AD-A113 834 UNCLASSIFIED	BDM CO CALIBR DEC 81	ATION	AND AF	CA PLICAT	ION OF		NATION	TEMPER NOOI 3CR	ATURE-P 014-78-	F/G 1 NEUMA C+0204 NL	4/2 ETC(U)	
402 402 116834												
									÷ų s			
	END Date Frimed 5-182 DTIC					_						

NPS67-81-03CR

A113834

B

FILE COPY

11

NAVAL POSTGRADUATE SCHOOL Monterey, California

CONTRACTOR REPORT

CALIBRATION AND APPLICATION OF A COMBINATION TEMPERATURE-PNEUMATIC PROBE FOR VELOCITY AND ROTOR LOSS DISTRIBUTION MEASUREMENTS IN A COMPRESSOR

F. Neuhoff

BDM Corporation P.O. Box 2019 Monterey, CA 93940

December 1981

Contractor Report

Approved for public release; distribution unlimited

Prepared for: Naval Postgraduate School Monterey, California 93940

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral J. J. Ekelund Superintendent

D. A. Schrady Acting Provost

The work reported herein was carried out for the Naval Postgraduate School by BDM Corporation under Work Order 086426, under Contract Number N00014-78-C-0204. The work was part of a program entitled Transonic Compressor Investigations funded in part by Naval Air Systems Command Code AIR-310 and Code AIR-330 under the cognizance of, formerly Dr. H. J. Mueller, currently Dr. G. Heiche.

This report was prepared by:

F. NEUHOFI

BDM Corporation P.O. Box 2019 Monterey, California 93940

Publication of the report does not constitute approval of the sponsor for the findings or conclusions. It is published for information and for the exchange and stimulation of ideas.

Reviewed by:

kreen

R. P. SHREEVE, Director Turbopropulsion Laboratory

M. F. Plate

M. F. PLATZER, Chairman Department of Aeronautics

Released by:

Alex

Dean of Research

UNCLASSIFIED	
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	. 3. RECIPIENT'S CATALOG NUMBER
NPS67-81-03CR AD - A1138.	
4. TITLE (and Subjuite) Calibration and Application of a	5. TYPE OF REPORT & PERIOD COVERED
Combination Temperature-Pneumatic Probe	Contractor Report
for Velocity and Rotor Loss Distribution	6. PERFORMING ORG. REPORT NUMBER
Measurements in a Compressor	
7. AUTHOR(e)	S. CONTRACT OR GRANT NUMBER(s)
F. Neuhoff	N00014-78-C-0204
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
BDM Corporation	
P.O. Box 2019 Monterey, California 93940	
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Naval Postgraduate School	December 1981
Monterey, California 93940	13. NUMBER OF PAGES
18. MONITORING AGENCY NAME & ADDRESS(1) dillorant from Controlling Office)	18. SECURITY CLASS. (of this report)
	Unclassified
	ISA. DECLASSIFICATION/DOWNGRADING
Approved for public release; distribution	<u>.</u>
	unlimited
Approved for public release; distribution	unlimited Report r. R. P. Shreeve, 1 Postgraduate School,) design of a temperature-
Approved for public release; distribution 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different for 18. SUPPLEMENTARY NOTES Interim Report. Principal Investigator, D Director, Turbopropulsion Laboratory, Nava Monterey, California, 93940 19. KEY WORDS (Continue on reverse olde 11 necessary and identify by block number Compressor Measurements Probe Calibration Temperature-Pneumatic Probe 19. Approxed (Continue on reverse olde 11 necessary and identify by block number) A description is given of the current	unlimited Report r. R. P. Shreeve, 1 Postgraduate School, design of a temperature- surveys in an axial te the probe for varia- in a free jet is ng the characteristics

ζ,

.....

UNCLASSIFIED

CUMTY CLASSIFICATION OF THIS DEGETTER More Entered

Verification of the calibration in steady flow and application of the probe to obtain radial surveys in a small axial compressor are also described. The procedures developed and reported here allow the probe to be used with automatic reduction of data by mini-computer without the need for iteration.

DD Form 1473 1 Jan 1 > N 0102-014-6601

UNCLASSIFIED

2 SECURITY CLASSIFICATION OF THIS BASE (Then Date Environ)

Manife water and the second second

LIST OF CONTENTS

											F	Page
1.	INTRODUCTI	ON	• • • •	• •	•••	•••	• •	• •		•	•	7
2.	PROBE DESC	RIPTION		• •	• •	•••	• •	• •	••	•	•	9
	2.1. Gene	eral Arra	ngement	• •	••	•••	• •		• •	•	•	9
	2.2. Desi	.gn Featu	res	• •	•••	• • •	• •	•••	• •	•	•	9
3.	CALIBRATIC	N			• •	• • •	• •			•	•	12
	3.1. Appa	iratus and	d Proce	dure	••		••	• •	• •	•		12
	3.2. Dime	nsionles	s Veloc:	ity -	Pneu	umati	c Ca:	Libra	atio	n	•	14
	3.3. Temp	erature	Recovery	y Cal	ibrat	tion	••	• •		•	•	18
4.	APPLICATIO	N		• •	•••		• •			•	•	21
	4.1. Veri	fication	of the	Cali	brati	ion .				•		21
	4.2. Comp	ressor M	easurem	ents	• • •					•	•	21
5.	CONCLUSION	IS		••	•••					•	•	23
	TABLES .	• • • •		• •	• • •					•	•	24
	FIGURES .	• • • •			•••					•		31
	APPENDIX A		IONSHIP ITY AND							•	•	44
		A-1.	Dimens: Number							•	•	44
		A-2.	Probe I	Press	ure (Coeff	icier	nts	• •	•	•	46
	APPENDIX B	DATA	ACQUISI	TION	AND I	REDUC	TION	••	• •	•	•	50
		B-1.	Data A AQCPRB									50
		B-2.	Data Ro Program						••	•	•	50
		B-3.	Program	n Lis	tings	s. .	• •	• •	• •	•	•	51

THE REAL PRACE

.

5 L . . .

	B-3.1.	BASIC Program AQCPRB 53	2
	B-3.2.	FORTRAN Program REST2 5	7
	B-3.3.	FORTRAN Program COEFS 62	2
APPENDIX C.		ANTAN THERMOCOUPLE OUTPUT	l
APPENDIX D.	PNEUMATIC AVE	RAGING OF UNSTEADY PRESSURES 73	3
REFERENCES		7'	7
DISTRITION	T.TST		8

••

LIST OF TABLES

		<u>P</u>	age
I.	Example of Calibration Raw Data and Stored Data .	•	24
II.	Complete Set of Reduced Calibration Data	•	25
III.	Pneumatic Calibration Coefficients and Errors in Surface Approximation of Calibration Test Data .	•	27
IV.	Temperature Calibration Coefficients and Errors in Surface Approximation of Calibration Test Data .	•	28
v.	Probe Calibration Verification Test Results	•	29
VI.	Compressor Test Results	•	30
B-I.	Calibration Test Instrumentation Connections	• (5 8
B-II.	Raw Data File Names	. (5 9
B-III.	Reduced Calibration Data	•	70

5

State and

.....

3 . 1

LIST OF ILLUSTRATIONS

		P	age
1.	Transonic Compressor	•	31
2.	Geometry of the Combination Probe	•	32
3.	Views of the Combination Probe	•	33
4.	Tip Design Detail and Modifications	•	34
5.	Free-Jet Calibration Apparatus	•	35
6.	Calibration Facility Geometry (not to scale)	•	36
7.	Data Acquisition System	•	37
8.	Velocity Distribution Measured Across the Jet	•	38
9.	Surface Approximation for Dimensionless Velocity	•	39
10.	Surface Approximation for Pitch Angle	•	40
11.	Surface Approximation for Temperature Recovery Factor		41
12.	Results of Probe Surveys in the Compressor	•	42
C1.	Chromel-Constantan Thermocouple Voltage Output vs Temperature	•	72
D1.	Kulite Probe Measurement of the Pressure Seen by the Pl Sensor at the Rotor Exit	•	75
D2.	Relative Error in the Pressure Measurement Using Conventional Pneumatic Measurement Systems Depending on the Frequency for Two Different Pressure Amplitude (measurement hole diameter: 0.028", sharp edge)	:S •	76

1. INTRODUCTION

The probe reported here was designed to be used to determine the radial distribution of the time-averaged flow in a small, single-stage axial compressor (Figure 1). While the probe has more general application, the chosen geometry is the result of its first intended application.

The probe was designed to measure air flows in the range of Mach number from 0.3 to 0.7 with pitch angles expected in the range 0 to 15 degrees and stagnation temperatures from atmospheric to about $150^{\circ}F$ ($65^{\circ}C$). Static pressure would range from 0.6 to about 1.2 atmospheres.

The prototype of the present probe was built by Dodge and was reported in Ref 1. The first application of the earlier design to measure rotor losses and deviation angles was reported in Ref 2 and Ref 3. In Ref 3, errors in the earlier work were corrected and the method used to analytically represent the calibration of the probe was set out more clearly.

The design of the present probe departs only in detail from that of the prototype, for reasons which are given in Section 2. However, the method now used to represent the calibration of the probe is quite different and considered to be much improved over that reported in earlier references.

In the present report, the probe design is described in Section 2 and the analytical and experimental procedures used in its calibration are given in Section 3. Steady flow tests to

verify the calibration and compressor measurements are reported in Section 4 and conclusions are given in Section 5. The analytical basis for the pneumatic calibration representation is given in Appendix A. The computer programs, procedures and data files used in the calibration and verification are given in Appendix B.

2. PROBE DESCRIPTION

2.1. General Arrangement

The probe is designed to measure four pressures and one temperature. Figure 2 shows a drawing of the probe and a view is shown in Figure 3. Due to the symmetry of the probe about one plane through its (radial) axis, a balancing of the pressures at sensors P2 and P3 in Figure 3 by rotating the probe around the radial axis allows the yaw angle to be read against a vernier scale or recorded using a potentiometer read-out of the angular orientation. The pitch angle as well as the magnitude of the dimensionless velocity (or Mach number) at the probe tip are calculated using the pressure readings of the four sensors. The relationship of the pressures to Mach number and pitch angle must first be established by calibration. The stagnation temperature is needed in order to calculate the magnitude of the velocity from the dimensionless velocity or Mach number. The exposed fine-wire thermocouple sensor supported in the stagnation region formed by a glassy aluminum oxide insulator, gives an output which corresponds fairly closely to stagnation temperature. The departure from stagnation temperature, the recovery factor, must also be established by calibration.

2.2. Design Features

The probe was designed to have separate sensors to avoid the so-called "stem-effect" associated with cylindrical probes having surface sensors (Reference 4). The restricted axial gap

in the compressor (0.63") did not allow the use of a "gooseneck" conical probe. As was reported in Reference (2), the stem-effect was found to be negligible for the first probe geometry to within 0.25" of the wall. The probe was designed to be translated through a hole of 0.25 inches diameter. The sensors Pl, P2 and P3 were placed at the same radial location and therefore similarly average the flow from the upstream rotor blade wakes. These sensors largely dictate the measurement of Mach number. The pressures Pl and P4 largely dictate the measurement of pitch. The sensor P4 was unavoidably displaced radially from the other three. However, since the pitch angle variation to be measured was rather small, and since the radial gradients in flow properties were small outside the wall boundary-layers, this necessity was easily accepted. It is also noted that when the probe is adjusted in yaw, the sensor Pl will indicate stagnation pressure very closely since the pitch angle is not expected to exceed 15°.

The radial separation of the temperature sensor was also easily accepted since the probe was to be translated in radial surveys and the physical displacement could be accounted for in the data reduction. The arrangement and the geometry of the temperature sensor were chosen so that a high recovery factor and sensitivity would be obtained and yet the element could be repaired easily in the event of a failure. The shape ground into the glassy insulator and the method of stringing the thermocouple wire were changed from those reported in References 1 and 3. In the new arrangement, a long length of

thermocouple wire is exposed on either side of the junction within the near-stagnation flow ahead of the insulator. This results in a higher recovery factor at all Mach numbers and a more easily controlled and repeatable geometry.

The tubes for sensors P2, P3 and P4 (Figure 3) were oriented at 55° to the sensor Pl based on the known behavior of a straight cylindrical tube when pitched or yawed to the flow (Reference 1). An angle of about 55⁰ was required in order for the pressure at the sensor to decrease from stagnation to static pressure. In the earlier design (Reference 1) the centers of the sensors were arranged to be on the surface of a small sphere which, in effect, determined the spatial resolution of the probe. This is shown in Figure 4. Also in Figure 4 is shown the tip design of the present probe. The sensors were initially positioned such that the centers of the tubes were aligned in a plane, and were closer together than in the earlier design. Initial tests of the revised geometry resulted in the measurement of small differences between the pressure sensed at P2, P3 and P4, and that at P1. It was conjectured that the surrounding sensors were too nearly aligned with the flow induced over the central sensor and were therefore measuring close to stagnation pressure. The tips of the surrounding sensors were modified as shown in Figure 4 and pressure differences near to dynamic pressure were subsequently obtained.

