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Abstract

A discrete time multiaccess channel is considered where the

outcome of a transmission is either "idle", -successo' or

Acollision , depending on the number of users transmitting

simultaneously. Messages involved in a "collision "' must be

retransmitted. An efficient access allocation policy is developed

for the case where infinitely many sources generate traffic in a

Poisson manner and can all observe the outcomes of the previous

transmissions. Its rate of successs is 0.48776. Modifications

are presented for the cases where the transmission times depend

on the transmission outcomes and where observations are noisy.

I. Introduction

We consider the following model of a multiple access

$ channel. A large number of sources generate messages in a

Poisson manner, at a total rate ofA messages per unit of time,

starting at time 0. Once a message has been generated, its

source can transmit it on a common channel. Transmissions can

only start at integer multiples of the unit of time and last one

unit of time, also called a "slot". If the transmissions from

two or more sources overlap, a collision is said to occur, all

messages are lost and must be retransmitted at a later time. IfFonly one source transmits, the transmission is successful.
All sources can observe the channel and learn at the end of
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a slot whether it is idle, or if a success or a collision has

occured. This common feedback is the only information the

sources share. The problem is to find an effective way of using

the feedback to schedule the transmission of the messages.

The previous model is an idealization of practical

communication systems [11, [2], (31 that have been the object of

numerous papers in the communication theory literature [4],[5].

Similar problems have also been treated in control theory

journals [6),[7],[8], indeed they are nice examples of

distributed control. Algorithms similar to the ones presented

here have also been derived independently by Tsybakov and

Mikhailov [9].

In Section II we will present the basic algorithm and some

of its properties. In Section III we show how to analyze the

algorithm in order to optimize the throughput, i.e., the maximum

long term rate of success. In Section IV we discuss the

implementation of the algorithm in real time. In Section V we

introduce the general form of a first come first served

algorithm. We then show how to modify and analyze the algorithm

if the transmission times depend on the transmission outcomes

(Section VI) or if the feedback is noisy (Section VII).

II. The Basic Algorithm

-2-



The algorithm defined below allows the transmission of the

messages on the basis of their generation times. It has the

advantage of being effective no matter the number of sources,

even infinite, and is a generalization of the procedure presented

in [10], which is itself based on an idea from Hayes [11J and

Capetanakis [12). This idea had been used previously for other

applications as described in [13J.

We abstract the problem as follows: messages are generated

according to a Poisson point process with rate on R+=(OO).

At each step, the algorithm designates a subset of the half-line,

and messages generated in that subset are transmitted. This

transmission subset is chosen as a fuction oz the history of the

outcomes of all previous transmissions. The process is repeated

ad infinitum. The rate at which successes are produced is cailed

the "throughput" of the algorithm.

In our algorithm, the set or messages that are transmitted
I

during the nth time unit interval are those generated in a time

interval of the form [a,b). This interval will be referred to az

the "transmission interval". At each step of the algorithm, we

update three parameters, y 5n, and tn, which characterize the

state of the algorithm. These parameters are used to calculate a

and b, the endpoints of the transmission interval. Specifically,

the transmission interval is given by [a,b) = yn[yn +

F(snotn)) where F is a given function to be optimized below. F

I
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has the properties that it maps R+U{0o} x R+J{oo) into R+  and

F(s,t) < t.

The values of yo, so, and to  are initially equal

respectively to O,0O andS , and the yn'S, Sn'S and tn'S (Sntn)

are updated by the following rule, where Fn F(sntn)

If a transmission results in

idle: Yn+1'Yn + Fn

n+le-n Fn

tn+1 -tn -Fn

success: Yn+1 ---yn + Fn

n + 1'14-- Fntn+1.~ -

collision: Yn+1,L-Yn

s Sn+ 1 m i n(sn , F n )

tn+1 -Fn

As an example of how this algorithm works, consider Figure

1. Here F(oooo)=r, where Z5 is some finite constant,

F(s,CO)=s and F(s,s)=s/2 when s is finite. With the initial

conditions for y,s and t given above it is easy to verify that

for this F, the pair of parameters (s,t) will always be one of

these three forms (i.e. (0,oo), (s,co) or (s,s)). This is

Gallager's binary splitting algorithm [10).

