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TRANSIENT RESPONSE OF LAMINATED, BIMODULAR-MATERIAL,
COMPOSITE RECTANGULAR PLATES

J. N. Reddyt
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

The paper presents a finite-element analysis of the transient
behavior of fiber-reinforced, single-layer and two-layer cross-ply
rectangular plates of himodular materials (i.e., materials whose linear
elastic properties are different depending on whether the fiber-
direction strains are tensile or compressive). To validate the finite
element results, a closed-form solution is also presented for a
rectangular plate with all edges simply-supported without in-plane
restraint (along the edge) and tangential rotation and subjected to
suddenly applied sinusoidally distributed normal pressure. The time
behavior of the transverse loading is arbitrary (e.g., step loading,
impulse loading, etc.). Numerical results for transverse deflection and
locations of the 'neutral surface' as functions of time are presented
for two bimodular materials. The finite element results agree very
closely with the closed-form solutions.

Introduction

In 1941 S. Timoshenko [1] considered the flexural stresses in

materials which have different moduli in tension and in compression.

Examples of such materials, called bimodular materials, are provided by

cord-rubber composites, certain biological tissues, and paperboard,

among others. Analysis of bimodular (or bimodulus) materials in two

dimensions began with the work of Ambartsumyan [2] in 1965. Following

this work, there appeared numerous static, two-dimensional analyses of

bimodular materials. Among these, the works of Kamiya [3-5], Jones and

Morgan [6], and Bert, Reddy and their colleagues [7-111 should be

particularly noted in the context of bending of bimodular plates. For

additional references to the subject, the reader is referred to the

bibliography in [7-11]. To the best of the present author's knowledge,

tProfessor, Department of Engineering Science and Mechanics.



2

no previous transient analyses of plates laminated of bimodular

composite materials are available in the open literature. The present

work is believed to be the first one to consider the transient analysis

of layered composite plates of bimodular materials.

The present study employs the finite element model developed in [9]

with the Nemark direct integration technique [12]. The closed form

solution presented herein is essentially an extension of the static

solution presented in [11] to transient solution. The finite element

model and the closed-form solution are based on a shear-deformation

theory (see Whitney and Pagano [13]) of layered composite plates, which

does not account for delamination between layers.

Theory and Formulation

The displacement field in all of the simple Timoshenko-type shear-

deformation theories are based on the following displacement field:

u1 (x,y,z,t) = u(x,yt) + Z(x(X,y,t)

u2(x-yzt) = v(xyt) + Z4,(Xyt)
2 y

u3 (xyzt) = w(xyt). (1)

Here t is the time, ui (i = 1,2,3) is the displacement in xi-coordinate

direction (x1 = x, x2 = y, x3 = z), (u,vw) are the associated midplane

displacements, and Ix and 4y are the bending slopes in the xz and yz

planes. The coordinate system is chosen such that the xy-plane

coincides with the midplane of the plate.

The equations of motion in the small-deflection theory of

moderately thick plates are given by

N +''N =Pu + R
Nx 6,y ,tt Rx,tt

N6 , x + N2 , = Pvt + Ryt
2,y+ R4 Ytt

01 x + 0 2y = Pw tt + q(x y,t) (2)
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M' + M 6  = 1 xtt + Rutt

M6x +M 2 y - 2 "'ytt + Rvtt

where P, R and I are the normal, coupled normal-rotary, and rotary

inertia coefficients,

h/2 z Zm+l ,~ 2pmd(PRI) = Ih/2 (l,z,z2 )pdz = Ff (lzz)pmdz (3)

m z(

P(m) being the material density of the m-th layer, Ni, Qi, and Mi are

the stress and moment resultants.