3. CALIBRATION

3.1. Apparatus and Procedure

The probe was calibrated in a 4.25" diameter freejet exhausting to atmosphere. The apparatus shown in Figure 5 can be used to establish air flows to a Mach number of unity. Pitch angle can be set within a range of +45 to -45 degrees while the yaw angle can be set to any angle desired. In effecting angle changes the probe tip is rotated about its tip which remains at the same point on the center line of the jet.

The geometry for the tests and the instrumentation are shown in Figure 6. The speed of the flow was adjusted by monitoring the impact pressure using a water manometer board. The static pressure was taken to be the atmospheric pressure while the total pressure and temperature were measured in the air supply pipe immediately upstream of the nozzle. No difference in total pressure was detected in the flow between the sensor upstream of the nozzle to the core of the jet and hence the same total conditions (pressure and temperature) were assumed for the pipe and the jet core. Since the temperature of the supplied air fluctuated measurably due to ambient (coastal) variations, the difference between the total temperature in the pipe and the temperature detected by the combination probe was recorded differentially. A thermocouple probe having a finewire sensor similar to that of the combination probe was used at the upstream station. The absolute value of the temperature

in the supply air was measured using the same upstream thermocouple element referenced to ice point.

All pressures were converted to voltages using a Scanivalve and single calibrated transducer for which the reference pressure was atmospheric. The thermocouple voltage differences were recorded without amplification. Yaw angles were adjusted to a vernier scale and converted to voltage using a potentiometer. The pitch angle was set to a scale on the adjustable mount and recorded manually.

Pressure tubes P2 and P3 were connected to a U-tube manometer. The probe was aligned (in yaw) with the flow by balancing the two pressures. The pneumatically averaged value of the two pressures - designated P23 - was recorded and used in representing the calibration of the probe. All data were recorded and analyzed using the data acquisition system shown in Figure 7. The programs and organization of data files are given in Appendix B. Before beginning calibration tests, since the sensors for two pressures and the sensor for temperature were physically separated radially, the velocity distribution across the jet was examined. Figure 8 shows the velocity distribution obtained by probe measurement. It can be seen that for a core of approximately 3 inches in diameter the flow was uniform.

The procedure was as follows:

The required Mach number was established. Having allowed some 5 to 10 minutes for the flow to stabilize, the yaw angle of the probe at zero degrees of pitch was checked. With the probe aligned with the flow, P2 and P3 should be the same and

the angle read on the vernier scale should be zero. Any departure was corrected by adjusting the probe in the probe holder. The first pitch angle was set at -6° and a scan of the data was taken. The pitch angle was changed in increments of 2° up to an angle of $+18^{\circ}$, taking a data scan at each setting. A sample of the raw data output is shown in Table I.

After one survey over pitch angle, the probe was reset to zero pitch and zero yaw, the Mach number of the flow was changed and the procedure repeated. The range of Mach number from 0.3 to 0.7 was covered in increments of 0.1 or less.

3.2. Dimensionless Velocity - Pneumatic Calibration

The characteristics of the probe must be represented such that pressures and temperatures measured in a flow can be related to the pitch and yaw angles and the velocity magnitude. However, since the probe is always rotated to balance the pressures P2 and P3, the yaw angle can always be read directly. It is left therefore to establish the relationship for pitch angle and velocity magnitude in terms of the probe pressures and temperature for the special case of zero yaw.

Appendix A discusses the reduction of the four measured pressures to basically two coefficients:

$$\beta = \frac{P1 - P23}{P1} \tag{1}$$

and

 $\gamma = \frac{P1 - P4}{P1 - P23} , \qquad (2)$

where

 $\delta = \gamma \cdot \beta$

might be looked at as an alternate choice. These coefficients can be established using the pressure readings from the probe for any flow condition. The calibration gives a total of 104 different values for β , and corresponding values of γ and δ for 104 separate combinations of Mach number and pitch angle. The reduced data are given in Table II.

(3)

It can be argued (Appendix A), and it can be seen in the results that β represents largely a measurement of the Mach number and γ provides mainly a measurement of the pitch angle. However, if explicit relationships for the reduced velocity, X (defined by Equation A(3) using Equation A(1)), and the pitch angle, ϕ , in terms of β and γ can be obtained by representing the calibration data using monotonic mathematical functions, X or ϕ can then be determined uniquely for any given values of β and γ . The method involves using mathematical approximations of surfaces which represent the calibration data. In the way that data points which depend on just one variable can be approximated by a polynomial, X and ϕ are approximated as being polynomial functions of both β and γ . This leads to mathematical expressions for the calibration surfaces which are of the form:

$$X = \sum_{i=1}^{L} \{ \sum_{j=1}^{M} C_{ij} \beta^{(j-1)} \} \cdot \gamma^{(i-1)}$$
(4)

and

$$\phi = \sum_{i=1}^{L} \left\{ \sum_{j=1}^{M} \beta^{(j-1)} \right\} \cdot \gamma^{(i-1)}$$
(5)

)

where C_{ij} and D_{ij} are coefficients which must be derived from the data.

Using the computer programs given in Reference 5, the surfaces represented by Equation (4) and Equation (5) were derived from the calibration data. Also derived and examined were the alternate surfaces obtained by electing to use the coefficients δ and γ instead of β and γ , related through Equation (3). The equations for the alternate surfaces are the following:

$$X = \sum_{i=1}^{L} \{\sum_{j=1}^{M} (j-1)\} \cdot \gamma^{(i-1)}$$
(4a)

$$\phi = \sum_{i=1}^{L} \left\{ \sum_{j=1}^{M} \delta^{(j-1)} \right\} \cdot \gamma^{(i-1)}$$
(5a)

[It is noted that the representation achieved using Equation (4) and Equation (5) or Equation (4a) and Equation (5a) is similar to the earlier method of polynomial approximation described in Reference 3. However, in the method of Reference 3, the expression for X was implicit and an iterative technique was required to obtain X and ϕ from measured values of β and γ or δ and γ . The derivation of the polynomial coefficients using matrix operations makes possible the use of explicit relations for both X and ϕ .]

The choice of using Equation (4) and Equation (5) or Equation (4a) and Equation (5a) was made after an examination of the

relative accuracy of the two methods. Using the calibration data, for each given pair of values for δ and γ , X and ϕ were calculated using the coefficients determined in the two sets of equations. The calculated X was compared in each case to the actual value set in the calibration test and an error was defined as follows:

$$\varepsilon_{\rm X} = \frac{{\rm x}_0 - {\rm x}_{\rm c}}{{\rm x}_0} \cdot 100 \tag{6}$$

where X_0 is the actual value in the calibration test and X_c is the value calculated using the surface approximation equation. The error in X so defined is then a percentage deviation from the actual value. For the pitch angle, the error as a percentage is not meaningful (for example, when $\phi \approx 0$). The error was defined as

$$\varepsilon_{\phi} = \phi_0 - \phi_c \tag{7}$$

where ϕ_0 is the actual value set in the calibration test and ϕ_c is the value of the pitch angle (in degrees) calculated using the derived surface approximation equation. From an examination of the relative errors, the selection of using Equation (4a) and Equation (5a), rather that Equation (4) and Equation (5), was made.

The "surfaces" obtained by drawing straight lines between data points on a 3D plot of the test data are shown in Figures 9 and 10 together with the "surfaces" obtained by joining the points calculated using Equation (4a) and Equation (5a). The magnitude of the errors shown graphically in Figure 9 are given in Table

III, together with the values of the coefficients used in the approximation equations.

In the method given in Reference 5 the order of the polynomial approximation can be changed between 1 and 6 for the dependence on δ and between 1 and 6 for the dependence on γ , independently. The plots of Figure 9 and the corresponding errors in Table III are for the selection which gave the best results in that the averaged error was least in the range of velocity and pitch angle anticipated in the probe application. As indicated in Table III, the range expected in Mach number is from .3 to .7 and in pitch angle, from 0.0° to 12.0° . The maximum error within this range was +1.109% in X and 0.417° in pitch angle, while the average error was -0.061% in X and -0.016°

3.3. Temperature Recovery Calibration

Since the probe was to be used to measure losses, requiring an evaluation of velocity magnitude rather than simply the Mach number or dimensionless velocity, it was also required to measure the local flow total temperature.

Even in a flow in which the angle of the velocity vector is uniform and known it is difficult to design a probe which will measure true stagnation temperature to an acceptable accuracy when the Mach number is in the higher subsonic range. In the present design, advantage was taken of the fine wire sensor being small and in poor thermal contact with a glassy insulator. While the "temperature recovery" of the probe was

expected to be comparatively high, a calibration to establish the value of the temperature recovery factor was required nevertheless. In the calibration test a voltage was recorded as the result of the temperature difference between the combination probe sensor and the total temperature sensor in the pipe upstream of the jet nozzle. (The relation between the output in millivolts and the temperature in degrees Fahrenheit for a single sensor referenced to ice point is given in Appendix C.) The output of the upstream probe was also recorded with reference to ice point. As the upstream probe was always in a low Mach number flow (less than 0.2), it was assumed that its output corresponded to the total temperature of the flow. The voltage difference between the upstream probe and the combination probe was then a measure of the departure of the combination probe temperature from the stagnation temperature.

The "temperature recovery factor", R, is defined as

$$R = \frac{T_p - T_s}{T_t - T_s}$$
(8)

where T_p is the temperature indicated by the probe, T_s is the static temperature, and T_t is the total temperature of the flow.

Since Equation (8) contains the static as well as the total temperature, one of the two can be expressed in terms of the other and the Mach number or dimensionless velocity. Using Equation A(4) and rearranging, Equation (8) becomes

$$T_{t} = \frac{T_{p}}{1 - x^{2} + x^{2}R}$$
(9)

where X is the velocity made dimensionless by dividing by the

"limiting" or "stagnation" velocity defined by Equation A(1). Since X is established by applying the calibration in Section 3.2 to the pneumatic measurements, it is only necessary to know R in order to determine T_t from the temperature T_p indicated by the probe. From the physical arrangement of the probe it is evident that the thermocouple junction is differently exposed to the flow at different yaw and pitch angles, and the Mach number is known to have a major influence on the temperature recovery factor. However, since the yaw angle is always adjusted to zero and the pitch angle and Mach number depend uniquely on the measured values of δ and γ , the recovery factor can also be approximated as a surface of values depending on δ and γ ; thus

$$\mathbf{R} = \sum_{i=1}^{L} \left\{ \sum_{j=1}^{M} \mathbf{E}_{ij} \delta^{(j-1)} \right\} \cdot \gamma^{(i-1)}$$
(10)

The calibration surface obtained from the calibration test data is shown in Figure 11. The coefficients evaluated from the data and the resulting percentage errors in the approximation are given in Table IV. It can be seen that errors of less than 0.8% occur within the range of measurements.

4. APPLICATION

4.1. Verification of the Calibration

Before using the probe for compressor measurements, the probe was mounted on the free jet again to obtain data with which to verify the calibration. The probe was aligned with the flow but Mach number and pitch angle were set remotely and unknown to the operator. A total of 12 separate conditions with various combinations of pitch angle and Mach number were set. The results are shown in Table V. The largest error was found to be 0.55° in pitch and 0.7% in Mach number.

4.2. Compressor Measurements

The probe can be used in any flow for which conditions are within the ranges of pitch angle and Mach number covered in the calibration. Its intended application, however, was to determine the flow between blade rows in the compressor shown in Figure 1. In the compressor annulus, large radial gradients might be expected to occur (under some operating conditions) in pitch angle, yaw angle and Mach number, so that account had to be taken of the physical separation (0.08 inches) of the probe pressure and temperature sensors in the radial direction. This could be done easily since the probe was to be used in radial surveys and spatial interpolation could be used in reducing the data.

The procedure adopted was to first interpolate the raw data obtained for the radial distribution of the temperature

rise. The data, in the form of the differential voltage between the probe thermocouple sensor and a similar reference thermocouple sensor in the compressor inlet, was interpolated using an overlapping quadratic technique to obtain the differential voltage at the locations at which pneumatic data were taken. The temperature recovery factor was evaluated at each location using Equation 10 using the locally measured values of δ and γ . The probe temperature T_p was obtained using the measured value of the reference temperature, the interpolated differential voltage and the thermocouple calibration given in Appendix C. The stagnation temperature was obtained using Equation 9.

An example of the radial distribution of the temperature rise across the rotor measured in this way is shown in Figure 12. The corresponding data are given in Table VI.

