partial n} = G(\Theta)$$

which expresses the law of cooling, and may be quite general. Namely, we shall consider a maximal monotone graph G, which may include a cooling process with climatization as in Chapter 1 of the book of Duvaut and Lions [DL] •

This model has been considered in a particular case by Rubinstein [Ru] and, with a linear flux condition of Newton type, by Brière [Br] and Rodrigues [R], via variational inequalities after a transformation of Baiocchi's type. However this approach doesn't work with a non linear cooling.

Since this problem has some similarities with the dam problem, we formulate it in section 1 using the method of Brézis, Kinderlehrer and Stampacchia [BKS]. In sections 2 and 3 we prove

2 -

the existence theorems, first using compactness arguments and next combining compacity and monotonicity tecniques for the maximal monotone case.

In section 4 we discuss comparison properties which show that when the extraction velocity b is small the ingot solidifies immediatly and there is no free boundary. For some type of cooling and for a high enough velocity b one can show the existence of a free boundary. In this case it is shown, in section 5, that the free boundary is an analytic surface and a weak solution is also a classic one, as in the linear case of [R].

To conclude this paper we give an uniqueness theorem for the monotone case in section 6, using the technique of Carrillo--Chipot [CC] •

1. MATHEMATICAL FORMULATION

Let Ω denote a cylindric domain in $|\mathbb{R}^3$, in the form $\Omega = \Gamma x] 0, H[$, where $\Gamma \subset |\mathbb{R}^2$ is a bounded domain with lipschitz boundary $\partial \Gamma$ representing a section of the ingot and H>O its height. We denote $\Gamma_i = \Gamma x \{i\}$, for i = 0, H, the bottom and the top of the ingot respectively, and by $\Gamma_1 = \partial \Gamma x] 0, H[$ its lateral boundary. We have $\partial \Omega = \Gamma_0 U \overline{\Gamma_1} U \Gamma_H$:

Considering \vec{z} the direction of extraction, we can formulate our problem in its classical form:

F	PROBLEM (C) : Find a couple (0, \$\phi), such that		GRALI
(1.1)	$\Theta \ge 0$ in Ω and $\Theta = 0$ for $0 \le z \le \phi(x, y) \le H$	DTIC Unani	
(1.2)	$\Delta \Theta = b \Theta_z$ for $0 \le \phi(x, y) \le z \le H$	By	ribution/
(1.3)	Θ=0 on Γ _o , Θ=h(x,y)>0 on Γ _H		llability Codes
(1.4)	$-\frac{\partial \Theta}{\partial n} = g(\Theta) on \Gamma_{1}$	Dist A	Special

(1.5)
$$\Theta_z - \Theta_x \phi_x - \Theta_y \phi_y \neq \lambda b$$
, if $z = \phi(x,y) > 0$

(1.5')
$$\bigcirc_{,} \ge \lambda b$$
, if $z=\phi(x,y)=0$.

In this formulation b and λ are positive constants, h is a given function, and g will be specified in the next two sections. The reader will note that the condition (1.5') is a degeneration of the Stefan condition (1.5) in the case when the free boundary Φ can touch the known boundary Γ_0 , where the melting condition $\Theta=0$ is assumed by (1.3).

Let us remark that by the maximum principle it must be $\Theta>0$ for $z>\phi(x,y)$. Denoting by χ^+ the characteristic function of the set $\Omega_+=\{\Theta>0\}$ and integrating formaly by parts, for every regular function ζ , such that $\zeta=0$ on $\Gamma_{\rm H}$ and $\zeta\geq0$ on $\Gamma_{\rm O}$, from Problem (C) one has

$$\begin{split} \int_{\Omega} (\nabla \Theta \cdot \nabla \zeta + b \Theta_{z} \zeta - \lambda b \chi^{+} \zeta_{z}) &= \int_{\Omega_{+}} (\nabla \Theta \cdot \nabla \zeta + b \Theta_{z} \zeta - \lambda b \zeta_{z}) \\ &= \int_{\Omega_{+}} (-\Delta \Theta + b \Theta_{z}) \zeta_{z} + \int_{\Gamma_{1}} \frac{\partial \Theta}{\partial n} \zeta + \lambda b \int_{\Phi} k \zeta_{z} \\ &= -\int_{\Gamma_{1}} g(\Theta) \zeta_{z} + \int_{\Gamma_{0}} k \zeta (\lambda b - \Theta_{z}) + \int_{\Phi} k \zeta (\Theta_{x} \phi_{x} + \Theta_{y} \phi_{y} - \Theta_{z} + \lambda b) \\ &\leq -\int_{\Gamma_{1}} g(\Theta) \zeta_{z}, \end{split}$$

where $\ell^{-2} = \phi_x^2 + \phi_y^2 + 1$. Therefore, following [BKS], we introduce the weak formulation of Problem (C) :

<u>PROBLEM (P)</u>: Find a couple $(\Theta, \chi) \in H^{1}(\Omega) \times L^{\infty}(\Omega)$, such that,

(1.6)
$$\Theta \ge 0$$
 a.e. in Ω , $\Theta = 0$ on Γ_0 and $\Theta = h$ on Γ_H ;
(1.7) $0 \le \chi \le 1$ a.e. in Ω and $\chi = 1$ where $\Theta > 0$;
(1.8) $\int_{\Omega} (\nabla \Theta \cdot \nabla \zeta + b \Theta_{\chi} \zeta - \lambda b_{\chi} \zeta_{\chi}) + \int_{\Gamma_1} g(\Theta) \zeta \le 0$, for every
 $\zeta \in H^1(\Omega)$, such that $\zeta \ge 0$ on Γ_0 and $\zeta = 0$ on Γ_H .

If we consider a more restrictiveclass of test functions one can introduce a more general formulation, which we call Problem (P'), if we replace (1.8) by

(1.9)
$$\int_{\Omega} (\nabla \Theta \cdot \nabla \zeta + b \Theta_{z} \zeta - \lambda b_{X} \zeta_{z}) + \int_{\Gamma_{1}} g(\Theta) \zeta = 0, \quad \forall \zeta \in H^{1}(\Omega) : \zeta = 0 \quad \text{on } \Gamma_{0} U \Gamma_{H}.$$

It is clear that every solution of Problem (P) verifies (1.9), but the Problem (P') has more solutions than Problem (P). In particular, if

PROBLEM (P_1) : Find \odot verifying (1.6) and

(1.10)
$$\int_{\Omega} (\nabla \Theta \cdot \nabla \zeta + b \Theta_{z} \zeta) + \int_{\Gamma_{1}} g(\Theta) \zeta = 0, \quad \forall \zeta \in H^{1}(\Omega); \quad \zeta = 0 \quad \text{on } \Gamma_{0} U \Gamma_{H}$$

has a solution $\Theta \ge 0$, by the maximum principle, one has $\Theta \ge 0$ in Ω and $(\Theta, 1)$ is a solution to Problem (P'), which may not satisfy (1.5')(see Proposition 4).

2. EXISTENCE OF A WEAK SOLUTION

In this section we assume the lateral cooling given by

- 5 -

(2.1)
$$-\frac{\partial\Theta}{\partial n}(\mathbf{X}) = g(\mathbf{X},\rho(\mathbf{X}),\Theta(\mathbf{X})), \mathbf{X} \in \Gamma_{1}$$

where $\rho \ge 0$ is a given function representing the cooling temperature, and

(2.2) $g(X,\rho,\theta)$ is a bounded Carathéodory function, i.e., is continuous in $\theta \in |R|$, a.e. $(X,\rho) \in \Gamma_{\gamma} \times |R_{+}$, measurable in (X,ρ) for all θ , and maps bounded sets of $\Gamma_{\gamma} \times |R_{+} \times |R|$ in bounded sets of |R|.

Since the cooling process is determined by ρ_{r} we shall assume that

(2.3)
$$g(X,\rho,\theta) \leq 0$$
, a.e. $(X,\rho,\theta) \in \Gamma_1 \times \mathbb{R}_1 \times \mathbb{R}_2$

(2.4) $g(X,\rho,\theta)=0$ for $|\theta| \ge \rho$, a.e. $X \in \Gamma_1$.