The main difference between the usual plate theory and the

laminated plate theory is reflected in the plate constitutive

equations. For bimodular-material plates these constitutive equations

are given by

Ni [Aij Bj I F

= , (i,j = 1,2,6) (4)

Mi LB. I  Dij Kj

0 F 2 1
k4S44  k4 k5S4 5  -

2 k 4k 5S 45  k5$ 55  J 5

Here, AIj, Bij, Dij, and Sij denote the respective in-plane, bending-

stretching coupling, bending or twisting, and thickness-shear

stiffnesses defined as follows:

h/2

(Ai SBjD ij) = f lh/ 2d (i,j = 1,2,6)

h12Sij = .-h/2 1ijkjtdz (1,j = 4,5) (6)
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where h is the total thickness of the plate, 0ljkit denotes the plane-

stress reduced stiffness (i,j refer to the position in the compliance

matrix; k refers to the sign of the fiber-direction strain: k = 1,

tensile and k = 2, compressive; and t refers to the layer number), e. and Kj

are the strains and curvatures associated with the

displacements in (1), and ki are the shear convection coefficients.

Closed-Form Solutions

In [8,10,111 it was shown that the closed-form solution can be

derived for a freely supported, lamianted, himodular, rectangular plate

subjected to a sinusoidally distributed normal pressure. Guided by

these results, we consider the same problem but subjected to sinusoidal

distributed, time-dependent load,

q(xy,t) = (qo sin ax sin oy)T(t), a = %/a, p = it/b (7)

where T(t) is a known function of time, and a and b are the planform

dimensions of the plate. The boundary condtions are given by

at x O,a: v =w= y = N = M 0
y 1 1

at y = o,b: u = w = = 2= M2 =0. (8)

For the loading and boundary conditions given above, the governing

equations (2) are satisfied exactly (for any t > 0) by the following

form of the generalized displacements:

u(x,y,t) = U(t)s1(x,y)

v(x,y,t) = V(t)f 2(x,y)

w(x,y,t) = W(t)f 3(x,y) (9)

41x(x,y,t) = X(t)0 1(x,y)

w (x,y,t) - Y(t)4 2(x,y) I

where



= cos ax sin IY, 02 sin a% cos Iy, 03 sin ax sin py. (10)

The values of the coefficients U(t), V(t), W(t), X(t) and Y(t) are

obtained by solving the following ordinary differential equations in

time:

U U 0
V 0

[M] W +[C] W = T (11)

X x 0

y Y 0

The elements of [C] and [M] are given in [14].

It should be pointed out that the plate stiffnesses Aij, Bij, and

Dij depend on the neutral-surface positions Znx and Zny associated with

the fiber-direction strains P_ and Ey, respectively. The neutral-

surface locations are given by,

Zn(t) = -U(t)/X(t)

Zn(t) -V(t)/Y(t). (12)ny
which are constants for any fixed time. Thus, for any t > 0, the

neutral surfaces are planes, as in the case of static bending. For the

detailed computations of Aij, Bij, and Dij, the reader is referred to

~[8,9,11].

Next, we consider the numerical solution of (11) by the Newmnark

direct integration technique. Equation (11) is of the general form

[M]IA} + [K]{A} = IF) (13)

where JAI denotes the column of the generalized displacements. In

Newmark's method, the solution and its derivative with respect to time

are approximated by
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{&}n+l {tA}n + At{fln + [(" 0) n + P{1}n+l] (At) 2

[ In+l = k~ + I(' - a) 1AIn + af*A'n+1]At (4

where a and p are the parameters that control the stability of the

scheme, JAIn denotes the value of JAI at time t = n At. The choice

a 0.5 and f = 0.25 is known to give an unconditionally stable scheme

for linear problems.

Using of the approximations (14) in (11) and rearranging the terms,

we arrive at

[KJ{Aln+l = {F}nn+l (15)*1 where
[K] = [K] + aON

{FF = {FFn+l + [MI(ao(a}n + al Afn + a2{Aln) (16)

ao = 1/(pAt) , al = aoAt , a2 = I .
1 a0  2 2p-

Starting with initial values of JAIo , JA)o and {A}co, equation (15) can

be solved repeatedly for JAI at successive values of time. The values

Of lkn+l and {AIn+l can be computed from (14).