The uncertainties in the measurements made in the compressor flow field are similar to the uncertainties present in the probe calibration measurements, since the instrumentation used was the same. However, the calibration was carried out in a uniform steady flow whereas the flow field at the rotor exit is periodic, therefore unsteady. The possible error resulting from unsteady effects is discussed in Appendix D. For the data presented here the possible error due to unsteady effects is negligible. A further evaluation of unsteady effects must be made for measurements made at higher rotational speeds and flow Mach numbers.

5. CONCLUSIONS

The combination probe and the method used to represent its calibration which are described in this report represent significant improvements over the prototype probe design and calibration method reported earlier. The pneumatic characteristics of the probe were improved as a result of modifications to the tip geometry. This allowed the pneumatic characteristics to be well represented by a polynomial surface approximation.

The polynomial surface approximation technique used to represent both the pneumatic and temperature characteristics of the probe provides a simpler and more accurate technique than was previously available. Most importantly, however, it allows the calibration to be applied directly, allowing Mach number and pitch angle to be calculated from pressure measurements without the need for iteration.

The improved probe and procedures were well proven in tests carried out in the compressor.

SCANIVALVE # 2

1

PORT	VOLTOCE UNCORR
2	VOLTAGE(UNCORR.) -0.000002
4	
3	0.001355
ŭ G	0.000766
	0.000123
10	-0.000240
12	0.000785
SCAN	YER # 1
CHAN	DATA
25	0.003009 .
SCANI	4ER # 2
CHAN	DATA
6	0.002009
7	0.002427
3 -	9.000004
SCANIVALVE	# 2

RAW DATA WITH VOLTAGE CORPECTED TO PRESSURES(IN.H2O)

PA-PA	PCAL~PA**	51-P8	P23-PA	P4-PA	PK-PA	P BARO (INCH HG)
-0.2000	135.500 **	CE.6000	12.8000	-24.0000	76.500	30,094
0.0000	135.600 **	77.1000	13.6000	-19.0000	76.600	30.084
-0.4000	135.400 -+	76.3000	13.9000	-14.6000	75.900	30.167
-0.2000	135.400 ++	76.6000	13.9000	-9.5000	76.200	30.111
-0.4000	135.400 ++	76,6000	13.6000	-4.4600	76.300	30.080
-9.4000	135.400 ++	76.3000	13.6000	1.3000	76.400	30.131
-0.6000	135.200 **	76.5000	13.3000	6.1000	76.300	30.113
-0.3000	135.400 **	76.7000	13.2000	11.2000	76.500	30.051
-0.7000	135.100 **	76.1000	12.6000	15.6000	75.300	30.046
-0.6000	135.100 **	76.1000	12.4000	20.2000	76.400	30.108
-0.7000	135.000 ++	76.2000	12.1000	23,9000	76.000	30.094
-0.7000	135.100 **	76.1000	12.1000	27.5000	76.500	30.142
-0.7000	135.100 **	75.6000	12.0000	30.2000	75.700	30,165

RAW DATA CORRECTED TO READINGS IN MILLIVOLTS

T TUNNEL T 2,0087 2,0082 2,0083 2,0083 2,0098 2,0098 2,0072 2,0101 2,0128 2,0119 2,0080 2,0080 2,0089 2,0081 2,0105	PIPE(IP) D 2.4266 2.4283 2.4283 2.4290 2.4290 2.4273 2.4301 2.4304 2.4304 2.4294 2.4283 2.4284	T(PIPE-COME - -0.0037 -0.0085 -0.0041 -0.0022 -0.0022 -0.0044 -0.0090 -0.0076 -0.0076 -0.0056 -0.0109 -0.0109 -0.013	** PHI -6.0000 -4.0000 0.0000 2.0000 4.0000 5.0000 3.0000 10.0000 12.0009 14.0000 16.0000
		-0.0143	18.0000

Table I. Example of Calibration Raw Data and Stored Data

.

3+10 953425 952952 952722 952722 952722 952729 952789 953363 952948 953194 953194 953194 953194 953194	Gamma 1. 521552 1. 46870 1. 318777 1. 254394 1. 178385 1. 100437 1. 025862 . 952174 . 972459 . 903412 . 753191 . 780855	Del*a 081:88 977356 073677 969528 065829 065829 06580 0580498 94516 048731 .837766	13252 132766 132033 132766 132766 132766 132522 132522 132522 132522 132522 132522 132766 132766 133109 133252	4nchne. 304225 299525 299525 299525 299525 298966 298966 298966 298966 298966 299525 308883 308642 299525	Ph: -6.900000 -4.900000 2.900000 4.900000 4.900000 5.000000 5.000000 10.900000 12.900000 14.000000 14.000000 14.000000 16.000000 18.000000	96.246826 96.163483 96.295834 96.295834 96.235954 96.2357248 96.257248 96.257248 96.267579 96.305878 95.264191 96.281691 96.232941	T mef bibe 98.163193 78.204239 98.189598 98.171498 98.236481 98.309989 98.236481 98.309989 98.234239 98.234239 98.234239 98.234239 98.234239 98.234239 98.234239 98.234239	Tenmbernhe 98.381116 99.392934 98.107498 97.972526 97.966457 98.154484 98.239426 97.957962 98.387913 98.259949 97.931588	0 ec Eqc 201712 098673 091544 296201 9797179 992159 091628 0936377 1 072970 9986377 1 072970 9986377 1 072970 998637
Beta 189321 084185 088166 088166 088347 038785 088605	Fann 1.535627 1.487562 1.428398 1.359882 1.277915 1.192716 1.183961	Delta .137164 .131181 .125231 .128168 .112900 .105908 .897816	X vel 176351 176867 176867 176179 175523 176523 176523	Machne. . 489612 . 481922 . 481922 . 48828 . 488288 . 481815 . 481815 . 481419	Phi -6.080088 -4.066088 -2.088809 8.099508 2.080808 4.000558 6.888886	T Tunnel 96.998085 97.167114 97.365867 97.479668 97.712341 97.854721 98.884859	T ref pipe 98.913498 99.83435 99.270958 99.270958 99.482748 99.546265 99.745392 99.745392	Tc anbar abe 95, 592697 95, 968597 94, 398938 94, 296875 95, 816922 94, 894889 94, 523123	Rec.Far 988953 821948 721963 745939 748226 675999 694283
. 119462 . 119562 . 019521 . 019580 . 019760 . 119760 . 199630	t. 812255 .951188 .872547 .889756 .762836 .789443	. 898559 . 85278 . 978112 . 872862 . 868472 . 864383	.176867 .176523 .176695 .176886 .177839 .176896	. 401822 . 401015 . 401419 . 399803 . 402224 . 399803	8.00000 10.00000 12.000000 14.000000 16.000000 16.000000 18.000000	98.160324 98.361755 98.608322 98.577780 98.966019 97.341080	100.199700 100.330960 100.597310 100.693860 100.386980 101.305360	95.378281 95.669889 96.649658 95.636749 96.226959 94.573166	730528 699677 .774453 .708847 .734920 .612831
Beta 128498 114843 117164 117559 118164 114189 119858 119858 128388 128918 128918 128389 128389	Ganan 1.564976 1.587467 1.448028 1.289521 1.197158 1.116648 1.429792 .954386 .877836 .812500 .764417 .713787	Delta 188094 179105 169656 161643 152375 141490 132673 122623 114200 105537 098246 095922	X vel 207722 208549 207860 287998 207860 207998 207860 287584 208136 207998 208412 208412 208274	Hachne. 474838 475815 475169 475498 475169 475498 475169 475498 475827 475498 475498 475498 475498 475498 475498 475495 475495 475495 475495 475495 475495	Phi -6.00000 -4.00000 2.000000 2.000000 4.000000 8.000000 12.000000 14.000000 14.000000 16.000000 18.000000 18.000000	T Tunnel 101.867288 101.949149 101.883160 102.83160 102.161089 102.161089 102.161089 102.216558 102.216558 102.216558 102.25599 102.25599 102.25599	T ref pipe 103.929810 103.92360 103.941240 103.97360 104.97360 104.07360 104.040500 104.063840 104.125150 104.087200 104.139740 104.139740 104.119310	Tcombor obe 103, 564570 103, 956570 103, 956570 103, 754360 103, 799410 103, 914990 103, 897360 103, 891629 103, 81960 103, 908380 104, 005460 103, 77770 103, 827360	Rec. Fac .985368 .993452 .9946255 .994025 .992322 .992822 .992822 .991254 .992914 .992914 .998442 .992344 .994528 .986105 .986105
Beta 133612 129118 129143 129988 129988 130998 130993 130993 130993 131433 132244 132825 131335	Ganna 1.576802 1.513344 1.455272 1.373284 1.295174 1.196172 1.113924 1.031496 .952756 .972551 .815913 .759375 .713837 Table	Delta .207526 .198121 .187890 .177615 .167025 .154748 .145137 .135963 .124805 .115339 .107867 .100254 .893752	X vel 219159 219031 210646 219774 219159 219287 219287 219287 219287 219789 219799 219799 219799 219799 218774 Complete	Ma:hns. 502265 501957 501339 502265 502573 502880 502573 501648 50265 503803 50148 502265 503803 501439	Phi -6.00000 -4.00000 -2.00000 2.00000 2.00000 4.00000 9.00000 9.00000 12.00000 12.00000 14.00000 16.00000 18.00000	102.390200 102.289470 102.358930 102.411030 102.320720 102.421450 102.515210 102.515210 102.340510 102.379780 102.386720 102.386720 102.386720	184.233140 184.328710 184.326558 184.25658 184.358668 194.390768 164.367428 104.38668 194.388689 184.338249 194.338249 194.338249	Tcombprobe 184.148510 104.058800 104.15360 104.168950 104.168950 104.148510 104.095960 104.128050 104.128050 104.128050 104.020870 104.093950 104.093950 103.891620 Data	Rec. Far .996016 .990835 .995563 .994381 .996554 .995267 .991331 .991827 .991149 .993990 .988262 .992134 .984545

Tr

Table II. Complete Sct of Reduced Calibration Data

25

.