Consider a parameterized family of functions $\chi_{\epsilon} \in C^{\infty}(|R)$ such that

(2.5)
$$\chi_{\varepsilon}(t) = \begin{cases} 0 , \text{ for } t \leq 0 \\ 0 \leq \chi_{\varepsilon}(t) \leq 1 , \text{ for } 0 \leq t \leq \varepsilon \\ 1 , \text{ for } t \geq \varepsilon \end{cases}$$

and so it approaches the Heaviside function when $\varepsilon > 0$. Introduce now the following penalized problem, where for the sake of simplicity we denote $g(X, \rho(X), \Theta(X))$ by $g(\Theta)$:

 $\frac{PROBLEM(P_{\varepsilon})}{\Theta^{\varepsilon}=0 \text{ on } \Gamma_{0}, \Theta^{\varepsilon}=h \text{ on } \Gamma_{H},}$

(2.6)

(2.7)
$$\int_{\Omega} \left[\nabla \Theta^{\varepsilon} \cdot \nabla \zeta + b \Theta_{z}^{\varepsilon} \zeta - \lambda b \, \chi_{\varepsilon} (\Theta^{\varepsilon}) \zeta_{z} \right] + \int_{\Gamma_{1}} g(\Theta^{\varepsilon}) \zeta = 0, \quad \forall \zeta \in H^{1}(\Omega); \zeta = 0 \text{ on } \Gamma_{0} U \Gamma_{H}.$$

Assuming the functions h and ρ verify

(2.8) $0 < h(x,y) \le M$, a.e. $(x,y) \in \Gamma_{H}$,

(2.9) $0 \leq \rho(X) \leq M$, a.e. $X \in \Gamma_1$,

one can prove the following "a priori" estimate:

<u>LENTA 1</u> If Θ^{ϵ} is a solution to Problem (P_e) with assumptions (2.2-4) and (2.8-9), one has

(2.10)
$$0 \leq \Theta^{\varepsilon}(X) \leq M$$
, for all $X \in \overline{\Omega}$ and $0 < \varepsilon \leq M$.

Proof: Let
$$\zeta = [\Theta^{\varepsilon}]^{-1}$$
 in (2.7). One has

$$0 = \int_{\Omega} \{\nabla \Theta^{\varepsilon} \cdot \nabla [\Theta^{\varepsilon}]^{-} + b\Theta_{z}^{\varepsilon} [\Theta^{\varepsilon}]^{-} - \lambda b \chi_{\varepsilon} (\Theta^{\varepsilon}) [\Theta^{\varepsilon}]_{z}^{-} \} + \int_{\Gamma} g(\Theta^{\varepsilon}) [\Theta^{\varepsilon}]^{-}$$

$$\leq - \int_{\Omega} \{ |\nabla[\Theta^{\varepsilon}]^{-}|^{2} + b[\Theta^{\varepsilon}]_{z}^{-}[\Theta^{\varepsilon}]^{-} \} = - \int_{\Omega} |\nabla[\Theta^{\varepsilon}]^{-}|^{2}$$

from which it follows $[\Theta^{\varepsilon}]^{-}=0$ and $\Theta^{\varepsilon} \ge 0$.

From (2.4) (2.9) and (2.5), one has respectively $g(\Theta^{\varepsilon})[\Theta^{\varepsilon}-M]^{+}=0 \quad \text{and} \quad \chi_{\varepsilon}(\Theta^{\varepsilon})[\Theta^{\varepsilon}-M]_{z}^{+}=[\Theta^{\varepsilon}-M]_{z}^{+} \quad \text{for } 0 < \varepsilon \leq M.$ Then $\zeta = [\Theta^{\varepsilon}-M]^{+} \quad \text{in } (2.7) \quad \text{implies}$ $0 = \int_{\Omega} \{\nabla \Theta^{\varepsilon} \cdot \nabla [\Theta^{\varepsilon}-M]^{+} + b \; \Theta_{z}^{\varepsilon} [\Theta^{\varepsilon}-M]^{+} - \lambda b [\Theta^{\varepsilon}-M]_{z}^{+}\}$

$$\int_{\Omega} |\nabla [\Theta^{\varepsilon} - M]^{+}|^{2},$$

- 7-

and therefore $[\Theta^{\epsilon}-M]^+=0$, The lemma is proved.

We shall need the L^{∞} and the Hölder estimates due to Stampacchia [S] for the following eliptic problem with mixed boundary conditions:

(2.11) - $\Delta u + bu_z = f$ in Ω , $\frac{\partial u}{\partial n} = g$ on Γ_1 and u = h on $\Gamma_0 U \Gamma_H$.

LEMMA 2 [S] The unique solution of (2.11) verifies

$$(2.12) ||u||_{L^{\infty}(\Omega)} \leq c_{1}(||f||_{W^{-1},p(\Omega)} + ||g||_{L^{q}(\Gamma_{1})} + ||h||_{L^{\infty}(\Gamma_{0}U\Gamma_{H})})$$

 $(2.13) \qquad ||u|| \qquad c^{\circ,\alpha}(\overline{\Omega})^{\leq C_2} \qquad ||f|| \qquad w^{-1,p}(\Omega)^{+||g||} \qquad L^{q}(\Gamma_1) \qquad +||h|| \qquad c^{\circ,1}(\overline{\Gamma}_{o} \cup \overline{\Gamma}_{H})^{\circ}$

for all p>3 and q>2, and for some constants $C_1, C_2>0$ and $0<\alpha<1$ which are independent of f,g,h and u.

 $\underline{Prco6}$: See the results of §5 of [S] or a more explicit result extended to variational inequalities in Section 2 of [MS]

Now we can state an existence result for the penalized problem, from which we shall construct a sequence of functions converging to a solution of Problem (P).

PROPOSITION 1 Under assumptions of Lemma 1, and if

 $(2.14) h \in \mathbb{C}^{0,1}(\overline{\Gamma}_{H})$

then there exists a solution Θ^{ϵ} to Problem (P_e) for all $0 < \epsilon \le M$ satisfying the estimate

(2.15)
$$\| \Theta^{\varepsilon} \|_{H^{1}(\Omega)} + \| \Theta^{\varepsilon} \|_{C^{0,\alpha}(\overline{\Omega})} \leq C,$$

-8-

- 9 -

1

where the constants C>O $_{\odot}$ and O< $\alpha<1$ are independent of $\varepsilon +$

 $\frac{Proof}{C^{O}(\overline{\Omega})} : \text{ For } \tau \in B_{R}^{=} \{ \tau \in C^{O}(\overline{\Omega}) : ||\tau||_{C^{O}(\overline{\Omega})} \leq R \}, (R>0),$ define

 $\Theta = S_{\varepsilon}(\tau)$

as the unique solution of the following mixed linear problem

 $\Theta = 0 \quad \text{on} \quad \Gamma_{0} \quad , \quad \Theta = h \quad \text{on} \quad \Gamma_{H}$ $= \int_{\Omega} (\nabla \Theta \cdot \nabla \zeta + b \Theta_{z} \zeta) = \lambda b \int_{\Omega} \chi_{\varepsilon}(\tau) \zeta_{z} - \int_{\Gamma_{1}} g(\tau) \zeta_{z} \quad \forall \zeta \varepsilon H^{1}(\Omega) : \zeta = 0 \quad \text{on} \quad \Gamma_{0} U \Gamma_{H}$

Since, by definition, $0 \le \chi_{\varepsilon} \le 1$ and g is bounded independently of τ (for $|\tau(X)| \ge M \ge \rho(X)$ one has $g(X,\rho(X),\tau(X))=0$) by (2.4)) one can apply Stampacchia's estimate (2.13). Therefore, there exists C > 0 and $0 < \alpha < 1$, independent of τ and ε such that

 $\|\Theta\|_{C^{0,\alpha}(\overline{\Omega})} \leq C_{2}(\lambda b + \|g\|_{L^{\infty}} + \|h\|_{C^{0,1}}) \leq C$

and for $R \ge C$ one has $S_{c}(B_{R}) \subset B_{R}$.

