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II. Statement of Research Objectives
The research objectives, as stated in the amended contract, are:
QL (a) Investigate real language extensions
; (b) Develop control design methodology
)~ (c) Develop asynchronous coding

(d) Study the representation of states (in asynchronous hybrid systems)
o (e} Formulate improved controller design procedures for synchronous

hybrid systems

{
¥
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III, Status of the Research Effort

The objectives of this phase of the proposed research on discrete
control of continuous processes have been substantially achieved., This
annual technical status report is divided into two unequal segments, deal-
ing with research at M.I.T. and at Northeastern University. The second
and shorter segments constitute the final report of the Northeastern Uni-
versity Subcontract, under the direction of Professor Kaliski; however,

only 4 weeks' effort was budgeted due to his sabbatical leave of absence.

A, Research at M.I.T,

1. Coder Synthesis for Synchronous Svstems

We have already motivated our study of coders in the context of
digital control systems; in fact, in many cases the entire system in the
feedback loop may be viewed as a coder. To recapitulate, we viewed a

coder simply as a map
*
G: RP + W
%
where RP  is the free monoid generated by rP (p-dimensional real Euclidean
Space) and W is an alphabet (a finite set). Some examples of coders are

(memoryless) A/D convertors (or more generally quantizers) and delta modu-

lators. In a more theoretical view we may wish to model our digital con-

troller as a quantizer followed by a transducer (such as a finite-state

transducer or a pushdown transducer, etc.) with the following implications:

That all coders may be decomposed into the cascade connection of a memory-
l2ss quantizer followd by a transducer, and that the most general coder
may be represented as a quantizer in cascade with a Turing transducer.

Simple counter-examples show, however, that not all coders may be realized

this way, Our research has been directed toward establishing general
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canonical realizations for coders.

We have identified three basic approaches for the development of the
realization theory which we loosely term the analytic, the algebraic and
the linguistic (or syntatic) approaches. The former approach involves
obtaining physical realizability constraints for Kaliski's general coder
decomposition theorem [1]; this viewpoint is currently being pursued
although no results have yet been obtained. We summarize here the results
of the last two approaches. Here we have begun to develop a hierarchy of
coders of increasing complexity, motivated by the already existing hierarchy
of automata.

The success of the algebraic approach hinges on the definition of
appropriate right- congruence relations on Rp*. We have defined a gen-
eralized Nerode equivalence relation Ee for C which may have finite index

even though the minimal realization of C is not finite-state. The relation

= . . - . - p*
=y is defined as follows: u SV iff Cu,e(Y) Cv,e(Y) for all yeR" ,

where the shift-conjugate function Cu o Rp* + W is defined below. 1
- 8 P* ..
Cha®™ = Ct(y) yeR® with 0 < 2(y) < 2(8)
k4
u P* .
Cu,e(Y) = Ct (¥) yeR® with 2(y) > 2(8)

*
0erRP is a parameter. Then a coder is defined to be shift-finitary if the

minimum length eeRp* for which =, has finite index is one (with the impli-
g 0

cation such that a 6 exists). Special cases are as follows:

(1) The index of 56 is 1; C is said to be shift unitary

(ii) Ee has finite index and the minimum length of 8 is zero; C

is said to be finitary
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: (iii) Ee has unit index and the minimum length of 6 is zero; C is

said to be unitary,
The most general coder in this hierarchy, the shift-finitary coder, has a
minimal hybrid state-space RnxQ, where n = 2(8) and Q is a finite set. The
structure of the coder is shown in Figure 1, In the case of a shift-unitary
coder, the finite-automaton in Figure 1 has only one state, Clearly, the

shift-register of Figure 1 is not present in the realization of unitary and

finitary coders; these coders are finite-state realizable, and may be

decomposed into the cascade connection of a quantizer followed by a finite-

state transducer,
In the linguistic or syntatic approach we view the coder as an ac-
*
ceptor of a real language L, which is a subset of RP . Here we take W to

be the two element set {0,1}, and C accepts L as follows:

Cly) = { 1 if yelL

0 otherwise

The most general grammars that we have studied for generating real languages
are the real context-free grammars; these are a generalization of the real
context-free grammars of Lemone [2]. We have generalized the notion of a
pushdown automaton to accept real-valued signals; this new "machine" has

a hybrid control module (state-space leRn for Q1 an alphabet) and a stack

with a hybrid stack set Q xRp, with an alphabet., Since context-free
2 2

languages are nondeterministic in general, this acceptor is also non-

deterministic,

Since the continuous-state part of this pushdown coder is infinite

-
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Figure 1. :

Realization of a shift-unitary coder. L is a multiplexor,
MT is a finite automaton and q R0~ 7 is a quantizer.
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dimensional, the coder may be considered unrealizable, unless of course an
equivalent finite-dimensional realization can be found. In principle this
can always be done (according to Kaliski's general coder realization theorem
mentioned above), but in practice this may only be feasible for special
examples, A subset of the real context-free languages are the ''bounded real
embedding " (BRE) context-free languages, where the acceptors for these
languages have a finite stack set. These languages may thus be viewed as
the largest general class of real context-free languages which represent
realizable coders (although for the purposes of coding we should restrict
ourselves to the deterministic subset of these languages),

The right-linear real languages* are a proper subset of the deter-
ministic BRE context-free real languages. Here there is no stack at all
in the acceptor realization; the coder is finite dimensional (with a state-
space Qan, Q an alphabet; see Figure 2). An acceptor of a right-linear
real language is only finite-state realizable if the grammar is of order
one (the order of a grammar was defined by Lemone [2]). In fact the coders
which accept languages generated by first order grammars are precisely those
coders referred to above which may always be decomposed into the cascade
connection of a memoryless quantizer and an automaton.

The syntactic approach to coder synthesis has clearly been illuminat-

*
Productions of a right-linear real grammar take the form
A -+ wB wed

or A->B

where A, B are nonterminals, w is a string of terminal symbols of length

n
n, and $c R is a replacement set.

P SR

Tl




w
| Wk

i B
:;, -6a-
a
|
t"q
o
|
€R p = -
. Yk P S Pl PR 2!
: I' I' '_l
:l' R4 jt-oo-
:. N
¥ Ky
L L = Kl
t ~— /
.-..c( N
, kz
IL —>1 %2
;. |
+i .
& - ' _
. ™~
kr
- | o
i
!
Figure 2.
Structure of a Coder Specified by a Right Linear
‘ Real Language
|

e{o,1}




g o

%.

_7-

ing. We note that our extension from finitary to shift-finitary by the
addition of a shift-register appears natural in the context of right-linear
real languages (any language describing a shift-finitary acceptor is right-
linear). It would be premature though to say that the natural structure

of coders are those corresponding to acceptors. Further developments are
needed along the lines of the analytic approach mentioned above and an

extension in the syntatic approach to more general phrase-structure grammars.

2. Discrete Control of Synchronous Systems

The design of a digital controller for a continuous-state system
usually involves the design of three subsystems: a coder, a control algo-
rithm (e.g., to reside in a digital computer) and a decoder. If the coder
and decoder are allowed to be dynamic systems and the control algorithm
is modelled as an automaton, then it is clear that the digital controller
may be viewed as a coder connected directly to a decoder. The structure
theory we have developed for coders, some of which may be extended to
decoders, then provides general models for the controller. An interest-
ing viewpoint yet to be fully explored is to view the controller as a
translator T of real-valued sequences into real-valued sequences
(T: Rp* - Rm*) using syntax-directed schemas [3] to describe T (these
consist of pairs of real grammars, one called an input-grammar and the
other called the output grammar).

In the case where the coder and decoder are constrained to be finitary,
the entire controller may be viewed as a finitary coder C: Rp* -+ W where
W is a finite subset of Rm, the plant input set. A finitary controller

may thus always be decomposed into the cascade connection of a memoryless

v

Ve
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quantizing coder, a finite-state transducer and a memoryless decoder, the
latter being simply a realization of a mapping from the finite output alpha-
bet of the transducer to W. All of the procedures discussed in the literature
for designing finite-state controllers concentrate on designing the trans-
ducer; the design of the coder and decoder are omitted. Also, since these
schemes involve either approximation or learning via ad hoc adaptive algo-

rithms, the theories provide no performance guarantees.

We have developed an algorithm for designing finitary coders for a
very general class of nonlinear deterministic discrete-time systems: those
that are piecewise continuous. The algorithm provides an effective procedure
for computing the coder, transducer and decoder for the following problem
formulation: Given the plant F, find a finitary feedback controller that
will drive the plant state, starting initially in Xo, to the target set Z
in a finite number of steps. This is the finite-horizon problem; in the
infinite horizon problem, the plant state is required to remain in Z for
an infinite period of time once it has reached Z. In both of these cases
the regulator initial state is fixed and depends on Xo. This has been
termed the synchronous control problem by Gatto and Guardabassi {4] and the
weak regulator problem by Sontag [S5].

The controller is designed in two steps: First an aggregate finitary
model of the plant is obtained, and second, a finitary controller is designed
for this aggregate model. The aggregate model has the following properties:

(i) it is a nondeterministic finite-state system

(ii) the states of the model are in one-to-one correspondence with

the blocks of a finite partition P of the plant state space X

s NPT
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and (iii) the set of possible states that the model may be in at any time
L k, viewed as a subset of X, always contains the actual plant
state at time k.,
It is the task of the designer to choose the partition P, Once this par-
. tition is chosen, the aggregate model may be completely specified, At
this stage in the design, the only requirement on the choice of P is that
e the aggregated sets Xo and Z--specified new in terms of blocks of P--still
i;ﬁ provide an acceptable aggregate control problem formulation (e.g P is
well-suited to the approximation of X0 and 7).

‘N The solution of the aggregate control problem requires the design of

i a finite-state controller for a nondeterministic finite-state plant. The
problem formulation now appears to have similarities with the usual "un-

i known but bounded" stochastic control problems (see Sira Ramirez [6]) and

i the control problems for deterministic finite automata (Gatto and Guardabassi
{4]), although neither of the solutions to these problems are directly
applicable.

' Since the states of the controller may be viewed as state-estimates

) of the aggregate model, the specification of P also provides us directly

with the coder (since there are only finitely many different state

! estimates), The remainder of the controller is designed in three stages

| (for the infinite horizon problem). The first part involves the computation
of all those state-estimates contained within Z for which there exist
control inputs, guaranteeing that future state estimates have the same

property. Specification of these admissable control inputs defines a P

finite partition on the plant input space, once again because the set of {3

f
K
H
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all possible state-estimates is finite, and this partition partially
h specifies the decoder. The second part involves sequentially identifying
all those state estimates that are controllable in finite time to the
estimates computed already, until a state-estimate is obtained that contains
| - X0° Again, the admissable control inputs define a finite partition on
the plant input space. The design is completed by selecting from each of
the blocks of the input space partition (obtained in the first two parts
1‘4 of the design procedure) a representative input. This completes the design
of the decoder.

The straightforward application of this algorithm has the following
potential disadvantages:

(i) A controller may not exist for a particular partition P

(ii) If P has a large number of blocks, it may be impractical to

compute the controller because it will have too many states, ]

To keep the design feasible, the number of blocks in P must be kept as
small as possible., However with coarser partitions it becomes unlikely
that a controller may be found, To overcome this dilemma, we have develon-
ed a hierarchical design procedure, wherein the controller is computed in
stages. A two stage design proceeds as follows (the extension to an n-
stage design is obvious). A coarse partition P1 is chosen, together with

a ""large'" target set Z, D Z, and a controller. is designed for F, Xo and

1
Then, a refinement of P

it T S

Zl’ based on P ; called P,, is chosen, and a

1° 1 2
controller is designed for F, Zl’ and 7. Note that if at either stage

no controller can be found, it becomes necessary to try to finer parti-

f i e

tions and/or largertarget sets, Design experience with actual systems
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will clarify what choice may be appropriate. At each stage in the hierar-
chical design procedure, the controller with the fewest* states is sought
by choosing the coarsest partition possible. At each stage then we are
dealing with a nondeterministic automaton as an aggregate model of the
plant, which has a state set which is not too large to make the controller
design impractical. Details of these results appear in Appendix H.

3. Analysis of Asynchronous Feedback Systems

The most important phenomenon encountered in asynchronous hybrid
systems which does not occur in synchronous systems is sliding mode
behavior--"infinitely fast' switching which may occur along a discon-
tinuity in the state transition function and which results in a trajectory
shape which could not occur in the absence of the discontinuity. An-
other phenomenon is that the class of systems which admit finite-
dimensional realizations is less pervasive in practice than for synchronous
systems.

The problem of representing sliding mode behavior in asynchronous
hybrid systems arose even in the restricted context of diced systems
(Appendix C) in the form of a condition that the sequence of switching
times for such a system be "asymptotic''--i.e. have an infinite limit.

We have constructed a counter-example of a diced system which is not
asymptotic (included in the continuation proposal for this research).
This shows that there are cases where sliding mode behavior may achieve
exact equilibrium in finite time; however there are other cases of slid-
ing where this does not occur. In such non-asymptotic cases, the use

of switching-times as hybrid state variables is not sufficient to fully

characterize the behavior of a diced system.

[ e
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This paradox implies that care must be taken in developing a
realization theory for asynchronous (continuous-time) hybrid systems.
One possibility is to consider a class of realization which enforces
a separation of control and that flow at inputs and outputs and to
place conditions on the maximum switching rate of control signals.

Many problems are known to arise when both control and dtat are combined
on a single channel (e.g. Witsenhausen's counterexample in stochastic
control). Some examples of hybrid systems which arise naturally in
robotics are given in Appendix F.