*In Fig. 1.a, the time line is divided into unit intervals
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and observation of the process begins at a time n, such that

Sn:tn =0. The numbers written above each slot indicate the

transmission outcomes for that slot: 0 represents an idle, 1 a

successful transmission, and 22 a collision. Figs. 1.b-h show

the sample process of message generation times that gives rise to

the transmission outcome sequence of Fig. 1.a, together with the

sequence of transmission intervals selected by the algorithm. In

the nth slot, there is a success, and the algorithm moves the

transmission interval forward as shown. In the (n+l)st slot

there is a collision, and so the transmission interval is split

in half and the first half tested for messages. Because there is

an idle in slot n+2, this implies that the colliding messages

were both generated in the second half of the (n+l)st

transmission interval. Hence, in slot n+3, it is desirable to

examine only the third quarter of that interval. Since another

collision occurs, this interval is split in two and the first

half tested, yielding a success in slot n+4. Now it is known

that the second half of the transmission interval for slot n+3

contains at least one message. Using it as the transmission

interval for slot n+5 produces another success. At this time it

can be observed that all messages generated between yn and y n+6

have been successfully transmitted and all conflicts have been

resolved. For slot n+6 the algorithm selects the transmission

interval of length *f as shown.

It should be noted that the algorithm used in this example

is a special case of the algorithm described above, and the
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choice of F is sub-optimal with respect to throughput. It is not

always desirable to divide a transmission interval containing a

collision exactly in half. Also, when an interval is known to

contain at least one message generation time, there exist

conditions such that that interval is not the best choice for the

transmission interval. These issues are discussed in section

III.

Returning to our general algorithm, we make some assertions

about the message generation times. Given the outcomes of the n

past tranmissions, we know that all messages generated in [O,y n

have been successfully transmitted. To see this, note that the.

monotonic sequence of times yo, y 1 , . . . yn divides the interval

[O,y n ) into the sequence of intervals [yoyl), [YlY 2 ), . . .

Yn-,Yn ) , such that each of these intervals contains exactly 0

or I generation time. (Whenever there is a collision, y n+:yn

and the "interval" yn 'Yn+1 ) is empty.) Hence at time n, all

messages generated prior to yn must have been successfully

transmitted.

It can also be shown that, given the outcomes of the n past

transmissions, the generation processes in [0,yn ), [ynyn+tn ) and

[yn+tnO) are independent. The generation times in [ynYn+tn)

are distributed according to a Poisson process with rate A

conditioned on the facts that there is at least one generation

time in [ynyn+tn), and at least two generation times in

[ynyn+tn). The generation times in yn +t ,c) are distributed

-6-



I INV.

according to a Poisson process with rate X.

The proof of these facts is intuitively straightforward when

each possible case is considered separately. For example,

consider the case where the generation times in A=[ynyn+tn ) are

4 Poisson conditioned on A containing a conflict and the generation

times in [Ynn+t 0) are known to be Poisson. Then, if the

transmission interval [y, Yn+Fn) is found to contain a conflict,

it is easy to show that the generation times in

[Yn+1,yn+l+tn+1)=[ nyn+Fn)  are Poisson conditioned on that

interval containing a conflict. Furthermore, the generation

times in [Yn+1 +tn+11 o)=[yn+Fn',- ) are Poisson. To see this, note

that [yn +Fn = n [YnFnyn+tn) U [yn+tn po). The generation

times in [y n+t n,) were asssumed to be Poisson, and the

generation times in Cy +Fnyn+tn) can be shown to be Poisson by

the following argument. We use "k in [x,y)" as an abbreviation

for "the event that there are k generation times in the interval

[x,y)" and ">2 in [x,y)" as an abbreviation for "the event that

there are at least 2 generation times in [x,y)." Then,

Pr(k in [y n+Fnyn+tn )122 in [ynYn+F n),>2 in Cy nyn+tn )

=Pr(k in [y n+F nYn+tn ),>2 in [y nyn +F n),22 in [y ,yn+tn )

/Pr( 2 in [ynYn+Fn ),22 in [y n,Yn+tn))
:Pr(k in [yn+FnYn+tn),> 2 in [ynYn+Fn))/ Pr(22 in [ynYn+Fn))

=Pr(k in [Yn+FnYn+tn)).

Hence EYn+1+tn+1 ,oc) is the union of two disjoint intervals, each

of which contains message generation times distributed according

-7-



to independent Poisson processes.