From the compactness of the imbedding $C^{0,\alpha}(\overline{\Omega}) \hookrightarrow C^{0}(\overline{\Omega})$ one finds that S_{ε} is a continuous and compact mapping of B_{R} into itself. By the Schauder fixed point theorem there exists a function $\Theta^{\varepsilon} \in B_{R}$ satisfying $\Theta^{\varepsilon} = S_{\varepsilon}(\Theta^{\varepsilon})$, which is clearly a solution to Problem (P_c).

The estimate in $H^{1}(\Omega)$ is classical, since χ^{ε} and $g(\mathbb{C}^{\varepsilon})$ are bounded independently of ε .

THEOREM 1 Assuming (2.2,3,4) and (2.8,9,14) there exists a solution $(0,\chi) \in [H^{1}(\Omega) \cap C^{0,\alpha}(\overline{\Omega})] \times L^{\infty}(\Omega)$ to Problem (P).

<u>Proof</u> : By (2.15) one can consider a sequence of solutions Θ^{ε} of Problem (P_e), such that, when $\varepsilon \neq 0$

(2.16)
$$O^{\varepsilon} \rightarrow O$$
 in $H^{1}(\Omega)$ -weak

(2.17)
$$\Theta^{\varepsilon}(X) \rightarrow \Theta(X)$$
 uniformly in $X=(x,y,z) \in \overline{\Omega}$

(2.18)
$$\chi_{\varepsilon}(O^{\varepsilon}) \longrightarrow \chi \text{ in } L^{\infty}(\Omega) \text{-weak } *,$$

where Θ is some function belonging to $H^{1}(\Omega) \wedge C^{0,\alpha}(\overline{\Omega})$ satisfying (2.10) and $0 \le \chi \le 1$. Moreover in the open set $\{\Theta > 0\}$ one has $\chi_{\varepsilon}(\Theta^{\varepsilon}) \rightarrow 1$ and therefore $\chi = 1$ a.e. in $\{\Theta > 0\}$.

Let $\zeta \in H^{1}(\Omega)$, $\zeta \geq 0$ on Γ_{O} and $\zeta = 0$ on Γ_{H} .

By the Green's formula and since $\partial \Theta^{\epsilon}/\partial n \leq 0$ on Γ_{0} , one has

$$\int_{\Omega} \left[\nabla \Theta^{\varepsilon} \cdot \nabla \zeta + b \Theta_{z}^{\varepsilon} \zeta - \lambda b \chi_{\varepsilon} (\Theta^{\varepsilon}) \zeta_{z} \right] + \int_{\Gamma_{1}} g(\Theta^{\varepsilon}) \zeta = \int_{\Gamma_{0}} \frac{\partial \Theta^{\varepsilon}}{\partial n} \zeta \leq 0$$

and in the limit we obtain (1.8). The proof is complete.

3. THE CASE OF A MAXIMAL MONOTONE COOLING

In this section we consider the existence of a weak solution with a lateral cooling

 $(3.1) \qquad -\frac{\partial O}{\partial n} \in G(O) \quad \text{on} \quad \Gamma_1,$

where G denotes a maximal monotone graph , that is, G is a multivalued function which graph is a continuous monotone increasing curve in $[R^2$ (see [B]). We shall assume

(3.2)
$$G(0) \subset]-\infty, 0]$$

 $(3.3) \qquad \qquad [0,+\infty[\subset \text{Dom } (G) \exists \{x \in \mathbb{R} | G(x) \neq \emptyset\} \cdot$

The weak formulation of the corresponding problem takes now the following form:

We shall obtain a solution to Problem (P) as the limit of a sequence of solutions to Problem (P) with a non-linear cooling given by a function g satisfying :

(3.8) g is monotone increasing, lipschitz and such that g(0)<0.

<u>THEOREN 2</u> Assume (3.8) and let $h \in H^{1/2}(\Gamma_{H})$, h>0. Then Problem (P) has a solution.

<u>Proof</u>: The proof follows the lines of the one in theorem 1. by considering the penalized problem (P_{ε}) with g satisfying (3.8). The fixed point is now constructed in $L^{2}(\Omega)$ by means of the mapping

$$L^{2}(\Omega) \ni \tau \mapsto \xi = T_{F}(\tau) \in V.$$

where $V = \{v \in H^1(\Omega): v=0 \text{ on } \Gamma_0\}$ and ξ is the unique solution of the following problem

- 11 -

- 12 -

i)

$$\{ \xi \in V, \forall \xi = h \text{ on } \Gamma_{H} \\ \int_{\Omega} (\nabla \xi \cdot \nabla \zeta + b\xi_{Z}\zeta) + \int_{\Gamma_{z}} g(\xi)\zeta = \lambda b \int_{\Omega} \chi_{\varepsilon}(\tau)\zeta_{Z}, \forall \zeta \in V: \zeta = 0 \text{ on } \Gamma_{H} \cdot L \}$$

which is a coercive and (strictly) monotone problem in V by assumption (3.8) (see [L]). Denoting by \bar{h} some function in V, which trace on $\Gamma_{\rm H}$ is h, and letting $\zeta = \xi - \tilde{h}$ in (3.9) one easily finds

$$\frac{||\xi||_{H^1(\Omega)}}{||\xi||_{H^1(\Omega)}} \leq C = C(\tilde{h}),$$

where C is a constant independent of τ and $\epsilon \boldsymbol{\cdot}$

Since the imbedding $H^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is compact, the Schauder fixed point Theorem assures the existence of a solution \odot^{ε} to Problem (P_E). As in Lemma 1 one finds that $\odot^{\varepsilon} \ge 0$, since g is monotone increasing and $g(0) \le 0$, and therefore one has $g(\odot^{\varepsilon}) \cdot [\odot^{\varepsilon}]^{-} \le 0$.

The passage to the limit as $\varepsilon \downarrow 0$ is straightforward since $\Theta^{\varepsilon} \longrightarrow \Theta$ in $H^{1}(\Omega)$ -weak and g is a lipschitz function.

<u>REMARK 1</u> Since g is lipschitz, by Sobolev imbeddings one has $g(\Theta) \in H^{1/2}(\Gamma_1) \hookrightarrow L^4(\Gamma_1)$ (see [A, p. 218]) and therefore applying Lemma 2, it follows that

if h ϵ L $^{\infty}(\Gamma_{H})$, then Θ ϵ L $^{\infty}(\Omega)$; and

ii) if $h \in C^{0,1}(\overline{\Gamma}_{H})$, then $\Theta \in C^{0,\alpha}(\overline{\Omega})$, for some $0 < \alpha < 1$.

Since G is a maximal monotone operator one can introduce the Yosida regularization, defined by

$$g_{\delta} = \frac{1}{\delta} (I - J_{\delta})$$
, for $\delta > 0$,

where $J_{\delta} = (I + \delta G)^{-1}$ is the resolvent of G. Consider $\tau = J_{\delta}(0)$, that is $0 \in (I + \delta G)(\tau)$. From the monotonicity of $I + \delta G$ and using assumption (3.2) one finds $\tau \ge 0$. Therefore $g_{\delta}(0) = -J_{\delta}(0)/\delta \le 0$, which means that, for each $\delta > 0$, the Yosida regularization g_{δ} satisfies the condition (3.8) (see [B]). So we may apply Theorem 2 to conclude the existence of a solution $(\Theta^{\delta}, \chi^{\delta}) \in H^{1}(\Omega) \times L^{\infty}(\Omega)$ to Problem (P) with lateral cooling given by g_{δ} . We shall obtain a solution to Problem (\tilde{P}) by considering a subsequence $\delta + 0$.

<u>THEOREM 3</u> The Problem (\tilde{P}) with a maximal monotone graph G satisfying (3.2) and (3.3), and with $h \in H^{1/2}(\Gamma_H) \cap L^{\infty}(\Gamma_H)$ has a solution (Θ, χ, g) $\in [H^1(\Omega) \cap L^{\infty}(\Omega)] \times L^{\infty}(\Omega) \times L^{\infty}(\Gamma_1)$. Moreover, if $h \in C^{0,1}(\overline{\Gamma}_H)$ one has $\Theta \in C^{0,\alpha}(\overline{\Omega})$, for some $0 < \alpha < 1$.