An important class of applications which can be represented as
asynchronous hybrid systems arise in multitasking systems where the
tasks involve interaction with continuous processes (timing processes).
It has been shown (Appendices D,E) that under certain conditiomns such
systems admit a synchronous hybrid representation. These conditions
place a limit on the number of tasks (to ensure finite-dimensionality),
on the minimum delay in switching tasks, and on the degree of continuity
of the continuous processes. An example of representing a temperature-

control system in this manner has been provided in Appendix E.
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B. Research at Northeastern University

Much of our work is based upon the key decomposition result reported
in [1]. Specifically we cite the following Theorem: Let C: R* - [0,1]
be an arbitrary coder. Then for any n > 1, C may be decomposed as
C= C2-C1 where * is functional composition. Cy: R* + R" and C,: R® - (o,1].
Furtheg C1 is realizable by a finite-dimensional discrete-time system of

dimension n. Although such a result is primarily only of theoretical

interest it serves as a starting point for relating properties of C1 and

C2 to those of C and conversely. :
1. Well-Behaved Coders from the Input/Output Viewpoint ;
The research undertaken here sought to identify and, if possible, A
make rigorous, the notion of a physically well-behaved coder. This notion
is an intuitive one, e.g. the coder defined by
Ca(ul"'uk) ={0 if up + .. +uk_>__0 or if u is null
1 otherwise i

E
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is intuitively well-behaved, but the coder CB defined by

CB(ul...uk) = 0 u = )\, the null string
0 Ujescwy is a palindrome
1 otherwise

is not. Clearly some implicit notion of continuity is involved here,
although we must be careful in using the term ''continuity', as the range
of the coder is discrete. We developed several potential definitions of
"well-behaved" during this research period that embody these concepts.
Further research should try to relate these various definitions to one
another and to the more formal algebraic/topological approaches already

explored. We give some of these definitions below

Definition 1: C is well-behaved at ul...ukif 3 ¢ > 0, dependent upon
k

Upoonlys such that if Viee-Vy € R* obeys iZJui-vi| < € then C(ul...uk) =
C(vl...vk).

Definition 2: C is strongly well-behaved of order k > 1 at Upenouy if
3 e

3 *
L ; 0, dependent upon both Upen .ty and L, such that if Vie-sVy € R

obeys izl lu;-v;| < g and Wye..W, € R* is arbitrary, p < L then

C(ul...uk wl...wp)
at Uperaly if it is strongly well-behaved of order L at u

L>1and c* = min {g,} > 0O,

C(V1"’Vk"1"'wp)' We say C is strongly well-behaved

10 Y for all

Note that this latter concept embodies the notion that '"close together
strings'" (within €*) of the same length map to the same values regardless
of what is appended onto their ends. The values, of course, depend upon

what is appended. If C is strongly well-behaved at IRRRL then the

'rll"l_‘ 4‘4'
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€*.neighborhood of Ujeselty consists of length k strings that are Nerode
equivalent to Ujooally (as well as other strings, possibly, of length dif-
ferent from k). Interpreting, correctly, 'well-behaved" (Def. 1) as strong-
ly well-behaved of order 0, we see that each of these properties are
successively more stringent,

We posit two other difenitions that follow a somewhat different tack.

Definition 3: C is causally well-behaved of order ¢ > 0 if whenever
1% in R* obeys |w | + ... + wpl <€

then C(ul...ukl,wl...wp) = C(vl...vk2 wl...wp). If the above is true for

any € > 0 then we say that C is causally well-behaved,

Note that all of the above definitions are "independent' of the
decomposition maps C1 and C2 discussed earlier. They are suggested to
indicate the flavor of the thinking undertaken here, and must be viewed as
"first efforts',

2. Well-Behaved Coders from the Decomposition Viewpoint

A second area of research involved the problem of "behavior' attacked
via the decomposition maps C1 and CZ' The one-dimensional case (n=1), being
general, was studied. Appendix B to this report details a theory of ''good
behavior" for the map C, oriented about the constraints of boundedness and
Lipschitz continuity. We thus do not discuss the details of this here,

Work during our first contract year sought to characterize intuitively
well-posed "threshold" maps Cz, and such work was reported last year. Some
effort was made during the current contract year to topologize {0,1}* so

as to generalize the bounded uniform Lipschitz constraint to C directly--

its preliminary nature does not justify its inclusion here.




b

i el

DAL AL A s e I G, Lt
-~

St

-16-

3. "Similarity" of Coders and Related Notions

The notion of similarity of coders Ca and C, is an important one. As

8
seen elsewhere in this report many synthesis results for finitary
and other types of coders have been developed.
Knowing that a given coder is "similar" to one of these 'canonical' forms
is useful, for, within the allowable tolerance of "practical realizations"
it may be sufficient to realize the similar, canonical coder in lien of
the given one. Furthermore placing a metric on coders may allow us to
appropriate arbitrary coders C: R* > {0,1} by (sequences of) coders with
finite domain ([ 2] has pursued a similar approach using formal grammars)
For these reasons a brief study of coder sililarity was undertaken,
motivated by work in pattern recognition theoretic similarity ([ 7]). By
positing the definition that two coders Ca and C8 are similar if their
associated languages L(Ca) and L(CB) are similar as sets of strings of
real numbers (recall that for C: R*-+{0,1} a coder L(C) = C'l{l}), the
problem can be reduced to exploring similarity measures amongst subsets
of R*., These can be generalized from notions already developed in finite
set similarity theory or from similarity measures of singleton sets (i,e.

between strings).

4. Asynchronous Coders...The Underlying Framework

Asyncrhonous systems must explicitly incorporate the notion of time--
for it is at irregular often event-driven times that transitions can take
place, etc, Several approaches to this incorporation are possible. One
method involves explicitly adding a time variable to the input and induced

output sequences of the coder map. This approach will be explored in
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future research and as such will not be presented here., The second involves
eliminating, at least formally, the notion of discrete time and working with
coders whose domains are functions, instead of sequences. Appendix G

to this report examines such a construct called a functional real

coder., We chose the range to be real to simplify the overall flow and to

better isolate the theoretical constructs needed. This appendix attempts
to generalize the fundamental notion of unitary coder to the functional

coder case and shows that an '"extra'" condition, that of essential continuity,

must be introduced.

5. Concluding remarks: Software Realizations/Implementation of Coder

Concepts

Many useful algorithms constructs have been developed over the past

two years, Although the work reported above was theoretical, the potential
for syntax-directed, linguistic models for coders can be made a reality.
Further research can, and should be undertaken, to help completely automate

coder design for a wide class of coder structures,

"
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(6]

(7]

References 1

-17a- , :

Kaliski, M.E. and Lemone, K., "Discrete Codings of Continuous-Valued
Signals'", Proc. 14th Annual Conference on Information Sciences and
Systems, Johns Hopkins University, Dept. of Electrical Engineering,
March 1980.

Lemone, K., ""Languages Over the Real Numbers'', Ph.D. Thesis, Dept.
of Math., Northeastern University, Boston, Mass., 1979.

Aho, A.V. and Ullman, J.D., The Theory of Parsing Translation, and
Compiling, Vol. I: Parsing, Prentice Hall, 1972.

Gatto, M. and Guardabassi, G., '""The Regulator Theory for Finite
Automata'", Information and Control, V. 31, N. 1, 1976.

Sontag, E. D., '"Nonlinear Regulation, the Piecewise Linear Approach",
IEEE Trans. on Auto. Control, Vol. AC-26, No. 2, April, 1981.

Sira Ramirez, H.J., "Set Theoretic Control of Large Scale Uncertain
Systems", M.I.T., Ph.D. Thesis, Dept. of Electrical Engineering and
Computer Science, May 1977.

Lemone, K., "Similarity Measures Defined Over Sets of Strings of
Real Numbers', submitted for publication to IEEE Trans. of Pattern
Recognition and Machine Intelligence, 1981.




s
——— e —— e

-18-

IV. Publications and Reports

See citations of Appendices A-H in the Table of Contents of this

report.

V. Personnel
The personnel participating in this project have been Dr. T. L.
Johnson, Professor M. L. Kaliski, and Professor D. G. Wimpey, whose

doctoral research has been completed during this contract.

VI. Interactions

Regular meetings (and correspondence, with Professor Kaliski,
during his sabbatical leave in France) have been held throughout the
course of this research, and a strong interaction has been maintained
amont the participants.

In June, 1981, we initiated an Invited Session on Discontinuous
Processes at the Joint Automatic Control Conference held in Charlottes-
ville, Va., which also provided a unique opportunity for discussion
among workers in this field of research. The results of Appendix A
were presented here. The results of Appendices B-F have or will be
also presented at conferences according to the citations given.

Professor Kaliski had the opportunity to discuss the results of
this research with French scholars and students during his sabbatical
leave in Paris, and to explore the relationship to Petri-net methods
used there with asynchronous control representations explored in this

research.
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VII. New Discoveries, Inventions and Specific Applications .

The coder realization theories presented in Appendix A lead to

practical synthesis algorithms for an important class of devices.

and linear circuit design and in digital circuit design, and we 3

{
l

> |

' ( Comparable algorithms already find very wide use in analog filter
{ recommend that the development of algorithms for automatic synthesis :
2
{

Af of coders and decoders be pursued as an important technical advance. k
;A Algorithms for feedback control design have also been suggested é

in Appendix H. While these results are more preliminary, they should 3
= g definitely be pursued because they represent a synthesis method for ;
k> | global nonlinear feedback laws, and no simple or effective general :

solution to this problem are currently available.
Potential applications to robotics and multitasking computer

| operating systems have been described in Appendices E and F.
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ABSTRACT

; The notion of a discrete~time coder as a device
o which converts real vector-valued sequences into
sequences over a finite alphabet is formalized. A
_'“4 hierarchical classification of all coders, in terms
of their input-output mappings, is sought. This
classification is based on a canonical structure
theory being develcped for coders. An algebraic
approach is used to define three classes of coders

g which have simple canonical realizations, i.e., ones
¥, . for wh.ch known synthesis procedures may be used.
. It is projosed that coders be viewed as acceptors of
;| ’ real languages, and the hierarchy of the real lan- .
| s guages be used in conjunction with the hierarchy .. et e = o —_—

suggested by these three coders to achieve a com-
plete classification.
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NCMENCLATURE

C coder mapping P -
Z(u) the length of a sequence u, 2(A) = 0
q a memoryless quantization mapping, q: LY

R? p-dimensional real Euclidean space

w finite set of coder output symbols

€ set membership symbol

é next-state mapping of a finite state system
8 readout mapping of a finite state system

T right shift transforration

c left shift transformation

A the empty string

) the empty set

an’ equivalence relation

X/= the set whose elements are the equivalence clas-
ses ¢f X modulo =
denotes function composition

¥ for all

SUPERSCRIPTS

X* the free monoid generated by the set X

x*  the free semigroup generated by the set X
f* the causal extension of the function f
INTRODUCTION

Coders and decoders here are devices (such as
A/D and O/A converters) which transform real-valued
sequences

1Any sampling in time is assumed to have taken place
prior to conversion.

into sequences of symbols over some finite alphabet
and vice-versa. They for= the interconnection be-
tween systems whose variasles evolve on the continuum
and systems, such as digisal computers, which nave a
discrete state and input set. Coders and decoders
are therefore inherent subsystems in hybrid control
systems (1), where the plant state variables and out-
puts take values in the raals, and the controller is
modelled as an automaton.

) In the development of any gensral compensation
scheme involving an autoxaton as controller, the choice
of the coder and decoder snould be included in the
overall design process; the design of the coder and de-
coder is in fact central in the cozpensator synthesis.
While various hierarchies of automata stvuctures exist
(finite-state, linear-bounded, pushdown, etc.) pro-
viding the necessary design constraints, no such
classifications exist for coders and decoders. A con-
straint on the coder may be that its 'continuous-
state part'' must be in the same class as the plant
(for example finite-dimensional) and its "discrete-
state part" in the same class as the automaton. Thus
it becomes necessary to develop a canonical structure
theory for these systems.

Some examples of colers commonly found in prac-
tice are mesoryless quantizers, juantizers with
hystersis (2), differsnt:al cuantizers (3) and re-
settable integrators. A gquantizer with hystersis
is shown in Figure 1 below and =1y be realized as a
quantizer (different frox g) followed by a finite
automaton. We will call :;oders which can be deconm-
posed this way finitary cocders. A coder which is
not finitary is given in Figurse 2

er
de
r

We will view a coder as 2 map
-
C: RP" -4

A i
where RY  is the set of all finite lenzth sequerces

of vectors in Rp, an) W i3 the Sinite set of oulput
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symhols of the coder. A decoder pervforms the inverse
opzratisa. [t has already been showm (4) that any
cod:r may be realized, for n > 1, as a composition
of in n-dirensional discrete-time system followed by
a memocyless quantizer (Figure 3), i.e., as a com-
»

position of maps Clz AP =R and q: R" =~ W, While
this decomposition is completely general it is not
the most useful one in tecrss of coder synthesis.

This is since any part of the coder that would nor-

mally be synthesized using digital logic circuitry
is treated as part of the discrete-time system with

input output map Cl, with states taking values in R".

Our aim will be to develop conditions on the mapping
C for the coder to be synthesized using standard
circuit synthesis techniques. It is thus desirable
that these conditions result in realizations of C in
which the inherently analog and inherently discrete
parts are identifiable. The results that are pre-
sented here are preliminary and pertain to certain
“simple but practically useful" coders; in general
the problem concerns the realization of nonlinear
discontinuous mappings and is difficult. The results
for decoders are similar and are not given.

NOTATION AND DEFINITIONS

Definition
A coder is any function
c: RP" - w

where W is a finite set consisting of the coder out-
put sjubols. Sometines the domain of C will be the

semigroup RP Rp'-{A} where A is the empty string.
In the sequel the domain of C is alw./s assumed to

L d
be R? unless otherwise indicated.

To view a coder as a mapping from strings to
strings we define the causal extension of C to be the

mapping

c: RPT - W'

obtained by extending C as foliows:
C*(A) = C(A)

C'(yl...yk) = C(A)C(yl)...C(yl...yk)

Definition
Let X be any set,

(a) The left shift transformation @: X* + X* is
defined as follows:

x(2)....x(k) if x = x(1)x(2)...x(k) for
x(i)eX, k > 1

gx =

A if xeXU{A}

We extend this to multiple shifts by defining a® to

be the identity map, al =g and o'"1 = a"a.