In order to make a rigorous statement ot these assertions, a

few definitions are needed. Define: An=[ 0 ,Yn) , Bn=[ynyn+Sn),

Cn=[yn,yn+tn) , Dn=[Yn+tn'00) and Tn=[ynYn+Fn) . Let N(S) be the

number of generation times in a set S. Let

n 0 if N(Tn)-O

1 if N(Tn)=I

2 if N(Tn ) 1 2

LetO(n)=( I'* " "' n) and for convenience derine

the set of all sample processes. (This is done so that wu may

condition on the events 6(0) and 6(-1).) If we have an n-vector

of sets S=(S,. . ,Sn), for any set A, let ACa denote the

n-vector (AO S1,. . .,AOS n ) and let A(l) denote

(N(SI),. . .,N(Sn)). We may now state the following

Theorem: For any integers NA, NC, ND, choose measurable finite

subsets AniCAn for i=I,. .. , NA, CnjC Cn for J=1,. . ., NCO
j NA NC

Dn CDn for k=1,. ., ND. Then for any vectors m!Z , RGz ,

k ND

Q raZ N,

Pr (R(An )=m, i( n = i(n )  =I 0n-I )

=Pr(N1(A n )=M j6( n - 1 ) ) P r (N-(j n ) =p_, N ( B n )Z 1 ,N(Cn ),>2 )  i

Pr(NK(D n ) =.Q) {1}

for all n=0,1,, .

The proof of this theorem is given in the Appendix.
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In the next section we will show how to define F(-,-) so as

to maximize the rate of successful transmission.

III. Analysis and Optimization

The key to the analysis of the algorithm is to realize that

the process (Sngtn) is Markovian, as the probabilities of the

different outcomes of the (n+1)st transmission and the values of

(sn+1tn+I) depend only on sn and tn. This is a direct result of

the theorem stated above, since the transmission interval Tn is a

subset of Cn .

We should notice the peculiar role of the (00,0o) state.

Physicallly it corresponds to all messages generated before y

having been successfully transmitted and no information except

the a priori statistics being available about generation times

greater than yn" That state is entered every time two

transmissions result in a success without an intervening

conflict. Thus it is reachable from all other states.

Moreover, if F(-,-) is such that the probability of

successful transmission in any state (s,t) has positive lower

bound (this is always the case for the F(-,-)'s considered

below), then state (V', o) is positive recurrent along with only

countably many other states accessible from it. Thus the

-9 -



computation of stationary state probabilities and expected ,1

values, with a given degree of precision, is a straighforward

numerical matter.

We will now direct our attention to the problem of selecting

" F(-,-) to maximize the long term rate of success, i.e.,

lim inf- L-:.( r(i)), where r(i) is equal to one if the ith

transmission is successful, and zero otherwise.

Throughout the analysis that follows, the parameters Sn'tn

and Fn are taken to be normalized, that is, the units in which

they are measured are chosen such that the generation rate of the

messages is 1.

We find the optimum F(-,-) by the succesive approximation

method of solving undiscounted infinite horizon Markovian

decision theory problems [11. That is, we assume that the

process will end after N more transmissions and assign to each

state a value equal to the expected reward on the next state

transition plus the expected value of the subsequent state. That

is,

V(s't)(n+)=

max [Pr(6n=Os,t,Fn(st))v(s-F(St),tFn(st))(n)
F n(s,t)>-0O

+Pr(O M lls,t,F n(slt))('+v(tFn(s't),CO )(n))

n

n n(slt))v(min(s,F n(S,t),Fn(Stt))

- 10 -



with v(s,t)(O)=O for all s,t. As N goes to infinity the

ifs (,t) st)(N) converge to the throughput A*
and the sequence of functions FN(s,t) converge to the function

F(s,t) that achieves the throughput

The value functions v(s,t)(N) and the control functions

FN(s,t) were evaluated numerically for a finite number of points

over an appropriately bounded, discretized state space. Details

of this work are found in [15]. Several interesting conclusions

were reached.

First, the optimal F(s,t) is never greater than s, so that

all states (s,t) with sit or toO are transient. In addition,

although a threshold sT exists such that for s>sT, F(s,t)<s, if

the optimal F is used for all transmissions, we can never enter a

state where s exceeds this threshold. Hence, for all

non-transient states we have F(s,t)=s.

The optimal F( .D,.-) is 1.275, so that all states with

0 0 >t>s>1.275 are transient.