<u>Proof</u>: Consider the (unique) solution Θ^0 of the following mixed problem.

where $g^{0}(t) = \operatorname{Proj}_{G(t)} 0$ is the smallest (in norm) number of G(t). Since $g^{0}(0) \leq 0$ it is easy to show that $\Theta^{0} \geq 0$. Since $h \in L^{\infty}(\Gamma_{H})$ one has $\Theta^{0} \in L^{\infty}(\Omega)$ by (2.12), and we assume that $\Theta^{0} \leq M^{0} = M^{0}(h, g^{0}(0))$.

Then, for every solution Θ^{δ} to Problem (P) with $g_{\delta}^{},$ we have

$$(3.11) \qquad 0 \leq \Theta^{\delta} \leq \Theta^{\circ} \leq M^{\circ}.$$

Indeed (3.11) follows by a comparison argument: take $\zeta = \left[\Theta^{\delta} - \Theta^{\circ}\right]^{+}$ in (1-8) $_{\delta}$ and in (3.10); one has - 13 -

$$(3.12) \qquad \int_{\Omega} |\nabla [\Theta^{\delta} - \Theta^{\circ}]^{+} |^{2} \lambda b \int_{\Omega} \chi^{\delta} [\Theta^{\delta} - \Theta^{\circ}]_{z}^{+} \int_{\Gamma_{1}} [g_{\delta}(\Theta^{\delta}) - g^{\circ}(O_{s})] [\Theta^{\delta} - \Theta^{\circ}]^{+} \leq 0;$$

Since $0^{\circ} \ge 0$ and $\chi^{\delta} = 1$ in $\{0^{\delta} \ge 0\}$, the middle term in (3.12) vanishes; using $g_{\delta}(0) \le 0$, together with

$$|g_{\delta}(t)| \leq |g^{0}(t)| \quad (se \in [B], p.2\delta)$$

in order to deduce the chain

$$g_{\delta}(\Theta^{\delta}) \geq g_{\delta}(\Theta^{O}) \geq g_{\delta}(0) \geq g^{O}(0),$$

one finds that the last term in (3.12) is non-negative, which proves (3.11).

Using again (3.13), by (3.11) one has

$$(3.14) \qquad |g_{\delta}(O^{\delta})| \leq |g^{O}(O^{\delta})| \leq \max \left[|g^{O}(O)|, |g^{O}(M^{O})|\right] \equiv \mathfrak{L},$$

from where we easily conclude

$$|| \Theta^{\delta} ||_{\mathfrak{H}^{1}(\Omega)} \leq \mathfrak{E}(= \text{const.independ. of } \delta).$$

(3.15)
$$O^{\delta} \longrightarrow \Theta$$
 in $H^{1}(\Omega)$ -weak, and $O \leq \Theta \leq M^{O}$

(3.16)
$$\chi^{\delta} \longrightarrow \chi$$
 in $L^{\infty}(\Omega)$ -weak *, $0 \le \chi \le 1$

(3.17)
$$g_{\delta}(\Theta^{\delta}) \longrightarrow g \text{ in } L^{\infty}(\Gamma_{1}) \text{ -weak *, with } ||g||_{L^{\infty}} \leq \ell$$
.

Since one can also consider $0^{\delta} \rightarrow 0$ uniformly in each compact subset K_C Ω , one has $\chi=1$ in the open set {0>0}.

Using the compactness of the trace mapping, one can consider $\Theta^{\delta} \rightarrow \Theta$ in $L^{2}(\Gamma_{1})$ -strong and from (3.3) $J_{\delta}(\Theta^{\delta}) \rightarrow \Theta$ in $L^{2}(\Gamma_{1})$. Since $g_{\delta}(\Theta^{\delta}) \in G(J_{\delta}(\Theta^{\delta}))$, it follows, by a classical argument

([B],p.27), that $g \in G(\Omega)$.

If we assume h $\in C^{0,1}(\overline{\Gamma}_{H})$, by Lemma 2 one easily concludes that $\Theta \in C^{0,\alpha}(\overline{\Omega})$ for some $0 < \alpha < 1$. The proof is complete.

<u>REMARK 2</u> Assuming that there exists some $v \ge 0$ such that $0 \in G(v)$, one can find a more simple estimate in $L^{\infty}(\Omega)$ for every solution Θ to Problem (\tilde{P}) :

$$\Theta \leq M = \max \left(\nu, ||h||_{L^{\infty}(\Gamma_{\mu})} \right) .$$

Indeed, it is sufficient to consider $\zeta = [\bigcirc -M]^+$ in (3.6) and to recall that the monotonicity of G implies g>0 if $\bigcirc >M$.

<u>REMARK 3</u> The results of this section can be easily extended to the case of a lateral boundary condition

$$-\frac{\partial O}{\partial n}(X) \in G(z, O(X)), \text{ for } X=(x, y, z) \in \Gamma_{1},$$

where , for each $z \in]0,H[$, $G(z, \cdot)$ denotes a maximal monotone graph satisfying (3.2),(3.3) and l in (3.14) being uniformly bounded in z.

An interesting case could be a lateral boundary submitted to N differents cooling zones, that is, when, for $i=1,\ldots,N$,

 $G(z, \cdot) = G_{i}(\cdot), \quad 0 = z_{0} < \ldots < z_{i-1} < z < z_{i} < \ldots < z_{N} = H.$

4. COMPARISON RESULTS

If the cooling is given by a monotone function one can adapt the technique of [BKS] to prove the

- 15 -

 $\begin{array}{rcl} \underline{PROPOSITION \ 2} & \text{Let} & \Theta^{\xi} & (\text{resp. } \delta^{\epsilon} \) & \text{a solution to} \\ & & Problem \ (P_{\epsilon}) & \text{and corresponding to} \\ & & g & \text{and} & h \ (\text{resp.} \ \widehat{g} & \text{and} & \widehat{h}), & \text{where} & g & \text{and} & \widehat{g} & \text{are monotone functions} \\ & & \text{satisfying(3.8)} & . & \text{Then if} & \widehat{h} \geq h & \text{and} & \widehat{g} \leq g & \text{it follows that} & \widehat{\theta}^{\epsilon} \geq 0^{\epsilon} \\ \end{array}$

Proof :

Set $f_{\delta}(t) = [1-\delta/t]^+$, $t \in |R|$ and $\delta > 0$.

From (2.7) and denoting $\eta = 0^{\varepsilon} - \overline{0}^{\varepsilon}$, one has

$$\int_{\Omega} \nabla \eta \cdot \nabla \zeta = b \int_{\Omega} \{ \eta + \lambda [\chi_{\varepsilon}(\bar{\vartheta}^{\varepsilon}) - \chi_{\varepsilon}(\bar{\vartheta}^{\varepsilon})] \} \zeta_{z} - \int_{\Gamma_{1}} [g(\bar{\vartheta}^{\varepsilon}) - \tilde{g}(\bar{\vartheta}^{\varepsilon})] \zeta_{z}$$

for every $\zeta \in H^1(\Omega), \zeta=0$ on $\Gamma_0 U \Gamma_H$. In particular, for $\zeta=f_{\delta}(\eta)$, which is different from zero if $\Theta^{\varepsilon} \ge \overline{O}^{\varepsilon}$ where $g(\Theta^{\varepsilon}) \ge g(\overline{O}^{\varepsilon}) \ge \overline{g}(\overline{O}^{\varepsilon})$, it follows

(4.1)
$$\left|\int_{\Omega} \nabla \eta \cdot \nabla f_{\delta}(\eta)\right| \leq b L_{\varepsilon} \int_{\Omega} |\eta| \cdot |[f_{\delta}(\eta)]_{z}|,$$

being L_c the Lipschiz constant of t \mapsto t+ λ χ_{c} (t).

As in [BKS], (4.1) implies, for any $\delta > 0$,

 $\int_{\Omega} |\log (1 + \frac{[n-\delta]^+}{\delta})|^2 \leq C(=\text{const.independ.of } \delta)$

from which it follows $\Theta^{E} - \overline{\Theta}^{E} = \eta \leq 0$.