Finite-Element Formulation

As pointed out earlier, the finite element model used in the

present study is the same as that employed in [9]. We shall not repeat

the formulation here, hut only point out the additional steps involved

in the transient analysis. The finite-element model in the present case

results in the following equation for an element

[M]{i} + [K]{A} = {FI, (17)

where {A} denotes the column of the nodal values of the generalized

displacements. The elements of the mass matrix [M] and the stiffness
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matrix rK] are given in [14,15]. Equation (17) is integrated using the

direct integration technique described above.

It should be noted that no restriction is placed on the loading and

boundary conditions in the finite-element analysis. When a uniform

loading is used, the neutral-surface locations are not independent of

the location (x,y), and therefore, the expressions for Aij, Bij and Dij

derived for the closed-form solutions are not valid in the entire plate

in the finite-element analysis. Since the coefficients Kij are

evaluated at the Gauss points, the stiffnesses Aij, Bij and nij are also

evaluated at the Gauss points by using the neutral-surface positions

computed at the Gauss points. This is equivalent to the assumption that

the neutral surfaces are element-wise bilinear.

In the actual calculation of the stiffnesses, whether for the

closed-form solution or in the finite-element analysis, the neutral-

surface locations are not known a-priori. Therefore an iterative

technique must be employed to compute the neutral-surface locations.

The iteration procedure begins with assumed values of Znx and Zny (say,

Znx = Zny = 0) and then the stiffnesses Aij etc. are computed using

these values. After obtaining the generalized displacements, the

neutral-surface locations are recomputed. Using these new values of Znx

and Zny , the stiffnesses for the next iteration are computed. This

procedure is repeated until the difference between any two consecutive

values of Znx (and Zny) differ by a small preselected value (say 0.1%).

Numerical Results and Discussion

In the following, numerical results are presented for rectangular

plates made of two bimodular materials: aramid cord-rubber (AR) and

polyester cord-rubber (PR), which are used in automobile tires. The



8

material properties for these two materials are given in [7-11,14], and

are listed in Table 1 again for convenience. In the finite element

method, a 2 x 2 mesh of nine-node isoparametric elements in the quarter
2

plate was used. The shear correction coefficients kJ were chosen to be

5/6.

Table 1 Material properties for aramid cord-rubber and polyester cord-

rubber, unidirectional, bimodulus composite materials.

Aramid-Rubber Polyester Rubber
Property Tensile Compressive Tensile Compressive

E11 (GPa) 3.58 0.012 0.617 0.0369
E22 (GPa) 0.00909 0.012 0.008 0.0106
v 0.416 0.205 0.475 0.185
G12 - (GPa) 0.0037 0.0037 0.00262 0.00267
G2 (GPa 0.0029 0.00499 0.00233 0.00475
p(GPa) 1.0 1.0 1.0 1.0

Due to the lack of other results in the literature, comparisons are

made between the present closed-form solution (CFS) and finite element

solutions (FES). The selection of the time step was guided by the

stability criterion given by Tsui and Tong [16] for moderately thick

plates (see [15]).

First, the effect of the time step on the transverse deflection and

the neutral-surface location of a single-layer (00) square plate (a = b

= 1, a/h = 5, aramid-rubber) under suddenly applied step loading (with

qo = 1 in eqn. (7)) was studied. Table 2 contains the results for the

transverse deflection and the neutral-surface location for various time

steps. Note that the solutions obtained using At = 0.5 differ from

those obtained using At = 0.05 by only 2%.

Next, the finite-element results are validated by comparing with

the closed-form solutions of a two-layer (00/900) square plate (a = b =

1, a/h = 5, aramid-rubber) under suddenly applied step loading (7).
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Table 3 contains the results for the transverse deflection, transverse

velocity, and the neutral surface location, znx. The finite element

results are in excellent agreement (less than one percent error) with

* the closed-form solution. Both the closed-form and finite-element

solutions were obtained using At = 0.5, and qo = 1 in eqn. (7). In view

.( of the close agreement between the closed-form and finite-element

solutions, and in the interest of saving the computational time (the

finite element method took 30 min. of CPU time compared to 5 sec. for

'1 the closed farm solution presented in Table 3), most of the results to

be discussed were obtained using the closed-form method. Of course, for

the uniformly distributed load case, the finite element method was

employed.