All that is required now to complete the specifications of

F(-,-) are the values of F(s,s) for O<s<1.275. These are given

in Table 1. Observe that F(s,s) is approximately s/2. Hence,

this algorithm is very close to the binary splitting algorithm

described in Section II. Indeed, the improvement in the

throughput of this algorithm over the other is negligible:

- 11 - I



0.48776 versus 0.48711. The binary splitting algorithm would be

optimal if whenever a collision occurred the collision were known

to involve exactly two messages. But because there is some

probability of more than two messages colliding, the optimal
F(s,s) is slightly less than s/2.

We note, however, that the first remark above (i.e., that

the optimal F satisfies F(s,t) s) does not hold for finite

horizon (N<cxo) problems. For these, the optimal F(s,Qw) may be

larger than s for small N. The optimal FN(s,00) is shown in

Figure 2 for N=3, 4 and 5. We note that for each N, there is a

large discontinuity in F, i.e., a threshold sT(N) such that for

S<ST(N), FN(s,0O)>s and for s>sT(N), FN(s,0o):s. The threshold

descreases with increasing N, becoming smaller than the grid size

(.01) of the discretized state space for N>5. No similar

behavior was observed for F(s,t), t<O, probably because the

numerical optimization did not consider (transient) states in the

region where the phenomenon would occur.

The existence of this discontinuity in F is suprising and

the reason for it is worth discussing. In Figure 3 we see the

value functions at N=3 plotted as a function of F for three

states in the neighborhood of the threshold. Each of these

functions have two local maxima, one at F=s and one for F>s. For

the state (.06,0a) the maximum occurs at F:.3. For (.07Pc>) the

two maxima are equal. For (.08,o), the maximum is at F=.08.

Hence we have a threshhold at s=.07.

-12-



As mentioned in the introduction, a similar algorithm has

been presented independently by Tsybakov and Mikhailov [9].

Their version is somewhat more restrictive than ours, as they
. impose the condition that F(s,Oc)=s. That is, when an interval

is known to contain at least one generation time, that interval

is chosen as the next transmission interval. Hence, the only

recurrent states have the form (s,s), (s,-o) and (oca), exactly

as in Gallager's binary splitting algorithm. Thus, only

F(00,:): ' and F(s,s) for sV' need to be determined. They do

not actually find the optimal F, but claim that if

F(oD,oo):1.275, F(1.275,1.275)z.584 and F(s,s)=.485s for all

s .584, then the throughput is .48778. Using the same values for

F(-,-), we calculate a throughput of .48773. This discrepancy is

unexplained, but since the results differ only in the fifth

decimal place, is not very important.

Note that the optimal algorithm in the class we consider

appears to lie in the subclass considered in [9].

IV. Real Time Implementation

In the idealized version of Section III it was assumed that

all messages were generated before the algorithm started. In

practice, generations and transmissions would take place

concurrently. Hence, the original algorithm is not causal, in

the sense that it sometimes specifies that messages should be

I- 13-



transmitted before having been generated. This can be remedied

by defining

tn
Fn (s n t nYn)=min[F(s n~tn ),n-Y n 12)

The quantity n-y that appears above we call the lag of the

algorithm. That is, the lag is length of time during which

messages have already been generated but not yet successfully

transmitted.

To analyze real time performances, like message delay, one

must study the Markov process (Sntnn as the process (sntn)
is non ~

is no longer Markovian. This appears to be extremely complicated
when the boundary condition {2} is imposed. However, some simple

statements can be made regarding the behavior of the lag n-yn as

a function of

Let k(m) denote the time when (st)=(c,)) for the nth time

(that is, k(m)=min{kjk>k(m-1), (sk,tk)=(-iC )}). Note that if

the probability of success at a step has a positive lower bound,

the random variable k(m)-k(m-1) has a geometric tail

distribution, and E[k(m)-k(m-1)] is finite. Moreover, the

"drifts" Yk(m)-Yk(m_1) are independent. By a renewal argument,

we can show

E( Yk(m+1)-Yk(m))= _. E(k(m+1)-k(m))

A

-- 1-- -



where is the throughput of the algorithm. This follows

since the throughput is the expected number of message

generations in Yk(m+1)-Yk(m) divided by the expected number of

trials E(k(m+1)-k(m)). This holds for both the unconstrained

case, where A*=.4877, and the constrained case.

Now, the expected difference in the lag at times Yk(m+1) and

Yk(m) is

E[k(m+1)-k(m)) - E[Yk(m+l )- Yk (m ) ]=(- A*/> )E[k(m+1)-k(m)].