<u>REMARK 4</u>. This argument also proves the uniqueness of the solution of the Problem (P_e) when g is monotone. Of course if $\Theta(\text{resp},\bar{0})$ is a solution of (P) which is the limit of the subse - quence $\Theta^{\epsilon'}(\text{resp},\bar{0}^{\epsilon'})$ the above proposition implies that $\bar{0} \ge 0$.

Next we shall prove comparison results with respect

ļ I

to the extraction velocity b.

<u>PROPOSITION 3</u> Assume that there exists constants µ,M such that

(4.2) $0 < \mu \le h(x,y) \le M$, a.a.(x,y) $\in \Gamma_{\mu}$.

and that the function g verifies (3.8) with

(4.3) {t : g(t)=0} $\subset [M, +\infty[,$

or else that g verifies (2.2,3,4,9). Then if $b \le \frac{1}{H} \log(1 + \frac{\mu}{\lambda})$ a solution Θ to Problem (P₁) is also a solution to Problem (P) with $\chi=1$.

<u>Proof</u>: If g satisfies (3.8), then the Problem (P_1) has a unique solution (let $\chi_{\varepsilon} \equiv 0$ in (3.9)). Moreover by (4.3) one has $g(\Theta) \leq 0$ (see Lemma 1).

Under assumptions (2.2,3,4,9) the existence of Θ may be shown essentially as in Proposition 1, being also $g(\Theta) \le 0$, by hypothesis.

Consider now the function $\Theta_{\mu}(z) = \mu(e^{bz} - 1)(e^{bH} - 1)^{-1}$. Taking $\zeta = (\Theta_{\mu} - \Theta)^{+}$ in (1.10) and since $g(\Theta) \le 0$ in both cases, one easily finds that $\Theta \ge \Theta_{\mu}$. Therefore, if follows

$$\frac{\partial \Theta}{\partial n} \leq \frac{\partial \Theta_{\mu}}{\partial n} = -\mu b (e^{bH} - 1)^{-1} \text{ on } \Gamma_{0}.$$

Using the Green's formula with a smooth function ζ such that $\zeta \ge 0$ on Γ_n and $\zeta = 0$ on Γ_H , one has

$$\int_{\Omega} (\nabla \Theta \cdot \nabla \zeta + b \Theta_{z} \zeta - \lambda b \zeta_{z}) + \int_{\Gamma_{1}} g(\Theta) \zeta = \int_{\Gamma_{0}} (\frac{\partial \Theta}{\partial n} + \lambda b) \zeta \leq 0$$

- 17 -

for $\lambda b \le \mu b (e^{bH} - 1)^{-1}$. This means that, for all $bH \le \log(1 + \mu/\lambda)$, (0,1) is also a solution to Problem (P).

This proposition suggests that, for small velocities b, the whole region Ω is occupied by solid metal, since if the Problem (P) admits only one solution Θ , one has $\Theta>0$ in Ω for $0 < b < \frac{1}{H} \log(1+\mu/\lambda)$. Conversely the next proposition suggests that for big velocities the free boundary exists, since we will show that the volume of the set $\{\Theta>0\}$ vanishes when $b\uparrow\infty$.

PROPOSITION 4. Under assumptions of the Theorem 1 or Theorem 3

and denoting by $|\Omega_+|$ the Lebesque measure of the set $\Omega_+=\{X\mid \Theta(X)>0\}$, one has

$$|\Omega_+| \leq \frac{C}{\lambda b},$$

where C is a positive constant independent of λ and b. Moreover, for b big enough, one has $\chi \neq 1$.

Proof. Let ζ =H-z in (1.8) and in (3.6). One has

$$(4.5) - \int_{\Omega} \mathfrak{O}_{z} + b \int_{\Omega} \mathfrak{O}_{z} (H-z) + \lambda b \int_{\Omega} \chi + \int_{\Gamma_{1}} g(H-z) \leq 0,$$

where g=g(0) and $g \in G(0)$, respectively. In the first case, g is a bounded function and from $0 \le 0 \le M$ (see Theorem 1 and Lemma 1), we may assume $-\ell_1 \le g \le 0$, with ℓ_1 independent of b and λ . In the second one, by (3.17) and (3.14) we have $||g||_{\infty} \le \ell$ and ℓ is also independent of b and λ .

Denoting L= max (l, l_1) from (4.5) it follows that

$$\lambda b \int_{\Omega} x \leq \int_{\Gamma_{H}} h + L \int_{\Gamma_{I}} (H-z),$$

since one has

$$\int_{\Omega} \Theta_{z} = \int_{\Gamma_{H}} h \text{ and } \int_{\Omega} \Theta_{z}(H-z) = \int_{\Omega} \Theta \ge 0 .$$

Recalling that $0 \le \chi \le 1$ and $\chi = 1$ in Ω_+ , one has

$$|\Omega_{+}| \leq \int_{\Omega} \chi \leq |\Gamma| (M+LH^{2}/2) /\lambda b,$$

which completes the proof of the proposition .

Now we assume the existence of d, 0<d<H, such that (4.6) $g(X,\rho,\theta) = 0$ for 0<z<d, $\Psi(X,\rho,\theta) \in \Gamma_T x | R_+ x | R_+$

or, for the monotone case (see Remark 3),

(4.7) $G(z,.) \equiv 0$ for 0 < z < d < H.

<u>THEOREM 4</u>. Let (Θ, χ) (resp. (Θ, χ, g)) a solution to Problem (P) (resp. (\tilde{P})) under assumptions of Theorem 1 with (4.6) (resp. Theorem 3 with (4.7)). Then there exists $\delta, 0<\delta< d$, such that

(4.8) $\Theta(x,y,z) \leq \lambda b[z-\delta]^+, \quad \forall (x,y,z) \in \overline{\Omega}$

(4.9) Θ=χ≈0 for O<z<δ,

for all $b>M/\lambda d$, where $M \ge || \odot ||_{\infty}$ is a constant independent of L b (see (2.10) and (3.15)).

The proof of this theorem uses the following lemma.

- 19 -

LEMA 3. Under assumptions of Theorem 4, one has

(4.10)
$$\int_{Z_{\delta}} \chi(\lambda b \chi - \Theta_{z}) \leq \int_{Z_{\delta}} (b\Theta + \lambda b \chi - \Theta_{z}) \leq 0$$

for $0 < \delta \le d$ and $Z_{\delta} = \{(x, y, z) \in \Omega \mid 0 < z < \delta\}$.

<u>Proof</u>: Let $\zeta = [\delta - z]^+$ in (1.8) or in (3.6). One has

$$\int_{Z_{\delta}} \left[-\Theta_{z} + b\Theta_{z} (\delta - z) + \lambda b_{\chi} \right] \leq 0,$$

because (4.6) or (4.7) imply $g[\delta-z]^+=0$. Since

$$\int_{Z_{\delta}} \Theta_{z}(\delta - z) = \int_{Z_{\delta}} \Theta \ge 0 \text{ and } \Theta \le \chi \le 1$$

it follows

$$\int_{Z_{\delta}} \chi(\lambda b \chi - \Theta_{z}) \leq \int_{Z_{\delta}} (\lambda b \chi - \Theta_{z}) \leq \int_{Z_{\delta}} (b \Theta + \lambda b \chi - \Theta_{z}) \leq 0.$$