{b) The right shif: transformation T: X* = X" is
deofined as

™x s ux Yu, xeX*

VC(yl...yk) =0

Definition
Lzt C be a2 ceder and consider the associased

>
2<

- . - u »
of conjugate transformazisas C = {CT :ugﬁp |3
is firite we say C is finizzr-, 3nd if C = (!}
C is unizarv.

by
w3 W

P
[}

This definition is just Ranay's (5) definition
s pe o . .
modified to handle sequsnces over R™. Note that :his
notion of a unitary coder is only useful if the domain
&

+* . . = . . . .
of C is RP . A minor modification in the definition
is necessary if one wishes to define unitary coders

~
on RP'. We will clarify zhis later on.

Example

+ A quantizer is a menoryless coder with domain
RP given by
Clyye-on) aly,)

where q: RP = W. Cis clearly unitary.

Example
C: R* + W is defined as

cia =1

if Yy > 0 and the number of non-
negative terms in yl...yk_1 is

either even or zero
1 otherwise

Then € = {c,,C;.C5}, C;t RT + (0,1} where

c, = cY, uel; cR* for i = 1,2,3, and

U1 = {ueR*: the number of nonnegative terms in
u is odd, and the last term is negative}

U2 = {ueR*: the number of nonnegative terms in
u is odd, and the last term is nonnegative}

U3 s {ugR*: the number >f nonnegative terms in
u is even or zero}y{A}
and thus C is finitary.

Example

The quantizer with hystersis of Figure 1 is
defined as

CA) = L

Cly) = qly + ad(wo)) yeR

C(yl...yk) = q()'k - ag{C(yl...yk_l)}) k =2,3....

where aeR, wogw are given and d is an injection of W

into R. Suppose W = {g,3}, d(2) = -2, d(g) = !,

a=1, W, *a and q: R={a,3} is the mapping

a(y) = { a if y>0
8 otherwise. Then it is easy to see

that the finite state svsieq of Figure 4 is a realiza-

tion of C. We will see = this implies C is finisary.

Note that a decowposition 57 this coder in the forn

of Figure 3 appears unnazurdl.

Alternate descriptions ~€ unitary and finitary
coders may be obtatned via the mechanism of Nerolde

<21l r. s Bsnelinegiiilg
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cailaizion

.
L2t u,v 32 selusnces in 3% and define the

-
[Nerade) squivalence relation (g) 2 on Rp as
23y &= Clux) = C(vx)

It is izmediate that = is a right-congruence on

¥ xeip'

-
7. The following proposition is also evident, and

the proof is left to the reader.

Proposition
C is finitary iff = has finite index.

A coder which is not finitary is the shift-
unitary coder defined below.

Definition - +
For each ueR? and some fixed 8¢RP define the

shift-conjugate functions Cu: Rp'* K of C as follows:
¢ (H = cw

3

= < =1.2 -

Cu(yl"'yk) [ohe (yl...yk) k =1,2,...,2(9)-1

-u 3 - =
Cu(,vl...yk) = C‘GI""k) k = 2(8), 20)+1,...

3

Then we say C is shifi-unitary if Gﬂu: uerP} = €}

for soze azr?P |

Exarple

Consider the codar C given by
C{H =0
Cly) = szn(yz-l) yeR

2 2 <
Clyy---7 ) = sgnCrp-yy ) YyeR; ko= 2,5,...

wiere sgn: R+{0,1} is the mapping

sgn{y) = |1 ify>o0

0 otherwise

Then C is shift-unitary with 9 = (61,1) for any

3 .21,
1 1

The definition of a shift-unitary coder for the
case where 21(3) = 1 is precisely the definition of a

»
unitary ccder with domain Rp . The fact that a
shift-unitary coder is not finitary (except for when

it is unitary) will bacome evident in the next section.

The following definition will be useful in char-
acterizing finitary coders.

cefinition
A threshold finite automaton (TFA) is the S-
tuple "

,\Lr = (G,¥,%.5,3)

atele

2 the finite set of states, Q = (ql,...,qr}
¥ = the iaput set, YC &P

W = the finite output 3533, v = 4 ,...¥"

-

i . -

§(qt.y) = ¢ if ¥A, 2
8: QvW is the readout Jumz:zion
A finite automaton (§) is Z2Iined siailarly excep:
that Y is a finite set and c<he notation M is used
instead of MT.

Note that the specifi:ation of 3 defines the sets

Aij’ and that for fixed i, the s2ts Aij’ j=s1,...,r
form a partition of Y.

For a particular initial scate qleQ, the re-
sponse function of MT is the map

. jP”
MT'qu - W

given by

”r,qlt"x"""k) = B(3*°(q,.¥).---00))

My q, O = 8(a))

Definition
C has memory span N if N is the smallest non-
negative integer such that

C(yl...yk} = C(yk-N""Yi) k = Nol,N+2,....

If no such N exists, then we say that C has infinite
memory sSpan.

CODER REALIZATION, SYNTHESIS

A unitary coder is the sizplest of all coders;

it is memoryless. This is the statement of the fol-
lowing Theorem.

Theorem p'
:RY -+ W s un.tary iff there exists 7 =ap
+*

‘q: RP + W such that for all Ypeeoo¥y € RP )

k-
Clrpeeer) = 46 lyl....)'k) k=1,2,...

Proof. Necessity.
First define the sets Ai for each uiew as follows:

A, = {yerP: c(y} = w )

i
Then
c( ) . (ctyl...?k-x‘(” :
yl...yk LATEN
- C(yk) since C is unitary

= v if ykaAi

Now define the function 3: 2%~ W oas
a(y) = W if yed,
Then

A

“. .

k
C(yl...yk) = q(= Yooyt

k=1,2,...

p—)

‘\ﬂ
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v

. - k-1 .
C(Y1--.>k) = q@ yl---yk)

for some map q: RP ~ W, Then for tsz s

u. . - 2(u) vk-1 -
€Y ---1) q(c Yieoy) q(yy)
k=1,2,...
and hence C is unitary. Q.E.D.

The synthesis of a unitary coder therefore in-

volves the synthesis of the map q: Rp - W. Note
that this zay not always be practical; consider for
example the map
q{y) = (1 if y is ratiomal
0 otherwise

We will nat attempt to define a "well-behaved" quan-
tizer herse.

Finitary coders are more interesting; they arte
dynamic and in general have infinite memory spaa.
The finitary coders are precisely those coders which
are finits-state realizable. This is stated in the
following theorem; the equivalent result in automata
theory is standard (6),(7).

Theorem
C is finitary iff C is the response function of
some (minimal) TFA.

Proof. Suppose C is finitary. Define the sets

2 P,
Aij {yeR": uye Uj Yu g Ui}

»
where the UiC RP" are the congruence classes of the

For fixed i, the sets Aij’

j=1,...,r clrarly form a partition of RP, We now

right congruence =.

" construct the (minimal) TFA MT = (Q,Rp,w,d,a) as

follows:

Q = C, i.e., q* = T,

= C1° for uel,
i i

§: QxRP~Q via
8(Cy) =

B: QW via
B(Ei) s+ C.(N

[

1

Then
g = c= Y for ueUi

if yeAij

hY

&N o= .

He take g = Ct’ = g Where .a]k, and

! . = B(3%(3,,v,-.-¥.))

'w.r’ql(y1 W) 5(3%(3),7, )
. S(CTAT 1 x)

= C(yl...yk)

and My o () = B(80(a ) - €.

The proof of the converse is left to the reader. Q.E.D.

The coder of Figures 1 and 4 is therefore fin-
itary. The following result separates out the
threshold-type operations that occur in the TFA real-
ization of a finitary coder from the dynamic part,
and hence tells us how to go about synthesizing the
coder. This decomposition should be comparsd with
that of Figure 3.

Theoren
C is finitary iff C may be realized as the com-
position of maps

cC = CIOCE

*
where CZ: P+ v is unitary, V is a finite set, and

Cl: V*~ W is finite-state realizable.

Proof. Suppose that C is finitary. Then by the
previous theorem, C is the response fuaction of a re-
duced TFA MT = (Q,RP.W.S. 5). Define the functions
E} as follows:

q;: RP+ {1,...,1 i=1,...,r
via
q; () = j ifyei\ij

where the Aijc Rg were defined in the proof of the
previous theorem, r is the cardinality of Q.
fine q: RP+ {1,...,o 7 $yas

Now de-

ay) = @O0.-..a )

and take CZ: Rp." V to be the map

c,d) = ¥

C(rye- ) = Alyy)

»,

k=1,2,...

where v is any vector in Vwith ¥y = 1.
Clearly C, is unitary. ODefine thefinite automaton
M= (C,V,W,3,B) as follows:

(a) 5: CxVaCvia

a(Ci.v) = Cpi(v) VEV
A S P

where p,: is the projection mapping

Pi(v) = ith Z2roenent of v

dnidloaa

~
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3, = Cl (suppose.\aUl). ‘Then we hive that, for

SR W CTe)
= Ca'i )
- EJ if Ya‘\ij
- 5(Ei,)')

Now,

(€€, rpeer) = € GG, IC,(yyY,) -
2o Cylypeeor )
* & T T
= 8(*(a,,¥ aly))-..alxy))

= 3(3*(q;.aly))..-q(y,))) since
§(q,. V) = q

= 8(6*(ap.yp---7))

= C(yl...yk).

The proof of the converse is left to the reader.
Q.E.D.

Application of these results to the coder of
Figure 4 results in the realization shown in Figure
5.

Not all coders with inherently discrete dynamics
are finitary; the coder of Figure 2 has a countable
state set., Extensions of the above decomposition
result, where the isolated automaton is a determin-
istic pushdown automaton (6) are currently being
investigated. Note that in this case a feedback-
free deconposition cannot be obtained in general.

The shift-unitary coders are perhaps the sim-
plest class of coders with realizations that have
inheren:zly analog dynamics and are finite-dimension-
al. These codzrs have finite memory-span (i.c. nil-
rotent} and may be implemented with a single (real
aumber) storage register and a quantizer. This is
the resul: of the folilowing theorem.

Theoren
IT C is shift-unitary then there exists a map

3: RPxR™ - W such that

-~ Wy - . '
Civ ) Yy e Yy) k >N

qcek’l""aNyl"'

) = q0d)
+

where 2P is the s=qu2nca {(of lzrngth N > 1) agpear-
ing in the definition of a shifr-unizary codar.
+
Proof. For any seguenca yl...ykeap and

1 <1, <k define

3 1,3) & vy,

Also define the sets Yi..\i for each "}F" as follows:
4
Y, & o wy) > Nand CBy; 1,0) = v}
) . TR
Ai il {B(Y: I,N) . )’-.Yi}-
Now define the map q: RPxR&‘W as
q(y) = w, if yeA,.
i7)77
Then, for yeRp with 2(y)} = N,
Nes - \
ac*(y)(1) : Clyy--ovgd = w & a(Bly; 1L,N) v

and gor veR? |, with 2(y) = k = Nen for soae integer
m >0,

e,

C(yl...yk) = Ct oo

o1 (’l"'yk)

Fern
= Co(yy-eeyy) since 2@y ...x,) 3 £(0)
= JCr(Py)(1) by defn. of C*
= q(B (d"y; 1,N)) since 2(c%) = N
* q(B(y; k-N+1,k))

For i(y) =k, 1 <k <\,

Cly) = Cyln)
i
8,...8 i
= oot KRy ;
k P i
= C(o 1ey) since z(a‘ray) > 2(38) ;
H

= q(B (cktey; 1,N))
= q(aksn

Finally, for y = A
C) = N = ¢l

= C(3)
= q(B(3;1,\))
= q(3). Q.E.D.

It should be clear that the memory span of a
shift-unitary coder is finite, and is equal to 2(3)-1.
(Note that although 2 nmav not de unique, ((2) is.)

For those coders, u=v is cjuivalent ¢o5 the stateaent

ol(u)e u ol(v)e v

!
;
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p* AN . pxN .
and henc2 R7 /= is isomorphic to R¥°. The exten-

sion to shifz-finitary coders i5 currently under in-
vestigatisn,

The =xample of the shift-unitary coder given
above may he reali:zed as shown in Figure 6.

CONCLUSICNS AND DISCUSSION

#e have formalized the notion of a discrete-
time coder and have exhibited canonical structures
for three classes of coders, the unitary, finitary
and shift-unitary coders. We have indicated that,
froz the point of view of synthesis, coders and de-
coders should be viewed as hybrid-state systems; the
major task is to define classes of coders and de-
coders which have identifiable discrete-state and
continuous-state parts. A finitary coder realized
in the general form shown in Figure 3 may still be
easily synthesizable (the coder of Figure 7 is an
example). However, this is not always the case and
is the reason for the algebraic approach we have
adopted.

We have also shown that a definite hierarchical
classification of coders exists. To aid in this
classification, a coder may be viewed as an acceptor
\8) of real languages. A hierarchy of these lan-
guages exists similar to the hierarchy of languages
studied in the computer science literature (regular,
context-free, context-sensitive, etc.). Real con-
text-free languages and their generating grammars
have been studied by Lemone (8). The language ac- '
cepted by the coder of Figures 2 can be shown to be
context-free, while no language accepted by a shift-
unitary coder is context-free unless the coder is
unitary. The real regular languages form a proper
subclass of the real context-free languages, and are
precisely the languages accepted by the finitary
coders (9).

Coders form one subclass of the nonlinear dis-
continuous mappings for which a realization theory
can be developed. It is the fact that the domain of
a coder mapping is a finite set that has enabled us
to draw on many of the id2as and results in tiie field
of computer science.
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ABSTRACT

Q
+ This paper examines certain aspects of the realizability of

input/output maps f£f: R* -+ R by one-dimensional non-linear
discrete-~time systems, where R* is the free monoid on the reals

R, under the operation of string concatenation. Realizations

are sought which are bounded and/or Lipschitz. A natural connectian
between such constrained realizations and the string-processing
properties of the input/output mapping is shown to exist. These
results have further implications for the synthesis of general
analog/digital coders and decoders which find uses in computer.
control system interfaces.
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I. Introduction

The purpose of this

realizability of maps £:
*

systems, where R 1is the

numbers, including A the

paper is to explore certain aspects of the
* .