Hence, in the idealized version, as long as \<.4877, the

expected changes in lag are negative, and the algorithm will

repeatedly select transmission intervals [y,Yn+Fn) where

Y n+Fn>n.

When (21 holds, it is easy to see that A*:min(A,.4877).

Clearly )*<A. If s<*<A, then the expected change in lag from

Yk(m) to Yk(m+1) is positive and the lag increases without bound

as n goes to infinity. But whenever the lag is greater than or

equal to F F(oa,oc), the choice of Fn is the same as for the

unconstrained algorithm, and the throughput is .4877. Hence,

when A >.4877, )*=.4877 and the lag goes to infinity.

When S.4877, and the expected change in lag is 0.

Furthermore, from the above observations (i.e., the facts that

- 15 -



k(m)-k(m-1) has a geometric tail distribution and the expected

change in lag is negative given that the lag exceeds Z) and the

results in Hajek [16], we can show that the probability that the

lag is greater than x has an upper bound exponentially decreasing

with x.

-It is reassuring to note that, even when the generation rate

of the messages exceeds the throughput of the algorithm, it will

continue to transmit successfully at its maximum throughput.

* V. The General FCFS Algorithm

We note that the algorithm is first-come first-served

(FCFS), although it is not the most general FCFS algorithm. The

results of the Section III suggest some conjectures with regard

to the most general FCFS algorithm, which we describe in this

section.

For an algorithm to be FCFS, it must satisfy one of two

conditions. Either it does not allow a message to be transmitted

when other messages with earlier generation times must wait, or

if it does, the probability of successful transmission must be

zero.

Suppose that we are using a FCFS algorithm to resolve

conflicts and that all messages with generation times prior to Yn

have been successfully transmitted. We will call the set of

-16-



messages generated after y the "queue". The algorithm selects

some subset of the queue to transmit in the next slot, which we

call the transmission set. Then the most general form of a

transmission set which satisfies the first condition will clearly

be the set of all messages generated in an interval of the form

[(YnYn Fn] .

Now let us consider transmission sets satisfying the second

condition. Suppose we have a subset of the queue, S1, which is

known to contain at least one message, but it is not known

whether it contains more. Consider the transmission set which is

the union of S1 and some subset of the queue, S2. If the subset

of S2 which is disjoint from SI is not empty, then a conflict

occurs and the second condition holds. If the subset of S2 which

is disjoint from SI is empty, then S1 must be the set of messages

generated in an interval of the form [ ynn+F n for the first

condition to hold. Assume that the algorithm never chooses a

transmission set that is known to contain a conflict, we cannot

know in advance if the subset of S2 disjoint from S1  is

non-empty. Hence, S 1 must be the set of messages generated in an

interval of the form [ynyn+Fn I to insure that one of the two

conditions hold.

The general FCFS algorithm must use transmission sets

satisfying one of the two conditions described above. It differs t

from the basic algorithm of section II only by permitting the use

of transmission sets satisfying the second condition. But when

- 17 -



we consider that, for our algorithm the optimal Fn (S,0) is s;

that is, when an interval [ynyn+Fn) is known to contain at least

one generation time, the optimal transmission interval is just

y Yn+Fn), it seems unlikely that using a more general

transmission set of the form [ynyn+Fn) ) S2 would offer any

improvement. We cannot prove this conjecture, however since

allowing this type of transmission set makes it no longer

possible to characterize the algorithm as a Markov process with

just two (or even a finite number of) state variables.

While the algorithm described in section II is not the most

general FCFS, it is the most general algorithm having the

property that sources attempt to transmit messages in the order

that they were generated.

VI. Unequal Observation Times

In fact many multiaccess communication systems differ from

the model introduced in section I in that the times necessary to

learn the transmission outcomes depend on the outcomes. We

denote by tO,t I and t2 respectively the times necessary to learn

that the channel was idle, or that a success or a collision

occured.

For example carrier sense radio systems [2] can detect idles

quickly (no carrier present), while they rely on error detecting

codes and the transmissions of acknowledgements to distinguish

- 18 -



I
* between successes and collisions, thus t0<<t1 =t2. In addition,

some cable broadcast systems [3] have a listen-while-transmit

feature that allows the quick abortion of transmissions resulting

in collisions, thus to=t 2 <<tl.