<u>PROOF OF THEOREM 4.</u>; Consider $\mu=\mu(z)=\lambda b [z-\delta]^+$ with δ fixed such that $0<\delta\leq d-M/\lambda b$. The function $\zeta=[\Theta-\mu]^+$ vanishes on z=0 and for $z\geq d$. Therefore $g[\Theta-\mu]^+=0$ and from (1.8) or from (3.6), one has

$$\int_{\Omega} \nabla \Theta \cdot \nabla \left[\Theta - \mu\right]^{+} + b \int_{\Omega} \Theta_{z} \left[\Theta - \mu\right]^{+} - \lambda b \int_{\Omega} \left[X \left[\Theta - \mu\right]_{z}^{+} \le 0$$

or

$$\int_{Z_{\delta}} (|\nabla \Theta|^{2} - \lambda b_{\chi} \Theta_{z}) + \int \{\nabla \Theta \cdot \nabla [\Theta - \mu]^{+} - \lambda b [\Theta - \mu]^{+}_{z} \} + b \int_{\Omega} \Theta_{z} [\Theta - \mu]^{+} \leq 0$$

$$(\Omega \setminus Z_{\delta}) \cap \{\Theta > 0\}$$

Adding the quantity

$$\lambda b \int_{Z_{\delta}} \chi(\lambda b \chi - \Theta_{z}) - b \int_{\Omega \setminus Z_{\delta}} \lambda b [\Theta - \mu]^{+}$$

which is non-positive by Lemma 3, one obtains

 $\int_{Z_{\delta}} \{\Theta_{\mathbf{x}}^{2} + \Theta_{\mathbf{y}}^{2} + (\Theta_{\mathbf{z}}^{-\lambda \mathbf{b}_{\chi}})^{2}\} + \int_{\Omega \setminus Z_{\delta}} |\nabla[\Theta - \mu]^{+}|^{2} + b \int_{\Omega} (\Theta - \mu)_{\mathbf{z}} [\Theta - \mu]^{+} \leq 0.$

Since the last term is zero, if follows that $\Theta \le \mu$ in $\Omega \setminus Z_{\delta} = \{z \ge \delta\}$ and $\Theta_x = \Theta_y = 0$, $\Theta_z = \lambda b \chi$ in $Z_{\delta} = \{z < \delta\}$. Since $\Theta = 0$ for z = 0 and $z = \delta$, one has $\Theta = 0$ for $z \le \delta$ and consequently also $\chi = 0$ for $z \le \delta$.

5. REGULARITY OF THE FREE BOUNDARY

The goal of Theorem 4 is to provide sufficient conditions in order to assume the global existence of a free boundary. In this case we shall prove that the free boundary is an analytic surface.

We begin with the following

<u>PROPOSITION</u> 5. A solution (Θ, χ) (resp. (Θ, χ, g)) to Problem (P) (resp. (\tilde{P})) satisfies

(5.1) $-\Delta\Theta + b\Theta_z + \lambda b \chi_z = 0$ in $\mathcal{B}'(\Omega)$,

 $(5.2) \qquad \chi_z \ge 0 \quad \text{in } \Omega$

- 21 -

- 22 -

Proof: The equation (5.1) follows immediatly by taking
$$\zeta \in \mathcal{S}(\Omega)$$
 in (1.8) or in (3.6)

Choosing as a test function in (1.8) or in

(3.6) $\zeta = \min(0, \epsilon \eta)$, where $\epsilon > 0$ and $\eta \epsilon \mathcal{D}(\Omega), \eta > 0$ one has

$$I = \int_{\Omega} \nabla \Theta \cdot \nabla \min (\Theta, \varepsilon n) + b \int_{\Omega} \Theta_{z} \min (\Theta, \varepsilon n) - \lambda b \int_{\Omega} [\min (\Theta, \varepsilon n)]_{z} \leq 0$$

since $\chi=1$ in {0>0}. Since min ($\Theta, \varepsilon n$)=0 on $\partial \Omega$, the last integral is zero and it follows

 $I = \int |\nabla \Theta|^{2} + \varepsilon \int \nabla \Theta \cdot \nabla \eta + b \int \{\varepsilon \eta \Theta_{z} + \Theta_{z} \ [\min (\Theta, \varepsilon \eta) - \varepsilon \eta] \}$ $\{\Theta \le \varepsilon \eta\} \quad \{\Theta > \varepsilon \eta\}$

 $\geq \varepsilon \int \nabla \Theta \cdot \nabla \eta + \varepsilon b \int_{\Omega}^{\Theta} z^{\eta} - b \int_{\Omega}^{\Theta} z [\varepsilon \eta - \Theta]^{+} ,$ $\{\Theta > \varepsilon \eta \}$

from which one concludes

$$\int_{\Omega} X_{\{\Theta > \varepsilon n\}} \nabla \Theta \cdot \nabla n + b \int_{\Omega} \Theta_{z} n \leq b \int_{\Omega} \Theta_{z} \left[n - \frac{\Theta}{\varepsilon} \right]^{+} .$$

Passing to the limit $\varepsilon v0$, one obtains

 $\int_{\Omega} (\nabla \Theta \cdot \nabla \eta + b \Theta_z \eta) \leq 0, \quad \forall \eta \in \mathcal{D}(\Omega) : \eta \geq 0$

and using (5.1), one deduces (5.2).

From (5.1) it follows that the function Θ is locally

Hölder continuous. Therefore the set

$$(5.3) \qquad \Omega_{\perp} \equiv \{X \in \Omega \mid \Theta(X) > 0\}$$

is an open set. Since $\boldsymbol{\chi}$ is monotonous increasing in the z-coordinate one can introduce

(5.4)
$$\phi(x,y) = \inf \{z : \Theta(x,y,z) > 0, (x,y,z) \in \Omega\}$$

where ϕ is an upper semi-continuous function, by the continuity of 0. Then we can state.

<u>THEOREM 5.</u> For any solution of Problem (P) or (\tilde{P}) one has

(5.5)
$$\Omega_{\perp} \equiv \{ \Theta > 0 \} = \{ X \in \Omega : z > \phi(x, y) \}$$

where φ is an upper semi-continuous function given by (5.4)

<u>COROLLARY 1.</u> Under conditions of Theorem 4, for all $b>M/\lambda d$, one has

H > $\phi(x,y) \ge d-M/\lambda d$ > 0, for all $(x,y) \in \Gamma$, which, in particular, assures the existence of a free boundary.

Consider now the function

(5.6) $u(x,y,z) = \int_0^z \Theta(x,y,t) dt$, for $(x,y,z) \in \overline{\Omega}$,

which is a Baiocchi type transformation (see [BC] for instance).

- 23 -

<u>THEOREM</u> 6. Let (Θ, χ) (resp. (Θ, χ, g)) be a solution to Problem (P) (resp. (\tilde{P})) under the assumptions of Theorem 4. Then the function u defined by (5.6) satisfies the following variational inequality in Ω

(5.7) $u \ge 0$, $(-\Delta u + bu_{\tau} + \lambda b) \ge 0$, $u \cdot (-\Delta u + bu_{\tau} + \lambda b) = 0$,

and χ is a characteristic function, being

(5.8) $\chi = \chi(\Theta) = \chi(u)$ a.e. in Ω

where $\chi(\mathbf{v})$ denotes the characteristic function of the set $\{\mathbf{v}>0\}$.

<u>Proof</u>: From definition (5.6) and recalling $\Theta \ge 0$ it is obvious that $u \ge 0$. Since $\Theta = u_7$ and Θ satisfies (5.1) one has

 $(-\Delta u + bu_{2} + \lambda b\chi)_{2} = -\Delta \Theta + b\Theta_{2} + \lambda b\lambda_{2} = 0$

which, together with (4.9) and $0 \le \chi \le 1$, imply

(5.9) $0 = -\Delta u + b u_z + \lambda b \chi \leq -\Delta u + b u_z + \lambda b.$

Recalling (5.5) it is clear that

 $(5.10) \qquad \{ \Theta > 0 \} = \{ u > 0 \}$

from which one deduces $\chi=1$ if u>0, and the third condition of (5.7) follows by (5.9).

From the classical regularity to solutions of variational inequalities one has

(5.11) $u \in W_{loc}^{2,\infty}(\Omega)$ (see [KS], for instance) and (5.8) follows easily from (5.9) and (5.10).