R -+ R by one-dimensional discrete-time

set of all finite-length sequences of real

null string. The discrete-time systems

considered are of the following form:

X0
2

k=0,1, 2, ...
(1)

the initial state

where F: R® -~ R is the state-transition map.

By the'realizability of £ we mean that £ igs the input/output

map associated with (1),

£(A) = Xq

i.e. there exist F and Xy such that

and, for UglyUge . U arbitrary, k > 0,

£( uo...uk)=FFT{..(F(F(x0, uo),ul),uz),...,uk)

We consider below several aspects of the realizability problem:

(A) . Realizability by systems wherein F obeys no other

constraint than being well-defined.

{(B) Realizability by systems wherein F is bounded, i.e. for

some By > 0, -B; < F(v) < B, for all v in R".

and

2

(C) Realizability by systems wherein, in addition to the

boundedness constraint, F obeys a Lipschitz condition for

some L, > 0, i.e. for all v, w in R".

|F(v) - Fw)| < Ly

2

v - w ||

We will take the norm above to be any fixed norm on Rz.
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This paper will develop several general theorems yielding both
necessary and sufficient conditions for the realizability of maps £
by systems of types A, B, and C, above. Note that as no assumption
is made here about f being onto all of the results below hold even
if range(f) is a finite subset of the reals.

The problem of realizing input/output maps by (nonlinear) discrete-~
time systems is, in of itself, not a new one. Studies of this type in
the mathematical systems theory literature (e.g. Kalman, Falb, and :
Arbib, 1969) have been availab}e for several years. What is new, we E
feel, in the aspects of the realizability problem considered here,
are the following two viewpoints. i

FPirst, that such natural regularity requirements as boundedness
and, "Lipschitzness" lead to input/output properties expressible as
string-processing requirements. Second, that this one-dimensional
problem is actually sufficient to represent higher-order finite-di-
mensional problems as well. This is based on our earlier work
(Kaliski and Lemone, 1980) dealing with the realization of real

aqceptor;/%oders by one-dimensional systems.

II. The Basic Result: Well-Posed State Transition Functions
Let f£: R*’* R be a given input/output (I/0) map.
Theorem 1: f is realizable by a system of the form (1) if and only
if f obeys the following propertyl:
for all Ugeee Upy Vgeoo Vo in R*, r in R,
flug... u) = £(vg... v)

e f(uo... ug r) = f(vo... Vo )

{Note: Either Uges. Uy O Vg... VvV may be null 'in the above statement.)
Proof: That any map realized by the system (1) obeys the above property

is clear. Conversely, suppose that f obeys this property.




Set K = range (f). Define a map G: K x R + R as follows. To compute
G(a, b) find 2 string Upe-- U, in R* such that a = £ (uO... uz); set
G(a, b) equal to f(uo... u, b). G is well-defined by virtue of the
assumed property for £. Extend G arbitrarily to a map F: Rz + R

and set Xy = £(A). The system (1) with transition map F then realizes f.

QED

Thus we have characterized realizability of type A.
III. Adding Constraints of Boundedness

Adding the constraint of boundedness by B0 vields the following
Theorem 2: £ is realizable by a system of the form (1) with IP(g)[ < Bo
for all v in R2 if and only if f obeys the property below:

*
for all Ugeos Ugy Vgeoo Vo in R, r in R
(i) f(uo... uz) = f(vo... vm)

- f(uo... a, r) = f(vo... v r)

1A

By

(i) [£(ug... u, )|
(Note agéin thgf either'uoru. u, or vy... v or both may be null.)
Proof: Necessity is clear. Conversely let K and G be as in the proof
of Theorem 1. From the given property for £, ]G(z)[ < B0 for all v
in K x R; extending G to all of Rz so as to retain this bound is

trivial. The rest of the proof is immediate.

QED

We next turn to realizability of type C.

IV. Adding the Lipschitz Condition

We begin this section with the following Lemma, whose proof

1971) , (Czipszer and Geher, 1955).

*
o~ N
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S be a given subset of R2, h: S - R a map satisfying the conditior;

below for all v, w in S, for some non-negative real constants BO' Ly,

2
and for some norm on R™.

(1) |h(® -hw| s Lle -wl
(ii) !h(z)l < B,

2

Then the map H: R" =+ R defined by

H(z) = max (-Bo, min (BO' 29%3 S(h(y_) + Loﬂg - X') )

is indeed well-defined, is an extension of h, and obeys for all v, w

in R2 (i) and (ii); above, with h replaced by H.

We will use the above Lemma in proving the following result.
Theorem 3: £ is realizable by a system of the form (1) with |F(v)| < By,
and |F(v) - F(w)| < Ly [v-w], for all v, w in R% if and only if £
obeys the property below:
for all Ugeeo Uyy Vgeooo Vo in R, r, s in R
(1) . |£(ug... u, 1) - £(v,... v, s)|
<Lyl £lug.e wp), 1) = (E(vg... v, )]

(i) | £(ug... u, )| < By
(Note that condition (i) of Theorem 3 implies condition (i)} in

Theorems 1 and 2; also Ugese Uy OX Vg... Vy OF both may be null.)

Proof: Again necessity is clear, as if such a system exists,

f(uo... u, r) F (f(uo... uz), r)

f(vo... v s)

F ~(f(v0... vm), s)
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As for sufficiency, again define G and K as in the proof of Theorem 1.
From condition (i) it is easy to see that G is well-defined, from our
remark following the Theorem statement above. Setting S = K x R, and
h = G it is also clear, from the assumed property for £, that the
conditions of the Lemma hold. Setting F = H, and Xq = £(A) completes
the proof.

QED
In resolving question C, then, we have the following intuitive
interpretation of the constraints needed on f’ (Vviewing the norm as
being, for example, the p = 1 norm): sequences producing "similar"”
f-values, followed by close together real numbers, must in turn produce
"similar” f-values; all such f-values must be bounded in magnitude by
BO' The second use of similar is taken to mean "up to Lo times as

different" as the first use of similar.

V. Discussion; Limitations of the Theory

We address several issues briefly in this concluding section.
First we address the obvious limitations of the theory: the systems
considered are -one~dimensional with the further constraint that the
output is the state. It is only in the context of a constrained
setting of this kind that we can obtain such a concise set of conditions
for realizability. More general systems settings will imply more
complex statements of constraints on £.

Nonetheless, in defense of these limitations, it should be pointed

out that theoretically, at least, (Kaliski and Lemone, 1980), one-

& oo acahaza s Koibin s at,
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dimensional realizations of the type considered here are sufficient
for coding purposes.

An essential component in the design of finite-state compensators
for discrete-time continuous-state plants is the coder, a map
C: R* + {0, 1} (Johnson, 1978). Such a coder, which forms an inter-
face between the plant and the compensator, can always be realized as
the composition of two maps: a map f: R - R, and a map g: R + {0, 1}
(a threshold device), i.e. C = g £f. (Kaliski and Lemone, 1980).

The importance of finite state compensation as a design tool
has thus renewed interest in coder design (Jones, 1978), (Wimpey, 1980),
(Kaliski and Johnson, 1979), and spurred research in related areas
of finite-sﬁate regqulator theory (Gatto and Guardabassi, 1976).

It is then, in this context, that we address the questions of
this paper. With the basic, theoretical, understanding achieved here
we hope to, in subsequent research, bridge the gap to somewhat more
practical approaches. As a theoretical result, then,Theorem 3 has

considerable intrinsic interest.
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VIII. Footnotes

1'I‘his property is equivalent to the finitariness of f when £ has finite
range (see (Wimpey, 1980) ).
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order non-differentiable behavior as illustrated in .
Figure 1. In order to obtain existence of solutions, 4
multivalued extensions of £ onto its discontinuity

Diced systems are defined as autonumous systems
governed by ordinary differential squations having dis- surfaces are required. Every trajectory can be re-
esented by 3 sequence of transition points and times,

- zontinuities (in R") on submanifolds where one or more F:(t Y.t L
of the statz variables takes an integer value. Such FAd §
systems may ve regarded as approximations of continucus

ABSTRACT

Definitions of various types of stability and in-

N gy
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e

systems or as representative models of a class of dis-
continuous systems. Trajectories of such systems (for
a given initial state) are readily calculated and may
exhibit complex sliding-mode segments. Asymptotic
properties of such trajectories are discussed and clas-
sified. Motivation is given in terms of observed prop-
erties of interconnected power systems.

1. Introduction

Diced systems, as defined here, are finite-dimen-
sionsl aut conti time dynamic systems gov-
erned oy equations of the form %% (t) = £(x(t)):
xo(to) - xoeR", t > to' where £ : R" ~ R" is piecewise-

constant with discontinuities only on the surfaces
where one or more coordinates of A" take integer values.

A diced system in R2 is very easy to illustrate: the
plane can be divided into a uniform gird, and within
each square a vector representing the magnitude and
direction of £ is shown (Figure 1}.

»//’ Y x > | G-
‘ Z ~ | ™™ \\ ~
» J Jf: // ~l
[ I P ’ -~
”
Figure 1: A Diced System in R%.

Existence and uniqueness of & solution for any
fixed initial state, L can be studied using a general-

ization of the method introduced by Filippov {1]; tra-
ectories may exhibit sliding mode segments and higher-

+*This research has been performed at the M.1.T. Labora-
tory for Informstion and Decision Systems with support
provided by the U.S. Department of Energy {Contract
ET-76-C-0102295) and the U.S. Air Force Office of Sci-
entific Research (Contract F49620-80-C-0002).

stability can be constructed from an examination of

the invariant limit sets [2] of the trajectories. For
diced systems, the range of asymptotic behavior of tra-
jectories starting from different initial conditions

can be exceedingly rich. The possibility of approximste
global stability analysis using nondeterministic sutomata
is examined and its limitations are indicated.

In practice, diced systems might be viewed as ap-
proximations of continuous or discontinuous systess.
In the former case, for instance, we might seek the
best piecewise-constant {finite-element) approximation
to a continuous system. Wang (3] has presented an ap-
plication of this type for solving partial differential
equations. In the latter case, a state space diffeo-
morphism might be used first to transtorm the discon-
tinuities of a system to lie along coordinate axes, and
then a diced approximation could be developed which
would preserve the discontinuous behavior of such sys-
tems. The potential practical advantages of diced ap-
proximations lie in a reduction of information storage
required to characterize s system and the possibility
of assessing its approximate asymptotic behavior without
a detailed simulation.

For example, at the time of a known failure of a
power system, it is often desirable to predict the long-
texrm consequences of various control strategies so that
an operator can decide among them. Yet the system is
too big to store all possible consequences in advance.

A practice which has thus been followed in sone cases

(4) is to run a simulation "faster than real-time" for
sach control strategy. While the issue of approximstion
accuracy is not treated here, the results suggest that
significant economy of real-time computation might be
achiesved by approximating the dynamics of a diced sys-
tem. However, they also suggest that the patterns of
stability and instability exhibited by such discontinuous
systems may be highly complex and that analytical methods
are not likely to yield clear-cut predictions about
global stability.

11 Preliminaries, Notation

Let & = {i,....,i 162" be & multi-index on the n-
tuples of integers (Z). Let b = [bl,....bn]:ln repre-
sent an n-tuple of tinary numbers (8 = {0,1}). Let
xi(x): R™ + R be the charscteristic function of the
open set {x = (xl,....xn]ckn 1 fexn i e,
k=1,2,...,n).

1110
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Definition: A diced initial value problem (DIVP)
is specified by a system of ordinary differential
equations

X)) = £(x(e) 5 x(t) = x @t >t 2.1)
where £ : R" + R™ has the particular form
£(x) = . £5 % (x) ; b= 0" (2.2)

iez
and foiskn for each multi-index i.

The surfaces of discontinuity of f may be classi-

€ied by their dimension. Let I(b) : B" + {1,...,n) be
a function denoting the number of "1"'s in the binary
n-tuple b. For fixed ieZN, consider the cets

no . s .
Spy = xeR” | iy ex < i if D =0
ik =X if b.k =1, k=1,2,...,n} (2.3)

These may be viewed as the set of submanifolds "at-
tached to" the point x=i.* For example Soi is the

interior of the n-dimensional cube indexed by its ver-
tex at x=i; 511 (the shorthand 1 denoting b = {1,i,...,

1]) is the single point x=i. The submanifolds of di-
mension p associated with x=i are

sg = {s,; | 1(6) = n-p} P=0,1,...,n. (2.4)

This notation provides a compact classification of all
of the subscts of RM which are of interest.

In Section III, conditions for well-posedness of a
DIVP are examined. This is done by extending f to its
discontinuity surfaces (from (foi}. we generate [fbi}'

b# Otln). Then a constructive procedure can be used
to generste solutions ;(t) = ¢(t,to.xo) for each xoeR",
tocR and hence to define the transition map
9: RxRxR"<R". Let x denote the function space
in which trajectories are defined. This leads to the
following

Definition: A diced system is an autonomous dynam-
ical system (X,R",9) (See [5)).

Stability has been viewed as a qualitative property

of a dynamical system, and concerns the asymptotic be-
haviors of trajectories x(*) = Q(-,to.xo) as xotx is

varied. Stability of diced systems is discussed in
Section IV. Two useful notions will be those of the
positive limit set and the invariant set [2].

Definition: The set QC R" is invariant with re-
spect to the system x(t) = f£(x(t),t) if for any xotn
there is a to such that the motion 5(t.t°,x°) belongs
to 2 for all t > L

Definition: The set T C R” is called the positive
1imit “set of a bounied motion O(z;to,xo) if, for any
point pell, there exists a sequence of times ‘tn) tend-

*The obvious injection of the integers into the rcals
is implied.
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ing to infinity as n+=, so that
Hn Jloce .t .x) -p|| = 0 @.5)
-~ n’ 0’0

In applying these definitions it will be useful
to recall that a function x(t) is periodic of period
T> 0 if x(t) = x(t+T) for all t; "the" period of s
periodic function is defined as the least T for which
this equality holds. .