The general algorithm outlined in section II and the remarks

about its Markovian nature remain valid, but the reward function

r(-) and the maximization in section III are not appropriate. A

better measure of quality is to minimize the expected time to

send a message, i.e.,

N 3i m ' - ;V_7 tji I(On =j)

N-tPo i=1 jO
N

Nt
Mrt I(Oi:O) + 1(0i=2)

=t1+t 2 im i:-:1 2
N N

Nr(i)

where I(-) denotes the indicator function.

The limit of the expected value in the right hand side can

be interpreted as the expected time overhead per message, and

depends only on to/t 2 for a given F(-,-). It will be denoted by

c and should be minimized over F(-,-) for a given to/t 2.

The optimization of the general algorithm under this

formulation for a large number of values of to/t 2 is time

- 19 -



consuming. It is greatly simplified if we consider only those

F(-,-) such that F(s,t)<s. The only recurrent states are then of

the form (s,s), or (s,oo), see above. Note that the optimal F

found in Section III belonged to the restricted class. We will

now show how to proceed with the optimization.

By a renewal argument

b t

c a= i=1 2
b

E( 7r(i))
i=I

where in the right hand side one assumes that (s1 ,t1 )(oo,O)) and

b is the time of first return to (oao).

Let us now assume that we guess a value 8 for the minimum of

c over all restricted F(-,-), and consider the function

b t
v(s,t)= E[ Y- 1(0i=0)+I(o =2)-8r(i)1(s 1 , t j) = ( s ,t ) ]

i=1I

Because sn+1 is either equal to 00 or is less than sn,

V(s,s) and V(s,00) can be written as convex combinations of

V(s',s') and V(s',0o), st<min(s,F(OO,ao)). It is straightforward

(13) to minimize V(s,s) and Vs,o) recursively for increasing s,

and to obtain the minimum value of V(oo,,o).

If the minimum value is 0, e was guessed correctly and is

the minimum value of c. If the minimum value of V(oc,*) is
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positive (negative), 8 was guessed too small (large), and the

minimization of V(-) must be repeated with a new 8.

The resulting minimum value of c is shown in Figure 4, as a

function of t0/t 2. It is almost equal to the expected time

overhead per message for the binary splitting algorithm, with

only F(d(. ,.x.J) is optimized.

VII. Noisy Feedback

The previous algorithm assumed that the transmission

outcomes were perfectly observed by all sources. This assumption

is critical. One verifies easily that if an idle at time n is

falsely observed as a collision then the algorithm will deadlock.

The algorithm will behave as if there is a conflict in the

interval [ynyn+tn) and when the next transmission interval

[ynYn+Fn) produces an idle, the algorithm will proceed as if

there was a conflict in the interval [yn+FnYn+tn). Hence, Yn+tn

will remain constant while tn goes to zero.

D. Ryter [17] has recently examined the problem of noisy

feedback, where the noise can cause idles or successes to be

observed as collisions. He showed that the binary splitting

algorithm [103 outlined in section II can be modified to work

properly. The essential modification is the introduction of a

threshold value. If tn is smaller than the threshold, then the

algorithm becomes non-stationary, in the sense that it alternates
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between using F(s,s)=s and F(s,s)=s/2, thus first seeking

confirmation that a collision really occured, then trying to

resolve it. The analysis and optimization are too long to be

reported here. The main result is that with the proper choice of

parameters, the throughput behaves roughly like .487-p, where p

is the probability of false collision indication.

VIII. Final Comments

The main results ot this paper are the description and

analsyis of an access algorithm for the channel model described

in Section I, with infinitely many sources. Its throughput is

.4877, the largest known to this day. Much research has been

done to determine upper bounds on the possible throughput [18),

[19], [20], [21]. Tsybakov and Mikhailov [22] have recently

shown that no algorithm can have a throughput higher than 0.5874,

and it is widely believed that the best achievable throughput is

in the neighborhood of .5. However, throughputs arbitrarily

close to I are possible, at the expense of high average message

delay, when the number of sources is finite.

We have also shown how the algorithm can be modified in the

cases of variable transmission times and noisy feedback. Upper

bounds on the throughput for the case of variable transmission

times are given by Humblet in [23].

Finally, it should be pointed out that although the
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I algorithm presented here uses the message generation times to

2 specify when they should be transmitted, this is not necessary.