Figure 1 contains the plots of the transverse deflection and the

neutral-surface location versus time for a single-layer (00), square

plate (a = b = 1, a/h = 5, aramid-rubber) subjected to suddenly applied

step loading (qo = 1, At = 0.5). The figure shows the effect of the

shear deformation and the bimodular action on the amplitude and period

of the solutions. Clearly, the effect of both the shear deformation and

the himodular action is very pronounced and hence cannot be neglected in

the analysis. It should be pointed out that the value of Znx/h for the

time interval 8 4 t < 36, coincides with the Znx/h of the associated

static case (see [11]).

To further investigate the effect of the plate thickness on the

dynamic response, the same problem (as in Figure 1) was solved using a/h
delcto,- 3 c 4

=10. The nondimensionalized transverse deflection, w=(wh E 2 2 )/q ao9

versus time is shown in Fig. 2. The effect of the thickness on the

amplitude and period of the deflection is apparent from the figure.
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Table 3 Comparison of the neutral-surface location, transverse
deflection and transverse velocity as obtained by the
closed-form solution (CFS) and the finite element method
(FEM) for a two-layer (00/900) square plate (aramid-
rubber) under suddenly applied transverse step loadingt.

t =-~-nx/h w x 10- 3  __x 10- 2

FEM CFS FEM CFS FEM

4 0.3780 0.3804 0.0330 0.0330 0.1674 0.1671
8 0.4387 0.4385 0.1277 0.1277 0.2959 0.2966

12 0.4377 0.4370 0.2597 0.2596 0.3486 0.3477
16 0.4395 0.4396 0.3904 0.3900 0.2908 0.2902
20 0.4410 0.4402 0.4832 n.4826 0.1614 0.1603
24 0.4388 0.4389 0.5127 0.5112 -.0208 -.0223
28 0.4419 0.4411 0.4684 0.4665 -.1912 -.1920
32 0.4373 0.4372 0.3656 0.3632 -.3116 -.3136
36 0.4412 0.4410 0.2307 0.2284 -. 3457 -. 3438
.40 0.4279 0.4255 0.1044 0.1026 -. 2745 -. 2735
ta/b = , a/h =5, At =0.5, p= 1.0, qo = 1.0
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0.10- bimodular properties (SDT)

bimodular properties (CPT) T(t)

unimodular properties (SDT, 1.

0.06unimodular prop., t
(Z x ~008(SDT, Et Ec)

(Znx/h)Ol 0.06- \arw(material properties in
Fi 1. Et acompression:E11 2

t Znx /h

, wmar ia properties-A... .

-- / ~~~in tension:. E11,E t \ '..

,4 8 12 16 20 24 28 32 36' 40 44 48 52 56 t

Figure 1. Effect of the transverse shear deformation and bimodulus action

on the transient response of single-layer (00) square plates
(a = b = 1, h = 0.2, q = 1, At = 0.5) of aramid-rubber under
suddenly applied, sinuoidally distributed, step loading.



13

0.08. single-layer (00)

two-layer (00/gao)
"'" T(t)

0.06 a/h = 5, At 0.5 1.0

0....
U eJ

0.0
8 16 24 32 40 48 56 64 72 80 t

Figure 2. Effect of the plate thickness on the transient response of single-
layer and two-layer, bimodular, square plates of aramid-rubber
material under suddenly applied, sinusoidally distributed, step
loading.

'9
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The transverse deflection, transverse velocity, and the neutral-

surface location versus time for a single-layer (00), square plate of

I polyester-rubber material (a/h = 5, qo = 1, At = 0.5) under suddenly

applied step loading are shown in Fig. 3. The figure also contains the

plot of the transverse deflection versus time for a rectangular plate

(a/b = 2; everything else is the same as in the square plate).

In Fig. 4, results of two-layer (00/900) square plates (a = b = 1,

a/h = 5, At = 0.5, qo = 1) of aramid-rubber and polyester-rubber are

presented. Once again, the excellent agreement between the closed-form

solution and the finite-element solution is observed. Note also that

the neutral-surface locations, both Znx/h and Zny/h, for the polyester-

rubber plate are bounded above by Znx/h and below by Zny/h of the

aramid-rubber plate.