III Existence and Uniqueness

Consider the DIVP (2.1), (2.2). Defining solutions
within the cubes Soi by integration is entirely

straightforward; all difficulties arise in attempting
to extend solutions across the discontinufty surfaces
of £; in general, there is no unique continuation.
Various possibilities are

(a) To restrict the class of f so that continuations
are always unique (this is very restrictive indeed, and
essentially eliminates many interesting phenomena from
consideration).

(b) To eliminate the non-continuable surfaces from
the domain of f; however, then all points on all tra-
jectories leading to such surfaces must also be elim-
inated, and a large part of the original dowain of
definition may ultimately be excluded.

{(c) To choose an ad hoc rule for continuation of sol-
utions; however, it proves difficult or impossible to
do this in a self-consistent and unbiased manner.

A fourth alternative has been selected here:

(d) To sacrifice uniqueness and continue all solutions
through a discontinuity.

In this way a viable deterministic existence theory can
be developed, at the cost of considering a countable
number of alternative solutions. A "physical" justi-
fication for adopting this approach is that in the
presence of small perturbations of the initial condi-

tions, a solution near to at least one alternative so-
lution will occur,

A constructive procedure is given for defining so-
lutions. To simplify its presentation, a multivalued
continuation of £ to the surfaces sbi‘ b £ 0, is first

defined. initially, f is specified on the submanifolds
s? = (soi} of dimension n. The continuation proceeds
recursively to subamanifolds, Sg of dimension n-1, n-2,
..+,G. Recall that Sg is the point set (xclnlx =i,
i, an integer}. Notationally, a single valued £y vl
not be distinguished from a multivalued fbi' the impli-

cation being that the prescribed rule is applied to each
possible value of fbi in turn, and the set of all results
is retained. Let p=n. Suppose fb‘ are known on S?.
p<a<n. Then £, can be extended to Sg'l as follows,

for each iEZn.

p-1 foas .
Suppose Sbicsi . Let indices ’j"'jn-(p-l) denote
the ordered nonzero positions of b, i.e., bj el, k=i, R

k
n-{p-1) and bj-O otherwise. The neighborhoods of Sbi

of dimension q, p < q < n, can_be defined as follows.
For q=n, consider all indices , formed by decrementing

pTXL S
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ijk by one for any subset of the subindices k=l,...,
n-(p-1), including the null-set; then SSiesg is a
neighborhood of s‘,i where b = 0. For q = n-1, consider

all values b having a single "one” in one of the posi.
tions jl"'jn-(p-l) and for sach b, form I from the re-

maining n-(p-1)-1 indices as above; then s;;es?" is a
neighborhood of sbi' For q = n-2, consider all values
b having “ones" in any two of the positions jl,....

j - and from each b and I from the remaining
n-(p-1) n-2
n-(p-1)-2 indices as above; then ~;cs;
borhood of sbi’ This proceadure is continued until q=p.

is a neigh-

The values of fbi or Sbicsli"1 are determined from
the values of fSI on each of its neighborhcods ;€$§,

p<q<n. It is thus sufficient to give the procedure
for determining fbi’ assuming that these values on

higher-dimensional submanifolds are known (i.e., the
values can be determined recursively). Define 55§ to

be an input submanifold to sbi if (£5§)£ = 0 for all g

such that El = 1, and for all remaining % in the set
jl""'jn-(p-l)' (fs;) < 0 for those % such that

;L - il' while (fSI) > 0 for those % such that El =
il-l. Define sSi to be an out!gt submanifold if

(f;;]l = 0 for all £ such that L 1, and for all re-
wmaining £ in the sgt jl""'jn-(p-l)' (fii)l > 0 for
those & such that il L] il, while (fsi)l > for those
such that I, = i,-1. Note that those sets for which
(fg7)y # 0 when 6, = | need net be considered. So long
as th® set of ov: -ut suomanifolds of Sbi is non-empty,
CS( 1s assigned the set of all values fbi on the output

submanifolds. If the set of output submanifolds is empty,
Sbi is a generalized sliding surface. Consider fs{ on

s;;ﬁsg in the input set. If this set is empty, set
£57 = 0. Recall that ss;esg is formed by keeping i un-
changed in all but one nosition, say jk' of b, so b =

[bl""'bjk-l’ 0, bjk'l""‘bnl and either i = i or i =

iil....,ijk-l, ijkol’inx' Thus there are a maximum of
2(n-(p-1)) surfaces in this subset of the input set.
These surfaces are considered in pairs to determine the
admissable values of fbx‘ using the axample above, if

is in the input set then (fszjjk < 0 and if 553 is

551

in the input set (f;})j > 0. If both elements are
: X
members of the input set then
for * (D)5 By - ()5 STy - ()5 ]
k k k k
(3.1)

while if only one is in the input set, lect

fp1 0

The set of possible values of fbi on a generalized slid-
ing sode is completed by considering each SSIcsf in this
manner. In all such cases, (fM)j k=l ... ,n-(p-1)

k

are zero, so that further motion occurs on Sbi itself.

Thus, the procedure for extending the function f

to all of R" is completed. The complexity of the pro-

cedure arises from the large number of possibilities
which can arise. A number of such special cases are
illustrated on Figure 2. Evidently, the procedure for
extending £ is not the only one which could be devised.
In the next step, construction of solutions, however,
it will become apparent that the underlying principle
has been to define f in & manner which preserves all
trajectories that might arise from each initial con-
dition.

Let xoskn be given as the initial condition of
(2.1) st t =t ; let S, cSP be the smallest submani-

fold containing x_. Let By, denote one of the extended

values of £ on sbi' Define
e(tae e ) = x ¢ £ (T-t ) s, < T gy, (3.2)

The time t. is defined as follows: for each 2 such
that (fbi)L is nonzero, let (‘1)1 denote the first
T, such that [w(r.to,xo)ll is an integer; then Ty
mzn!(tl)l] and'x1 = o(tl.to,xo). 1f fbi = 0, then
= and X =X, and this solution terminates., Oth-
erwise, % defines new values of b,i, and p, and the
solution process continues:

o(r.tk,xk) =X fbi(t-tk) Py <Ts tal (3.3)

Figure 2
Illustration of Nonuniqueness of Solutions
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On those surfaces where fbi is multivalued, each pos-

sibility must be examined in turn; in this sense, ¢
is also multivalued. Each trajectory pieced-together
in this fashion can be summarized by a sequence
{xk.tk}. k = 0,1,... in some cases, these sequences

are finite and in other cases infinite. By inspection
of {xk) alone, a corresponding sequence of regions

{°k)' where akg(sbi} is the minimal submanifold con-
taining X, can be constructed.

A solution of (2.1), (2.2) is then defined in the
obvious manner, as any ¢(t.t°,x°) constructed by the

continuation procedure (3.3). It has the property that
for any finite admissable k, O(t.:o,xo) is piecewise

continuous on [to'tk]' This solution by continuation
is said to be asymptotic if lin t, = ™ An asymptotic

solution is piecewise continuous. For purposes of the
present work, a solution wil) be ssid to exist if the
state-space continuation is asymptotic.* Asymptotic
solutions need not be unique, but the rate of growth

in the number of solutions can be bounded as a function
of k, since the maximum nmumber of output submanifolds
can be bounded above for any Sbl‘ If there is only

one asymptotic solution through [xo,to). it is said to
be unique. Continuous dependence of ¢(t.t°.x°) with
respect to x , of course, is not to be expected for

> .
t tl

IV Stability

The usuai definitions of stability presuppose a
solution which is well-posed in the sense of existence,
uniqueness, and continuous dependence on the initial
data. Diced systems, in general, do not possess the
last two properties. One alternative is to neverthe-
less use the standard notions of stability, restrict-
ing their domain of application to those initial states
for which the usual notions of well-posedness are
{locally) satisfied. Unfortunately, the set of such
initial states appears quite difficult to characterize
and thus imposes an awkward restriction on the appli-
cability of this alternative.

Another alternative, introduced here, does not
impose such restrictions, but weakens the notion of
stability that is employed. Stability is viewed as a
qualitative property of a trajectory, and a system is
then said to be stable when all of its trajectories
share this property.

Definition: Thc motion of a diced system (2.1},

(2.2) initiatcd at (to.xo) is

Mey,x ) = {o(t,t ,x ), t> ¢ | 9 is a transition
function initiated at
(t,:%,)

which is the set of all trajecctories originating at
(e ,x ).
oo

Definition: The motion M(to,xo) of a diced sys-
tem is said to be

‘forcover if lim tk A ™, solutions by time-continuation

could be defined; however, their properties will not
te explored here.

(a) BSounded in magnitude if there is a constant &> 0
such that

max (sup  |lote,e , }<o
boce, . x i (e, x )

(b) Bounded in cardinality is there exists a constant
N such that

sup {cardinality of “(ta,xo)} <N

2t

The ¢ pts of boundedness in magnitude and
cardinality are independent. In both cases, the only
difficulties occur at t+®, since (a) any ¢(r,t°,x°) is

by construction bounded for all finate t, and (b) the
cardinality of @(t,to,xo) is finite, by construction,

for all finite t.
most immediate.

The following propositions are al-

Proposition 1: In (2.1), cuppose ”foi“ < F for
all i, then Ji¢(r,t_,x) - x < F(t-t_) for all
wf(r.;.xo) 0rXe) = Xl < F(toty

Proof: The extension of foi to fbi always guar-
antead that llfbill < F, and the construction procedure

(3.3) guaranteed that the estimate of the proposition
held for each t. q.e.d.

Proposition 2: Let |i| = Iizl0...~|ini. Suppose

for system (2.1) there exists 8 > 0 such that for all
il > 8, and k = 1,...,n, (£,;)) iy < 0. Then

M(to‘xg is bounded in magnitude.
Proof: For any i such that [i| > B, every set
Spi contains output submanifolds with the same [i| or

smaller [i], and input submanifolds with the same |i|
or larger |[i}; further more, Sli always outputs to SO;

with |i] < [i]. Thus the construction process cannot
terminate for [i| > B, and for such i, {i] is reduced
at least once every n intervals; hence every solution
satisfies lO(t,to,x°)| < B for t sufficiently large.

Thus M(to,xol is magnitude-bounded.

Proposition 3: Suppose that for every icz",
bebn; Sbi has at most one output submanifoid. Then the
motion M(to,xoj nf (2.1),(2.2) is bounded in cardinality.
Proof: The extension procedure of Section III
shows that in thic case fbi takes rhe value on its out-

put submanifold or the value zero. If a trajectory
enters sbi’ it either continues uniquely to the output
submanifold, or terminates at Sbi'
cardinality of the solution cannot increase during its
construction.

In cither case, the

Thus there are two notions of instabiiity for
diced systems: solutions may become unbounded in mag-
nitude, and/or they may become urbounded in cardinality.
This second form of instability is new: a trajectory
can fracture and a chain rcaction of subsequent frac-
tures nay ensuc--the complexity of the process grows
without bound.

ext, a notion of stability is put forth. Suppose
that the motion M(to,xo) of a diced system is bounded

in magritude ana cardinality (or simply “bounded").
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Then a set SC R" consisting of a finite union of the
submanifolds sbi is termed a positive limit set of 3

(bounded) trajectory o(t.to,xo) if for any point xeS,
there exists a sequence of times (rk}. tending to in-
finity as k==, so that

Lim )01t .x ) - x( = 0 (4.1)

koo

where ) ( denotes the set-membership metric, i.e., if

J)y-x( = {0 YE&S,;

Ytsbi
in applying this definition, it is important to recail
the standing assumption from Section III, that all tra-

jectories are asymptotic, so that such sequences {rk)
exist.

‘ Definition: A b ded motion M(to'xo) of a diced
system is termed pointwise stable if all trajectories
o(t,to,xo)c M(to,xoi have the same positive limit set.
The motion is locally stable for xoesbi if all tra-

jectories O(t.to,x)c M(to.x), xcsbi, have the same

positive limit set. The motion is 2lobplly stable if
all trajectories O(t.to.x) have the same positive
limit set.

Concepts of uniform stability will not be discus-
sed since only time-invariant diced systems are con-
sidered in the present account.* In fact, the eval-
uation of stability, according to the definitions given,
can be based merely on knowledge of the sequence (ok}

of submanifolds containing (xk}, since it is known
from the construction procedure that el 7 Y and from

the asymptotic assumption that lim ‘k = ®  This sug-
kﬁl
gests that a way to generate the sequence (Uk) auton-

mously, without explicit integration and generation of
(xk.tk} would be particularly valuable in the assess-

ment of stability. This has not been achieved yet.

Xnowledge of the time-structure (tk) of individual

solutions can be of {urther value in refining stability
notions. To simplify the remaining concepts it is now
assumed that the trajectories are uniquely-definead
(e.g., as occurs in Proposition 3) and bounded. Sup-
pose M is 3 positive limit set ot such a solution in
the conventional sense of Section II (eq. (2.5)). - Then
in the usual manner it can be shown that fl is bounded,
closed, non-empty and invariant, the last property be-
ing a consequence of time-invariance. In fact, as g
consequence of finite-dimensionality of R?, all such
solutions are asymptotically almost-periodic [6]. Two
cases of special interest are the asymptotically con-
stant (equilibrium) solution and the asymptotically
periodic solution. These can be identified directly
from the sequence (xk'tk} characterizing é(t,to,xo).

*The results couid be extended in this direction for sys-
tems with continuous time-variation; however discon-

Proposition 4: If the sequence (xk,tk} is finite

of length N, the positive-invariant limit set consists
of one point, the last value Xy (for which tN - ),

If the sequence (xk,tk} is jointly periodic of period
m for k > N, then the positive-invariant limit set is
a cycle (closed curve) in R®,

Proof: For the first case, note that the con-
struction procedure automatically defines ty* e when

the sequence is finite, and this implies a constant
solution for t > tN’ In the second case, note that

since {xk‘tk} completely specify @(t,to.xo), ¢ must be
periodic LPCL k > N, whenever [xk'tk} is periodic
(in fact, the sojution is a linear interpolation be-
tween these points).