Another algorithm can be described, with the same throughput and

expected time overhead per message, where sources generate random

numbers to determine if they should transmit. Of course, real

time properties, like first-generated first-transmitted will not

be conserved.
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Appendix

Def ine: A n=[OYn , B n=[y nYn+Sn) C n[y nYn+tn , D n=[Y n+t nPO)

and Tn =[yn Yn+Fn Let N(S) be the number of generation times in

a set S. Let

0 if N(T )=On n

1 if N(Tn )=1

2 if N(T )>2

Let 0(n):(&1 , .  .,On ) and for convenience define b(O)=d-I):,

the set of all sample processes. (This is done so that we may

condition on the events 0(0) and 6(-1).) If we have an n-vector

of sets a=(S,. . .,Sn, for any set A, let A,1S denote the

n-vector (Af1 S,. . .,A/A Sn) and let (5) denote

(N(S1 ),. . . N(Sn)). Then:

Theorem: For any integers NA, NC, ND, choose measurable finite

subsets Ani"A n  for i=I,. . ., NA, Cnje Cn for J=1,. .. NC,
ni i 3NA NC

D n D for k=1,. ND. Then for any vectors WZ A2Z ,k n

ND

Pr(N(A n ) =m,. Q(Cn )=,(12 n ) = O( n- 1))

=Pr(N(A )=m lO(n-1 MPr(N(Cn ) :, IN ( B n )> l ,N(C n _2 )nn nn n)

Pr(ND n )=a )  {MI
n

for all n=O,1, ..

Proof : For n=O, AO=:, Bn=C n=[O,fO) and D n9, and so (1) is
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trivially true.

Now we proceed by induction. Suppose that (11 holds for n.

We will show that ill holds for n+1. For any N A, NC, N D we

choose finite measurable subsets A (l CA *~ for i~, ,AP

C (n+1)CCn.l for j=1,- .,NC, D~~)cnlfor k=l,. . . ,ND-
J k

JNote that since & is a function of N(T n) and T cC n, (ll implies Ln nn

that Pr(& n O,(n-l))=Pr(6 n N(B n) 1,N(C n ) ec,*

- f ~Pr(.K(A V m B(Q C ' ):.K U(D=gA(
n1n+1 n+1

nP( 1N(Bn ) lN(Cn )22) fA.1}

nnn n n+

Cn~ andn~l n+i are disjoint, [A.1) is equal to

P ( (An+l AA n )=M R(n+l 0C n ) I.-f
/Pr(UnI'N(Bn )21 ,N(Cn)>2)

X-/--- -- Pr(~(A n+ ln)=&(nl))P(Rfln~ l n 1M-

/P(ncNB ) AP( C )) '(B)lN( >2
R(. n~l n n+1 nn nn

Pli(nlnPr(r-nNB I (ki C )>-2)

n~l nn+1 n

/Pr(C&n ,N(B~ n)>'N( Cn )22) {A.2}



where the second step follows by the induction hypothesis, and

the last step follows by elementary probability theory and the

fact that for a Poisson process, arrivals in disjoint sets are

independent. Now we evaluate equation {A.2} for two cases: one

where C n=O or 1 and one where n =2.

If &=0: or 1, {A.2} is equal to:

n
;E*:L Pr(D(An111An): (n-1))Pr( (CI )AD -

-n+ l n n n1 n"Pr((n+1 lDn): )Pr(i(An+1lCn):m-11 (Cn+1)Cn)=,

P(Nn+Cn):,N(Bn\Tn) 1-6 n ,N(Cn \Tn)>2 -n)

/Pr B 1N( \T N(C \Tn)2-Cn

n n n-Cn nn n

:2'z Pr(N(An+1 n):, -)P((n+1ADn):

"P((n+lD)Dn)=--)Pr(V(An+1 Cn)=M-lh n )

"Pr(N(.qn+1 )Cn) =P,N(B n\T n)>-6nN( Cn\T n )>2-6 n

"Pr(.K(pn+16Cn):4)/ [Pr(C-(n-1I))Pr( n )Pr(N(B n\Tn)21-6n,

N(C n\T n )>24 n) [A.3)

Here we have made use of the facts that for 6 =0 or 1, TCAn,

Bn\TnCCn+ 1 , Cn\TnCCni1 and, since An+l, Bn+I and Cn+I are

disjoint, we may use the Poisson assumption to decouple the

probabilities as above.