Figure 5 contains plots of solutions of a single-layer (00) and a

two-layer (00/900) square plate (a = b = 1, a/h = 5, At = 0.5, qo = 1)

of aramid-rubber under suddenly applied impulse loading,

q(x,y,t) = qosin(-)sln(5)H(t - 5).

where H(t) is the Heavyside step function. Note that the neutral-

surface location, Znx/h, does not reach a steady value like in the case

of step loading, but the mean value is about the same as that in the

case of step loading.

Thus far, the transverse load was assumed to be sinusoidal (with

respect to x and y) to facilitate closed-form solutions. Since the

finite element method does not have any limitation on the load

distribution, one can use the finite element model developed herein for

the analysis of plates subjected to uniformly distributed loads. Figure

6 contains the plots of the transverse deflection, transverse velocity
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0.08.
-a = b =1, h -0.2 (w and Z nx/h)

a = 1, b = 0.5, h 0.2 (w and Znx/h)

0.06- a = 1, b = 1, h =0.2()

3w x 10

" x 1

(Z nx /h)10-1 0.04-

0.02 /

.4

4 8 1216 20 \24 28 32 36 40 i44 48 52 t

T~/

-0.02. 1. /*

t/

-0.04]

Figure 3. Transient response of a single-layer (00), blmodular, rectangular
plate of polyester-rubber material under suddenly applied, sinu-
soidally distributed, step loading.
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0j08 o Aramid-rubber-FES r(t)
- Aramid-rubber-CFS 1

0.0 Polyester-rubber-CFSt

0.04-

0.024-

0.0

4 8 12 162024 2832 3640 44 48 52 t

Figure 4. Transient response of two-layer (00/900), bimodular, square
plates (a = b z 1, h =0.2, qo g 1,At = 0.5) of aramid-
rubber and polyester-rubber materials subjected to suddenly

* applied, sinusoidally distributed, step loading.
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0.02

0.015-t

0.01 /

/\Zn (single-layer)

0.005-1

0

4 8 1216 20 24' 32 3640 44 ,52 t

-0.005 - single-layer (00)

CD-- two-layer (00/900)
x

-0.01

-0.015-

-0.02

Figure 5. Transient response of single-layer and two-layer, bimodular, square
plates of aramid-rubber material (a - b = 1, h = 0.2, q - 1, A~t =
0.5) under suddenly applied, sinusoidally distributed, Oulse loading.
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and the neutral-surface location, Znx/h, for a single-layer (00) and a

two-layer (00/900) square plate (a = b = 1, a/h = 5, At = 0.5, qo = 1)

of aramid-rubber under suddenly applied step loading,

q(xy,t) = qoH(t).

The response curves resemble those of ordinary plates (see [15]).

Although the amplitude of the transverse deflection is quite large

compared to that of a sinusoidally-loaded plate, the magnitude of the

neutral-surface location is about the same. This completes the

discussion of the numerical examples.

Summary and Conclusions

The transient analysis of bimodular, composite, rectangular plates

is presented. Finite element as well as closed-form solutions are

presented for rectangular bimodular plates of aramid-rubber and

polyester-rubber materials. The finite element solutions are found to

agree very well with the closed-form solutions. From the dynamic

(transient) response of the bimodular plates, it is apparent that the

shear deformation and plate thickness (irrespective of the transversse

shear strains) increase the amplitude and period of the transverse

deflection. The results of the present study should be of interest to

composite-materials designers and researchers.
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0.10
T(t)

0.080

w x 10 4 00
(Znx /h)10OlJI

wx 10 0.06

0.04%%\, x/

0.02

0
4 812 1'620', i8i2 36404448 2 t
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Figure 6. Transient response of single-layer and two-layer, bimodular, square
plates (a a b I, h =0.2, qo a 1, At -0.05) of aramid-rubber
material under suddenly applied, uniformly distributed, step loading.
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