9eto 153507 151745 150401 149744 150291 150719 151715 152329 152451 153245 153507 153507 153507	Game 1.595311 1.538058 1.473545 1.394422 1.388662 1.208719 1.119425 1.043081 .959530 .884416 .822309 .767834 .714844	Delta 244894 233393 221622 208807 195478 192177 169933 158892 146281 135534 126255 117868 199459	X vel .240619 .240285 .240397 .240588 .246179 .246731 .246731 .246731 .240397 .240295 .239956 .239956 .239839	Hnchne, 554328 553511 553783 554825 554825 554825 554688 553511 553511 553518 553518 553518 553518	Phi -6.00000 -4.00000 2.00000 2.00000 4.00000 4.00000 4.00000 5.00000 12.00000 14.00000 14.000000 16.000000 18.000000	T Tunnel 102.793650 103.884750 103.296590 103.282700 103.285169 103.275740 103.293120 103.2442460 103.2444518 103.442460 103.244518 103.442670 103.44269 103.44269 103.44269	T ref pipe 104.682590 105.015200 105.158140 105.178530 105.286480 105.286480 105.31640 105.31640 105.336060 105.403140 105.394390	Tcomborabe 104.533770 104.334320 104.794500 104.822660 104.82660 104.81680 105.143540 105.155210 105.152210 105.28150 105.28150 105.28150 105.28150	Rec. Fnr 995448 994455 994455 994095 991086 992124 994558 996161 994281 994281 994281 994281 994281 994281 994281 994281 994281 994281 994281 994281
Beta 173006 171937 164925 167226 168445 169023 170305 170469 171751 172328 172351 172328	Ganna 1.609131 1.550336 1.484055 1.411968 1.315429 1.217540 1.217540 1.245533 .947232 .99134 .823464 .773184 .717062	Delta 278389 256558 250694 236117 221577 285792 191857 178772 164883 152881 141986 133267 123493	X vel 258473 258869 258770 257677 258572 258473 257876 257876 257876 258572 258779 258571 258779 258671 257976	Mnchne. 598294 599277 599031 596320 598540 598294 596320 596320 596814 596320 596914 596936 599031 5987861	Phi -6.000800 -2.000000 2.000000 4.000000 4.000000 10.000000 12.000000 14.000000 14.000000 15.000000 16.000000 18.000000	I Tunnel 103.852230 104.015460 104.126570 104.140470 104.139090 104.334950 104.32500 104.32500 104.432190 104.478380 104.459980 104.612780	T ref pipe 105,240530 106,02530 106,167020 106,167020 106,172050 106,32420 106,395270 106,382710 106,478880 106,478880 106,478880 106,478830 106,674120	Tc amprabe 185, 677250 185, 788868 185, 968859 186, 841699 186, 862188 186, 164180 186, 194348 186, 175788 186, 175788 186, 175788 186, 56848 186, 56848 186, 338999	Rec.Fac .995681 .994082 .9940841 .996743 .997874 .998382 .996517 .996517 .996517 .996517 .996517 .996548 .998548 .991114
Beta 194665 191932 191324 189419 191124 191129 196684 190868 192168 192688 192688 193489 193438 194973	Conve 1. 641786 1. 583654 1. 58656 1. 427875 1. 329158 1. 329158 1. 322625 1. 146835 1. 858827 .973129 .897518 .875878 .77378 .732808	Delte ,319582 ,303954 ,288183 ,270466 ,254932 ,236571 ,218571 ,201935 ,186996 ,172860 ,150760 ,142736	X ve1 .279619 .279533 .279793 .279786 .279888 .278923 .278923 .278662 .278574 .279898 .279898 .279898 .279898 .279898 .279898 .279898 .279898 .2798652 .278662 .2881,37	Hachne. .651225 .651466 .651463 .651463 .651463 .651463 .659467 .651666 .648886 .649585 .649585 .649585 .649585 .649585 .648586 .648586 .648586 .648585 .648585 .648586 .648585 .648586 .648586 .6485855 .648585585 .64858585 .648585 .648585 .648585 .648585 .64855	Phi -6.02000 -4.90000 9.00000 2.00000 4.00000 6.00000 19.00000 14.00000 16.00000 18.00000	T Tunnel 105.776150 105.960220 106.20310 106.241520 106.335280 106.335280 106.381850 106.581850 106.581850 106.581850 106.581850 106.62050 106.73466 106.73466	T ref piec 107.836200 107.914810 108.034150 108.156400 108.261180 108.46690 108.365040 108.365040 108.365040 108.75876 108.758760 108.758760	Tconter etc 107. R21629 107. 798368 107. 943929 107. 874950 187. 978840 107. 958470 108. 106990 188. 106990 188. 432880 108. 432880 108. 496900 108. 520199	Rec.Foc .999672 .997376 .997971 .995677 .995677 .995618 .993242 .995977 .995713 .993263 .993263 .993264 .993284 .994134
Be tu .2(7339) .213911 .219524 .219524 .210295 .210298 .210298 .210298 .210298 .210298 .210295 .212827 .214403 .214398	Ganna 1.654221 1.596867 1.576867 1.444632 1.349627 1.247492 1.156848 1.072148 .981559 .991912 .839967 .781258 .724876	Del ta .359526 .341588 .322133 .381434 .286464 .262974 .243889 .225374 .286768 .191372 .178768 .167582 .155466	X vel .300115 .300573 .300420 .299734 .300420 .299351 .299734 .299197 .299581 .300039 .300039 .380039 .380039 .299504 .299504	Mnchne. .78.5588 .78.4686 .79.4686 .79.4294 .781538 .781538 .781538 .781538 .781538 .781538 .781144 .782131 .783312 .783311 .781933 .782721	Phi -6.80808 -2.00000 2.00000 4.00000 6.00000 8.00000 18.00000 12.00000 12.00000 14.00000 14.00000 14.00000 14.00000	T Tunnel 107.561170 107.762590 107.877200 108.1085570 108.148990 108.259200 108.172390 108.172390 108.530080 108.530080 108.651630 108.651630	T ref pipe 109.584760 109.799910 109.991760 110.003390 110.317930 110.347530 110.347240 110.349240 110.378380 110.570880 110.570880 110.780820 110.892560	Tcsmbprebe 189.483800 189.683618 110.832460 189.649320 189.773740 109.924910 189.983850 110.887690 110.320180 110.320180 110.324180 110.384110 110.642700	Rec. Fac .978816 .97741 1.888791 .995253 .995278 .994838 .994838 .994833 .995135 .995135 .995131 .995131

Table II (Cont'd). Complete Set of Reduced Calibration Data

CHEFFICIENTS FOR THE CALIBRATION SURFACE STORED IN FILE COEFOX .: 28 -48:389213 -13.328469 -14.048533 -2.193492 -2.193492

			00000000000000000000000000000000000000
			1111
			040-360380 040-360380 040-360380 040-360380
19:20:21 19:20:20 19:20 19:			6041441 60414444 60414444 71
328455 3594545 3594545 359398 367398 3673 3673 3673 3673 3673 3673 3673 367			
111 111 111 111 111 111 111 111 111 11			500.400000 500.00000 600.00000 600.00000 1 1
193493 348129 903295 838803 838803	. TI		0400000000 04000000 144000000 144000000
	EACH POINT	(* =	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	AT	Pitch	
-C:M-	ERRORS (%)	Mach 🖡	

CUFFFICIENTS FOR THE CALIBRATION SURFACE STORED IN FILE COEPOP::28

1219 63434 -1152 33988 -117 .72778 186, 471576
232.935618 -845.455938 736.521888 -154.774548
26.896670 -369.918970 -121.716.716532 -121.544632
22,538452 -69,122833 -9,122833 -9,974613

NINA

EACH POINT ABSOLUTE ERRORS AT

1	2,62
	411- 216-
	2980 980
Pitch #	- 1 99
Fd	128
*	
Mach	

- 135 - 344 - 033 - 139 - 278 - 344 - 033 - 139 - 257 - 195 - 185 - 298 - 155 - 195 - 186 - 251 - 155 - 195 - 186 - 253 - 154 - 195 - 131 - 154 - 131 - 154 - 131 - 155 - 139 - 131 - 155 - 156 - 131 - 156 - 156 - 156 - 156 - 131 - 156 - 156 - 156 - 156 - 156 - 131 - 156	Coefficients and Errors in of Calibration Test Data
	ration mation
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Calibra
- 105 - 105 - 105 - 115 - 115 - 105 - 105	Pneumatic Surface Ap
2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25	Pneu Suri
	III:
	TABLE
1222	
し うちょう うう 日	

	n n FFF I	CIENTS FOR	THE CALIBRATIC	IN SURFACE ST	IORED IN FILE	COEFOR	
<u>.</u>	1234455	1 .967377 .029453 .840476 119724 .104485 035093 1	2 	-1.249:2:3 -1.544683 7.5225/9 -1.990974 -3.395687 .301518	37.673183 -41.871518 28.897575 -8.393257 12.758778 -4.679673	-i91.830080 -43.770836 38.016373 28.396744 2.119071 -3.011747	813,52366 -339,013866 -145,381368 -18,882836 19,219982 4,296416

ERPORS(2) AT EACH POINT

Table IV. Temperature Calibration Coefficients and Errors in Surface Approximation of Calibration Test Data

28

 n_{γ}

Point # []	Beta []	Gamma []	Delta []	Actual [°]	Calculated [°]	Error [°]	Actual []	Calculated []	Error [&]
1	.04203	1.36313	.05730	- 2.0	- 2.185	+0.185	.2578	.2579	-0.07
7	.06167	1.36059	.08390	- 2.0	- 1.946	-0.054	.3220	.3201	0.59
m	.06141	1.14552	.07035	5.0	5.299	+0.299	.3210	.3213	-0.09
4	.07789	1.15274	.08979	5.0	5.265	+0.265	.3660	.3684	-0.66
ß	.08614	.97416	.08392	10.0	9.749	-0.251	.3840	.3866	-0.67
9	.08340	1.23467	.10297	3.0	2.787	-0.213	.3848	.3838	0.27
7	.08385	1.16711	.09786	5.0	4.889	-0.111	.3848	.3845	0.09
8	.09485	1.17783	.11172	5.0	4.681	-0.319	.4134	.4125	0.22
6	.09567	1.33638	.12785	0.0	- 0.425	+0.425	.4145	.4131	0.34
10	.11626	1.21533	.14129	4.0	3.822	+0.178	.4667	.4634	0.71
11	.12066	.91740	.11069	12.0	12.550	-0.550	.4678	.4681	-0.05
12	.14510	1.05626	.15327	8.0	8.419	-0.419	.5258	.52398	0.35

.

Mach Number

Pitch Angle

31.1

Table V. Probe Calibration Verification Test Results

۰.

Normalized Displacement	Yaw	Pitch Angle (Degrees)	Mach Number	X=V/V_T	Ttotal (2)	Ttotal (ref)	Velocity (ft/sec)
.092105	37.7	10.6	.36928	.16294	96.163651	70.670853	429.64
.155789	38.1	9.9	.37749	.16646	96.340683	72.337265	416.84
.217368	37.4	9.1	.36567	.16139	94.938721	71.385300	403.05
.271579	36.8	7.6	.35321	.15603	94.003922	70.343277	397.77
.321053	35.9	6.7	.34868	.15407	93.712097	69.687836	393.27
.365789	35.1	5.9	.34469	.15235	93.917160	70.194351	389.52
.423158	35.3	4.7	.34132	.15090	94.706573	70.760193	389.53
.472105	34.9	4.2	.34116	.15083	96.342072	72.694092	388.36
.518421	34.6	4.0	.33990	.15028	96.021194	73.021072	386.09
.589474	34.5	3.5	.33777	.14936	95.787674	73.347977	383.95
.658421	33.1	3. I	.33588	.14854	95.057907	72.694092	381.15
.727895	32.7	2.7	.33335	.14745	96.021820	73.615387	377.52
.797895	31.0	1.9	.33013	.14605	99.315994	76.256638	375.31
.850526	31.1	1.6	.32824	.14524	97.394363	74.239090	375.74
.896842	31.2	3.0	.32851	.14536	94.125595	71.623383	376.15
.947895	34.0	5.9	.31257	.13844	92.896500	71.385300	376.93

Table VI. Compressor Test Results

λ,

31

; · ·

Geometry of the Combination Probe Figure 2.

32

; • •

34

. . .

Figure 6. Calibration Facility Geometry (not to scale)

71

Figure 7. Data Acquisition System

! --

7.4

Figure 8. Velocity Distribution Measured Across the Jet

!_

.

.

!_

APPENDIX A. RELATIONSHIP OF PROBE PRESSURE TO FLOW VELOCITY AND ANGLE (by R. P. Shreeve)

A-1. Dimensionless Velocity and Mach Number

The velocity (V) can be made dimensionless by dividing by the "limiting" or "total" velocity (V_t) which, for a perfect gas is given by

$$V_{t} = \sqrt{2C_{p}T_{t}}$$
 A(1)

where T_t is the total temperature. V_t is the maximum steady velocity that the flow can have if the stagnation temperature remains unchanged since, by definition

$$C_{p}T_{t} = C_{p}T + \frac{v^{2}}{2} \qquad A(2)$$

and if the flow is accelerated to the limit of $T \rightarrow 0$, the velocity is that given by Equation A(1).

The dimensionless velocity obtained by dividing the velocity by its limiting value can be viewed as the "Fractional Velocity" or simply the "dimensionless velocity" and is here given the symbol X; thus

$$X = \frac{V}{V_t}$$
 A(3)

The relationship in Equation A(2) can be seen to give

$$\frac{T}{T_t} = 1 - x^2 \qquad A(4)$$

so that, using isentropic relationships, the ratio of the static (p) to total pressure (p_{+}) is given by

$$\frac{P}{P_{t}} = \left(\frac{T}{T_{t}}\right)^{\frac{\gamma}{\gamma-1}} = \left(1 - x^{2}\right)^{\frac{\gamma}{\gamma-1}} \qquad A(5)$$

and static (p) to total density (p₊) is given by

$$\frac{\rho}{\rho_{t}} = \frac{p}{p_{t}} \frac{1}{\gamma} = \left(1 - x^{2}\right) \frac{1}{\gamma - 1} \qquad A(6)$$

Using Equation A(2) and the definition of Mach number in a perfect gas, the relationship between the dimensionless velocity and Mach number can be shown to be

$$x^{2} = \frac{\frac{\gamma - 1}{2} M^{2}}{1 + \frac{\gamma - 1}{2} M^{2}}$$
 A(7)

or

$$\frac{\gamma - 1}{2} M^2 = \frac{x^2}{1 - x^2}$$
 A(8)

Clearly there is a non-linear but one-to-one relationship between X and M, so that if one is known so, uniquely, is the other. In compressor and turbine flows it is often more desirable to work with the dimensionless velocity, X, since it is directly proportional to the velocity itself until the stagnation temperature is changed, as across a rotor. The relationships in Equations A(4), A(5) and A(6) are also simpler than the corresponding expressions involving Mach number. In representing the calibration of the probe, the dimensionless velocity, rather than Mach number, was used.

A-2. Probe Pressure Coefficients

The probe geometry is constant and when used is always adjusted so that the probe is aligned (in yaw) with the flow. Therefore, by dimensional analysis, the pressure coefficient, C_{P_n} , defined as

$$C_{p_n} = \frac{p_n - p}{\frac{\gamma_p M^2}{2pM^2}}$$
 A(9)

where p_n is the pressure at sensor n, p and M are the static pressure and Mach number respectively of the oncoming flow, and γ is the ratio of specific heats, can be only a function of the Mach number, pitch angle (ϕ) and Reynolds Number (R_e), if a perfect gas and uniform flow are assumed.