It is interesting to note that for diced systems,
the establishment of an equilibrium or periodic solution
after a finite time (tN) is often o be expected (where-

as this would be considered exceptional in the case of
continuous differential equations); however, in some
cases almost periodic solutions may also exist.

vV Discussion and Conclusions

The present account of the stability of diced sys-
tems leaves a number of questions unanswered and raises
some new ones. A study of methods for temporal comn-
tinuation of non-asymptotic solutions is needed; such
solutions may represent a new sort of sliding mode
which can arise in higher dimensional spaces, as sug-
gested by an example of Utkin [7]. The possibility of
extending the techniques developed here to time-varying
systems has been mentioned; Filippov's general existence
results apply to this problem. A study of the partition-
ing of initial states which is implied by the proposed
stability definition would also be fruitful; what prop-
erties are shared by initial state sets giving rise to
the same asymptotic solution? In general, it would
appear that the initial states within a given region k
Sbi can ultimately end up widely dispersed. The pos-

sibility of using an automaton to simplify the prop-
agation of solutions has also been raised. The approx-
imation of continuous systems by diced systems has not
been explored, but under appropriate conditions, a
bound on the approximation error should be achievable.

In spite of the questions that are unanswered,
some modest progress has been made toward defining the
stability properties of diced systems. First, a con-
structiva continuation procedure for higher dimensions
has been found; the problem readily evades one's intu-
ition above n = 1,2 and even 3 as endless combinations
of diffitult situations may occur. Second, a compromise
on the issue of uniqueness has been put forth: the num-
ber of admissable solutions at any finite time is
bounded. Third, the concepts of stability have been
generalized to provide meaningful criteria for discon-
tinuous systems of diced type.

Returning to the electric power system example
cited in the opening section, it would appear that the
implications of the research might be very disturbing,
for two primary reasons. First, a new type of insta-
bility--an unbounded growth in the number of possible
solutions with time--has been identified. Second, and
independently, the partitioning of the initial state--
at least in worst-case situations--based on asymptotic ;2

tinuously time-varying systems may not be continuable, properties, appears to be very fine and irregular; thus §
as Filippov pointed out. a small perturbation in the initial state may give rise T
to completely different asymptotic behavior than is i
1114
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4 found for the unperturbed initial state. Both of these

3 phenomena imply that the future behavior of a diced

system with a (approximately) specified initizl state
may be fundamentally unpredictable; if the long-term

1 : future consequences of a present control policy are

unpredictable, the problem of choosing the best policy

becomes more difficult and planning must be done with
a shorter horizon.
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Abstract
Asynchronous multitask processes occur in a wide variety of control
applications ranging from industrial control to computer operating systems,

yet no analytical methods are available for studying their detailed behavior.

The preliminary results reported here illustrate that a very general class

of such processes can be represented by discontinuous hybrid-state discrete-

time systems.

*This research has been performed at the M.I.T. Laboratory for Information
and Decision Systems with support provided by the U.S. Air Force Office of
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Background and “otivation

A multitask process is characterized by a number of tasks which operate
concurrently or sequentially, on an external resource or data base. The
timing of the tasks is generally asynchronous in that new task execution
is initiated by the completion of previous tasks. If necessary, synchrony

and sequential ordering of tasks can be enforced in a number of ways through

the task definitions themselves. However in this research no such constraints

are imposed: rather, the general qualitative behaviors which may arise in
such systems are analyzed. Only two basic assumptions are imposed: (1) a
task requires a finite amount of time and storage to execute, and (2) task
descriptions are fixed, in that the execution of a task cannot alter its
own nature nor the number or nature of any other tasks.

The range of possible behavior of such systems is so large that the
problem of conceptualizing, analyzing and "debugging' multitask processes
is very common and enormously complex. Two approaches are presently in
use: stochastic queueing analysis [1],[2] and simulation [3],[4]. Queue-
ing analysis is most useful for evaluating the average performance properties
of an operational multitasking system, while simulation allows certain un-
desirable properties of a planned system to be discovered and corrected
during the design process. Neither of these methods provides very much
insight about generic problems in the design of such systems, nor do they
provide ideas about how to remedy or detect flaws. The results reported

here constitute a modest step in that direction.

Model Development

Let te[to,w) denote time. Three sets of state variables will be

identified:
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xl - those states which vary continuously with time and take on real
values.
x2 - those states which are real-valued but change only at discrete
instants of time
x3 - those states which are discrete-valued and (necessarily) change

only at discrete instants of time.
. 1.2 .3 . .
The state set is denoted X = {X",X°,X”}. For present purposes, it will be
assumed that these sub sets of states are finite-dimensional and recognizable;

an example will be provided below. Let the increasing sequence {tk} denote

the set of all values of t for which changes in at least one element of x2

or x3 occur, and let the values of the states prior to and following ty be
.- .+ .+
denoted x; , xi , respectively, for i = 1,2,3. In the sequel, xi will be

identified with xi.

The instants {tk} will be identified with task initiation or termination
times. Let the set of tasks in the system be denoted G ;{Gl"'Gn}' Associated
with each task is an iniation function, a termination function and a state-

update function1

g;: X - {0,1} - initiation function for task j
g?: X+ {0,1} - termination function for task j
fj: X =+X - state-update function for task j

Each task is either "on" or "off": 1let G denote those tasks which are "on"
v A v Ay
and G denote those which are off, so that G = GU G and GUG = ¢ (the null
A v
set). The subscript j will be used to denote tasks which are "on'" and j

.. . . . . . . . \
7o simplify this exposition, these are assumed to be time-invariant; how-
cver, this assumption may be rclaxed.
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to denote tasks which are '"off". The task succession rule is as follows:
A transition time, tk, is declared whenever

l,xz,xs) undergoes a 0+l transition

.Y 1
(a) For some je{j}, gj (x
or

(b) For some je{j}, g?(xl,xz,xs) undergoes a 0-+1 transition

- . 1 .
Between task transition times, only the states x~ can change, according to

a state equation

+ +
«1. 1 2 3
x'(t) = f(x (t)’ xk: x-k ) (1)
1 1"
with x (tk) = X . At the completion time t; of a task j, the transformation
[ * [~ 1
Xy x
2" 2-
S RS ( % ) 2)
3t x>
K k
[ [

+

o2 2 3- » .37,

is applied, with S and X T Xp_g

At a transition time, it is possible that more than one task terminates
and/or more than one task is initiated. This produces an inherent conflict
situation which must be resolved in a consistent manner. For instance, if
tasks j1 and j2 terminate together, it is not necessarily true that
fjl o sz = sz o fjl (functional composition may not be commutative). Or
if task jl is initiated when j2 terminates, then up-dating with sz may
turn off jl’ while terminating j1 may turn on jz again, etc. 1In this pre-
liminary abstract, it will be assumed that

* there is a fixed priority among task completions (e.g. 1 > 2 > 3 >

i > ...>n)
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- all completions are performed first according to priority, and then

initiation functions are re-evaluated to redetermine which tasks (if

I

G - )
- .
QRN e

any) should be initiated at the transition times.

nd. R, 2

Other conflict-resolution methods, such as imposed sequential orderings, are
2% also possible.

r . + .
Let jkE 2n be the set of tasks active at tk' Let the transition map-
1

o

ping of (1) be given by 4: [0,9x X1 + X7, so that the solution of

‘n o
R

iaal condia i

£, 5 Ky = (3)

4 L)

is
¢(t-tk,x1i; x]fx‘f) (4)

<t (t)

. saletebioidoti,

2 . . . +
where xk,xi are viewed as parameters. Define the function T: 2" x X +R

A

. . : ; AR .
to be the first transition-time encountered with processes j €2 active at

t = to’ with initial state x = (xl,xz,xs)ex. This can be tabulated by

integrating (1) and applying rules (a) and (b). Let the function

: o: 2" x X > 2" define the next set of active tasks, determined from the

‘ precéding priority rules, at the transition time defined by . In other j

t words,

~ 1 2 3
teay = Yt TUXHXGK) (5) ﬁ

~

e T Ge%oRoR) ~ ©)

The important point to observe is that, in principle, it is not necessary

to include the continuous-time part of the dynamics, since t and g can be
pre-computed from f, {g;}, and {g}}. -

In summary, the dynamics of the asynchonous multitask system can always

VTR

be represented in the form
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Yol T f 7 TUex)
o = £ () 7)
*x+1 JE X
Seay = 9G%)

where f; is the composition, according to priority, of the transition

functions (2) of the tasks completing at t;+1. It is then clear that tk+1
. . 3 . . A .

may be combined with x1 and x2, and that x” may be combined with j to vield

a general discontinuous hybrid discrete-time system. Extensions to stochastic

behavior of f,{fj}, {g§} and {g}} are readily accomodated.

Qualitative Properties

The finite-state paxt of (7) may be further aggregated to produce an
equivalent real-state discrete-time system with discontinuous transition
function. Systems of this general class have been discussed by Johnson [5]
and Kaliski and Lemone [6]. Their behavior may roughly approximate the
behavior of discontinuous systems discussed in Utkin [7] and Johnson [8].
The pertinent properties of such systems will be described more fully in the
final version of this paper. Here it is merely noted that problems may
arise if igi ty is finite. A possible behavior in this situation is an
approximation to sliding mode behavior, which is closely akin to the

phenomenon of "thrashing'" observed in heavily-loaded multitasking systems.

Examples

Realistic examples will be provided in the conference version of this

paper.
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Appendix E

Multitask Control of Distributed Processes

T.L. Johnson*

Abstract
As one class of real-time operating system, multitask

systems are widely used in distributed process control

applications. The evolution of tasks in such systems may depend

on the dynamic response of the controlled process and on task
completion times. Under certain assumptions, it is shown that
the dynamic evolution of such feedback systems can be modelled
by o finite-dimensional discrete-time hybrid-state dynamic

system. An example of a thermal control system is given.

*Senior Scientist; Bolt Beranek and Newman, Inc.; 10 Moulton
Street; Cambridge, MA 02238

Lecturer; Dept. of Electrical Engineering and Computer Science;
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I. Introduction

The design of real-time computer control systems for
distributed processes has been hampered by the lack of adequate

analysis tools. Since the evolution of state in such systems

depends on the timing of process events as well as computing
tasks (and not just the sequence of completed tasks), conventional

finite-state or differential-equation models are inadequate to

predict details of task coordination and sequencing which are
critical for design purposes. For multitask systems, a class
of hybrid-state discrete-time models is shown to be applicable
to this problem; other real-time operating systems may require
more general models (Gonzalez, 1977).

Even for relatively simple systems, the analysis of timing
is complex. An example of a furnace temperature controller
with overheat protection is given to illustrate this fact.

Qualita£ive properties of hybrid systems of this class
have been studied in Sontag (1981), Johnson (1980). Some
design methods are described in Vidal (1969). General controller

synthesis methods are not yet available for such systems.
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The transition between tasks may depend on the values of

continuous or discrete process variables, and it is the dynamics
of the joint process that is of interest. Let t€(to,m) denote

2 1

time. The state set X={X1,X } is the product space of X' =

{those states which are discrete-valued, including all discrete

memory states!}, and x?

= {those states which vary continuously
with time and take on real values}. Let the set of tasks in
the system be denoted G={Gl,...,Gn}. Associated with each task
is a task initiation function g§: x+{0,1},a task termination
function gg: x>{0,1}, and a state update function fj:XxX*x.
Each task is either "on", or "off". Let ql={qi,..,qi}ezndenote
those tasks which are "on", i.e., q;=l when task j is "on",

q§=0 when it is "off". A task transition time, t is declared

KI
whenever
nooo1.- nop01
T=[V (g:Ag:) IVIV (g:Aq:)] (1)
j=1 J 73] j=1 J 7]

makes a 0+1 transition, i.e., an inactive task is initiated or
an active task is terminated. Between task transition times,
the states in Xl are assumed to be constant*, and the states
in x2 are assumed to evolve according to a time-invariant

differential equation

2o =t 1t telt, b, ) (2)

k+1

. . . . 2
wilere f is assumed to be uniformly Lipschitz continuous on X

for each xlixl. Let g: [0,»)x X+X be the transition mapping

of (2), defined for each xlle, such that the solution of (2)

with initial data X =X (tk),xk-x (tk) is

*This assumption can be relaxed by introducing additional
transition times for spontanecus discrete-state transitions,
if desired. The assumption is satisfied, for instance, when there
are a0 discrete-state memory devices external to thie computer
memory, and when only the task scheduler is allowed to change
the memory states xi.

7 AT WY
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The task state-update functions fj must thus take as their
arguments the state at time of task initiation and at time of
task completion; these functions are coinposed with one another in

’

L
order of completion priority*. The convention qk=(qkl,qk2)

xk=(xkl,xk2)' has been used in (6). Rephrasing (4)-(5) and

defining the state of the combined procescs as
= 1] 1~ 7]
X n (xk)
o(xk)
nzsxk)
E(Xk)
where nl and n2 denote the projection of n onto Xl and X2,

-l

respectively, and the arguments of n,¢g and 1 appear as subsets of
the elements ;k' respectively.

The well-posedness of this model depends on existence and
unigqueness of solutions to (2), for which sufficient conditions
have been stated, and also on the property ﬁim tk=w. In some cases,
this limit may be achieved for finite k, which is acceptable; in
others, limtk may be finite, which is not. The latter case may
be preveﬁZ:d by placing a positive lower bound on the range of

the function (e.g., related to the cycle time of task scheduler).

III. Example

The temperature control of a room by a furnace which is
subject to overheating is considered. The room is equipped with

a temperature sensor and the combustion chamber is equipped with

iThe definition of "priority" is a question of semantics; the
task which has highest termination priority may have its results
overwritten by lower-priority tasks which complete afterward,
according to the convention adopted here.




sequencing of tasks alternate between j=1 and j=2, but the

sequences j=1,2,3 and j=1,3 are also possible, depending on the
parameters of the continuous system. Since the task computations
are so simple, it is assumed in this example that they are
completed instantaneously.

Suppose that the dynamics of the room temperature, R,
are given by

§=-“1R+31F+5l (8)

where

]

inverse of room thermal time constant (min.)

w
W

1 heat capacity of furnace

o
|

1= constant depending on ambient temperature
The dynamics of the combustion chamber temperature, C, are
given by
C = -a2C+¢2F+52 (9)
where

a2 = inverse of combustion chamber thermal time constant
(min.)

