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TRANSIENT RESPONSE OF LAMINATED, BIMODULAR-MATERIAL, :
COMPOSITE RECTANGULAR PLATES "

J. N. Reddy!
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

The paper presents a finite-element analysis of the transient
behavior of fiber-reinforced, single-layer and two-layer cross-ply
rectangular plates of bimodular materials (i.e., materials whose linear
elastic properties are different depending on whether the fiber-
direction strains are tensile or compressive)., To validate the finite
element results, a closed-form solution is also presented for a
rectangular plate with all edges simply-supported without in-plane
restraint (along the edge) and tangential rotation and subjected to
suddenly applied sinusoidally distributed normal pressure., The time
behavior of the transverse loading is arbitrary (e.g., step loading,
impulse loading, etc.)}. Numerical results for transverse deflection and
Tocations of the 'neutral surface' as functions of time are presented
for two bimodular materials. The finite element results agree very
closely with the closed-form solutions.

Introduction
In 1941 S, Timoshenko [1] considered the flexural stresses in

materials which have different moduli in tension and in compression,

Examples of such materials, called bimodular materials, are provided by

cord-rubber composites, certain biological tissues, and paperboard,

among others. Analysis of bimodular (or bimodulus) materials in two
dimensions began with the work of Ambartsumyan [2] in 1965. Following :
this work, there appeared numerous static, two-dimensional analyses of

bimodular materials. Among these, the works of Kamiya [3-5], Jones and

eaiaasidor)

Morgan [6], and Bert, Reddy and their colleagues [7-117 should be

particularly noted in the context of bending of bimodular plates. For

additional references to the subject, the reader is referred to the

bibliography in [7-11]. To the best of the present author's knowledge,
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no previous transient analyses of plates laminated of bimodular

composite materials are available in the open literature. The present

work is believed to be the first one to consider the transient analysis

of layered composite plates of bimodular materials.

The present study employs the finite element model developed in [9]

with the Nemark direct integration technique [12]. The closed form

solution presented herein is essentially an extension of the static

solution presented in [11] to transient solution. The finite element

model and the closed-form solution are based on a shear-deformation

theory (see Whitney and Pagano [13]) of layered composite plates, which

does not account for delamination between layers.

Theory and Formulation

The displacement field in all of the simple Timoshenko-type shear-

deformation theories are based on the following displacement field:

i ! ul(X.y.Z.t) = u(x,y,t) + z4, (x,¥,t)
. U (xays2,t) = v(X,¥,t) + 20 (xuy,t)
' uy(%,y,2,t) = wix,y,t). (1)

Here t is the time, u; (i = 1,2,3) is the displacement in xj-coordinate

direction (x; = x, xp =y, x3 = z), (u,v,w) are the associated midplane

displacements, and ¢x and ¢y are the bending slopes in the xz and yz

planes. The coordinate system is chosen such that the xy-plane

coincides with the midplane of the plate.

The equations of motion in the small-deflection theory of

moderately thick plates are given hy

Mix ¥ Ne,y = PUee * ROy bt

Noox * Moy = PVttt R 4t

+ Oz’y = pw,tt + Q(X,_y,t) (2)
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where P, R and I are the normal, coupled normal-rotary, and rotary

inertia coefficients,

h/2 L

(PR1) = [y (hzi2Dypdz = 5 ) (LzaD)eMaz (3)
m

Zm

(m)

p being the material density of the m-th layer, Nj, Qj, and M; are

the stress and moment resultants,
The main difference between the usual plate theory and the
laminated plate theory is reflected in the plate constitutive

equations. For bimodular-material plates these constitutive equations

are given by

N, Ay By 3
= ’ (i’J = ]’296) (4)
M, B Py | [ %
ks K, kS
0 4328 KgksSss €
= ) (5)
0, KgksSas ks55ss & | -

Here, Ajj, Bijs Djj, and Sij denote the respective in-plane, bending-
stretching coupling, bending or twisting, and thickness-shear

stiffnesses defined as follows:

e *
(Aij'Bij’D1j) = {h/z(l,z,z )oijquz (1,j = 1,2,6) 1
h/2

S'lj = {hlzoijkl dz (i!j = 4’5) (6)




where h is the total thickness of the plate, Oijkx denotes the plane-

stress reduced stiffness (i,j refer to the position in the compliance

matrix; k refers to the sign of the fiber-direction strain: k =1,

tensile and k = 2, compressive; and % refers to the layer number), % and Kj
are the strains and curvatures associated with the

displacements in (1), and k; are the shear convection coefficients.