As a consequence, the difference between the pressure coefficients at two sensors, m and n, defined as

$$C_{p_{mn}} = C_{p_m} - C_{p_n} = \frac{p_m - p_n}{\frac{\gamma}{2}pM^2}$$
 A(10)

must also be only a function of R_{ρ} , M and ϕ .

The Equation A(10) can be rewritten as

$$C_{pmn} = \left(\frac{p_m - p_n}{p_m}\right) \cdot \left(\frac{p_m}{p_t}\right) \cdot \left(\frac{p_t}{p}\right) \cdot \left(\frac{2}{\gamma M^2}\right)$$
 A(11)

where p_t is the stagnation pressure. Using Equation A(5) and Equation A(8), Equation A(11) can be expressed as

$$C_{\text{pmn}} = \left(\frac{p_{\text{m}} - p_{\text{n}}}{p_{\text{m}}}\right) \cdot \left(\frac{p_{\text{m}}}{p_{\text{t}}}\right) \cdot \frac{1}{v} \qquad A(12)$$

where v is an explicit function of the dimensionless velocity (or Mach number); namely,

$$v = \left(\frac{\gamma}{\gamma - 1}\right) x^2 \left(1 - x^2\right)^{\frac{1}{\gamma - 1}}$$
 A(13)

Consequently, using Equation A(12), in general

$$\frac{\mathbf{p}_{m} - \mathbf{p}_{n}}{\mathbf{p}_{m}} = \frac{\mathbf{C}\mathbf{p}_{mn}}{(\mathbf{p}_{m}/\mathbf{p}_{t})} \cdot \mathbf{v} \qquad A(14)$$

where the quantities on the left hand side involve only the sensor measurements and where it is known that $C_{p_{mn}}$ depends on R_e , M (or X) and ϕ , and $\nu(X)$ is given explicitly by Equation A(13). From Equation A(9), Equation A(5) and Equation A(7) it must follow also that the ratio p_m/p_t depends only on R_e , M and ϕ

In principle, from an examination of Equation A(14), four independent sensors are necessary in order to calibrate a pressure probe uniquely for variations in M, R_e and ϕ . The present probe, when rotated to balance p_2 and p_3 (approximately) has only three independent measurements; namely, p_1 , p_{23} and p_4 , where p_{23} is the pneumatic average of the nearly-equal pressures p_2 and p_3 . Only two independent parameters of the type in Equation A(14) can therefore be written. They are defined as

$$\beta = \frac{p_1 - p_{23}}{p_1}$$
 A(15)

and

$$\delta = \frac{p_1 - p_4}{p_1}$$
 A(16)

where an alternate for either one is obtained in the ratio

$$\gamma = \frac{\delta}{\beta} = \frac{p_1 - p_4}{p_1 - p_{23}}$$
 A(17)

However, the geometry of the sensors is such that the effect of Reynolds number on the pressure coefficients should be extremely small in the range of Mach number of interest, and this has been verified experimentally (Reference 6). Therefore, in principle, calibration is required to establish the relationships

$$\beta = \beta(X,\phi) \qquad \qquad A(18)$$

and

$$\delta = \delta(\mathbf{X}, \phi) \qquad \qquad \mathbf{A}(19)$$

or

$$\gamma = \gamma (\mathbf{X}, \phi) . \qquad A(20)$$

The selection of β , δ or γ is not arbitrary because it involves a selection between different sensitivities. For example, from Equation A(14)

$$\beta = \frac{p_1 - p_{23}}{p_1} = \frac{Cp_{12}}{(p_1/p_t)} \cdot v(x)$$

Since $C_{p_{12}}$ will probably not be strongly sensitive to Mach number, and (p_1/p_t) will be very close to unity for moderate pitch angles, β is a direct measure of the function v(X) and therefore of the Mach number, with a second order dependence on pitch angle. In contrast

$$\delta = \frac{p_1 - p_4}{p_1 - p_{23}} = \frac{C_{p_{14}}}{C_{p_{12}}}$$

will not depend much on Mach number but, through $C_{p_{14}}$, because of the orientation of the sensors, will be highly sensitive to pitch angle. The quantity γ , given by

$$\gamma = \frac{p_1 - p_4}{p_1} = \frac{c_{p_14}}{(p_1/p_t)} \cdot v$$

will again be directly a measure of Mach number but, because of $C_{p_{14}}$, will also be strongly dependent on pitch angle.

APPENDIX B. DATA ACQUISITION AND REDUCTION

B-1. Data Acquisition Using BASIC Program AQCPRB

The data acquisition was carried out using a Hewlett Packard Model 9830A Calculator as controller. BASIC language program AQCPRB was written and stored on mass storage platter PL-001. A program listing is given in Section B-3.1.

The connections of the instrumentation shown in Figure 6 to the data acquisition system shown in Figure 7 are given in Table B-I. The data files containing the raw data stored on PL-001 are given in Table B-II.

B-2. Data Reduction Using FORTRAN Programs REST2 and COEFS

The data reduction was carried out using a Hewlett Packard Model HP21MX computer (Figure 7). First, the data files given in Table B-II were transferred to the HP21MX using the system utility FORTRAN program X9830 (stored on cartridge 28) on the HP21MX, and BASIC program 9830X on the HP9830A. The data file names were retained on the HP21MX.

Second, Program REST2 (cartridge 28) was used to collect the raw data files, reduce the data to pressure coefficients, temperatures and recovery factors, and then to store the reduced data in a single large data file CALNEW (on cartridge 28). The complete reduced data in CALNEW are shown in Table B-III and the listing of program REST2 is given in Section B-3.2.

50

The process of obtaining the coefficients of surface approximations to the calibration data was carried out using program COEFS (on cartridge 28) which is listed in Section B-3.3. The program reads the reduced data file CALNEW into an array. The surface approximation procedure is carried out for the dimensionless velocity X, the pitch angle, or the temperature recovery factor as required; one at a time. Whichever is required must be specified in all the statements which carry an asterisk in column #73. (In the listing in Section B.3.3 it is the pitch angle).

To output the plot correctly, the statements with asterisks in columns #73 and #74 must be edited to adjust the range of the Z-axis.

The order of the approximation is input by the operator and can be varied interactively up to an order of 6 for both independent variables. The coefficients for the approximations and the errors for each data point (see Equations 4, 5 and 10) are printed and plotted and the operator is asked for a name for the file in which to store the coefficients.

B-3. Program Listings

The following pages contain:

- B-3.1 Basic Program ACQPRB
- B-3.2 Fortran Program REST2
- B-3.3 Fortran Program COEFS.

THIS SECTION PERFORMS SEQUENTIAL SCANNING OF SCANIVALVE 'V' BETWEEN PORT ADDRESSES SPECIFIED. REN-- HOTE : THIS PROGRAM ONLY ACQUIRES THE RAW DATA, REN-- MULTIPLIES IT WITH THE APPROPRIATE SCALING REM-- FACTOR AND STORES IT. REM*****AucPRB********************************** DIM AC14,123,BC33,A\$C63,C\$C203,R\$C31,H\$C31 DISP "ENTER NO. OF PITCH ANGLE(MAX.13)"; R.N. GEOPFARTH,LT USN FEB 79 PRESENT S/V PORT STEP SIZE "ENTER PITCH ANGLE ("U")"; . F3.8 (13,380)256,20,768,512; = DESIRED S/V = LOW PORT= HIGH PORTDESCRIPTION: VARIABLES: AUTHOR: 11 11 FOR J=1 TO P9 DISP "ENTER PI INPUT ALJ, 123 DATE: 2 2 2 4 4 0 > 4 **8 8** N 8 Ĥ≈ZER E4 TUANI Û FORMAT FORMAT FORMAT FORMAT **FORMAT WRITE** 200 REM 400 REM 500 REM 500 REM 500 REM 500 REM 500 REM 54 *** 90 REM 51 *** 100 REM 110 REM MAT REM REM 320 320 330 350 360 960 460 346 380 3

7

WRITE (13,350)V; WRITE (15,490)V FORMAT "SCANIVALVE #",F3.0,/,' PORT",8%,"VOLTAGE(UNCORR.)" FOR A=2 TO 12 STEP § WRITE (15,700)R Format 5%,"Scanner #",F2.0,/,2%,"Chan",6%,"Data" FORMAT 10%, "THIS IS K :", F6.2, / NEXT A OUTPUT (13,380°256,20,768,512; CMD "?D#","F1R?M3A1H1T3" OUTPUT (13,370)256,8,512; "?D#","F1R7M3A0H0T3" ENTER (13,*)V0 WRITE (15,580)P,V0 Format 1x,F3.0,4x,F12.6 WRITE (15,610)K WRITE (13,390)V+9 CMD "?D#","T3" CMD "?C\$" OUTPUT (13,390)8 CMD "?D#" S=1 IF V#2 THEN 460 S=2 ENTER (13, *)D1 S1=S1+D1 FOR L=1 TO 10 CMD R\$ CMD "?D!", "C" GOSUB 1690 CMD "?D!" AL J, K J=V0 CMD "?D'" CMD "?C\$" R\$="?D!" K=A/S 8=25 S1=0 CMD REM V≡2 REM R= 1 200 718 728 738 748 58 760 780 800 800

53

1000 A

2

DIM T\$[15];U\$[15];V\$[15];W\$[15];W\$[15];X\$[15];Z\$[15];U\$[16];P\$[16];Q\$[16];Y\$[16] DIM S\$[16];N\$[18] N\$=" P BARO (INCH HG)" 810 NEXT L 820 V=S1/10 830 WRITE (15,840)B,V 840 FORMAT 2X,F3.0,3X,F10.6 850 K=K+1 850 FEM WRITE (15,610)K 870 FEM WRITE (15,610)K 880 AL J,K1=V 890 CMD "?D(!", "C" 910 H#="?D(" 920 WRITE (15,700)H 920 WRITE (15,700)H 930 FOR B=20 TO 23 940 S1=0 950 FOR L=1 TO 10 950 FOR L=1 TO 10 950 CMD H# 970 OUTPUT (13,390)B 960 CMD "?D#" 970 OUTPUT (13,390)B 960 CMD "?D#" 970 OUTPUT (13,390)B 960 CMD "?D#" 970 OUTPUT (13,370)256,8,512; 1000 CMD "?C#" REM****DATA STORAGE***** P BARO (INCH HG)") K=K+1) REM WRITE (15,610)K) ACJ,K]=V 3 NEXT B 1 CMD "?D(!","C" PIPE(IP) (dI) S#="D_T(PIPE-COMB) TUNNE 050 WRITE (15,840)B,V NEXT J GOTO 1120 V=S1/10 PRINT FRINT :=\$d .=\$0 070 040 060 1080 1090 1091 1110 1120 140 150 160 1160 1170 1200 190 .195

FORMAT 2X, "RAW DATA WITH VOLTAGE CORRECTED TO PRESSURES(IN.H20)",/ WRITE (15,1310)T\$,U\$,V\$,W\$,X\$,Z\$,N\$ FORMAT F10.0,F12.0,4F10.0,F18.0 FOR J=1 TO P9 WRITE (15,1470) FORMAT 3X, "RAW DATA CORRECTED TO READINGS IN MILLIVOLTS", WRITE (15,1490)Q\$,P\$,S\$,Y\$,O\$ FORMAT 5F16.0 FOR J=1 TO P9 WRITE (15,1560)ACJ,83,ACJ,93,ACJ,103,ACJ,113,ACJ,123 "INPUT DATA FILE NAME D-----"; A[J, 10]=A[J, 10]*1000 AE J, 11 3=AE J, 11 3*1000 IHd ** A[J, 8]=A[J, 8]*1000 A[J, 9]=A[J, 9]*1000 PCAL-PA**" P1-PA " Р23-РА : Р4-РА : AC J, 12]=AC J, 12] " на-на (15,1290) : FORMAT SF15.4 PK-PA INPUT A NEXT J **WRITE** PRINT FILES PRINT PRINT NEXT DISP ::#\$Z "=\$U :=\$^ : :: **#** M : ##X : || |明 210 290 300 310 320 420 440 460 470 480 500 510 040 040 560 578 588 598 240 250 280 390 400 410 430 450 490 930 540 0 268 270 330 520 220 230 340 350 360 370 380

55

\$

ź

IF END#1 THEN 1660 PRINT "DATA STORED IN",A\$ READ S/V ADDRESS REM SUBROUTINE "POSIT" DISP "END MARKER READ"; STOP WRITE (13,360)256,95; Return **ADVANCE S/V** FOR I=1 TO D STEP REM HOME S/V WRITE (13,390)V+4 WRITE (13,*)°C° WRITE (13,390)V-1 WRITE (13,*)"C" IF D<0 THEN 1760 IF D>0 THEN 1810 Return ASSIGN A\$,1,K MAT PRINT # 1;A L=BIAND(P0,15) M=BIAND(T,7) f=R01(P0,4) GOSUB 1880 D=A-P CMD "?D!" P0=RBYTE13 MAIT 4000 G0T0 1780 GOTO 1760 CMD "?G\$" J+W*01=0 0 10 NEXT WAIT END REM REM 910 920 936 940 950 960