32 = heat capacity of combustion process

62 = constant depending on ambient temperature.
Obviously, more complex distributed-parameter or nonlinear
radiation models could be chosen in place of (8)-(9). The room-
temperature setpoint is denoted by R (implemented in the
computer), while the overheat setpoint is denoted by C. Define
the threshold function

0z (x) = IL x2X (10)
‘\0 XX

The dynamics of the timers are given by

ey

£)
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3 Cialiby

In order to define the functions 1 and oj(eq.(B), (4)) of the

model, note that the transition function for (8) can be written

R(t) = [(61+31F)/al]+e [R(tk)-(61+BlP)/al] (17)

and an analogous expression is obtained for C(t).
Since all tasks complete in zero time, it may be assumed |
that qis{ooo} in (4). Suppose that F=0. Then only Task 1 can

be initiated next, and the time for this to occur is

max(Dl,Dz) H TlAT2=l, M=0
max(D_,D,,D.) : T, AT =1, M=1
1(0,0,%%) = 0’172 e (18)
0 H TlAT2=0, M=0
D° : TlQT2=0, ¥=l '
where
R—Gl/al
D = (L/a;)in |———=2 (19)
o) 1 =

is the time for room temperature, R, to cool to R if R>R, found

from (17). ]
If F=1, then either Task 2 or Task 3 may occur first,

depending on the parameters of the problem and the value of

the states R and C in x2 (since Tl=0,T2=O are required when F=1).

The time for R to reach R when Ri§:(61+81)/al is

R—(61+31)/q¥

Dy, = (1/o3)in | - (20)
R—(<51+:l)/ccl

And the time for C to reach C when Ciﬁi(62+82)/a5 is

c-(62+32)/a2

o]
[

3 = (l/az)ln - (21)
C-(52+;2)/12
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In this case, the order of invoking the tasks is immaterial so é
that (6) does not depend on task priority. Mutual exclusion of i
the tasks could be represented, if desired, by modifying the

state x! to include status information corresponding to ql.

oy
XYy

In addition to illustrating the application of this modelling

procedure, the example has been concoted to illustrate the

versatility of conditions which can be represented by the multitask

% B SPT RIS SR

formalism.

IV. Conclusion

The salient assumptions of this modelling procedure are:
(1) the number of tasks is fixed and finite, (2) tasks cannot
modify their own computations, (3) bounds on completion times
of each task are known, (4) tasks are assigned fixed priorities, }
(5) the time scale of the task scheduler is much faster than
the process time scale of interest in the model. While many
multitasking systems are conceptualized in a more general manner

which violates one or more of these assumptions, it is often

possible (with some inconvenience) to represent them in a form

which satisfies these constraints through appropriate choice of

state variables.

Finally, an important objective of this paper is to
illustrate conclusively that traditional infinite-dimensional
continuous process control systems are very inadeguate for the

representation of typical computer-controlled processes, and

that substantial further research in this area is required.
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Appendix F

ON FEEDBACK LAWS FOR ROBOTIC SYSTEMS

T. L. Johnson

Senior Scientist, Control Systems Department
Bolt Beranek and Newmsn Inc., 50 Moulton Street

Cambridge, Massachusetts

and

Lecturer, Dept. of Electrical Engineering & Computer Science

M.I.T. Room 35~2058
Cambridge, Massachusetts

INTRODUCTION

A variety of control problems arising from
robotics applications can be restated as
optimal control problems of minimum-time
state transfer in the presence of state~space
constraints and constraints of incomplete-
state information. The traditional approach-
es to solving such problems are Pontryagin's
Maximum Principle (Pontryagin et.al., 1962),
in the case of open-loop control, and
Bellman's Dynamic Programming method (Bell~-
man, 1957). While a number of technical
difficulties exist, approximate solutions of
such problems can generally be computed off-
line (see Kahn and Roth, 1971). Perturbation
wmethods for obtaining local feedback laws are
also available (Whitney, 1972, Hemami, 1980).

However, no currently operational robots are
known to be based on solutions of such optimal
control problems, nor is it likely that this
will come about. Some of the reasons for

this situacion can be given: (a) complete
equations of motion are extremely complex, and
are often not available; (b) trajectories

must usually be planned in a short time-period
preceding execution--there is no time for
detailed design studies or numerical analysis
for every motion being performed; (c) relia-
bility and repeatability or accuracy of motion
are often more important than minimizing
execution time; (d) optimal control lavs
often require too much storage or real-time
computation during execution of the motion;
(e) nonlinearities are often sufficiently
severe that local linearization gives poor
results (even i{f its heavy comwputational re~
quirements are overlooked).

By contrast, current practice is often to
deternine a feasible open~-loop position

1Porr.ionn of this research have been performed
at the MIT Laboratory for Informstion and Dec-
ision Systems with support provided by the
U.S. Alr Force Office of Scientific Research
under Contract No. F49620-80-C-0002.
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trajectory by a “teaching" procedure (e.g.,
Unimation, Inc., 1979). The trajectory
recorded during this procedure is then y
"played-back" as a sequence of position com— 4
mands to joints which are servo-actuated; the
rate of playback may be increased in a
sequence of preliminary trials, until the 4
bandwidth or pover limitations of the servos
are encountered. This methodology is relativ-
ely quick, intuitive, and yields reliable
performance vhen the disturbances to the

robot and workspace are relatively small.
Although this state-of-the-art approach to
trajectory formation i{s very effective, it
possesses inherent limitations and is already
being superceded in more demanding applica-
tions such as locomotion and manipulation.

One limitation is that a human controller
cannot resdily communicate commands to such a
robot. The robot ia also unable to anticipate
or accommodate unexpected changes in work-
space configuration; the teaching paradigm
cannot be readily extended to allow for feed-
back from additional semsors (e.g., touch or
wachine vision). The objective of the present !
note is to extend and affirm the suggestion

of Young (1978) that discontinuous feedback
laws are naturally-suited to robotics problems,
t6 describe two further examples of discontin- %

ddda

uous feedback laws, and to explore further
notions for the synthesis of such systems.

Rationale for Discontinuous Feedback Laws

Accepting the fact that optimsl feedback laws

for this class of problems generically exhibit
discontinuous behavior (Athans and Falb, 1966. ]
Kahn and Roth, 1971), one is motivated to :
seek simpler methods of determining loci of
discontinuity. The theory of variable-
structure controllers, developed originally
by Emel'yanov (1967) and extended by his
colleagues (see Utkin, 1978) has provided new
design methods for certain classes of systems;
it is a remarkable observation that the
performance of such systems can be qualita-
tively quite robust, even though their pre-
cise trajectories may depend strongly on the i
initial state, disturbances, or modelling

errors (Young, 1978).
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The author has previously suggested (Johnson,
1978) that there is a close relationship of
this theory and the theory of control laws
described in linguistic terms, e.g., as a
digital computer program (Zadeh, 1973).
Example 1, in the sequel, exhibits this rela-
tionship. Discontinuous control inm robotics
applications can thus arise from the nature
of the task description as well as from dis-
continuities in the mechanical system and
environment, as illustrated by Example 2. A
third reason for developing diacontinuous
controls srises from implementation considera-
tions. Digcrete sensors and actuators are
usually cheaper and more reliable than con-
tinuous ones; they arise naturally in discon-
tinuous control law synthesis. Discrete
signals are also preferred for signalling
task initiation, completion, or interrupts to
a control computer. Finally, digital comput-
ers typically perform binary operations faster
than (approximations to) real number opera-
tions.

The following two examples illusctrate the use
discrete feedback control in two very simpli-
fied problems arising in robotics, which lie
just beyond the current state~of-the-art.
Since a general design theory for such cases
is not yet available, each example is solved
on its own merits.

Example l: Catching a Ball

In this example, the "hand" is idealized as

a cup-shaped weight of mass M which can be
acted on by vertical and horizontal forces in
order to catch a (vertically) falling ball of
mass m. Pirst, it is assumed that the hand is
beneath the ball and the interception dynamics
are analyzed. Then, a simple control law to
achieve catching from an arbitrary initial
position, using remote sensing of the position
of the ball (a primitive form of vision), 1s
given in algorithmic form.

The geometry of the problem is shown in Figure
1. Suppose that x‘(t) - xu(t) = 0 to analyze
the catching process. According to Newtonian
mechanics, the ball's motion is given approxi-
natelyz by

nz = -mg z-(to) =z t‘(co)-o 1)
vhere g 18 the acceleration due to gravity and
zno is the initial position of the ball at :o'
the time it is dropped. The motion of the
hand is given by

Moy = Mg + £,(0)3 ny(t)) = B By(e)=0
(2)
where fz(t) represents the control force.

2In air, & viscous drag force depending on
cross-sectional area is also present, and
could be used in estimacting the ball's mass.
This digression is not pursued here.

Suppose that cl is the first time of contact

between ball and hand, and lec tl denote a

1 while tI denotes a time

. Assuming EH(t) is approximately

time just prior to t
just after t
constant on the interval (:;.t;). it can be

set to zero without affecting the conclusions
of the following analysis; this is done for
simplicity in the sequel. Either an elastic
or inelastic collision may occur at . If an

inelastic collision occurs, and the ball 1is
caught, the combined dynamics for t>c1 are

M)z, = -(mm)g + £,(0); 2,(0) = 2 (0),

>t
-1
zu(tl) = I the location of
. impact
:H(tl) - ? (3)

If an elastic collision occurs, then
=z, * -mg, zn(tl) =z zn(tl) - ?
Mz = -Mg + £ (0); zy(t)) = 2y = 23
z2,(t.) =7
'ty %

Conservation of energy and momentum can be
invoked (now taking f (t)=0) im order to
deduce which of these®situations will occur,
and to find the missing velocites at t'tl.

Conservation of momentum is
« e - . - . + .
P 2omz (c]) + Mz (t)) =mi (c)+ LEM ]
(5)

while conservation of energy (omitting potential
energy, which i{s approximately constant, from
both sides of the equation) is

. -2 . -2-. + 2
E nz'(cl) + qu(:l) nzn(:l) +
. +.2
qu(tl) (6)
Viewing these as simultaneous equations for
i_(tI) and iu(:I), bouncing is predicted when

.« 4 +.3
there is a solution with z‘(t1)>zH(t1) .

A simultaneous solution yields the possibili-
ties

2 1/2}

'z(t‘l') « {P+{aM(E(#m)-P5) ) C} /mtm) (D)

As a special case, suppose that EH(:;)-O. i.e.,

the hand {s at rest at the time of impact.
Then it can be shown that a real-valued
solution of (7) always exists and that

30thervisc. in an inelastic collision, energy
dissipation will occur at :1 so that the physi-

cally realizable solution i-(ct) - ;H(t;) comes
about. This s not explored further here.

L )
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55, Thus bouncing will occur whemever M>m, which
S is typically the case. A further analysis

o ¢ shows that if M>m, a finite negative velocity
g of the hand prior to impact (zu(t )<0) will

prevent bouncing; in the limit w=0, zu (tl)"‘

im(:I) -

zn(tl), i.e., perfect tracking will be re-
g quired; if the ball is very heavy (m>M), or
has a very large velocity at impact, then a
b catch can be made even if zn(t ) 1is positive,

i.e., if the hand comes to meet 1it. Typically,
one expects m<M but not m<< M, so that a very
small movement to produce a slightly negative
hand velocity prior to impact will ensure &
successful catch.

R
H
-

In a catch, the hand must merely intercept
! the ball's predicted trajectory before the
i Y ball arrives at the point of interception,
: i and then wait to make a small final maneuver
i to avoid bouncing. If the ball is to be
struck, (say, in the x~direction) quite a
different strategy is required: The ball's
-! trajectory must be intercepted precisely at
ki the time the ball reaches the interception
ry point, with a velocity which is approximately
y | perpendicular to the trajectory.

Now suppose that the ball's positionm, xm(t).
zn(t) can be measured, that the hand position
xu(t), zn(:) is available from internal meas-
urement, and that forces fx(t) and fz(t) can

be applied independently. Assume that accur-
1 ate velocity estimates can be obtained from
the position measurements. At :-to. the

initial time, suppose zn(to)-zln, xu(:o)-O.
while z.(to) - zHo<zﬂ°'xH(to) Xy A
sinple implementation of the rendezvous

strategy for catching the ball is the follow-
ing pseudo-Pascal algorithm:

PROCEDURE CATCH

BEGIN
: REPEAT
! fz(:) -0
e (t) = x,{t)-x (t)
fx(t) - -leex(t)
UNTIL |e (t)[<E
i 1" 0
REPEAT
¢ f2,(0) = =K} (2,(0)=2 (D))

c‘(t) * xy(e)-x_(t)
1 =4 + Ae_(¢)
x 3 z
{d 41s the sampling interval]
f‘(c) . -K‘ZLx

UNTIL zm(t) < zM(t) +E, j

IF |z (e)-z ()< E, aND | x (0)-x ()l E,

THEN RETURN

ELSE [MISSED THE BALL, GO TO ERROR
RECOVERY ]

END

The first REPEAT loop uses position feedback
on the x-position error (intended with a
"large” gain le) to bring the hand below

the ball as fast as possible. The second
REPEAT loop uses integral control on the
X=-error to more accurately position the hand
below the ball, and derivative feedback on
the z-velocity error (intended with a "small" 4
gain, K;) so that the hand has a amall down-

il

ward velocity when the ball strikes it. A
Although the details of this control law are
esgsentially irrelevant, it 1is primarily in-
tended to illustrate two points: (a) it is
not necessary to explicicly predice the trai-
ectory of the ball (i.e., to preplan the
trajectory) or to know the precise mass of
the ball; (b) The contrel strategy is dis~
continuous at the time between the two

REPEAT loops, which is determined by the
motion of the ball itself. In the second
example, the control law discontinuity arises
primarily from scate-variable constraints
rather than from the task description.