Closed-Form Solutions

In [8,10,11] it was shown that the closed-form solution can be
derived for a freely supported, lamianted, bimodular, rectangular plate
subjected to a sinusoidally distributed normal pressure. Guided by
these results, we consider the same problem but subjected to sinusoidal
distributed, time-dependent load,

q(x,y,t) = (qo sin ax sin gy)T(t), a« = n/a, B = n/b (7)
where T(t) is a known function of time, and a and b are the planform
dimensions of the plate. The boundary condtions are given by

at x = 0,a: v =w-= ¢& = N1 = M1 =0
at y=o0,b: u=w= b = N2 = M2 = 0. (8)
For the loading and boundary conditions given above, the governing

equations (2) are satisfied exactly (for any t > 0) by the following

form of the generalized displacements:

u(x,y,t) = U(t)e,(x,y)

v(x,y,t) = v(t)Oz(xoy)
W(X,y,t) = w(t)°3(x’y) (9)
¢, (x5y,t) = X(t)e, (x,¥)
¢y(x9y’t) = Y(t)Oz(x,_Y)

B
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where
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6, = COS oX sin By, ¢, = sin ax cos gy, 9 = sin ax sin py. (10)
The values of the coefficients U(t), V(t), W(t), X(t) and Y(t) are

- —

obtained by solving the following ordinary differential equations in

time:

v U 0
v v 0
[M] W {+[C) {W  ={T (11)
X X 0
Y Y 0
The elements of [C] and [M] are given in [14].
It should be pointed out that the plate stiffnesses Aiss Bij’ and

Dij depend on the neutral-surface posittons Z . and Zny associated with
the fiber-direction strains € and €y respectively. The neutral-

surface locations are given by,

2,,(t) = -U(t)/X(t)

Zny(t) = =V(t)/Y(t). (12)
which are constants for any fixed time. Thus, for any t > 0, the
neutral surfaces are planes, as in the case of static bending. For the

detailed computations of Aij’ Bij' and Dij’ the reader is referred to

h)

[8,9,11].
Next, we consider the numerical solution of (11) by the Newmark
direct integration technique. Equation (11) is of the general form
IM1{a} + [K1{a} = {F) (13)

where {A} denotes the column of the generalized displacements. In

MR

Newmark's method, the solution and its derivative with respect to time

are approximated by

s apd
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{A}n+] = {A}n + At{a}n + [(% - B) {x}n + B{X}n.'.]](At)z
(B} = 18}, + L0 = o)}, + afa), dat (14)

where a and g are the parameters that control the stability of the
scheme, {A}n denotes the value of {A} at time t = n At. The choice
a= 0.5 and B = 0.25 is known to give an unconditionally stable scheme
for linear problems.
Using of the approximations (14) in (11) and rearranging the terms,

we arrive at

A

[E]{A}n+1 = {Fly,ne1 (15)
where
[K] = [K] + a [M]
(FI = {Floyq + MICag {8}, + a, (a1, + a,{al},) (16)

- - _ L
a, = 1/(gat) , a; = an , a,-= T 1.

Starting with initial values of {a}, {L}o and {X}o, equation (15) can

‘be solved repeatedly for {a} at successive values of time. The values

of {A}n+1 and {X}n+, can be computed from (14).

Finite-Element Formulation

As pointed out earlier, the finite element model used in the
present study is the same as that employed in [9]. We shall not repeat
the formulation here, but only point out the additional steps involved
in the transient analysis. The finite-element model in the present case
results in the following equation for an element

(M1{a} + (K1{a} = {F}, (17)

where {A] denotes the column of the nodal values of the generalized

displacements. The elements of the mass matrix [M] and the stiffness
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matrix [K] are given in [14,15). Equation (17) is integrated using the
direct integration technique described above.

It should be noted that no restriction is placed on the loading and
boundary conditions in the finite-element analysis. When a uniform
loading is used, the neutral-surface locations are not independent of
the location (x,y), and therefore, the expressions for Aij’ Bij and Dij
derived for the closed-form solutions are not valid in the entire plate
in the finite-element analysis. Since the coefficients K%j are
B

evaluated at the Gauss points, the stiffnesses A and nij are also

ij> Bij
evaluated at the Gauss points by using the neutral-surface positions
computed at the Gauss points. This is equivalent to the assumption that
the neutral surfaces are element-wise bilinear.

In the actual calculation of the stiffnesses, whether for the
closed-form solution or in the finite-element analysis, the neutral-
surface locations are not known a-priori. Therefore an iterative
technique must be employed to compute the neutral-surface locations.

The iteration procedure begins with assumed values of an and Zny (say,

L. =1 = 0) and then the stiffnesses A1j etc., are computed using

nx ny
these values. After obtaining the generalized displacements, the
neutral-surface locations are recomputed. Using these new values of 7.,

and 2 the stiffnesses for the next iteration are computed. This

ny?
procedure is repeated until the difference between any two consecutive

values of Z,, (and Zny) differ by a small preselected value (say 0.1%).