1

<u>REMARK 5</u> If one considers a linear flux

 $(5.12) \quad g(X,\rho(X),\theta(X)) = \alpha(Z) \quad \left[\theta(X)-\rho(X)\right]$

with $\rho \ge 0$ and $\alpha(z)=0$ for $0 \le z \le d$ and $\alpha(z)=\alpha=const.>0$ for $d \le z \le H$, then we have that u is the unique solution of the following variational inequality with mixed boundary conditions (see [Br] and [R]):

 $u \in |K = \{v \in H^{1}(\Omega) | v \ge 0 \text{ in } \Omega, v = 0 \text{ on } \Gamma_{0} \}$ $\int_{\Omega} \nabla u \cdot \nabla (v - u) + b \int_{\Omega} u_{z}(v - u) + \alpha \int_{\Gamma_{1}} u(v - u) \ge \int_{\Gamma_{H}} h(v - u) - \lambda b \int_{\Omega} (v - u) + \alpha \int_{\Gamma_{1}} \tilde{\rho}(v - u),$ $\forall v \in |K,$

where $\tilde{\rho}(z) = \int_{d}^{z} \rho(t) dt$ for $z \ge d$.

In particular, this implies the uniqueness of the solution of Problem (P) for a linear cooling given by (5.12).

The transformation (5.6) and its consequence (5.8) allow us to include the study of the free boundary

 $\Phi = \Omega \cap \partial \Omega_+$

in the known results of Caffarelli [C] Kinderlehrer and Nirenberg [KN]. In order to apply these results we must show that Φ has not singular points. This may be done by using a technique due to Alt [Al] for the dam problem.

<u>LEMMA 4.</u> Let $X_0 \in \Phi$ and $B_r(X_0) \subset \Omega$. Then there is a cone $\Lambda_r c\{X \in |\mathbb{R}^3| z < 0\}$. such that

(5.13) $\frac{\partial u}{\partial n}(X) = \nabla u(X) \cdot n \le 0$ for $X \in B_{r/2}(X_0)$, whenever $n \in \Lambda_r \cap S^2$.

- 25 -

<u>Proof</u>: Recalling (5.11), and that $u_z = 0 \ge 0$ in Ω , the proof of this lemma is a simple adaptation of Lemma 6.9 of [KS], page 255, and therefore we omit it.

<u>THEOREN 7.</u> Let $(0,\chi)$ (resp. $(0,\chi,g)$) be a solution to Problem (P) (resp. (\tilde{P})) under conditions of Theorem 4. Then the free boundary ϕ is an analytic surface given by

Φ: z =φ(x,y) for (x,y) ε Γ,

and Θ is also a classical solution of Problem (C).

<u>Proof</u>: By (5.13) the function ϕ defined by (5.4) is a lipschitz function in Γ and we can apply Theorem 3 of [C] to conclude that (5.14) ϕ is C¹ and $u \in C^2(\Omega_+ U \Phi)$. Therefore from equation (5.1) and Green's formula one finds that condition (1.5) is verified in every point of the free boundary $z=\phi(x,y)$, for all $(x,y)\in\Gamma$, by Corollary 1.

To conclude that Φ is an analytic surface it is sufficient to apply Theorem 1 of [KN], using (5.14) and recalling that the equation satisfied by u in Ω_{\perp} has constant coefficients.

6. UNICITY IN THE MONOTONE CASE

In Remark 5 we have already stated the uniquenessof the solution of Problem (P) with a particular linear cooling.

Adapting to our problem the technique of Carrillo and Chipot ([CC]) we shall prove an uniqueness result for the maximal monotone case assuming that χ is a characteristic function, that is, assuming

 $(6.1) \qquad \chi = \chi(\Theta),$

to which we have already stated sufficient conditions in Theorems

- 26 -

- 27 -

4 and 6.

Denote by (Θ_i, χ_i, g_i) , with $\chi_i = \chi(\Theta_i)$ and $g_i \in G(\Theta_i)$, for i=1,2, two solutions of the Problem (\tilde{P}) and set

$$\Theta_0 = \min(\Theta_1, \Theta_2), \chi_0 = \min(\chi_1, \chi_2), \phi_0 = \sup(\phi_1, \phi_2).$$

Proof: Choosing the test functions
$$\pm \zeta = \pm \min(\Theta_i - \Theta_0, \epsilon_n)$$
, $\epsilon > 0$, from (3.6) one obtains for $i \neq j$ (i, j=1,2)

$$\int_{\Omega} \{\nabla(\Theta_{i} - \Theta_{j}) \cdot \nabla \zeta + b(\Theta_{i} - \Theta_{j})_{z} \zeta - \lambda b (\chi_{i} - \chi_{j}) \zeta_{z}\} + \int_{\Gamma_{1}} (g_{i} - g_{j}) \zeta = 0.$$

By the monotonicity of G, one has

$$\int_{\Gamma_1} (g_i - g_j) \min (\Theta_i - \Theta_0, \varepsilon_n) \ge 0$$

since it is sufficient to integrate in $\{\Theta_i > \Theta_o\}$ where $\Theta_i = \Theta_o$.

Then it follows

0

$$\int_{a} \{\nabla(\Theta_{i} - \Theta_{o}) \cdot \nabla \min(\Theta_{i} - \Theta_{o}, \varepsilon_{n}) + b(\Theta_{i} - \Theta_{o}) z^{\min}(\Theta_{i} - \Theta_{o}, \varepsilon_{n})\}$$
$$- \lambda b(\chi_{i} - \chi_{o}) [\min(\Theta_{i} - \Theta_{o}, \varepsilon_{n})]_{z}\} \leq 0$$
$$r, using \min(u, v) = v - [v - u]^{+},$$

$$\int \nabla (\Theta_{i} - \Theta_{o}) \cdot \nabla n + b \int_{\Omega} (\Theta_{i} - \Theta_{o})_{z} n + \lambda b(\chi_{i} - \chi_{o}) n_{z}$$

$$\{\Theta_{i} - \Theta_{o} > \varepsilon n\}$$

$$\leq b \int_{\Omega} \{\Theta_{i} - \Theta_{o}\}_{z} \left[n - \frac{\Theta_{i} - \Theta_{o}}{\varepsilon} \right]^{+} - \lambda(\chi_{i} - \chi_{o}) \left[n - \frac{\Theta_{i} - \Theta_{o}}{\varepsilon} \right]_{z}^{+} \} .$$

Since the $\boldsymbol{\chi}_i^{}$ are characteristic functions, integrating in z, one has

$$-\int_{\Omega} (x_{i} - x_{o}) \left[n - \frac{\Theta_{i} - \Theta_{o}}{\varepsilon} \right]_{z}^{+} = -\int \left[n - \frac{\Theta_{i} - \Theta_{o}}{\varepsilon} \right]_{z}^{+} \leq \int_{D_{i}} \left[n - \frac{\Theta_{i}}{\varepsilon} \right]^{+} (x, y, \phi_{i}) \leq \int_{D_{i}} n(x, y, \phi_{i}) dy_{i}$$

and (6.2) follows by passing to the limite $\epsilon \ensuremath{\triangleright 0}$ in

$$\int \nabla(\Theta_{i} - \Theta_{o}) \cdot \nabla n + b \int_{\Omega} [(\Theta_{i} - \Theta_{o})_{z} n - \lambda(x_{i} - x_{o}) n_{z}] \leq$$

$$\{\Theta_{i} - \Theta_{o} > \varepsilon n\}$$

$$\leq b \int_{\Omega} (\Theta_{i} - \Theta_{o})_{z} \left[n - \frac{\Theta_{i} - \Theta_{o}}{\varepsilon} \right]^{+} + \lambda b \int_{D_{i}} n(x, y, \phi_{i}).$$

<u>THEOREM 8.</u> Assuming (6.1) , the Problem (\tilde{P}) has at most one solution.