Example 2: Converting Vertical Force to
Horizontal Locomotion
A single massless link of length 10 terminated J

at the upper end by a mass ul and at the lower

end by a mass -0' is considered in the example

(Figure 2). A vertical force, F(t), may be
applied to the upper wmass: When this force f
11fts the link above a horizontal surface at

z»0, it 1is free to swing back and forth in

one direction (defined as the x-direction); ]
vhen wmass % is in contact with the surface. 1

it "sticks"
component is subsequently applied to it.
assumption approximates the effect of a
friction coatact between oy and the surface.

unless an upward vertical force
This

The intriguing feature of this example is
that there exist simple strategies whereby
the purely vertical force F(t) can be used to
propel the link in a forward horizontal
motion. These result from a proper combina-
tion of two motioms:

F: The link falls down (like an inverted
pendulum) when n, 1s on the surface and

no vertical force is applied (F(t)=0). 4

S: The link swings back and forth in a stable
pendulum motion when L is off the surf-

ace and a vertical force is applied to
counteract gravity (P(t):(no*nl)g).
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The equations of motion are first derived

in the two cases where m, i{s not in contact
with the surface z=0 (Cage S), and then when
it is in contact (Case F).

Case S: Let F°1 denote the force on L

exerted through the link by B, and FlO

denote the force on LY exerted by T defined
in the direction of the link for each mass.
Newton's equations for o, are

myE, = -uog*-POIlineo 9

moil'o - F01coleo (10)
And for nl they are

ml'z'l aF - g - l-'msineo (11)

mlil - -choseo (12)

vhere g denotes the acceleration due to
gravicty. The constraint of equal and oppo-
site reactions (rigid link) is F01~l-'10. The

link imposes constraints between (xo,zo) and
(xl.zl) wvhich are most readily expressed in

terms of 90:

X, =

1" % + locoseo (13)

and

2, " 2, + 1081n90 (14)

1
The time-derivatives of the constraints are
used because the constraints must hold at
each instant of time. Elementary algebra
and trigonometry can be used to solve for

FOl and Flo in (9) and (10). Further

algebra yields the key equation for 90:

.

8y = Feos eolul 20 (15)

In this example it is natural tc assume that
inertial measurements could be made only on
m, . and thus it is of interest to have

equations of wotion directly in terms of the
inertially measured states (xl,zl) rather

than (xo.zo). These equations are:

i e e(mt 62,

x) = ~(mgfy/ (my+my))conbi,
(nolnl(uo+ml))sin00coseoF (16)

- 22

z) = -(-010/(-°«n1))o1n0060 -8
+[co.280/-1+.1n200/(-0«.1)117 an

Purely algebraic constraints (13)-(14) can be

used to find (xo

zo’O; otherwise s transition to Case F may

.zo) and to check that

occur. Purthermore, note that (16), the fore-

ward acceleration of -1, is driven by the

vertical force F, providing the possidilicy
of locomotion.

UL VO PUUREPU B U

Case F: Let !’01 and FlO be defined as in

Case S. During Case F, it {s assumed that
(xo,zo) remain fixed at their initial values,

and that zo-O. Newton's equations for m) are
=z = F - w8 - rw-meo (18)
mlx - -choaBo (19)

In differentiating the constraints (13) and

(14), X and Z, are held constant. The

equation for 60 is derived in a similar

fashion to Case S:

eo - rcoseolmllo - gcosﬂol’io (20)

Since % and z, are fixed, (xl,zl) could be
found directly from the algebraic constraints
once (20) was solved. However, differential
expressions analogous to (16) and (17) are
more useful for guidance purposes:

- - 8 z -
X, = (-£,8," + gs1n6;)cosb - Faind cosb /w

(21)
- . 2 ) 2
z, = (-2060 + gsinﬁo)sineo - g~Fcos eolml
(22)

As expected, (20)-(22) do not depend on By

because = doesn't move in Case F.

Feedback law: Only the most simple form of
feedback control strategy is described here,
and it 18 shown that feedback from only 90

and éo, as i1lustrated by the solid feedback

line of Pigure 3, is sufficient to provide
the features of useful locomotion described
above. The discontinuous feedback law is
wost readily illustrated on the phase-plane
plot of 50 vs. 50 of Figure 4.

The feedback law is:
Whenever (eo(:),éo(t)) in Regions A,E or F

take F(t) = 0
Whenever (eo(t),éo(t)) in Regions B,C or D

take F(t) = (nohl)s

For any initial condition inside the shaded
area except the point (n/Z.O)“. the motion

of the system will eventually settle into a
periodic motion. Initial conditions outside
the shaded regions cannot be corrected by this
faedback law. Disturbances such as vartiation
in surface height, friction, etc., resulr in
parturbations to the trajectory, which are
stable if the system remains inside the shaded
region. Thus, one goal of accommodating small

‘Cer:ain additional constraints and assump-
tions, which may slightly decrease the size of
this area, have been intentionally ignored in
this simplified analysis.
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obstacles has been met. A second goal, of
varying the speed of locomotion, can be met
by varying elin parawetrically. The time per

cycle 1s roughly related to the area enclosed
by the periodic trajectory, while the horiz-

ontal distance is approximately 10(9.“-6 nin)‘

the ratio of distance to time is an approx-
imate measure of average forward velocity.
The range of achievable velocities with this
locomotion strategy is rather small, even
though the corresponding range of step sizes
(becween 0O and 210) is rather large. The

margin of stability of the larger step sizes
1is considerably decreased, however.

The continued forward motion of m does not

violate conservation of momentum; the initial
forward momentum is conserved during motion
S, but during motion F, it is augmented by
wumentum exchange, which occurs due to the
constraint that L) remain fixed on the

surface. Thus, the energy expended in lifec~
ing during motion § can in fact be converted
into forward acceleration during motion F,
and the forward motiom will not die out (e.g.,
due to friction effects). No laws of physics
are violated by this strategy.

CONCLUSIONS

The examples, drawn from two different areas
of robotics, 1llustrate that discontinuous
feedback laws are readily devised for a
variety of applications. In both exawples,
the feedback law could be viewed as a finite
set of muctually exclusive continuous-coatrol
subtasks. In the first example, two different
linear control lavs vere used, while in the
second example, two different constant values
of control were used. Furthermore, the tran-
sitions between tasks were closely tied to
events in the (full) scate space which vere
readily detectable, e.g. interception and
rendezvous in the first example, and contact
with the gsurface 2z=0 in the second. These
examples {llustrate that a generalization of
the methods employed by Young (1978) may be
useful in future robotics applications. A
set of control values or continuous-control
feedback laws sufficiently rich to control

the motion of the system in each of its known
or desired states is chosen. The trajector-
ies of the systenm under these forms of feed-
back are computed. The switching loci between
the control laws are then taken along the loci
of intersection of these trajectories, or
along a physical constraint locus of the
system wotion, im such a way that the desired
combination of msovements is obtained. This
has the effect of assuring a vell-defined mode
of sliding along the discontinuities of the
closed~loop system; othervise the nature of
sliding might change markedly and unpredict-
ably wichin a discontinuicy surface due to
trigonometric-type nonlinearities of the
equations of motion.

The seleccion of a finite number of candidate

control strategies and the choice of switch~
ing loci defined by intersections of natural
motions of the system under these candidate
control laws appear to be primary requirements
for a practical design theory of discontinu-
ous control for robotic systems. Presently,
the greatest difficulties {n the development
of such a theory are the relationship of
linguistically-described goals to feedback
lav selection, the lack of analytic methods
for characterizing controlled motions of the
system, and the inherent difficulties of
stability analysis for discontinuous systems
(Johnson, 1980).
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Appendix G

Essentially Continuous Functional Real Coders

1. Let FT’ T > 0 be the set of all piecewise uniformly continuous maps,
with a finite number of pieces from [0,T) -+ R.
For feFT geFT we define an operation * as follows
1 2
g*f(x) = f(x) if xe(0,T))
g(x-Tl) if xe[Tl,T1+T2)
and thus F = U F_ is closed under *,

T)*T, 50 T

Let & : F >R be a given map. We call ¢ a functional real coder. In

It is clear that g*f is in F

the sequel we examine certain properties of such coders.

Let use define the relation z<I> on F by

@ Y hEFT3

o(h*£) = o(h*g)

Clearly ¢ is a right-congruence relation, We say that ¢ is unitary if
Fﬁ=¢ has but one class: otherwise we call ¢ finitary, if:=¢ has finite

index, or non-finitary if it does not. We focus on unitary coders below.

2. Characterizing Unitary Coders
Suppose & is unitary. We would like to see if we can find a simple
characterization of ¢, We first begin with an elementary but, nonetheless,

important theorem.




w2t

Theorem: If fc-:FT then lim £(t) is defined. We call this value f(T).
t->T

. el i, W= G

Proof: A uniformly continuous map on an interval of the form [a,B) has a

uniformly continuous extension to [a,B8]. Since f has only finitely many

) . ~
pieces 3 T < T such that f is uniformly continuous on [T,T}. The result ]

PSS

4 follows. QED
?
,'. al
' 3. We next define a concept of fundamental importance for coders--essential

continuity. :
‘; Definition: ® is essentially continuous (e.c,) if the following condition

is true: Vv ¢ > 0,38 >0 s.t. Vv fs_F,I.1 quTz, T1 iTZ if

4t b b ad

(1) [£)-gx)| <6  for all xe[0,T,)
(2 le(x)-g(T))| <6 for all xe[T,T,)

and (3) |T2-T1| <8

then |$(£)-4(g)|

IA

€ =

Let us restrict our attention to essentially continuous maps ¢. Suppose,
now, that ¢ is unitary., Let feFT be arbitrary. We would like to argue
that ¢(f) is completely determined by f(T). Specifically if geF%, % >T
and g(%) = £f(T) we would like to prove that &(f) = ¢(g). How? E
Let € > 0 be arbitrary. By the uniform continuity (piecewise) of f,

extended to [0,T] and g, extended to [0,T] we argue as follows. Let §

be the § associated with € by virture of the essential continuity of $. 4

3 Py > 0 s.t, for all xe[T-ol,T), [£(x)-£(T)| < &/2. Similarly 3 0, > 0

s.t. for all xe[T-oz,T), ]g(x)-g(T)l < %3 Let o = min (ol,pz). Let




us define another map hefT as follows

h(x) = { f(x) if xef0,T-p)

g(T-T+x) if xe[T-0,T)
Note that h is well-defined and is in fT'

Note that
(1) For xe[T-p,T), |h(x)-£(x)]| < §
(pf: |h()-£()| < |h(x)-g(D |
+ |g(T)-£T)| + |£CO-£(T)|. With g(T) = £(T), we have

Ih(0-£x)| < [h(x)-g(M| + [£@)-£(D) |

Now let y = T-T+x. Note that ye[T-p,T) and that h(x) = g(y). So

h(x)-£x) | < |g)-gM | + |£)-£(T) ]

As p < o and o < P it follows that

[h(x)-£(x)| < 8/2 + /2 =38 QED)

By the essentially continuous nature of ¢, then

|o(h) - ¢(F)] <ce¢
Define quo by
q(z) = g(T-p+ 2)

q —
Note that if we write f as the restriction of f to [0,T-p) and g
as the restriction of g to [0,T- ) then
h=q*t

-~

g=q*8

~

(Pf: First for h. If xe[0,T-p) q * ;(x) = f(x) = f(x) = h(x).
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If xe[T-p,T) then q*f(x) = q(x-(T-p) = g(T-T+x) = h(x). Similarly
for q. If xe[0,T-p) then q*q(x) = q(x) = q(x). If xe[T-p,%) then

a*q(x) = q(x-(T-p)) = g(x). QED)

(4) As ¢ is initary, f = ¢ q. So ¢(h) = ¢(g).

(5) Thus by 2, [¢(g)-¢(f)| <

As € is arbitrary, &(g) = #(f). We summarize this by

Theorem: If ¢ is unitary and essentially continuousandfeFT, geF2, % >T,
with f(T) = g(T), then

o(f) = ¢(g)

. s . £ =
Corollary: Under the above assumption 3 O:R>Rs.t. ¥ feFT, (5 8(£(T)).
Proof: Clear, ¢ only depends upon the value of f(T). QED

Note how, with the condition of essential continuity we have generalized

the ""sequence'" coders earlier studied.

4. For this reason we may view a unitary ¢ (e.c.) as memoryless. We
seek a unitary ¢, non essentially continuous, that is not memoryless
to show the necessity of essential continuity in the above proof.

Let ACF be defined by: feFy is in A iff 36 >0, § <T, such that f(x) =

1)
o

for vex [T-6,T).
Define ¢ by &(f) = (1 if feA
% 0 if ffA

We claim that ¢ is unitary and not essentially continuous. Clearly

A 8: R+Rs.t. ¥V feFT o(f) = 6(£(T)).

R




Proof of Claim:

o

1. d is unitary: Let feFT s geﬂT be given, along with hefT . If heA

1 2 3
then h*f is in A and, conversely. Similarly for h*g. Thus ’
If heA, &h*f) = ¢h*g) = 1
héA, oh*f) = ¢(h*g) = O

So ¢Ch*f) = $(h*g) and £ Z g. Since f and g were arbitrary, ¢ is

unitary.
2. ¢ is not essentially continuous: Let feFT be defined by f(x) =0
Y xg[0,T). Then feA and ¢(f) = 1. Let g € fT be,vfor example, defined
by
gk{x) =4 (1/K)x xe[0,T/2)

(-1/k)x + T/k xg[T/2,T)

Note that ¢(gk) =1 ¥vk=12,3,...
Also note that, for any § > 03N s.t. for k > N, |gk(x) -fx)| <6
¥ xe{0,T). (Take N s.t. 7%'3 § or N > T/28). This contradicts the

essential continuity of ¢ for if & < 1, then no matter how small a

value of § is chosen there is a g, obeying ng(x)-f(x)| <§ VvV xel0,T)

but ]¢(gk) -0(f)] =1¢ e




So the condition of essential continuity is a necessary one in the , 8

Theorem. QED

(Note that if the map ¢ is such that ¢(f) = 8(£(T)) for a fixed 8,

¥ fe{0,T), then ¢ is both unitaryand e.c.)
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