Numerical Results and Discussion

In the following, numerical results are presented for rectangular

plates made of two bimodular materials: aramid cord-rubber (AR) and

polyester cord-rubber (PR), which are used in automobile tires. The




material properties for these two materials are given in [7-11,14], and
are listed in Table 1 again for convenience., In the finite element

g method, a 2 x 2 mesh of nine-node isoparametric elements in the quarter

2

plate was used. The shear correction coefficients ki were chosen to be

B
N 5 6.
L /
)
f -
f Table 1 Material properties for aramid cord-rubber and polyester cord-
if rubber, unidirectional, bimodulus composite materials,
;!
v Aramid-Rubber Polyester Rubber
(= Property Tensile Compressive Tensile Compressive
' £y (6Pa) 3.58 0.012 0.617 0.0369
. Eyy (GPa) 0.00909 0.012 0.008 0.0106
V12 0.416 0.205 0.475 0.185
G12 = 6 (GPa)  0.0037 0.0037 0.00262 0.00267
i { Gy (GPa? n.0029 0.00499 0.00233 0.00475
r p ?GPa) 1.0 1.0 1.0 1.0
é ; Due to the lack of other results in the literature, comparisons are
g | made between the present closed-form solution {CFS) and finite element
! solutions (FES). The selection of the time step was guided by the

stability criterion given by Tsui and Tong [16] for moderately thick
l plates (see [15]).

First, the effect of the time step on the transverse deflection and

the neutral-surface location of a single-layer (0°) square plate (a = b

= 1, a/h = 5, aramid-rubber) under suddenly applied step loading (with

do = 1 in egn. (7)) was studied. Table 2 contains the results for the

transverse deflection and the neutral-surface location for various time

steps. Note that the solutions obtained using At = 0.5 differ from

those obtained using At = 0.05 by only 2%.

Next, the finite-element results are validated by comparing with

the closed-form solutions of a two-layer (0°/90°) square plate (a = b =

1, a/h = 5, aramid-rubber) under suddenly applied step loading (7).
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Table 3 contains the results for the transverse deflection, transverse
velocity, and the neutral surface location, z,,. The finite element
results are in excellent agreement (less than one percent error) with
the closed-form solution. Both the closed-form and finite-element
solutions were obtained using At = 0.5, and q, = 1 in eqn. (7). In view
of the close agreement between the closed-form and finite-element
solutions, and in the interest of saving the computational time (the
finite element method took 30 min. of CPU time compared to 5 sec. for
the closed form solution presented in Table 3), most of the results to
be discussed were obtained using the closed-form method. Of course, for
the uniformly distributed load case, the finite element method was
employed.

Figure 1 contains the plots of the transverse deflection and the
neutral-surface location versus time for a single-layer (0°), square
plate (a = b =1, a/h = 5, aramid-rubber) subjected to suddenly applied
step loading (qq = 1, At = 0.5). The figure shows the effect of the
shear deformation and the bimodular action on the amplitude and period
of the solutions. Clearly, the effect of both the shear deformation and
the bimodular action is very pronounced and hence cannot be neglected in
the analysis. It should be pointed out that the value of Z,,/h for the
time interval 8 ¢ t < 36, coincides with the Z , /h of the associated
static case (see [11]).

To further investigate the effect of the plate thickness on the

dynamic response, the same problem (as in Figure 1) was solved using a/h
4
0’
versus time is shown in Fig. 2. The effect of the thickness on the

=10. The nondimensionalized transverse deflection, W=(wh3E;2)/q a

amplitude and period of the deflectton is apparent from the figure.
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Table 3 Comparison of the neutral-surface location, transverse
deflection and transverse velocity as obtained by the
closed-form solution (CFS) and the finite element method
(FEM) for a two-layer (0°/90°) square plate (aramid-
rubber) under suddenly applied transverse step Joading*.

Zo,/h wx 1073 wx 1072
t TS FEM CFS FEM CFS FEM

4 0.3780 0.3804 0.0330 0.0330 0.1674 0.1671
8 0.4387 0.4385 0.1277 0.1277 0.2959 0.2966
12 0.4377 0.4370 0.2597 0.2596 0.3486 0.3477
16 0.4395 0.4396 0.3904 0.3900 0.2908 0.2902
20 0.4410 0.4402 0.4832 0.4826 0.1614 0.1603
24 0.4388 0.4389 0.5127 0.5112 -,0208 -.0223
28 0.4419 0.4411 0.4684 0.4665 -.1912 -.1920
32 0.4373  0.4372 0.3656 0.3632 -.3116 -.3136
36 0.4412  0.4410 0.2307 0.2288 -,3457 _.3438
A0 0.4279 0.4255 0.1044 0.1026 -.2745 -.2735

Tafb = 1, a/h = 5, at = 0.5, p = 1.0, Gy = 1.0

Al contir 4 5 A i A L i




0.10+ — bimodular properties (SDT)
... bimodular properties (CPT) T(t)
— ummodular properties (SDT, ],L—————
0.08 EC = Et) PN .
7 === unimodular prop. - >N t
(sbT, Et = EC) - N
W X 103 \