56

201

C INTEGER NDCF (144) IFILE(3) ISIZE(2) INTEGER NDCF (144) IFILE(3) ISIZE(2) REAL A(14) 12 DATA NOLF (006537B, 040433E/ 108 FORMAT (" ENTER FILE (15515B, 005537B/ 108 FORMAT (" COBE & CARTRIDGE REFERENCE NUMBER!"/ **DCPRB : 1 / J "1216, A2 100 FORMAT (" 1 / J "1216, A2 110 FORMAT (" 1 / J "1216, A2 111 CORMAT (" 1 / J "1216, A2 112 FORMAT (" 1 / J "1216, A2 113 FORMAT (" 1 / J "12110) 114 FORMAT (" 1 / J "12110) 115 FORMAT (" 1 / J "12110) 116 FORMAT (" 1 / J "12110) 117 FORMAT (" 1 / J "12110) 118 FORMAT (" 1 / J "12110) 119 FORMAT (" 1 / J "12110) 110 FORMAT (" 1 / J "12110) 111 FORMAT (" 1 / J "12110) 112 FORMAT (" 1 / J "12110) 113 FORMAT (" 1 / J "12110) 114 FORMAT (" 1 / J "12110) 115 FORMAT (" 1 / J "12110) 116 FORMAT (" 1 / J "12110) 117 FORMAT (" 1 / J "12110) 118 FORMAT (" 1 / J "12110) 119 FORMAT (" 1 / J "12110) 110 FORMAT (" 1 / J "12110) 111 FORMAT (" 1 / J "12110) 112 FORMAT (" 1 / J "12110) 113 FORMAT (" 1 / J "12110) 114 FORMAT (" 1 / J "12110) 115 FORMAT (" 1 / J "12110) 117 FORMAT (" 1 / J "12110) 118 FORMAT (" 1 / J "12110) 119 FORMAT (" 1 / J "12110) 110 FORMAT (" 1 / J "12110) 111 FORMAT (" 1 / J "12110) 111 FORMAT (" 1 / J "12110) 112 FORMAT (" 1 / J "12110) 113 FORMAT (" 1 / J "12110) 114 FORMAT (" 1 / J "12110) 115 FORMAT (" 1 / J "12110) 117 FORMAT (" 1 / J "12110) 118 FORMAT (" 1 / J "12110) 119 FORMAT (" 1 / J "12110) 110 FORMAT (" 1 / J "12110) 110 FORMAT # Mechae. Phi T Tennel T ref pipe Tcombprebe Mec.Fac") 120 FORMAT (2X,10(F10.6,2X)) 121 FORMAT (//* REARRANGED DATA ARRAYS"/) 122 FORMAT (//* GAMMA("I2",12")="F10.6" DELTA("I2","I2")="F10.6" X UEL(122 FORMAT (' GAMMA("I2","I2")="F10.6" DELTA("I2","I2")="F10.6" X UEL(123 FORMAT (' MORE DATA YES OR NO "2A2) 123 FORMAT (' MORE DATA YES OR NO "2A2) TO NEW ARE RESTORES RAW CALIBRATION DATA FROM COMBINATION PROBE STRUCTURE. "3A2" "IS" Encountered!") *** "I2" OF FILE SREST2 T=00004 IS ON CR00028 USING 00030 FLKS R=0000** 151 FORMAT (538212, 12, 12, 12) 161 FORMAT (12) 162 FORMAT (12) 162 FORMAT (12) "Statement # "I6" Error # LU(ISESSN) 78 LI = LOGLU(ISESSN) WRITE (LI, 111) NOLF READ (LI, 149) IDUM WRITE (LI, 149) (ICLR, 11=1,2) IF (IDUM , EQ. 2HNO) GO TO 200 200 **1**897 CODE (IDUM, FORMAT Ē CALL `: * FTN4,L 277 1111 000000

57

Fortran Program REST2 B-3.2.

(IDCB, IERR, IFILE, IOPTN, ISECU, ICR, IDCBS) FROM DISC INTO ARRAY A. LT: 0 > WRITE(1,1111)JJ,IERR
(IDCB,IERR) LT: 0 NWITE(1,1111)JJ, IERR (IDCB, IERR, A, IL) Ll, 0 > WRITE(1,1111)JJ,IERR (IDCB,IERR,0) 0) WRITE(1,1111)JJ, TERR ILE ISECU, ICR : LI) LO = 0PRESET NEW DATA ARRAYS. READ FILE DCPRB . L.T. HUCH+ Ĕ (ĽΩ .ΕQ. MACH = 0 ه ف 11 11 a LERR LERR JERR JERR ERR 1.05E OPEN ERR - 11 **ICR** 336 66 10 ukite D0 81 CAMMA DEL TA ॥ ↓ ∽⊑ ALL. EAD ALL 1 NUN NACH **P**L N-L 004 86 80

58

00000

00000

7 . 1

 $\overline{.}$

NP ITCH = i3 NP ITCH = i3 B0 = (A(Ji,3)-A(Ji,5))/(A(Ji,3)+30,0300*13.585-A(Ji,1)) B0 = B0*60 D0 = B0*60 N0 = B0*60 N0 = SQRT((-(30.0300*13.585/(A(Ji,6)+30.0300*13.585-A(Ji,1))) N0 = SQRT((5*X0*X0)/(1-(X0*X0))) X0 = SQRT((5*X0*X0)/(1-(X0*X0))) N0 = A(Ji,12) N0 = A(Ji,13) N0 = A INTO NEW ARRAY IÉ''^0) WRITE (LO, 113) I1 (A(I1,J2),J2=1,12,1) 110) I1,(A(I1,J2),J2=1,12,1),NOLF (12,12=1,12,1) (12,12=1,12,1) (12,12=1,12,1) (12,12=1,12,1) (12,12=1,12,1) (12,12=1,12,1) X vel AND 0) WRITE (LO, 119) ~ ~ DEFINE DELTA AND WRITE OUTPUT INPUT DATA 00000 00000 109,0° 11 11 ļļ, 11 il <u>1</u>62) k GAMMA(NMACH, J1) DEL TA(NMACH, J1) X. VEL (NMACH, J1) (NMACH, J1) ЧZ. (LI, 16 ž CONTINU UR II UR II IF H *R0 4712 02 00000 00000 0

C UNTPUT NEW DATA ARRAY. C WRITE (LI, 121) D 10 10 J=1,16,1 N XVEL(I,J),I,J,PHI(I,J),I,J,RECF(I,J),GAMMA(I,J),I,J,DELTA(I,J),	DECISION, WHETHER TO REARRANGE MORE FILES. WRITE (LI, 123) NOCR READ (LI, 149) IDUM IF (IDUM .EQ. 2HYE) GO TO BO	store NEW DATA ARRAY IN FILE CALNEW. FFILE(3) = 2HLM IFILE(3) = 2HLM IFILE(3) = 2HLM IFILE(3) = 2HLM IFILE(3) = 2HLM ISIZE(1) = 128 ISIZE(1) = 128 ISI
	00000	00000

 $n_{\rm c}$

60

The second s

3 . .

,2345) IFILE ±1,81 4567) 1 3456) (GAMMA(I,J),DELTA(I,J),XVEL(I,J),PHI(I,J),RECF(I,J) GAMMA 99 WRITÉ(6,45,456) T 99 WRITE(6,3456) (GAMMA(I,J),DELTA(I,J),XVEL(I, 2345 ÉDRMAT(THESE ARE DATA FROM FILE :"3A2//" 3456 FORMAT(S(1X,FB,9)) 4567 FORMAT(" MACH NUMBER = "I3/)

 22
 1588
 11
 1411
 11
 1688

 1588
 10
 WRITE(1,111)
 11
 1688

 23
 23
 11
 11
 11
 11

 23
 12
 0
 WRITE(1,1111)
 11
 15
 1688

 23
 12
 1688
 17
 0
 WRITE(1,1111)
 11
 15
 1688

 16
 16
 WRITE(1,1111)
 11
 15
 1688

 16
 17
 0
 WRITE(1,1111)
 15
 1688

 ERR (TDCB, JERR, PHI, 512, 131) JJ, JERR STOP 7777 END MR IT DO 9 CAL

DELTA

61

A LE C ST ST

B-3.3. Fortran Program COEFS

62

. .

INITIALIZE PLOTTER AND DEFINE USER & PLOTTER ARÊAS. L INITG (13) AX = 10 AX = 10 AX = 10. AX = 10.		<pre>(XPMAX - XPMIN (XPMAX-XUMAX-XUMIN)/(XUMAX-XUMIN) (XPMAX - XPMIN)/(XUMAX-XUMIN) = (XPMAX - YPMIN = (YPMAX - YPMIN)/(YUMAX-YUMIN) = (YPMAX - YPMIN)/(YUMAX-YUMIN) = (YPMAX - YPMIN)/(YUMAX-YUMIN)</pre>	
Т Т Т Т Т Т Т Т Т Т Т Т Т Т	· XXX · • QQQ · !! !! !! !! !! · ! ! ! · ·		

%% ₩₩

· · · · . ·

: •

77

. . . .

00000

• • • • •

0000000

с С

, 8, XUMIN, XUMAX, 4HE6.2, 6, 5) , 8, YUMIN, YUMAX, 4HE6.2, 6, 3) , 8, ZUMIN, ZUMAX, 4HE6.2, 6, 3) **	· · · · · · · · · · · · · · · · · · · ·	· · · · · ·						These statements can h used to exclude one or more machnumbers!	YEČTED")		
CALL SETSM (113,1.) CALL AXIS (X0,Y0,XL,ALPHAX,BH Delta , 8,XUM) CALL AXIS (X0,Y0,YL,ALPHAY,BH Gamma ,-8,YUM) CALL AXIS (X0,Y0,ZL,ALPHAZ,9H Pitch ,-8,ZUP CALL AXIS (X0,Y0,ZL,ALPHAZ,9H Pitch ,-8,ZUP	C READ DATA FILE CALNEW.	JJ = 1 CALL OPEN (IDCB, IERR, IFILE IOPTN, 0,28,144) IF = 1 IF = 1	ČÅLL READF (IDCB,IERR,GAMMA,512,LEN,1) If (IERR .LT. 0) WRITE(1,1001) JJ,IERR IJ = 3	ČÅLL ŘEADF (IDCB,IERR,DELTA,512,LEN,5) IF (IERR .LT. 0) WRITE(1,1001) JJ,IERR	ČÅLL READF (IDCB, IERR, XVEL 512, LEN, 9) IF (IERR .LT. 0) WRITE(1,1001) JJ, IERR	CALL READF (IDCB, IERR, PHI, 512 LEN, 13) IF (IERR .LT. 0) WRITE(1,1001) JJ, JERR	CALL READF (IDCB, IERR RECF, 512 LEN, 17) IF (IERR .LT. 0) WRITE(1,1001) J1, IERR Call Close (IDCB, IERR, 0)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1001 FORMAT (" STATEMENT# "IS" ERROR & "F12,7" DETECTED")	PLOT CALIBRATION POINTS.PLOT CALIBRATION POINTS.NMACH = \hat{s} NPITCH = 13 NPITCH = 13 CALL SETSM ($113,2$.)D0 01 1=1, NMACH ($12,2$.)D0 01 1=1, NMACH ($12,2$.)D0 01 1=1, NMACH ($12,2$.)D1 1 1 F(1, 1, 1).CALL THRID (XPLOT, YPLOT, YPLOT, 2).F (J, Eq. 1.) CALL PLOT (XPLOT, YPLOT, 2).IF (J, Eq. 1.) CALL PLOT (XPLOT, YPLOT, 2).	
	00000	د						ပ်ပ်ပုပ်	**	00000	

۰.