<u>Proof</u> : For $\epsilon > 0$, consider a smooth function α_{ϵ} , such that, $0 \le \alpha_{\epsilon} \le 1$, and

$$\alpha_{\varepsilon} = 1$$
 in $A_{o} = \{\Theta_{o} > 0\}$ UF₁ and $\alpha_{\varepsilon}(X) = 0$ if $d(X, A_{o}) > \varepsilon$.
Since $1 - \alpha_{\varepsilon} = 0$ on $\{\Theta_{o} > 0\}$, for all $\eta \in H^{1}(\Omega)$, one has

$$\int_{\Omega} \{ \nabla \Theta_{\mathbf{0}} \cdot \nabla (1 - \alpha_{\varepsilon}) \mathbf{n} + \mathbf{b} \Theta_{\mathbf{0}z} (1 - \alpha_{\varepsilon}) \mathbf{n} - \lambda \mathbf{b} \chi_{\mathbf{0}} \Big[(1 - \alpha_{\varepsilon}) \mathbf{n} \Big]_{z} \} = 0.$$

- 28 -

For
$$\eta \in H^{1}(\Omega) \cap C^{0}(\overline{\Omega}), \eta \geq 0, \zeta = (1-\alpha_{\varepsilon})\eta$$
 is a test function in (3.6), and it follows (since $1-\alpha_{\varepsilon}=0$ on Γ_{1})

$$\int_{\Omega} \{\nabla(\Theta_{i}-\Theta_{o}),\nabla(1-\alpha_{\varepsilon})n+b(\Theta_{i}-\Theta_{o})_{z} (1-\alpha_{\varepsilon})n-\lambda b(x_{i}-x_{o})[(1-\alpha_{\varepsilon})n]_{z}\}$$

 ≤ 0 (i=1,2).

Using (6.2), we obtain

$$\int_{\Omega} \{\nabla(\Theta_{i}-\Theta_{0}), \nabla \eta + b(\Theta_{i}-\Theta_{0})_{z}\eta - \lambda b(\chi_{i}-\chi_{0})\eta_{z}\} \leq \lim_{\varepsilon \neq 0} \lambda b \int_{D_{i}} (\alpha_{\varepsilon}\eta)(\chi, y, \phi(\chi, y)) = 0.$$

Choosing in this inequality n=z and n=H-z, after a simples calculation one obtains

$$\int_{\Omega} (\Theta_{i} - \Theta_{o}) + \lambda \int_{\Omega} (\chi_{i} - \chi_{o}) = 0,$$

from where one deduces $\Theta_i = \Theta_i$ and $\chi_i = \chi_0$, for i=1,2, which proves the uniqueness of the solution.

REFERENCES

[A] <u>ADAMS, R.A.</u> - "Sobolev Spaces", Academic Press, New York (1975)

[AL]

ALT, H. -"The fluid flow through porous media: regularity of the free surface", Manus.Math 21,(1977), 255-272.

[BC] <u>BAIOCCHI,C., & CAPELO,A.</u> "Disequazioni variazionali e quasi variazional.Applicazioni a problemi di frontiera libera",I,II, Quarderni dell'U.M.I., Pitagora Ed.Bologna (1978).

30	-		

and the second se

والمتكلية فأشفه والمعار بمراجعها والمراجع والمتعالم والمتعامل والمراجع المراجع والمراجع

:

[8]	<u>BRÉZIS, H.</u> - "Opérateurs maximaux monotones et semigro <u>u</u> pes de contractions dans les espaces de Hilbert" Math.Studes, <u>5</u> ,North Holland (1973)
[ΒΚS]	BRÉZIS,H.,D.KINDERLEHRER & G.STAMPACCHIA – "Sur une nouvelle formulation du problème de l'écoulement à travers une digne", C.R.Acad. Sc.Paris <u>287-A</u> (1978), 711-714.
[Br]	<u>BRIÈRE, T.</u> - "Application des Méthodes Variationnelles à la cristallisation d'un métal par passage dans une gaine de reproidissement".Ann.Fac. Sc. Toulouse, <u>2</u> (1980), 219-247.
[c]	<u>CAFFARELLI,L.A.</u> - The regularity of free boundaries in higher dimensions", Acta Math. <u>139</u> (1978), 155-184.
[cc]	CARRILLO, J. & M.CHIPOT"On the Dam Problem" (to appear)-cf.also Note in C.R.Acad.Sc.Paris, 292-I, (1981), 191-194.
[9L]	<i>DUVAUT,G.& J.L.LIONS</i> -"Les inéquations en mécanique et en physique" Dunod, Paris, (1972).
[KN]	<u>KINDERLEHRER, D.& L.NIRENBERG</u> - "Regularity in free boundary value problems". Ann.Scuola Norm. Sup.Pisa Ser.IV <u>4</u> ,(1977),373-391.
[KS]	KINDERLEHRER, D. & G.STAMPACCHIA - "An Introduction to Variational Inequalities and their Applications". Academic Press, New York (1980).
[1]	<u>LIONS, J.L.</u> - "Quelques Mēthodes de résolution des Problèmes aux limites non-linéaires".Dunod, Paris (1969).
[MS]	MURTHY,M.K.V. & G.STAMPACCHIA - "A variational inequa- lity with mixed boundary conditions" -Israel J.Math. <u>13</u> (1972), 188-224.
[\$]	<u>STAMPACCHIA,G.</u> – "Problemi al contorno ellitici con datti discontinui dotati di soluzioni hölderiane". Ann.di Mat.Pura Appl. 51(1960), 1-32.

1

L

; †

۱

a second a second s

[R]	RODRIGUES, J.F "Sur un problème à frontière libre stationnaire traduisant la cristalli- sation d'un métal", C.R.Acad.Sc.Paris, <u>290-A</u> (1980), 823-825.
[Ru]	RUBINSTEIN, L "The Stefan Problem" A.M.S.Transl. Monograph 27, (1971).

Author's address:

M.C. : Université de Nancy I-UER Sciences Mathématiques E.R.A. Nº 839 - Case Officielle 140 54037 - Nancy Cedex (FRANCE) and Brown University - L.C.D.S. (BoxF), Providence R.I. 02912 (U.S.A.)

J.F.R. : C.M.A.F. , 2 - Av.Prof. Gama Pinto 1699 LISBOA CODEX (PORTUGAL)

REPORT DOCUMENTATION PAGE	BE MERCANEL FRANCES
REPORT NUMBER	A NE INTERTS CATAL CROWNER
	884-
ON THE STEADY-STATE CONTINUOUS CASTING	5 TYPE OF REPORT 5 DEGLED STRUCTURE
STEFAN PROBLEM WITH NONLINEAR COOLING	5 PERFORMING O'RE REPORT 4. MARH
AUTHOR(s)	8 CONTRACT OF GRANT NUMBER
Michel Chipot and Jose-Francisco Rodrigues	AFOSR 81-0198
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM FLEMENT PROTE TAL
Lefschetz Center for Dynamical Systems Div. of Applied Math., Brown University	61102F
Providence, R. I. 02912	2304/A4
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
AFOSR, Bolling AFB, Washington, D.C. 20332	January 1982 ¹³ NUMBER OF PAGES 31
MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY (LASS of the super- Unclassified
	15A TER CATION DOAN HALLS
DISTRIBUTION STATEMENT (of this Report)	L
Approved for public release; distribution unlimite	
OISTRIBUTION STATEMENT (of the obstract entered in Block 20. if different fro SUPPLEMENTARY NOTES	nn Report)
2. DISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different fro	nn Report)
OISTRIBUTION STATEMENT (of the obstract entered in Block 20. if different fro SUPPLEMENTARY NOTES	ing to the solidification asting with a non-linear lateral troduced in (BKS) for the dam a general non-linear flux its and the regularity of
ABSTRACT (Continue on reverse side it necessary and identify by block number ABSTRACT (Continue on reverse side it necessary and identify by block number A steady-state one phase Stefan problem correspond process of an ingot of pure metal by continuous or cooling is considered via the weak formulation int problem. Two existence results are obtained for a and for a maximal monotone flux. Comparison resul- the free boundary are discussed. An uniqueness the monotone case.	ing to the solidification asting with a non-linear lateral troduced in (BKS) for the dam a general non-linear flux its and the regularity of
ABSTRACT (Continue on reverse side it necessary and identify by block number ABSTRACT (Continue on reverse side it necessary and identify by block number A steady-state one phase Stefan problem correspond process of an ingot of pure metal by continuous or cooling is considered via the weak formulation int problem. Two existence results are obtained for a and for a maximal monotone flux. Comparison resul- the free boundary are discussed. An uniqueness the monotone case.	ing to the solidification asting with a non-linear lateral troduced in (BKS) for the dam a general non-linear flux its and the regularity of teorem is given for the