Now if =0 , B \T =B and C \T =Cn. It is always truen' n n n+1 n n n+1*
that N(Bn\Tn )>0. Also, if & n=1, C n\Tn=Bn+1 , and since

C N(Cn+ 1 )>2 holds with probability one. So the

event (N(Bn\Tn)1-1(n, N(Cn\Tn)22_/n} is equal to {N(Bn+1)>1,
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N(C 22).Hence {A.3} equals

Pr(An+( n ~n+ n)~

* *Pr(N(P2n+i )=Q)

which is the desired result.

*if 6 n=2 , the event It tN(B ).~1, N(C n)>2} is equal to

{N(B )>1, N(T n)22}, since TnCC n. If F - n then T C.B, and

BnlC~=n so this event is equal to {N(T~ )> 2) or {( >1

N(Cni )> 21. If F n >s n, B n+i B n' Cnil=T n, and this event is still

equal to {N(B n+l)> l, N(C n+i )>2}. Hence, IA.2} is equal to:

~K.Pr(li(An+il A n)=M:(l(n-1))Pr(p(_Q if(Dn) =--0

Pr(N(D1CAD )=.g-4)Pr(N(A 1ACmf)

7 r.9(. n+10C n )=,N(B~ n) 1 ,N(C n.l)> 2)

*Pr(R(.2n()C n )=)/Pr(N( Bn+i )>1 iN(Cn+l)> 2)

2.PrKAn1A n)=mh,&(-1)r(KAn1C n)=M-M) P r(C- n)

/Pr(W(n-1))Pr((% )

/Pr(N(B n+l)> 1,N(C n+i ) 2)

*P(O =Q4

The last steps here follow by noting that the appropriate groups

of subsets are disjoint and applying the Poisson assumption.

Hence we have shown that ()holds for n+e1. Q.E.D.



s F(s,s) s F(s,s) s F(s,s)

0.01 0.005 0.44 0.214 0.87 0.410
0.02 0.010 0.45 0.218 0.88 0.415
0.03 0.015 0.46 0.223 0.89 0.419
0.04 0.020 0.47 0.228 0.90 0.423
0.05 0.025 0.48 0.232 0.91 0.428
0.06 0.030 0.49 0.237 0.92 0.432
0.07 0.035 0.50 0.242 0.93 0.437
0.08 0.040 0.51 0.246 0.94 0.441
0.09 0.045 0.52 0.251 0.95 0.445
0.10 0.050 0.53 0.256 0.96 0.450
0.11 0.055 0.54 0.260 0.97 0.454
0.12 0.060 0.55 0.265 0.98 0.458

0.13 0.064 0.56 0.270 0.99 0.463
0.14 0.069 0.57 0.274 1.00 0.467
0.15 0.074 0.58 0.279 1.01 0.471
0.16 0.079 0.59 0.284 1.02 0.476
0.17 0.084 0.60 0.288 1.03 0.480
0.18 0.089 0.61 0.293 1.04 0.484
0.19 0.094 0.62 0.297 1.05 0.489
0.20 0.099 0.63 0.302 1.06 0.493
0.21 0.104 0.64 0.307 1.07 0.497
0.22 0.108 0.65 0.311 1.08 0.501
0.23 0.113 0.66 0.316 1.09 0.506
0.24 0.118 0.67 0.320 1.10 0.510
0.25 0.123 0.68 0.325 1.11 0.514
0.26 0.128 0.69 0.329 1.12 0.519
0.27 0.133 0.70 0.334 1.13 0.523
0.28 0.137 0.71 0.338 1.14 0.527
0.29 0.142 0.72 0.343 1.15 0.531
0.30 0.147 0.73 0.347 1.16 0.536
0.31 0.152 0.74 0.352 1.17 0.540
0.32 0.157 0.75 0.357 1.18 0.544
0.33 0.161 0.76 0.361 1.19 0.548
0.34 0.166 0.77 0.365 1.20 0.552
0.35 0.171 0.78 0.370 1.21 0.557
0.36 0.176 0.79 0.374 1.22 0.561
0.37 0.181 0.80 0.379 1.23 0.565
0.38 0.185 0.81 0.383 1.24 0.569
0.39 0.190 0.82 0.388 1.25 0.573
0.40 0.195 0.83 0.392 1.26 0.578
0.41 0.199 0.84 0.397 1.27 0.582
0.42 0.204 0.85 0.401 1.28 0.586
0.43 0.209 0.86 0.406 1.29 0.590

Table 1
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