WKITE(6.1234)DELTA(1,J),GAMMA(1,J),XVEL(1,J),RECF(1,J) EQRMAT(. DELTA="F9.6" GAMMA="F9.6" XVEL="F6.2" RECF="F9.6) IDCB.TERR.IFILE ISTZE.ITYPE.ISECU.ICR.IDUBS)
GT 0 \$100 011
IDCB.IERR.IFILE TOPTN.ISECU.ICR.IOCRS)
IDCB.IERR.0012
IDCB.IERR.0013
IDCB.IERR.0013
IDCB.IERR.0
IDCB.IERR.0
IDCB.IERR.0
IDCB.IERR.0
IDCB.IERR.0
IIIE (([,]),PHI([,])) • • • • CALCULATE CALIBRATION SURFACE COEFFICIENTS Ť,YPLUT,DELTA(I,J),GAMMA(I) CALL PLOT (XPLOT,YPLOT,2)) CALL PLOT (XPLOT,YPLOT,3) -----(1, (COFFF (1, U), J=1, N, 1)
(1, J=1, N, 1) M=MORDER+1 N=NORDER+1 Call COMAT (A, B, M, N, NMACH, NP1TCH) NeqUS=M*N CALL ELGJ (NeqUS) MORDEK MORDEK 6) CO TO 87 NOCR 10 NOCR 6) CO TO 92 (),J=1,N,1) 106) IFILE 149) ICLR (9) (1) = B(11)6 I=1, 3, 1 I=1, N, 1 6, 605) 6, 605) 5 605) 6,605 ĒISM 11 11 ÷ READ (WRITE(WK L LE WK L LE 6 00 00 AD COEFI õ CALL zo IR IT [1=] I 1 = 0 Ā Z WR I 1 UR I С Ш Ē Ē Z. WK I Σ Ω 212 212 ۰. C1234 F 3 X 0 N 65 63 5 4 2 00000 <u></u>

×

7

 ~≎ -€	sé
WRITE (6,602) (3,5=1, NPTICH,1) PLOT CALCULATED CALIBRATION SUKFACE CALL SETSM (113;3:) DO B1 1=1,NMACH,1 D0 B1 1=1,NMACH,1 D0 B1 1=1,NMACH,1 D0 B1 1=1,NMACH,1 CALL THRTW (XPLOT (XPLOT,YPLOT,3), GAMMA(I,J),PHI(I,J)) TF (1,EQ1) CALL PLOT (XPLOT,YPLOT,3) CONTINUE D0 B2 1=1, NPTCH 4 CALL THRTW (XPLOT (XPLOT,YPLOT,3)) CONTINUE	
	20 20 20

. .

KEAD DATA FILE CALNEW.	ÖPEN(İDCB, TERR, İFTLE, İÖPTN, Ö, 28, 144)READF(IDCB, TERR, GAMMA, 001READF(IDCB, TERR, GAMMA, 512, LEN, 1)TERRLTREADF(IDCB, TERR, GAMMA, 512, LEN, 1)READF(IDCB, TERR, DEL TA, 512, LEN, 5)READF(IDCB, TERR, AVEL, 512, LEN, 9)READF(IDCB, TERR, PH1, 512, LEN, 9)READF(IDCB, TERR, PH1, 512, LEN, 13)READF(IDCB, TERR, PH1, 512, LEN, 13)READF(IDCB, TERR, RECF, 512, LEN, 17)TERRLTCB, TERR, RECF, 512, LEN, 17)TERR(IDCB, TERR, RECF, 512, LEN, 17)TERR(IDCB, TERR, RECF, 512, LEN, 17)	NEXT STEP?	ГЕ (LI, 103) NOCR (LDUM EQ.1) GO TO 91 (IDUM EQ.2) GO TO 91 STOPG 5 077 6 (LI, 104) CO 85 10 85
KEAD DA	CALL DPEN CALL OPEN CALL DPEN CALL READE CALL READE	NEXT ST	READ (LI) READ (LI) READ (LI) READ (LI) CALL STOPE STOP 077 GO TO 85 END 85 END 85
			n

.

and the second second second

TURBOPROPULSION LABORATORY

HP9830/21 MX Data Acquisition

Test Probe Cal

Run Mo.

7

	Port/C	:ha	nnel Assigna	len	ts		Date 6/12/81
New T.C.	New dodge probe	<u>e i</u>	n 4 1/4" free	jet	straight TRef	Pr	obe in pipe
L			SCANNER #1		SCANNER =2	r	SCANNER #1
s.v. #1	s.v. #c	<u>zh</u>		ch	•] cł	
		0		3		40	
PA - PA		1		1		41	
		2		2		42	
Pcal - PA		3		3	1	43	
		4		1	1	4-	
P1 - PA	1	5		5		45	
1		6		6	TTIN J' IP	4	
P23 - PA	1	71		7	T _{TUN} "E" IP	4.	
	1	8		3	AT (Tiot-Taine)		
P4 - PA	++-	9		9		43	
					$R7 \times 10^3 = Mv$		
Pt Tun - PA		<u>ii</u> t		11		51	
		12		12		52	
		13		13	<u>├────</u>	53	
		4		14		54	
		15		15	<u>├──·─</u> ·	55	·
$R7x10^{5} = in H_{2}0$		6		16		_	
		i 7		17		56	
						57	
				18		56	
		19		19		59	the second second second second second second second second second second second second second second second s
		20		20		еc	the second second second second second second second second second second second second second second second s
		21		21		61	
		22		22		62	
		23		23		63	
		24		24		64	
	2	<u>:5</u>]	P Baro	25		65	
	2	:6	R7x10 4 in Hg	26		66	
		27	Abs.	27		67	
		28		28		68	
	2	29		29		69	
	3	10		30		70	1
Calib.	3		Calib.	31	Calib.	71	
inches H ₂ O	3	12	inches Hg	32	according	72	
<pre>± volts x 10⁵</pre>	3	3		33	το	73	j
	3,	4				74	
		5		35	type	75	
	3	16	·····	36		76	the second second second second second second second second second second second second second second second s
		17		37		77	
		8		38		78	
		9		39		79	
	╉╍╍╍╍╍╌╴╂ᢟ	÷					<u> </u>
	╉┈┅╾┈╾┲╼╼╼╂┈	+		-+			<u> </u>
	╉╍╍╍╍┲	+	· · · · · · · · · · · · · · · · · · ·	-+			ł
	+	┿	·····	-+			<u> </u>
	╋╼╾╍╼╼╼╼╋╼┉	+				_	<u> </u>
h <u></u>	₄┥╾╾╼╌╾╼╌╌┥╌╴	┿		-+			
	┟╌╌╌╌╌ ┟╌╴	╇		-+		_	
		+		-+			h
	A	┶	أسيستين متيرية فتستجدهم				L

Measurements are in Volts

TPL 4/01/81

-**4**___

. .

......

Table B-I. Calibration Test Instrumentation Connections

File Name	Mach Number						Pitc	Pitch Angle	gle					
YPRB30	Ч	9	4	-2	0	2	4	4 6 8	œ	10	12	14	16	18
YPRB40	2	Ŧ	=		2	2	z	=	z	3		I	2	Ŧ
YPRB45	e	2	z		E	I	2	E	I	Ŧ	¥	z	z	=
YPRB50	4	8	2		2	I	z	E	=	=	E	z	8	T
YPRB55	S	æ	2	E	E	2	2	z	=	=	z	Ŧ	Ŧ	*
YPRB60	Q	=	2	=	E	=	=	=	=	=	E	T		=
YPRB65	7	=	=	Ŧ	E	Ŧ	2	=	=	:	=	z	=	=
YPRB70	89	I	=	=	I	E	:	I	E	I	2	E	=	=

4

69

Table B-II. Raw Data File Names

The second second second second second second second second second second second second second second second s
Ganna delta Mach Number = 1	XVEL PHT	RECF	MACH NUMBER = 5
1.521552 8812882 1 1.464879 .3773556 1 1.377388 8736726 1 1.313777 .3695280 1 1.254386 .8658292 1 1.170395 .9617483 1 1.925862 .0547432 1 .9521739 .0584877 1 .9521739 .0584877 1 .944589 .0442724 1 .7531915 .8467311 1 .7088547 .8377656 1 MACH MUMBER = 2	332521 -6.00000 3327658 -4.30000 3326334 -2.00000 327658 0.00000 327658 2.00000 327658 2.00000 325223 4.00000 325223 6.000000 325223 6.00000 325223 6.00000 325223 6.00000 325223 6.00000 325223 6.00000 325223 6.00000 325223 9.00000 325223 14.00000 332521 16.00000 327658 18.00000	9917194 9884776 9915637 9915637 9791391 9791391 97916281 9937222 9789868 980366 1.082970 9848231 9883388	1,595331,2448943,2406194 -6.00000,9954481 .538058,2333929,2402852 -4.00000,9964553 .473545,2216228,2403966 -2.00000,9966950 1.394422,2089067,2405079,2.00000,9960956 1.208719,1821775,2401736,4.00000,9921237 1.119423,1698332,2405079,2.00000,9921237 1.119423,1698332,2407306,6.00000,9945685 1.943081,1588919,2403966,8.000000,9961605 9759531,1462814,2402852,10.00000,9961605 .959531,1462814,2402852,10.00000,9961605 .8223087,1262552,2403966,14.00000,9954781 .7673338,1178678,240295,16.00000,9934781 .7148439,1094591,2398386,18.00000,9968663 *ACH NUMBER = 6
1.535627 1.371644 1 1.487562 1.3311814 1 1.420398 1.222310 1 1.359802 1.201603 1 1.277915 1.128976 1 1.482716 1.050076 1 1.103761 .0970568 1 .9751002 .0052776 1 .9725491 .0781117 . .8097562 .0728617 1 .7628361 .0604725 . .7894432 .0643027 . .4644 MUMBER = 3	1763513 -6.8888 1768678 -4.0080 1768678 -2.8600 1765233 2.00000 1765233 4.00000 1765233 4.00000 176523 4.00000 176574 6.00800 176574 12.00000 1766954 12.00000 1764063 14.80000 1764063 18.0000	.8087528 .82139755 .7210634 .7157393 .7402264 .6757887 .6942834 .7305281 .6986769 .7744532 .7088474 .7349200 .6128314	1.609133 .2783892 .2584729 -6.00000 .9956807 1.550336 .2665603 .2588692 -4.00000 .9940800 1.444955 .2506939 .2587702 -2.00000 .9945407 1.411968 .2361171 .2576768 0.00000 .9967434 1.315428 .2215773 .2585720 2.000000 .9967434 1.247544 .2057917 .2584729 4.000000 .9983823 1.126554 .1918572 .2578761 6.000000 .9983823 1.126554 .1918572 .2578761 6.000000 .9963823 1.049533 .1787716 .2576768 0.00000 .9963269 .9672318 .1648025 .2578761 10.00000 .9972369 .9672318 .1528812 .2585718 12.00000 .9944418 .8991345 .1528812 .2585718 12.00000 .9944418 .8991345 .1528812 .2585718 12.00000 .9945398 .7170023 .1234930 .2579757 18.00000 .9911137 HACH NUMBER = 7
1.568976 1888948 1.507067 1791048 1.448028 1696561 1.375800 1616433 1.289521 1523746 1.197158 1414903 1.197158 1414903 1.19608 1326734 1.929982 1226227 .9543859 1142008 .9778369 1054373 .8124999 .9982455 .7604167 .0919478 .7137872 .0859328 .7604167 .0919478 .7137872 .0859328 .7604167 .0859328 .7704168 .085938 .7704168 .08598 .7704168 .08598 .7704168 .08598 .7704168 .085988 .7704168 085988 .77048 .08598	2077222 -6.0000 205493 -4.0000 2079645 -2.0000 2079645 2.00000 2078665 2.00000 2078665 2.00000 2078665 2.00000 2078665 10.0000 2075839 8.00000 2081361 10.0000 2081418 14.0000 2084118 14.0000 2084118 14.0000	9853598 9934516 9968249 9918246 992321 9928216 9929143 988421 988421 988421 9973444 9973444 99745261 9861848 988694	1.441706 .3195823 .7796194 -6.00000 .9976718 1.583654 .3039544 .2795326 -4.00000 .9973757 1.586256 .2881830 .279738 -2.00000 .9979711 1.427875 .2704641 .2797864 0.00000 .9956771 1.329158 .2540321 .2798797 2.000000 .9956771 1.326255 .2356273 .2799234 4.000000 .9951526 1.144035 .2195389 .2793587 6.000000 .9959774 .958027 .2019354 .278574 2.000000 .9959774 .9731286 .1869960 .2785742 10.00000 .9959773 .975146 .1869960 .2785742 10.00000 .99597135 .8975096 .1728599 .2794977 12.00000 .9932628 .8356778 .1616661 .2797938 14.00000 .9935628 .8356778 .1616661 .2797938 14.00000 .9932635 .7793696 .507600 .2786617 16.00000 .9949710 .7326075 .1427365 .2801394 18.00000 .9941336 MACH NUMBER = 8
i.574882 .2875264 . i.513386 .1981208 . i.455272 .1878983 . i.285714 .1678249 . i.196172 .1547484 . i.13924 .1451374 . i.731496 .1359634 . .9527559 .1248847 . .877551 .1153392 . .8159127 .1078667 . .7593751 .1902563 . .7138366 .0937518 .	2191589 -6.0000 2190310 -4.0000 218743 0.00000 2197589 2.00000 2197589 4.00000 2194147 6.000000 2194147 6.00000 219725 10.00000 2195426 12.00000 2195426 12.00000 219579 14.00000 2197799 16.00000 219743 18.00000	.9968155 .9989348 .9955633 .9943811 .9965537 .9952673 .9952673 .9952673 .9952673 .9918269 .9911489 .9918266 .9921843 .9882616 .9921843 .9845446	1.654221 .3595268 .3001155 -6.00000 .9980165 1.596867 .3415878 .3005725 -4.00000 .9977407 .530151 .3221327 .3004204 -2.00000 1.007914 .444632 .3014336 .2997335 0.000000 .9969914 1.349627 .2864642 .3004204 2.000000 .9969914 1.247492 .2629735 .2993505 4.000000 .9962934 1.156840 .2430080 .2997335 6.000000 .9948375 1.372148 .2253740 .29995816 10.00000 .9948375 1.372148 .2253740 .29995816 10.00000 .9948375 .9815592 .2867599 .2995816 10.00000 .9948375 .9815592 .2867599 .2995816 10.00000 .9948375 .9815592 .2867599 .2995816 10.00000 .9948375 .9815592 .2867599 .2995816 10.00000 .9948375 .3899669 .1787676 .3000392 12.00000 .9951346 .8399669 .1787676 .300039 14.00000 .9951346 .7312500 .1675020 .2995839 16.00000 .995134

 \overline{h}_{2}

Table B-III. Reduced Calibration Data

APPENDIX C. CHROMEL-CONSTANTAN THERMOCOUPLE OUTPUT APPROXIMATION

The relationship between the millivolt output of the Type E (Chromel-Constantan) thermocouple element and the temperature is given by the manufacturer (Omega Engineering, Inc., P.O. Box 4047, Stamford, Connecticut, 06907) from NBS Standard tables. For a range of 0° to 170° Fahrenheit the temperature as a function of the voltage was approximated by a second order polynomial using the method of least squares. Figure Cl shows the approximation together with the coefficients for the curve. The second order approximation in Figure Cl was used in the data reduction programs for the probe.