\ _w(material propert1es in c
compression: 511,522

w(material properEies—A '
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0.0 & Y T T T T =T T T ﬁ -1 T
4 8 12 16 20 24 28 32 36 40 44 48 52 5 t

Figure 1. Effect of the transverse shear deformation and bimodulus action
on the transient response of single-layer (0°) square plates
(a=b=1,h=0.2,q, =1, at = 0.5) of aramid-rubber under
suddenly applied, sinugoida11y distributed, step loading.
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0.08 - — single-layer (0°)
| --- two-layer (00/900)

0.06 T(t)
064 a/h = 5, at = 0.5 1.0 P———

0.02

0.0

8 16 26 32 40 48 56 64 72 80 t

Effect of the plate thickness on the transient response of single-
layer and two-layer, bimodular, square plates of aramid-rubber
material under suddenly applied, sinusoidally distributed, step
Toading.
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The transverse deflection, transverse velocity, and the neutral- !
surface location versus time for a single-layer (0°), square plate of
polyester-rubber material (a/h = 5, g, = 1, At = 0.5) under suddenly
applied step loading are shown in Fig. 3. The figure also contains the
plot of the transverse deflection versus time for a rectangular plate
(a/b = 2; everything else is the same as in the square plate).

In Fig. 4, results of two-layer (0°/90°) square plates (a =b =1,
a/h =5, at = 0.5, g, = 1) of aramid-rubber and polyester-rubber are
presented. Once again, the excellent agreement between the closed-form
solution and the finite-element solution is observed. Note also that
the neutral-surface locations, hoth Z,x/h and Zny/h, for the polyester-
rubber plate are bounded above by Zpy/h and below by Zny/h of the
aramid-rubber plate,

Figure 5 contains plots of solutions of a single-layer (0°) and a
two-layer (0°/90°) square plate (a =b = 1, a/h = 5, at = 0.5, Qg = 1)
of aramid-rubber under suddenly applied impulse loading,

q(x.yst) = g sin(Z)sin(@In(t - 5).
where H(t) is the Heavyside step function. Note that the neutral-
surface location, Zoy/Ns does not reach a steady value like in the case
of step loading, but the mean value is about the same as that in the
case of step loading,

Thus far, the transverse load was assumed to be sinusoidal (with

respect to x and y) to facilitate closed-form solutions, Since the

finite element method does not have any limitation on the load .

distribution, one can use the finite element model developed herein for

the analysis of plates subjected to uniformly distributed loads. Figure

6 contains the plots of the transverse deflection, transverse velocity ?

S T P N U S PO I VS WU
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R Figure 3. Transient response of a single-layer (09), bimodular, rectangular ]
: . plate of polyester-rubber material under suddenly applied, sinu- !
" soidally distributed, step loading.
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0.08 o Aramid-rubber-FES T(t)
. =~ Aramid-rubber-CFS 1.
0. 06- --- Polyester-rubber-CFS
wx 10°
(Zn/h) 0.1
4 8 12 16 20 24 23 32 36 40 44 48 52 t
Figure 4. Transient response of two-layer (0°/90°), bimodular, square

plates (a =b =1, h = 0.2, gy =1, at = 0.5) of aramid-
rubber and polyester-rubber materials subjected to suddenly
applied, sinusoidally distributed, step loading.
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Figure 5. Transient response of single-layer and two-layer, bimodular, square
plates of aramid-rubber material (a=b=1, h=0.2, q. =1, at =

0.5) under suddenly applied, sinusoidally distributed, Bulse loading.




and the neutral-surface location, Z,,/h, for a single-layer (0°) and a

two-layer (0°/90°) square plate (a =b =1, a/h = 5, At = 0.5, Gg = 1)

of aramid-rubber under suddenly applied step loading,

a(x,y,t) = q H(t).

The response curves resemble those of ordinary plates (see [15]).

Although the amplitude of the transverse deflection is quite large

compared to that of a sinusoidally-loaded plate, the magnitude of the

neutral-surface location is about the same. This completes the

discussion of the numerical examples.

Summary and Conclusions

The transient analysis of bimodular, composite, rectangular plates

Finite element as well as closed-form solutions are

is presented.

presented for rectangular bimodular plates of aramid-rubber and

The finite element solutions are found to

polyester-rubber materials.

From the dynamic

agree very well with the closed-form solutions.

(transient) response of the bimodular plates, it is apparent that the

shear deformation and plate thickness (irrespective of the transversse

shear strains) increase the amplitude and period of the transverse

deflection. The results of the present study should be of interest to

composite-materials designers and researchers.
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material under suddenly applied, uniformly distributed, step loading.
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