71

Ψ.

APPENDIX D. PNEUMATIC AVERAGING OF UNSTEADY PRESSURES

Other investigators have questioned whether a pneumatic probe measures the correct time average value of the impact pressure in an unsteady flow (References 7 and 8). It is clear that the possible error in the probe measurement will depend on the relationship between the average pressure level and the unsteady departures therefrom. Weyer, in Reference 7, has measured the magnitude of the error for a particular wave form. In order to get an idea of the error which might be involved if the measurement of P1 was taken to be the time-averaged total pressure, the unsteady pressure distribution in the measuring plane of the probe was observed in the compressor. Figure Dl shows the pressure distribution measured behind the compressor rotor using a simple impact pressure probe incorporating a Kulite semiconductor transducer at the tip. Rotor rotational speed was 15,200 rpm, resulting in a (blade-passing) frequency of 4.56 Khz in the pressure variation. Using the notation of Reference 7, the characteristics of the signal were determined to be the following:

Time average value of the pressure, $\overline{P}_1 = 434" H_2^0$ Peak-to-peak amplitude of the pressures,

 $(P_{max} - P_{min}) = 2Pl_a = 16" H_2O$ Ratio of wave amplitude to mean value, $\frac{2Pl_a}{P_1} = 0.037$

Figure D2 (from Reference 7) shows the relationship between the error which was measured for a particular pneumatic probe, the frequency, the pressure level and the amplitude of the pressure changes for the particular wave shape indicated in the figure. It is observed that the frequency involved in the present measurements exceeds the range given in Figure D2, and that the value of $2Pl_a/\overline{P}_1$ was also very much smaller.

Similar comparisons between the pressure readings P2 and P3 and corresponding Kulite probe measurements showed that for these sensors $2Pl_a/\bar{P}_1$ was even smaller, thus any error in the averaging of P2 and P3 should be negligible.

An equivalent Kulite probe for P4 did not exist, so that a comparison for this sensor could not be made. However, since the tube for P4 is inclined at an angle to the flow comparable to those of P2 and P3, it can reasonably be assumed that the conclusions are similar.

For operating conditions at higher speeds and flow rates, the above conclusions must be reexamined for the time-varying rotor exit conditions then measured. Whereas the data in Figure D2 suggest that the error becomes small at higher frequencies, it was shown in Reference 9 that measurable errors could occur at 3 - 8 Khz in particular pneumatic systems if the wave form was sufficiently extreme (implying large values of the parameter $2Pl_{a}/\overline{P}_{1}$).

Figure D2. Relative Error in the Pressure Measurement Using Conventional Pneumatic Measurement Systems Depending on the Frequency for Two Different Pressure Amplitudes (measurement hole diameter: 0.028", sharp edge)

(Reproduced from Ref. 7.)

2.1

LIST OF REFERENCES

- 1. Dodge, F. J., <u>Development of a Temperature-Pneumatic Probe</u> and Application at the Rotor Exit in a Transonic Compressor, M.S. Thesis, Naval Postgraduate School, Monterey, California, June 1976.
- 2. Hawkins, W. R., <u>Determination of the Blade-Element Perfor-</u> mance of a Small Transonic Rotor, M.S. Thesis, Naval Postgraduate School, Monterey, California, December 1976.
- Shreeve, R. P., Dodge, F. J., Hawkins, W. R., and Larson, V. J., "Probe Measurements of Velocity and Losses from a Small Axial Transonic Rotor," AIAA Paper No. 78-1198.
- 4. Shreeve, R. P., Anderson, D. J., and Olson, J. A., "Calibration and Application of Multiple-Sensor Pneumatic Probes for Velocity Determination with Corrections for Boundary Effects," AIAA Paper No. 76-273.
- 5. Naval Postgraduate School Contractor Report NPS67-80-001CR, Procedure and Computer Program for the Approximation of Data (with Application to Multiple Sensor Probes), by H. Zebner, August 1980.
- 6. Cina, Frank S., Subsonic Cascade Wind Tunnel Tests Using A Compressor Configuration of DCA Blades, M.S. Thesis, Naval Postgraduate School, Monterey, California, June 1981.
- 7. Weyer, H., <u>Bestimmung der zeitlichen Druckmittelwerte in</u> <u>stark fluktuierender Strömung, insbesondere in Turbomaschinen</u> [The Determination of Time-Weighted Average Pressures in Strongly Fluctuating Flows, Especially in Turbomachines], Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, Forschungsbericht 74-34, 1974.
- Krause, L. N., Dudzinski, T. J., and Johnson, R. C., "Total Pressure Averaging in Pulsating Flows, Instrumentation for Airbreathing Propulsion," edited by A. E. Fuhs and M. Kingery for AIAA series, <u>Progress in Astronautics and Aeronautics</u>, Volume 34, M.I.T. Press, 1974.
- 9. Larson, V. J., Unsteady Effects on the Measurement of Total Pressure in Rotating Machines, Naval Postgraduate School M.S. Thesis, September 1977.
- 10. <u>Aerodynamic Design of Axial Flow Compressors</u>, NASA SP-36, 1965.

DISTRIBUTION LIST

		No. of Copies
1.	Library Code 0212 Naval Postgraduate School Monterey, California 93940	4
2.	Office of Research Administration Code 012A Naval Postgraduate School Monterey, California 93940	1
3.	Chairman Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93940	1
4.	Director, Turbopropulsion Laboratory Department of Aeronautics Naval Postgraduate School Monterey, California 93940	30
5.	Dr. Gerhard Heiche Naval Air Systems Command Code AIR-310 Navy Department Washington, D.C. 20360	1
6.	Mr. Karl H. Guttmann Naval Air Systems Command Code AIR-330 Navy Department Washington, D.C. 20360	1
7.	Dr. A. D. Wood Office of Naval Research 800 North Quincy Street Arlington, Virginia 22217	1
8.	Commanding Officer Naval Air Propulsion Test Center Attn: Mr. Vernon Lubosky Trenton, New Jersey 08628	l

5 · ·

.....

9.	National Aeronautics & Space Administration Lewis Research Center (Library) 2100 Brookpark Road Cleveland, Ohio 44135	1
10.	CAG Library The Boeing Company Seattle, Washington 98124	1
11.	Library General Electric Company Aircraft Engine Technology Division DTO Mail Drop H43 Cincinnati, Ohio 45215	1
12.	Library Pratt and Whitney Aircraft Post Office Box 2691 West Palm Beach, Florida 33402	1
13.	Library Pratt and Whitney Aircraft East Hartford, Connecticut 06108	1
14.	Chief, Fan and Compressor Branch Mail Stop 5-9 NASA Lewis Research Center 2100 Brookpark Road Cleveland, Ohio 44135	1
15.	Prof. D. Adler Technion Israel Institute of Technology Department of Mechanical Engineering Haifa 32000 ISRAEL	נ
16.	Director, Whittle Laboratory Department of Engineering Cambridge University ENGLAND	1
17.	Prof. F. A. E. Breugelmans Institut von Karman de la Dynamique des Fluides 72 Chausee de Waterloo 1640 Rhode-St. Genese BELGIUM	נ
18.	Library Air Research Mfg. Corporation Division of Garrett Corporation 402 South 36th Street Phoenix, Arizona 85034	1

- 19. Prof. Jacques Chauvin Universite D'Aix-Marseille 1 Rue Honnorat Marseille, FRANCE
- 20. Mr. James V. Davis Teledyne CAE 1330 Laskey Road Toledo, Ohio 43601
- 21. Dr. Robert P. Dring United Technologies Research Labs 400 Main Street Hartford, Connecticut 06108
- 22. Mr. Jean Fabri ONERA 29, Ave. de la Division Leclerc 92 Chatillon FRANCE
- 23. Prof. Dr. Ing Heinz E. Gallus Lehrstuhl und Institut fur Strahlantiebe und Turbourbeitsmashinen Rhein.-Westf. Techn. Hochschule Aachen Templergraben 55 5100 Aachen, WEST GERMANY

1

1

1

1

1

1

1

1

- 24. Professor J. P. Gostelow School of Mechanical Engineering The New South Wales Institute of Technology AUSTRALIA
- 25. Dr. Ing. Hans-J. Heinemann DFVLR-AVA Bunsenstrasse 10 3400 Gottingen, WEST GERMANY
- 26. Professor Ch. Hirsch Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels, BELGIUM
- 27. Chairman Aeronautics and Astronautics Department 31-265 Massachusetts Institute of Technology Cambridge, Massachusetts 02139
- 28. Dr. B. Lakshminarayana Professor of Aerospace Engineering The Pennsylvania State University 233 Hammond Building University Park, Pennsylvania 16802

29.	Mr. R. A. Langworthy Army Aviation Material Laboratories Department of the Army Fort Eustis, Virginia 23604	1
30.	Prof. Gordon C. Oates Department of Aeronautics and Astronautics University of Washington Seattle, Washington 98105	1
31.	Prof. Walter F. O'Brian Mechanical Engineering Department Virginia Polytechnic Institute & State University Blacksburg, Virginia 24061	1
32.	Dr. W. Schlachter Brown, Boveri-Sulzer Turbomachinery Ltd. Dept. TDE Escher Wyss Platz CH-8023 Zurich, SWITZERLAND	1
33.	Prof. T. H. Okiishi Professor of Mechanical Engineering 208 Mechanical Engineering Building Iowa State University Ames, Iowa 50011	1
34.	Dr. Fernando Sisto Professor & Head of Mechanical Engineering Department Stevens Institute of Technology Castle Point, Hoboken, New Jersey 07030	1
35.	Dr. Leroy H. Smith, Jr. Manager, Compressor and Fan Technology Operation General Electric Company Aircraft Engine Technology Division DTO Mail Drop H43 Cincinnati, Ohio 45215	1
36.	Dr. W. Tabakoff Professor, Department of Aerospace Engineering University of Cincinnati Cincinnati, Ohio 45221	1
37.	Mr. P. Tramm Manager, Research Labs Detroit Diesel Allison Division General Motors P.O. Box 894 Indianapolis, Indiana 46206	1

38. Prof. Dr. W. Traupel Institut fur Thermische Turbomaschinen Eidg. Technische Hochschule Sonneggstrasse 3 8006 Zurich, SWITZERLAND 39. Dr. Arthur J. Wennerstrom ARL/LF Wright-Patterson AFB Dayton, Ohio 45433 40. Dr. H. Weyer DFVLR Linder Hohe 505 Porz-Wahn WEST GERMANY 41. Mr. P. F. Yaggy Director U.S. Army Aeronautical Research Laboratory AMES Research Center Moffett Field, California 94035 42. Prof. C. H. Wu P.O. Box 2706 Beijing 100080 CHINA 43. Director Gas Turbine Establishment P.O. Box 305 Jiangyou County Sichuan Province CHINA 44. Professor Leonhard Fottner Department of Aeronautics and Astronautics German Armed Forces University

1

1

1

1

1

1

1

5

. All subscribes of

- German Armed Forces University Hochschule des Bundeswehr Werner Heisenbergweg 39 8014 Neubiberg near Munich WEST GERMANY
- 45. BDM Corporation P.O. Box 2019 Monterey, California 93940

